wo 2016/045746 A1 |[IN I N0F V0 00O 00O O 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

31 March 2016 (31.03.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/045746 Al

(51

eay)

(22)

(25)
(26)
1

(72

74

31

International Patent Classification:
GO6F 21/10 (2013.01) GO6F 21/12 (2013.01)

International Application Number:
PCT/EP2014/070669

International Filing Date:
26 September 2014 (26.09.2014)

English
Publication Language: English

Applicant: IRDETO B.V. [NL/NL]; 105 Taurus Avenue,
NL-2132 LS Hoofddorp (NL).

Inventors: WAJS, Andrew Augustine; Irdeto B.V., 105
Taurus Avenue, NL-2132 LS Hoofddorp (NL). CIOR-
DAS, Calin; Irdeto B.V., 105 Taurus Avenue, NL-2132 Ls
Hoofddorp (NL). ZHANG, Fan; Suite 600, Floor 6,
Beijing Sunflower Tower, 37 Maizidian West Street,
Chaoyang District (CN).

Agent: BOULT WADE TENNANT; Verulum Gardens,
70 Grays Inn Road, London Greater London WC1X 8BT
(GB).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

Filing Language:

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

of inventorship (Rule 4.17(iv))

Published:

with international search report (Art. 21(3))

(54) Title: A CHALLENGE-RESPONSE METHOD AND ASSOCIATED COMPUTING DEVICE

r rypite Logking Funciion

112 Y

i '

i
{ Errar
H z 5
e e B ool gintecting
{
i
}

& ;
FEIRIWN | 3 mnGule Wiksite-bo

p—ie] OCIREER b
H snodule

insarion
ol

= 37 3

115

f
{
i e
: 13 %5 148 "o
i i i 3 I}
] Seoursd Srvtaet Lontent Lottent
1 1RA PR Terdering TRrT
t medule frecader il rodiie
i
!
i v
i Oatpe Eryor Data

Respanse ";a«ar::!e [t corraction He——{ Protemsor e tapturing

Y L rodle