COSMETIC COMPOSITION COMPRISING A VOLATILE FATTY PHASE

Inventor: Frederic Auguste, Chevilly-Larue (FR)

Correspondence Address:
Thomas L. Irving
FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P.
1300 I Street, N.W.
Washington, DC 20005-3315 (US)

Appl. No.: 10/443,793
Filed: May 23, 2003

Related U.S. Application Data

Provisional application No. 60/461,400, filed on Apr. 10, 2003.

Foreign Application Priority Data

Apr. 4, 2003 (FR) .. 03 04259
May 20, 2003 (FR) .. 03-06068

Publication Classification

(51) Int. Cl. A61K 7/06, A61K 7/11
(52) U.S. Cl. .. 424/70.12

ABSTRACT

The invention relates to a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising at least one non-cyclic volatile silicone oil, wherein the volatile silicone fatty phase has an evaporation profile such that the mass of the at least one volatile silicone oil evaporated after 30 minutes is from 2 mg/cm² to 9 mg/cm². The invention also relates to making up and caring for human keratin materials using the inventive compositions.
COSMETIC COMPOSITION COMPRISING A VOLATILE FATTY PHASE

[0001] This application claims benefit of U.S. Provisional Application No. 60/461,400, filed Apr. 10, 2003.

[0002] Disclosed herein is a cosmetic composition comprising at least one volatile silicone oil. Further disclosed herein is a non-therapeutic care or make-up process for human keratin materials, comprising applying the composition to the keratin materials.

[0003] Volatile silicone oils are commonly used in cosmetic compositions for their good cosmetic properties, such as their pleasant feel on contact with the skin. These oils may also evaporate quickly after they have been applied to keratin materials. However, if their rate of evaporation is too high, the user may not have sufficient time to apply the cosmetic product to the keratin materials, or sufficient time to apply the cosmetic product to the keratin materials uniformly.

[0004] The volatile silicone oils most commonly used in cosmetic products are cyclic silicones containing from 4 to 6 siloxane groups (generally known as D4, D5 and D6) and containing only methyl groups.

[0005] Disclosed herein is an alternative for formulating compositions comprising volatile oils, such as volatile oils that are compatible with the ingredients usually used in cosmetic compositions.

[0006] The inventor has discovered that such a composition may be obtained by using at least one particular volatile silicone oil that may give the volatile fatty phase a particular evaporation profile.

[0007] Disclosed herein is a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising at least one non-cyclic volatile silicone oil, wherein the volatile silicone fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile silicone oil evaporated after 30 minutes ranges from 2 mg/cm² to 9 mg/cm².

[0008] Further disclosed herein is a composition comprising, in a physiologically acceptable medium, a volatile fatty phase comprising at least one non-cyclic volatile oil with a surface tension of less than 21 mN/m, such as less than 20 mN/m, wherein the volatile fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile oil evaporated after 30 minutes ranges from 2 mg/cm² to 9 mg/cm².

[0009] Even further disclosed herein is a cosmetic make-up process or non-therapeutic treatment process for a keratin material, comprising applying to the keratin material a composition as defined above.

[0010] The term “volatile oil” means an oil (or a non-aqueous medium) that may evaporate on contact with the skin in less than one hour at room temperature and atmospheric pressure. The volatile oil may be a volatile cosmetic oil, which is liquid at room temperature, which may, for example, have a non-zero vapour pressure, at room temperature and atmospheric pressure, or may have a vapour pressure ranging, for example, from 0.13 Pa to 40 000 Pa (10⁻³ to 300 mmHg), further, for example, from 1.3 Pa to 13 000 Pa (0.01 to 100 mmHg), such as from 1.3 Pa to 1300 Pa (0.01 to 10 mmHg).

[0011] The composition disclosed herein comprises a physiologically acceptable medium, such as a cosmetically or dermatologically acceptable medium, i.e., a medium that is compatible with keratin materials such as the skin, mucous membranes, the hair, the eyelashes, the eyebrows and the nails.

[0012] The composition disclosed herein comprises a volatile silicone fatty phase comprising at least one non-cyclic volatile silicone oil, wherein the volatile silicone fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile silicone oil evaporated after 30 minutes ranges from 2 mg/cm² to 9 mg/cm², such as from 2 mg/cm² to 8 mg/cm², from 2 mg/cm² to 7 mg/cm², from 2.3 mg/cm² to 6 mg/cm², from 3 mg/cm² to 5.5 mg/cm², or from 3 mg/cm² to 4.7 mg/cm².

[0013] The evaporation rate of the oil is measured according to the protocol described below.

[0014] Moreover, in one embodiment, the composition comprises a volatile fatty phase comprising at least one non-cyclic volatile oil with a surface tension of less than 21 mN/m, such as less than 20 mN/m, wherein the volatile fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile oil evaporated after 30 minutes ranges from 2 mg/cm² to 9 mg/cm², such as from 2 mg/cm² to 8 mg/cm², from 2 mg/cm² to 7 mg/cm², from 2.3 mg/cm² to 6 mg/cm², from 3 mg/cm² to 5.5 mg/cm², or from 3 mg/cm² to 4.7 mg/cm².

[0015] Such a non-cyclic volatile oil is chosen, for example, from non-cyclic volatile silicone oils.

[0016] The surface tension of a volatile oil is measured according to the protocol described below.

[0017] The non-cyclic silicone oil may be chosen from linear and branched volatile silicone oils.

[0018] The non-cyclic silicone oil may be chosen, for example, from:

- the non-cyclic linear silicones of formula (I):
 \[(R)SiO-((R)SiO)n-Si(R) \]
 \(n \) an integer ranging from 0 to 8, such as from 2 to 6 and further such as from 3 to 5, and
 \(R \) a hydroxyl group,

- wherein one of the radicals \(R \) may be a phenyl group, and

- wherein the silicone compound of formula (I) comprises not more than 18 carbon atoms, such as not more than 17 carbon atoms, not more than 16 carbon atoms, or not more than 15 carbon atoms;

[0020] in which \(R \), which may be identical or different, is chosen from:

- saturated and unsaturated hydrocarbon-based radicals comprising from 1 to 10 carbon atoms, such as from 1 to 6 carbon atoms, optionally substituted with at least one substituent chosen from a fluorine atom and a hydroxyl group, and

- the branched silicones of formulae (II) and (III) below:
 \[(R)SiO-[(R)SiO]RSiO-[(R)SiO]n-Si(R) \]
 \(R \) a hydroxyl group,

- wherein one of the radicals \(R \) may be a phenyl group, and

- wherein the branched silicones of formulae (II) and (III) below:
 \[(R)SiO-[(R)SiO]RSiO-[(R)SiO]n-Si(R) \]
 \(R \) a hydroxyl group,
in which R, which may be identical or different, is chosen from:

saturated and unsaturated hydrocarbon-based radicals comprising from 1 to 10 carbon atoms, optionally substituted with at least one substituent from a fluorine atom and a hydroxy group, and

a hydroxyl group,

wherein one of the radicals R may be a phenyl group, and

x is an integer ranging from 0 to 8, and

wherein the silicone compound of formula (II) or (III) comprises not more than 18 carbon atoms, such as not more than 17 carbon atoms, not more than 16 carbon atoms, or not more than 15 carbon atoms.

For the silicones of formulae (I), (II) and (III), the ratio of the number of carbon atoms to the number of silicone atoms may range from 2.25:1 to 4.33:1.

The silicones of formulae (I) to (III) may be prepared according to the known processes for synthesizing silicone compounds.

When the volatile silicone by itself has the evaporation profile as defined above for the volatile fatty phase, it may be present as sole volatile silicone oil in the composition, and may, for example, constitute the entire volatile phase of the composition.

When the volatile silicone does not by itself have the evaporation profile as defined above for the volatile fatty phase, it is then used as a mixture with another volatile silicone that has an evaporation profile in accordance with that described above, such that the mixture of volatile silicones has said evaporation profile.

Examples of non-cyclic volatile silicones that may be used are given below; these silicones may be used alone or as a mixture so as to obtain the evaporation profile defined above.

Among the silicones of formula (I) that may be mentioned are, for example:

a) the following disiloxanes:

hexamethyldisiloxane (surface tension=15.9 mN/m), sold, for example, under the name DC 200 Fluid 0.65 cSt by the company Dow Corning;

1,3-di-tert-butyl-1,1,3,3-tetramethyldisiloxane;

1,3-dipropyl-1,1,3,3-tetramethyldisiloxane;

heptylpentamethyldisiloxane;

1,1,1-triethyl-3,3,3-trimethylidisiloxane;

hexaethylidisiloxane;

1,1,3,3-tetramethyl-1,3-bis(2-methylpropyl) disiloxane;

glycylpentamethyldisiloxane;

1,1,1-trimethyl-3,3,3-tris(1-methylethyl)disi-
loxane;

1-buty1-3-ethyl-1,1,3-trimethyl-3-propylidisio-

pentamethylpentylidisiloxane;

1-buty1-1,1,3,3-tetramethyl-3-(1-methylethyl)-

disiloxane;

1,1,3,3-tetramethyl-1,3-bis(1-methylpropyl)

disiloxane;

1,1,3,3-triethyl-1,3-tripropylidisiloxane;

(3,3-dimethylbutyl)pentamethyldisiloxane;

(3-methylbutyl)pentamethyldisiloxane;

(3-methylpentyl)pentamethyldisiloxane;

1,1,1-triethyl-3,3-dimethyl-3-propylidisilox-

1-(1,1-dimethylethyl)-1,1,3,3,3-pentamethyldi-

1,1,1-trimethyl-3,3,3-tripropylidisiloxane;

1,3-dimethyl-1,1,3,3-tetramethylidisiloxane;

1,1-dibutyl-1,3,3-tetramethyldisiloxane;

1,1,3,3-tetramethyl-1,3-bis(1-methylethyl)d-

1,1,3,3-tetramethyl-3,3-bis(1-methylethyl)d-

1,1,1,3,3,3-triethyl-3,3,3-tripropylidisiloxane;

1,1,3,3-tetramethyl-3,3-bis(3-methylbutyl)d-

butylpentamethyldisiloxane;

pentaethylmethylsiloxane;

1,1,3,3-tetramethyl-1,3-dipentylidisiloxane;

1,3-dimethyl-1,1,3,3-tetrapropylidisiloxane;

1,1,1,3,3,3-triethyl-3,3,3-trimethylidisiloxane;

1,1,1-triethyl-3,3,3-tripropylidisiloxane;

1,3-dibutyl-1,1,3,3-tetramethyldisiloxane;

and

hexylpentamethyldisiloxane;

b) the following trisiloxanes:

oneoctamethyltrisiloxane (surface tension=17.4 mN/m), sold, for example, under the name DC 200 Fluid 1 cSt by the company Dow Corning;

3-pentyl-1,1,3,5,5,5-heptamethyltrisilox-

1-hexyl-1,1,3,5,5,5-heptamethyltrisiloxane;

1,1,1,3,3,5,5-heptamethyl-5-octyltrisiloxane;

1,1,1,3,5,5,5-heptamethyl-3-octyltrisiloxane,

sold, for example, under the name “Silsoft 034” by
the company OSI.
[080] 1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane (surface tension=20.5 mN/m), sold, for example, under the name “DC 2-1731” by the company Dow Corning;

[081] 1,1,3,3,5,5,5-hexamethyl-1,5-dipropyltrisiloxane;

[082] 3-(1-ethylbutyl)-1,1,1,3,5,5,5-heptamethyltrisiloxane;

[083] 1,1,1,3,5,5,5-heptamethyl-3-(1-methylpentyl)trisiloxane;

[084] 1,5-diethyl-1,1,3,5,5,5-hexamethyltrisiloxane;

[085] 1,1,1,3,5,5,5-heptamethyl-3-(1-methylpropyl)trisiloxane;

[086] 3-(1,1-dimethyl-ethyl)-1,1,1,3,5,5,5-heptamethyltrisiloxane;

[087] 1,1,1,5,5,5-hexamethyl-3,3-bis(1-methylheryl)trisiloxane;

[088] 1,1,1,3,5,5,5-hexamethyl-1,5-bis(1-methylpropyl)trisiloxane;

[089] 1,5-bis(1,1-dimethyl-ethyl)-1,1,1,3,5,5,5-hexamethyltrisiloxane;

[090] 3-(3,3-dimethylbutyl)-1,1,1,3,5,5,5-heptamethyltrisiloxane;

[091] 1,1,1,3,5,5,5-heptamethyl-3-(3-methylbutyl)trisiloxane;

[092] 1,1,1,3,5,5,5-heptamethyl-3-(3-methylpentyl)trisiloxane;

[093] 1,1,1,3,5,5,5-heptamethyl-3-(2-methylpropyl)trisiloxane;

[094] 1-butyl-1,1,3,5,5,5-heptamethyltrisiloxane;

[095] 1,1,1,3,5,5,5-heptamethyl-3-propyltrisiloxane;

[096] 3-isobexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane;

[097] 1,3,5-triethyl-1,1,1,3,5,5,5-pentamethyltrisiloxane;

[098] 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane;

[099] 3-tert-pentyl-1,1,1,3,5,5,5-heptamethyltrisiloxane;

[100] 1,1,1,5,5,5-hexamethyl-3,3-dipropyltrisiloxane;

[101] 3,3-diethyl-1,1,1,5,5,5-hexamethyltrisiloxane;

[102] 1,5-diethyl-1,1,3,3,5,5,5-hexamethyltrisiloxane;

[103] 1,1,1,5,5,5-hexaethyl-3,3-dimethyltrisiloxane;

[104] 3,3-diethyl-1,1,1,5,5,5-hexamethyltrisiloxane;

[105] 3-ethyl-1,1,1,3,5,5,5-heptamethyltrisiloxane;

[106] 3-heptyl-1,1,1,3,5,5,5-heptamethyltrisiloxane; and

[107] 1-ethyl-1,1,1,3,5,5,5-heptamethyltrisiloxane;

[108] c) the following tetrasiloxanes:

[109] decamethyldimethylsiloxane (surface tension=18 mN/m), sold, for example, under the name DC 200 Fluid 1.5 CST by the company Dow Corning;

[110] 1,1,3,3,5,5,7,7-octamethyl-1,7-dipropyltetrasiloxane;

[111] 1,1,1,3,3,5,7,7-nonamethyl-5-(1-methylethyl)tetrasiloxane;

[112] 1-butyl-1,1,1,3,5,5,7,7-nonamethyltetrasiloxane;

[113] 3,5-diethyl-1,1,1,3,5,7,7-octamethyldimethylsiloxane;

[114] 1,3,5,7-tetraethyl-1,1,1,3,5,7,7-hexamethyldimethylsiloxane;

[115] 3,3,5,5-tetraethyl-1,1,1,3,5,7,7-hexamethyldimethylsiloxane;

[116] 1,1,1,3,3,5,7,7-nonamethyl-7-phenylethylsiloxane;

[117] 3,3-diethyl-1,1,1,5,5,7,7-octamethyldimethylsiloxane; and

[118] 1,1,1,3,3,5,7,7-nonamethyl-5-phenylethylsiloxane;

[119] d) the following pentasiloxanes:

[120] dodecamethylpentasiloxane (surface tension=18.7 mN/m), sold, for example, under the name DC 200 Fluid 2 CST by the company Dow Corning;

[121] 1,1,3,3,5,7,7,9,9-decamethyldimethyl-1,9-dipropylpentasiloxane;

[122] 3,3,5,5,7,7-hexamethyl-1,1,1,9,9,9-hexamethyldimethylsiloxane;

[123] 1,1,1,3,3,5,7,7,9,9,9-undecamethyl-5-phenylethylpentasiloxane;

[124] 1-butyl-1,1,1,3,3,5,7,7,9,9,9-undecamethylpentasiloxane;

[125] 3,3-diethyl-1,1,1,5,5,7,7,9,9,9-decamethyldimethylpentasiloxane;

[126] 1,3,5,7,9-pentaethyl-1,1,1,3,5,7,9,9-heptamethyldimethylpentasiloxane;

[127] 3,5,7-triethyl-1,1,1,3,5,7,9,9,9-nonamethylpentasiloxane; and

[128] 1,1,1-triethyl-3,3,5,5,7,7,9,9,9-nonamethylpentasiloxane;

[129] e) the following hexasiloxanes:

[130] 1-butyl-1,1,1,3,3,5,7,7,9,9,11,11-tridecamethylhexasiloxane;

[131] 3,5,7,9-tetraethyl-1,1,1,3,5,7,9,11,11,11-decamethylhexasiloxane; and

[132] tetradecamethylhexasiloxane;
Among the silicones of formula (II) that may be mentioned are, for example:

a) the following tetrasiloxanes:

- 2,2,5,8,8-pentamethyl-5-(trimethylsilyl) methoxy-4,6-dioxo-2,5,8-trisilanonane;
- 1,1,1,3,5,5,9,9,9-nonamethyl-3,7,7-tris(trimethylsilyl)oxylpentasiloxane;
- 1,1,1,3,5,5,9,9,9-nonamethyl-3,5,7-tris(trimethylsilyl)oxylpentasiloxane;
- 1,1,1,7,7,7-hexamethyl-3,3,5,5-tetrakis(trimethylsilyl)oxytetrasiloxane.

b) the following pentasiloxanes:

- 1,1,1,5,5,5-hexamethyl-3-propyl-3-[(trimethylsilyl)oxy]trisiloxane;
- 3-ethyl-1,1,1,5,5,5-hexamethyl-3-[(trimethylsilyl)oxy]trisiloxane;
- 1,1,1-triethyl-3,5,5,9,9,9-nonamethyl-3-(trimethylsilyl)oxylpentasiloxane;
- 3-methyl-1,1,1,5,5,5-hexamethyl-3-[(trimethylsilyl)oxy]trisiloxane;
- 3-[dimethylphenylsilyl]oxy]-1,1,1,3,5,5-heptamethytrisiloxane;
- 1,1,1,5,5,5-hexamethyl-3-(2-methylpentyl)-3-[(trimethylsilyl)oxy]trisiloxane;
- 1,1,1,5,5,5-hexamethyl-3-(4-methylpentyl)-3-[(trimethylsilyl)oxy]trisiloxane;
- 3-hexyl-1,1,1,5,5,5-hexamethyl-3-[(trimethylsilyl)oxy]trisiloxane;
- 1,1,1,3,5,5,5-heptamethytrisiloxane-3-[(trimethylsilyl)oxy]trisiloxane;
- 1,1,1,3,5,5,9,9,9-nonamethyl-3-(trimethylsilyl)oxylpentasiloxane;
- 1,1,1,3,5,5,9,9,9-nonamethyl-3,7,7-tris(trimethylsilyl)oxylpentasiloxane.

Further disclosed herein is a composition comprising, in a physiologically acceptable medium, a volatile silicone oil chosen, for example, from:

- decamethytrisiloxane;
- dodecamethylpentasiloxane;
- 3-butyl-1,1,1,3,5,5,5-heptamethytrisiloxane;
- 1,1,1,3,5,5,5-heptamethytrisiloxane-3-[(trimethylsilyl)oxy]trisiloxane.

and mixtures thereof. The volatile fatty phase of the composition disclosed herein may, for example, comprise a mixture of dodecamethylpentasiloxane and decamethytrisiloxane, which may be present in a dodecamethylpentasiloxane/decamethytrisiloxane weight ratio ranging, for example, from 55/45 to 80/20, such as from 60/40 to 75/25, further such as from 60/40 to 70/30.

Further disclosed herein is a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of dodecamethylpentasiloxane and decamethytrisiloxane in a dodecamethylpentasiloxane/decamethytrisiloxane weight ratio ranging from 55/45 to 80/20, such as from 60/40 to 75/25 and further such as from 60/40 to 70/30.

For example, the volatile silicone fatty phase of the composition may be formed essentially, or even solely, from the mixture of dodecamethylpentasiloxane and decamethytrisiloxane described above.

According to another embodiment disclosed herein, the volatile fatty phase comprises a mixture of dodecamethylpentasiloxane and 3-butyl-1,1,1,3,5,5,5-hep-
tamethyltrisiloxane in a dodecamethylpentasiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyilsiloxane weight ratio ranging, for example, from 75/25 to 50/50, such as from 70/30 to 55/45 and further such as from 65/35 to 55/45.

[0185] Also disclosed herein is a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of dodecamethylpentasiloxane and 3-buty1-1,1,1,3,5,5,5-heptamethyilsiloxane in a dodecamethylpentasiloxane/3-buty1-1,1,1,3,5,5,5-heptamethyilsiloxane weight ratio ranging from 75/25 to 50/50, such as from 70/30 to 55/45, and further such as from 65/35 to 55/45.

[0186] For example, the volatile silicone fatty phase of the composition may be formed essentially, or even solely, of the mixture of dodecamethylpentasiloxane and 3-buty1-1,1,1,3,5,5,5-heptamethyilsiloxane described above.

[0187] According to another embodiment disclosed herein, the volatile fatty phase comprises a mixture of decamethytrisiloxane and 1,1,1,3,5,5,5-heptamethy1-3-phenylsiloxane, in a decamethytrisiloxane/1,1,1,3,5,5,5-heptamethy1-3-phenylsiloxane weight ratio ranging, for example, from 25/75 to 45/55, such as from 30/70 to 40/60 and further such as from 35/65 to 40/60.

[0188] Further disclosed herein is a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of decamethytrisiloxane and 1,1,1,3,5,5,5-heptamethy1-3-phenylsiloxane in a decamethytrisiloxane/1,1,1,3,5,5,5-heptamethy1-3-phenylsiloxane weight ratio ranging from 25/75 to 45/55, such as from 30/70 to 40/60 and further such as from 35/65 to 40/60.

[0189] For example, the volatile silicone fatty phase of the composition may be formed essentially, or even solely, of the mixture of decamethytrisiloxane and 1,1,1,3,5,5,5-heptamethy1-3-phenylsiloxane described above.

[0190] According to another embodiment disclosed herein, the volatile fatty phase comprises a mixture of 3-hexyl-1,1,1,3,5,5,5-heptamethytrisiloxane and 3-buty1-1,1,1,3,5,5,5-heptamethytrisiloxane in a 3-hexyl-1,1,1,3,5,5,5-heptamethytrisiloxane/3-buty1-1,1,1,3,5,5,5-heptamethytrisiloxane weight ratio ranging, for example, from 45/55 to 70/30, such as from 50/50 to 65/35 and further such as from 55/45 to 60/40.

[0191] Further disclosed herein is a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of 3-hexyl-1,1,1,3,5,5,5-heptamethytrisiloxane and 3-buty1-1,1,1,3,5,5,5-heptamethytrisiloxane in a 3-hexyl-1,1,1,3,5,5,5-heptamethytrisiloxane/3-buty1-1,1,1,3,5,5,5-heptamethytrisiloxane weight ratio ranging from 45/55 to 70/30, such as from 50/50 to 65/35 and further such as from 55/45 to 60/40.

[0192] For example, the volatile silicone fatty phase of the composition may be formed essentially, or even solely, of the mixture of 3-hexyl-1,1,1,3,5,5,5-heptamethytrisiloxane and 3-buty1-1,1,1,3,5,5,5-heptamethytrisiloxane described above.

[0193] According to one embodiment disclosed herein, the volatile silicone fatty phase of the composition comprises from 0 to 5% by weight, such as from 0 to 1% by weight, of at least one volatile cyclic silicone oil, relative to the total weight of the volatile silicone fatty phase.

[0194] The at least one non-cyclic volatile silicone oil may be present in an amount ranging from 1% to 80% by weight, such as from 1% to 65% by weight and further such as from 1% to 50% by weight, relative to the total weight of the composition.

[0195] The composition disclosed herein may also comprise at least one volatile non-silicone oil chosen, for example, from volatile hydrocarbon-based and hydrofluorole oils.

[0196] The term “hydrocarbon-based oil” means an oil formed essentially, or even solely, of carbon and hydrogen atoms, and optionally of oxygen and nitrogen atoms, and containing no silicon or fluorine atoms. It may comprise at least one group chosen from alcohol, ester, ether, carboxylic acid, amine and amide groups.

[0197] The volatile hydrocarbon-based oil may be chosen from volatile hydrocarbon-based oils comprising from 8 to 16 carbon atoms and mixtures thereof, such as C₈-C₁₆ branched alkanes, for example C₁₀-C₁₆ isoalkanes (also known as isoparaffins), isododecane, isodecane, isohexadecane and, for example, the oils sold under the trade names “Isopar” or “Permethyls”, C₁₀-C₁₆ branched esters, for instance isohexyl neopentanoate, and mixtures thereof; in one embodiment, isododecane is used. The at least one non-silicone volatile oil may be present in an amount ranging from 0.1% to 50% by weight, such as from 0.1% to 40% by weight and further such as from 0.1% to 30% by weight, relative to the total weight of the composition.

[0198] The composition disclosed herein may also comprise at least one non-volatile oil.

[0199] The at least one non-volatile oil may be chosen, for example, from hydrocarbon-based oils of mineral origin and synthetic origin, such as linear and branched hydrocarbons, for instance liquid paraffin and derivatives thereof, liquid petroleum jelly, polydecenes, hydrogenated polyisobutylenes such as Parlaem sold by the company Nippon Oil Fats, and squalane of synthetic origin and plant origin; oils of animal origin, for instance mink oil, turtle oil and perhydrosqualene; hydrocarbon-based oils of plant origin with a high triglyceride content comprising fatty acid esters of glycerol, the fatty acids of which may have varying chain lengths, these chains possibly being linear or branched, and saturated or unsaturated, such as fatty acid triglycerides comprising, for example, from 4 to 22 carbon atoms, for instance heptanoic and octanoic acid triglycerides, and capric/caprylic acid triglyceride, and hydroxyalkyl triglycerides, such as sweet almond oil, beauty-leaf oil, palm oil, grapeseed oil, sesame oil, arara oil, rapeseed oil, sunflower oil, cotton oil, apricot oil, castor oil, alfalfa oil, marron oil, blackcurrant oil, macadamia oil, musk rose oil, hazelnut oil, avocado oil, jojoba oil, olive oil, cereal (maize, wheat, barley or rye) germ oil, and karite butter; fatty acid esters, such as those comprising from 4 to 22 carbon atoms, and for example, fatty acid esters of octanoic acid, of heptanoic acid, of lactic acid, of oleic acid, of lauric acid and of stearic acid, for instance propylene glycol diacetate, propylene glycol monoisostearate, polyglyceryl-2 diisostearate and neopentylglycol diheptanoate; synthetic esters of formula ROCOR₂ in which R₁ is chosen from linear and branched higher fatty acid residues comprising from 7 to 40 carbon...
atoms and R_3 is chosen from branched hydrocarbon-based chains comprising from 3 to 40 carbon atoms, for instance percellin oil (cetostearyl octanoate), isononyl isononanoate, C_{12} to C_{15} alkybenzoate, 2-ethylhexyl palmitate, 2-octyldodecyl stearate, 2-octyldodecyl erucate, isostearyl isostearate, 2-octyldodecyl benzoate, alkyl and polyalkyl octanoates, decanoates and ricinoleates, isopropyl myristate, isopropl palmitate, butyl stearate, hexyl laurate, diisopropyl adipate, 2-ethylhexyl palmitate, 2-hexyldodecyl laurate, 2-octyldodecyl palmitate, 2-octyldodecyl myristate, 2-dihexylhexy succinate, diisostearyl malate and isodecyl neopen- tanoate; hydroxylated esters, for instance isostearyl lactate, octyl hydroxystearate, octyldodecyl hydroxystearate, disostearyl malate, trisoctyl citrate, glyceryl tristearate and diglyceril triisostearate; diethylene glycol disonoanoate; pentacyrthritol esters; esters of aromatic acids and of alcohols comprising from 4 to 22 carbon atoms, such as tridecyl trimellitate; C_8-C_{20} higher fatty acids such as oleic acid, linoleic acid, linolenic acid and isostearic acid; C_8-C_{20} higher fatty alcohols such as oleyl alcohol, linoleyl alcohol, linolenyl alcohol, isostearyl alcohol or octyldodecanol; synthetic esters comprising at least 7 carbon atoms, silicone oils such as polydimethylsiloxanes (PDMS) that are liquid at room temperature, linear, and optionally phenylated, such as phenyltrimethicones, phenyltrimethylsiloxydiphenylethylsiloxanes, diphenyl dimethicones, diphenyldimethylsiloxanes, liquid 2-phenylethyl trimethylsiloxy silicates, optionally substituted with at least one group chosen from aliphatic and aromatic groups, for instance alkyl, alkoxy and phenyl groups, which are pendant and/or at the end of a silicone chain, these groups comprising from 2 to 24 carbon atoms and being optionally fluorinated, and chosen from functional groups such as hydroxy, thiol and amine groups; polysiloxanes modified with fatty acids, fatty alcohols and polyoxyalkylenes, for instance dimethicone copolymers and alkylmethicone copolymers; liquid fluoro silicones; and mixtures thereof. The at least one non-volatile oil may be present in an amount ranging from 0.1% to 60% by weight, such as from 0.5% to 50% by weight and further such as from 1% to 40% by weight, relative to the total weight of the composition.

The composition disclosed herein may further comprise at least one aqueous phase containing water. The water may be chosen from, for example, floral water such as cornflower water and mineral water such as eau de Vittel, eau de Lucas and eau de la Roches Poas and spring water.

The composition may be an anhydrous composition, i.e., a composition containing less than 2% by weight of water, or even less than 0.5% of water, such as water-free, the water not being added during the preparation of the composition but corresponding to the residual water provided by the ingredients mixed therein.

The composition may comprise at least one additional ingredient chosen from common cosmetic and dermatological ingredients that may be chosen, for example, from polymers, such as film-forming polymers and fixing polymers; surfactants; hair conditioners; dyes; sunscreens; phosphates; thickeners; gelling agents; waxes; pasty products; hair dyes; silicone resins; silicone gums; preserving agents; antioxidants; cosmetic active agents; sunscreen agents; pH stabilizers; vitamins; moisturizers; antiperspirants; deodorants; self-tanning compounds; and mixtures thereof.

The processes for manufacturing the products disclosed herein do not differ in any way from the processes conventionally used in cosmetics and are entirely familiar to those skilled in the art.

Embodiments disclosed herein are illustrated in greater detail by means of the non-limiting examples described below.

Measurement of the Rate of Evaporation of an Oil:

15 g of oil or of the mixture of oils to be tested are placed in a crystallizing dish (diameter: 7 cm) placed on a balance that is inside a chamber of about 0.5 m³ with a regulated temperature (25 ± 0°C) and a regulated hygrometry (50% relative humidity). The liquid is allowed to evaporate freely, without stirring, while providing ventilation with a fan (Papst-Motoren, reference 8550 N, rotating at 2700 rpm)
positioned vertically above the crystallizing dish containing the solvent, the vanes facing the crystallizing dish and being 20 cm from the bottom of the crystallizing dish. The mass of oil remaining in the crystallizing dish is measured at regular intervals. The evaporation rates are expressed in mg of oil evaporated per unit of surface area (cm²) and per unit of time (minutes).

[0214] Measurement of the Surface Tension of a Volatile Oil:

[0215] The surface tension is determined by the “hanging drop” method. It is measured at 25±1°C using a Fibro DAT 1100 tensiometer, sold by the company Fibro (Sweden). A drop of volatile oil is formed using a syringe controlled by the tensiometer at the outlet of a Teflon cannula with an inside diameter of 200 µm and an outside diameter of 1.5 mm, held in a vertical position. The volume of the drop is from 1 to 10 microlitres such as from 5 to 10 microlitres. The hanging drop is observed using a camera integrated into the measuring device, and its shape is parametrized by the software of the Fibro DAT 1100 tensiometer using a resolution method of the Laplace equation. The result is given in mN/m.

EXAMPLE 1

A foundation in the form of a water-in-oil emulsion having the composition below was prepared:

- Cetyltrimethyl ammonium copolyol 3 g
- Isostearyl diglyceryl succinate 0.6 g
- Decamethyltetrasiloxane 6.48 g
- Dodecamethylpentasiloxane 12.02 g
- Isododecane 7.1 g
- Mixture of pigments 10 g
- (hydrophilic iron oxides and titanium oxides)
- Bebione 1.6 g
- Polysiloxane powder (Nylon-12 from Dupont de Nemours) 8 g
- Magnesium sulphate 0.7 g
- Preserving agent 0.45 g
- Fragrance 0.5 g
- Water qs 100 g

EXAMPLE 2

An oil-in-water foundation having the composition below was prepared:

- Decamethyltetrasiloxane (DC 200 Fluid 1.5 cst from Dow Corning) 3.3 g
- Dodecamethylpentasiloxane (DC 200 Fluid 2 cst from Dow Corning) 7.7 g
- Hydrogenated polyisobutene (Parleem, NOF Corporation) 5.9 g
- Glycerol linoleate 11 g
- Stearic acid 4 g
- Triethanolamine 2 g
- Polysiloxane powder (Nylon-12 from Dupont de Nemours) 5 g
- Mixture of pigments (iron oxides and titanium oxides) 10 g
- Carboxymethylcellulose 0.2 g
- Propylene glycol 10 g
- Glycerol 2 g

EXAMPLE 3

A lipstick having the composition below was prepared:

- Polyethylene wax (Performalene 655, New Phase Technologies) 20 g
- Decamethyltetrasiloxane (DC 200 Fluid 1.5 cst from Dow Corning) 18.2 g
- Dodecamethylpentasiloxane (DC 200 Fluid 2 cst from Dow Corning) 4 g
- Cyclopentadimethylsiloxane (DC 245 Fluid from Dow Corning) 6 g
- Isododecane 51.8 g
- DC Red No. 7 Calcium Lake (pigment) 6 g

EXAMPLE 4

A care cream having the composition below was prepared:

- Fatty phase:
 - Mixture of glyceryl monostearate and of polyethylene glycol stearate 100 EO (50/50 by weight) (Arlacel 165 from the company ICI) 2.5 g
 - Stearyl alcohol 0.5 g
 - Hydrogenated polyisobutene (Parleem, NOF Corporation) 9 g
 - Decamethyltetrasiloxane (DC 200 Fluid 1.5 cst from Dow Corning) 2.1 g
 - Dodecamethylpentasiloxane (DC 200 Fluid 2 cst from Dow Corning) 2.1 g
 - Aqueous phase:
 - Crosslinked polyacrylic acid (Carbopol 980) 1 g
 - Triethanolamine 0.03 g
 - Preserving agent 0.3 g
 - Water qs 100 g

EXAMPLE 5

A makeup remover having the composition below was prepared:

- Isopropyl palmitate 8 g
- Decamethyltetrasiloxane (DC 200 Fluid 1.5 cst from Dow Corning) 2.8 g
- Dodecamethylpentasiloxane (DC 200 Fluid 2 cst from Dow Corning) 5.2 g
- Stearyl alcohol 8 g
- Sucrose stearate 2 g
- Sulfite acid 0.3 g
- Sodium hydroxide 0.06 g
- Glycerol 5 g
- Carbopol 0.2 g
- Water qs 100 g
What is claimed is:

1. A composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising at least one non-cyclic volatile silicone oil, wherein the volatile silicone fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile silicone oil evaporated after 30 minutes ranges from 2 mg/cm² to 9 mg/cm².

2. The composition according to claim 1, wherein the volatile silicone fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile silicone oil evaporated after 30 minutes ranges from 2 mg/cm² to 8 mg/cm².

3. The composition according to claim 2, wherein the volatile silicone fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile silicone oil evaporated after 30 minutes ranges from 2 mg/cm² to 7 mg/cm².

4. The composition according to claim 3, wherein the volatile silicone fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile silicone oil evaporated after 30 minutes ranges from 2.3 mg/cm² to 6 mg/cm².

5. The composition according to claim 4, wherein the volatile silicone fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile silicone oil evaporated after 30 minutes ranges from 3 mg/cm² to 5.5 mg/cm².

6. The composition according to claim 5, wherein the volatile silicone fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile silicone oil evaporated after 30 minutes ranges from 3 mg/cm² to 4.7 mg/cm².

7. A composition comprising, in a physiologically acceptable medium, a volatile fatty phase comprising at least one non-cyclic volatile oil with a surface tension of less than 21 mN/m, wherein the volatile fatty phase has an evaporation profile such that the mass of at least one non-cyclic volatile oil evaporated after 30 minutes ranges from 2 mg/cm² to 9 mg/cm².

8. The composition according to claim 7, wherein said at least one non-cyclic volatile oil has a surface tension of less than 20 mN/m.

9. The composition according to claim 7, wherein the at least one non-cyclic volatile oil is chosen from non-cyclic volatile silicone oils.

10. The composition according to claim 1, wherein the at least one non-cyclic volatile silicone oil is chosen from silicons of formula (I):

\[\text{(R)}_2\text{SiO}_{n-2}(\text{R})_2\text{SiO}_{n-4}(\text{R})_2\text{Si} \]

in which R, which may be identical or different, is chosen from:

- saturated and unsaturated hydrocarbon-based radicals comprising from 1 to 10 carbon atoms, optionally substituted with at least one substituent chosen from a fluorine atom and a hydroxyl group, and
- a hydroxyl group,

wherein one of the radicals R may be a phenyl group, and n is an integer ranging from 0 to 8, and

wherein the silicone compound of formula (I) comprises not more than 18 carbon atoms.

11. The composition according to claim 10, wherein in the definition of formula (I), R is chosen from saturated and unsaturated hydrocarbon-based radicals comprising from 1 to 6 carbon atoms.

12. The composition according to claim 10, wherein in the definition of formula (I), n is an integer ranging from 2 to 6.

13. The composition according to claim 12, wherein in the definition of formula (I), n is an integer ranging from 3 to 5.

14. The composition according to claim 10, wherein the silicone compound of formula (I) comprises not more than 17 carbon atoms.

15. The composition according to claim 14, wherein the silicone compound of formula (I) comprises not more than 16 carbon atoms.

16. The composition according to claim 15, wherein the silicone compound of formula (I) comprises not more than 15 carbon atoms.

17. The composition according to claim 1, wherein the at least one non-cyclic volatile silicone oil is chosen from silicons of formula (II):

\[\text{(R)}_2\text{SiO}_{n-2}[\text{(R)}_2\text{SiO}_{n-4}(\text{R})_2\text{SiO}_{n-4}(\text{R})_2\text{Si} \]

in which R, which may be identical or different, is chosen from:

- saturated and unsaturated hydrocarbon-based radicals comprising from 1 to 10 carbon atoms, optionally substituted with at least one substituent chosen from a fluorine atom and a hydroxyl group, and
- a hydroxyl group,

wherein one of the radicals R may be a phenyl group, and x is an integer ranging from 0 to 8,

wherein the silicone compound of formula (II) comprises not more than 18 carbon atoms.

18. The composition according to claim 17, wherein the silicone compound of formula (II) comprises not more than 17 carbon atoms.

19. The composition according to claim 18, wherein the silicone compound of formula (II) comprises not more than 16 carbon atoms.

20. The composition according to claim 19, wherein the silicone compound of formula (II) comprises not more than 15 carbon atoms.

21. The composition according to claim 1, wherein the at least one non-cyclic volatile silicone oil is chosen from silicons of formula (III):

\[\text{[(R)}_2\text{SiO}_{n-2}\text{Si} \]

in which R, which may be identical or different, is chosen from:

- saturated and unsaturated hydrocarbon-based radicals comprising from 1 to 10 carbon atoms, optionally substituted with at least one substituent chosen from a fluorine atom and a hydroxyl group, and
- a hydroxyl group,

wherein one of the radicals R may be a phenyl group, and

wherein the silicone compound of formula (III) comprises not more than 18 carbon atoms.

22. The composition according to claim 21, wherein the silicone compound of formula (III) comprises not more than 17 carbon atoms.
23. The composition according to claim 22, wherein the silicone compound of formula (III) comprises not more than 16 carbon atoms.

24. The composition according to claim 23, wherein the silicone compound of formula (III) comprises not more than 15 carbon atoms.

25. The composition according to claim 10, wherein, for the silicone compound of formula (I), the ratio of the number of carbon atoms to the number of silicone atoms ranges from 2.25:1 to 4.33:1.

26. The composition according to claim 17, wherein, for the silicone compound of formula (II), the ratio of the number of carbon atoms to the number of silicone atoms ranges from 2.25:1 to 4.33:1.

27. The composition according to claim 21, wherein, for the silicone compound of formula (III), the ratio of the number of carbon atoms to the number of silicone atoms ranges from 2.25:1 to 4.33:1.

28. The composition according to claim 10, wherein the silicone compound of formula (I) is chosen from:
 - hexamethyldisiloxane;
 - 1,3-di-tert-butyl-1,1,3,3-tetramethyldisiloxane;
 - 1,3-dipropyl-1,1,3,3-tetramethyldisiloxane;
 - heptylpentamethyldisiloxane;
 - 1,1,1-triethyl-3,3,3-trimethyldisiloxane;
 - hexaethyldisiloxane;
 - 1,1,1,3,3,3-tetramethyl-1,3-bis(2-methylpropyl)disiloxane;
 - pentamethyloctylsiloxane;
 - 1,1,1-trimethyl-3,3,3-tris(1-methylethyl)disiloxane;
 - 1-butyl-3-ethyl-1,1,3-trimethyl-3-propyldisiloxane;
 - pentamethylpentylsiloxane;
 - 1-butyl-1,1,3,3,3-tetramethyl-3-(1-methylethyl)disiloxane;

29. The composition according to claim 21, wherein, for the silicone compound of formula (III), the ratio of the number of carbon atoms to the number of silicone atoms ranges from 2.25:1 to 4.33:1.

30. The composition according to claim 25, wherein, for the silicone compound of formula (III), the ratio of the number of carbon atoms to the number of silicone atoms ranges from 2.25:1 to 4.33:1.

31. The composition according to claim 28, wherein, for the silicone compound of formula (I), the ratio of the number of carbon atoms to the number of silicone atoms ranges from 2.25:1 to 4.33:1.

32. The composition according to claim 29, wherein, for the silicone compound of formula (II), the ratio of the number of carbon atoms to the number of silicone atoms ranges from 2.25:1 to 4.33:1.

33. The composition according to claim 30, wherein, for the silicone compound of formula (III), the ratio of the number of carbon atoms to the number of silicone atoms ranges from 2.25:1 to 4.33:1.
1,1,1,3,5,7,7,7-nonamethyl-5-(1-methylethyl)tetrasiloxane;
1-butyl-1,1,1,3,5,7,7,7-nonamethyltetrasiloxane;
3,5-diethyl-1,1,1,3,5,7,7,7-octamethyltetrasiloxane;
1,3,5,7-tetraethyl-1,1,1,3,5,7,7-hexamethyldisiloxane;
3,5,5,5-tetraethyl-1,1,1,3,5,7,7-hexamethyldisiloxane;
3,3-diethyl-1,1,1,5,5,7,7,7-octamethyltetrasiloxane;
1,1,1,3,3,5,7,7,7-nonamethyl-7-phenyltrisiloxane;
3,3-diethyl-1,1,1,5,5,7,7,7-octamethyltetrasiloxane;
1,1,1,3,3,5,7,7,7-nonamethyl-5-phenyltetrasiloxane;
dodecamethylpentasiloxane;
1,1,1,3,3,5,7,7,9,9-decamethyl-1,9-dipropylpentasiloxane;
3,3,5,5,7,7-hexaethyl-1,1,1,9,9,9-hexamethyldisiloxane;
1,1,1,3,3,5,7,7,9,9,9-undecamethyl-5-phenylpentasiloxane;
1-butyl-1,1,1,3,5,7,7,9,9,9-undecamethylpentasiloxane;
3,3-diethyl-1,1,1,3,5,7,7,9,9,9-decamethylpentasiloxane;
1,3,5,7,9-pentaethyl-1,1,1,3,5,7,7,9,9-heptamethyld tetrasiloxane;
3,5,7-triethyl-1,1,1,3,5,7,7,9,9-nonamethylpentasiloxane;
1,1,1-triethyl-3,3,5,5,7,7,9,9,9-nonamethylpentasiloxane;
1-butyl-1,1,1,3,5,7,7,9,9,11,11,11-tridecamethylhexasiloxane;
3,5,7,9-tetraethyl-1,1,1,3,5,7,7,9,11,11,11-decadecam ethylhexasiloxane;
tetradecamethylhexasiloxane;
hexadecamethylheptasiloxane; and octadecamethyloctasiloxane.

29. The composition according to claim 17, wherein the silicone compound of formula (II) is chosen from:

2-[3,3,3-trimethyl-1,1-bis[(trimethylsilyl)oxy]disiloxanyl]ethyl;
1,1,1,5,5,5-hexamethyl-3-(2-methylpropyl)-3-[(trimethylsilyl)oxy]trisiloxane;
3-(1,1-dimethylethyl)-1,1,1,5,5,5-hexamethyl-3-[(trimethylsilyl)oxy]trisiloxane;
3-butyl-1,1,1,5,5,5-hexamethyl-3-[(trimethylsilyl)oxy]trisiloxane;
1,1,1,5,5,5-hexamethyl-3-propyl-3-[(trimethylsilyl)oxy]trisiloxane;
3-ethyl-1,1,1,5,5,5-hexamethyl-3-[(trimethylsilyl)oxy]trisiloxane;
1,1,1-triethyl-3,5,5,5-tetramethyl-3-[(trimethylsilyl)oxy]trisiloxane;
3-methyl-1,1,1,5,5,5-hexamethyl-3-[(trimethylsilyl)oxy]trisiloxane;
3-[(dimethylphenylsilyl)oxy]-1,1,1,3,5,5,5-heptamethyldisiloxane;
1,1,1,5,5,5-hexamethyl-3-(2-methylpentyl)-3-[(trimethylsilyl)oxy]trisiloxane;
1,1,1,5,5,5-hexamethyl-3-(4-methylpentyl)-3-[(trimethylsilyl)oxy]trisiloxane;
3-hexyl-1,1,1,5,5,5-hexamethyl-3-[(trimethylsilyl)oxy]trisiloxane;
1,1,1,3,5,5,5-heptamethyl-3-[(trimethylsilyl)oxy]trisiloxane;
1,1,1,3,5,5,5-nonamethyl-3-(trimethylsilyl)oxy)trisiloxane;
1,1,1,3,5,5,5-Octamethyl-5-phenyl-5-[(trimethylsilyl)oxy]tetrasiloxane; and
1,1,1,3,5,5,5-Octamethyl-5-phenyl-5-[(trimethylsilyl)oxy]hexasiloxane.

30. The composition according to claim 21, wherein the silicone compound of formula (III) is 1,1,1,5,5,5-hexam ethyl-3,3-bis(trimethylsilyloxy)trisiloxane.

31. The composition according to claim 1, wherein the at least one non-cyclic volatile silicone oil is chosen from:

2,2,8,8-tetramethyl-5-[(pentamethyldisiloxanyl)methyl]-3,7-dioxo-2,8-dilanosane;
2,2,5,8-pentamethyl-5-[(trimethylsilyl)methoxy]-4,6-dioxo-2,5,8-trilanosane;
1,3-dimethyl-1,3-bis[(trimethylsilyl)methyl]-1,3-disiloxanediol;
3-ethyl-1,1,1,5,5,5-hexamethyl-3-[3-(trimethylsilyl)propyl]trisiloxane;
1,1,1,5,5,5-hexamethyl-3-phenyl-3-[(trimethylsilyl)oxy]trisiloxane;
2,2,7,7,9,9,11,11,16,16-decamethyl-3,8,10,15-tetraoxa-2,7,9,11,16-pentasilastheptadecane;
tetraakis[(trimethylsilyl)methyl] of silicic acid ester;
3,5-diethyl-1,1,1,7,7,7-hexamethyl-3,5-bis[(trimethylsilyl)oxy]tetrasiloxane;
1,1,1,3,5,5,7,7-octamethyl-3,5-bis[(trimethylsilyl)oxy]tetrasiloxane;
1,1,1,3,7,7,7-heptamethyl-3,5,5-tris[(trimethylsilyl)oxy]tetrasiloxane;
1,1,1,3,5,5,9,9,9-nonamethyl-3,7,7-tris[(trimethylsilyl)oxy]pentasiloxane;
1,1,1,3,5,7,9,9,9-nonamethyl-3,5,7-tris[(trimethylsilyl)oxy]pentasiloxane; and
1,1,1,7,7,7-hexamethyl-3,5,5,5-tetraakis[(trimethylsilyl)oxy]tetrasiloxane.

32. The composition according to claim 1, wherein the at least one non-cyclic volatile silicone oil is chosen from:
decamethyltetrasiloxane;
dodecamethylpentasiloxane;
3-butyl-1,1,1,3,5,5,5-heptamethyldisiloxane; and
1,1,1,3,5,5,5-heptamethyldisiloxane.

33. The composition according to claim 1, wherein the volatile silicone fatty phase comprises a mixture of dodecamethylpentasiloxane and decamethyltetrasiloxane.
34. The composition according to claim 33, wherein the dodecamethylpentasiloxane and the decamethyltetrasiloxane are present in a dodecamethylpentasiloxane/decamethyltetrasiloxane weight ratio ranging from 55/45 to 80/20.

35. The composition according to claim 34, wherein the dodecamethylpentasiloxane/decamethyltetrasiloxane weight ratio ranges from 60/40 to 75/25.

36. The composition according to claim 35, wherein the dodecamethylpentasiloxane/decamethyltetrasiloxane weight ratio ranges from 60/40 to 70/30.

37. A composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of dodecamethylpentasiloxane and decamethyltetrasiloxane in a dodecamethylpentasiloxane/decamethyltetrasiloxane weight ratio ranging from 55/45 to 80/20.

38. The composition according to claim 37, wherein the dodecamethylpentasiloxane/decamethyltetrasiloxane weight ratio ranges from 60/40 to 75/25.

39. The composition according to claim 38, wherein the dodecamethylpentasiloxane/decamethyltetrasiloxane weight ratio ranges from 60/40 to 70/30.

40. The composition according to claim 1, wherein the volatile fatty phase comprises a mixture of dodecamethylpentasiloxane and 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane.

41. The composition according to claim 40, wherein the dodecamethylpentasiloxane and the 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane are present in a dodecamethylpentasiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranging from 75/25 to 50/50.

42. The composition according to claim 41, wherein the dodecamethylpentasiloxane and the 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranges from 70/30 to 55/45.

43. The composition according to claim 42, wherein the dodecamethylpentasiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranges from 65/35 to 55/45.

44. A composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of dodecamethylpentasiloxane and 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane in a dodecamethylpentasiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranging from 75/25 to 50/50.

45. The composition according to claim 44, wherein the dodecamethylpentasiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranges from 70/30 to 55/45.

46. The composition according to claim 45, wherein the dodecamethylpentasiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranges from 65/35 to 55/45.

47. The composition according to claim 1, wherein the volatile fatty phase comprises a mixture of decamethyltetrasiloxane and 1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane.

48. The composition according to claim 47, wherein the decamethyltetrasiloxane and the 1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane are present in a decamethyltetrasiloxane/1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane weight ratio ranging from 25/75 to 45/55.

49. The composition according to claim 48, wherein the decamethyltetrasiloxane/1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane weight ratio ranges from 30/70 to 40/60.

50. The composition according to claim 49, wherein the decamethyltetrasiloxane/1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane weight ratio ranges from 35/65 to 40/60.

51. A composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of decamethyltetrasiloxane and 1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane in a decamethyltetrasiloxane/1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane weight ratio ranging from 25/75 to 45/55.

52. The composition according to claim 51, wherein the decamethyltetrasiloxane/1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane weight ratio ranges from 30/70 to 40/60.

53. The composition according to claim 52, wherein the decamethyltetrasiloxane/1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane weight ratio ranges from 35/65 to 40/60.

54. The composition according to claim 1, wherein the volatile fatty phase comprises a mixture of 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane and 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane.

55. The composition according to claim 54, wherein the 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane and the 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane are present in a 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranging from 45/55 to 70/30.

56. The composition according to claim 55, wherein the 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranges from 50/50 to 65/35.

57. The composition according to claim 56, wherein the 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranges from 55/45 to 60/40.

58. A composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane and 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane in a 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranging from 45/55 to 70/30.

59. The composition according to claim 58, wherein the 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranges from 50/50 to 65/35.

60. The composition according to claim 59, wherein the 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranges from 55/45 to 60/40.

61. The composition according to claim 1, wherein the volatile silicone fatty phase comprises from 0 to 5% by weight of at least one cyclic volatile silicone oil, relative to the total weight of the volatile silicone fatty phase.

62. The composition according to claim 61, wherein the volatile silicone fatty phase comprises from 0 to 1% by weight of at least one cyclic volatile silicone oil, relative to the total weight of the volatile silicone fatty phase.

63. The composition according to claim 1, wherein the at least one non-cyclic volatile silicone oil is present in an amount ranging from 1% to 65% by weight, relative to the total weight of the composition.

64. The composition according to claim 63, wherein the at least one non-cyclic volatile silicone oil is present in an amount ranging from 1% to 65% by weight, relative to the total weight of the composition.

65. The composition according to claim 64, wherein the at least one non-cyclic volatile silicone oil is present in an
amount ranging from 1% to 50% by weight, relative to the total weight of the composition.

66. The composition according to claim 33, wherein the dodecamethylpentaasiloxane and the decamethyldiyltetrasiloxane are present in an amount ranging from 1% to 80% by weight, relative to the total weight of the composition.

67. The composition according to claim 66, wherein the dodecamethylpentaasiloxane and the decamethyldiyltetrasiloxane are present in an amount ranging from 1% to 65% by weight, relative to the total weight of the composition.

68. The composition according to claim 67, wherein the dodecamethylpentaasiloxane and the decamethyldiyltetrasiloxane are present in an amount ranging from 1% to 50% by weight, relative to the total weight of the composition.

69. The composition according to claim 40, wherein the dodecamethylpentaasiloxane and the 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane are present in an amount ranging from 1% to 80% by weight, relative to the total weight of the composition.

70. The composition according to claim 69, wherein the dodecamethylpentaasiloxane and the 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane are present in an amount ranging from 1% to 65% by weight, relative to the total weight of the composition.

71. The composition according to claim 70, wherein the dodecamethylpentaasiloxane and the 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane are present in an amount ranging from 1% to 60% by weight, relative to the total weight of the composition.

72. The composition according to claim 47, wherein the decamethyldiyltetrasiloxane and the 1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane are present in an amount ranging from 1% to 80% by weight, relative to the total weight of the composition.

73. The composition according to claim 72, wherein the decamethyldiyltetrasiloxane and the 1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane are present in an amount ranging from 1% to 65% by weight, relative to the total weight of the composition.

74. The composition according to claim 73, wherein the decamethyldiyltetrasiloxane and the 1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane are present in an amount ranging from 1% to 60% by weight, relative to the total weight of the composition.

75. The composition according to claim 54, wherein the 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane and the 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane are present in an amount ranging from 1% to 80% by weight, relative to the total weight of the composition.

76. The composition according to claim 75, wherein the 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane and the 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane are present in an amount ranging from 1% to 65% by weight, relative to the total weight of the composition.

77. The composition according to claim 76, wherein the 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane and the 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane are present in an amount ranging from 1% to 60% by weight, relative to the total weight of the composition.

78. The composition according to claim 1, further comprising at least one volatile non-silicone oil.

79. The composition according to claim 78, wherein the at least one non-silicone volatile oil is chosen from volatile hydrocarbon-based oils.

80. The composition according to claim 79, wherein the hydrocarbon-based volatile oils are chosen from isododecane, isodecane, isohexadecane and isohexyl neopentanoate, and mixtures thereof.

81. The composition according to claim 78, wherein the at least one volatile non-silicone oil is present in an amount ranging from 0.1% to 50% by weight, relative to the total weight of the composition.

82. The composition according to claim 81, wherein the at least one volatile non-silicone oil is present in an amount ranging from 0.1% to 40% by weight, relative to the total weight of the composition.

83. The composition according to claim 82, wherein the at least one volatile non-silicone oil is present in an amount ranging from 0.1% to 30% by weight, relative to the total weight of the composition.

84. The composition according to claim 1, further comprising at least one non-volatile oil.

85. The composition according to claim 84, wherein the at least one non-volatile oil is present in an amount ranging from 0.1% to 60% by weight, relative to the total weight of the composition.

86. The composition according to claim 85, wherein the at least one non-volatile oil is present in an amount ranging from 0.5% to 50% by weight, relative to the total weight of the composition.

87. The composition according to claim 86, wherein the at least one non-volatile oil is present in an amount ranging from 0.5% to 30% by weight, relative to the total weight of the composition.

88. The composition according to claim 1, further comprising at least one additional ingredient chosen from cosmetic and dermatological ingredients chosen from film-forming polymers and fixing polymers; surfactants; hair conditioners; dye-stuffs; nucleic agents; opacifiers; organic solvents; fragrances; thickeners; gelling agents; waxes; pasty products; hair dyes; silicone resins; silicone gums; preserving agents; antioxidants; cosmetic active agents; sunscreens; pH stabilizers; vitamins; moisturizers; antiperspirants; deodorants; and self-tanning compounds.

89. The composition according to claim 1, wherein the composition is in a form chosen from care compositions for body and hair; cleansing compositions for the body and the face; makeup compositions for the body and the face; fragrancing compositions; hair compositions; antipsi compositions; antiperspirants; deodorants; haircare and hair cleansing compositions; and hair compositions for holding hairstyle.

90. The composition according to claim 89, wherein the cleansing compositions for the body and the face are chosen from shower gels, bath gels, and makeup removers.

91. The composition according to claim 89, wherein the makeup compositions for the body and the face are chosen from foundations, lipsticks, lipcare products, nail enamels, nailcare products, mascaras and eyeliner.

92. The composition according to claim 89, wherein the hair compositions are chosen from hair dye compositions and permanent-reshaping hair compositions.

93. The composition according to claim 89, wherein the haircare and hair cleansing compositions are chosen from shampoos, rinse-out conditioners, leave-in conditioners, rinse-out compositions to be applied before or after dyeing,
bleaching, permanent-waving or relaxing the hair or between the two steps of a permanent-waving or relaxing operation.

94. The composition according to claim 89, wherein the hair compositions for holding hairstyle are chosen from styling lacquers, styling gels, styling mousses, and styling sprays.

95. A cosmetic makeup process or non-therapeutic treatment process for a keratin material, comprising applying to the keratin material a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising at least one non-cyclic volatile silicone oil, wherein the volatile silicone fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile silicone oil evaporated after 30 minutes ranges from 2 mg/cm² to 9 mg/cm².

96. A cosmetic makeup process or non-therapeutic treatment process for a keratin material, comprising applying to the keratin material a composition comprising, in a physiologically acceptable medium, a volatile fatty phase comprising at least one non-cyclic volatile oil with a surface tension of less than 21 mN/m, wherein the volatile fatty phase has an evaporation profile such that the mass of the at least one non-cyclic volatile oil evaporated after 30 minutes ranges from 2 mg/cm² to 9 mg/cm².

97. A cosmetic makeup process or non-therapeutic treatment process for a keratin material, comprising applying to the keratin material a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of dodecamethylpentasiloxane and decamethyltetrasiloxane in a dodecamethylpentasiloxane/decamethyltetrasiloxane weight ratio ranging from 55/45 to 80/20.

98. A cosmetic makeup process or non-therapeutic treatment process for a keratin material, comprising applying to the keratin material a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of dodecamethylpentasiloxane and 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane in a dodecamethylpentasiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranging from 75/25 to 50/50.

99. A cosmetic makeup process or non-therapeutic treatment process for a keratin material, comprising applying to the keratin material a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of decamethyltetrasiloxane and 1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane in a decamethyltetrasiloxane/1,1,1,3,5,5,5-heptamethyl-3-hexyltrisiloxane weight ratio ranging from 25/75 to 45/55.

100. A cosmetic makeup process or non-therapeutic treatment process for a keratin material, comprising applying to the keratin material a composition comprising, in a physiologically acceptable medium, a volatile silicone fatty phase comprising a mixture of 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane and 3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane in a 3-hexyl-1,1,1,3,5,5,5-heptamethyltrisiloxane/3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane weight ratio ranging from 45/55 to 70/30.

* * * * *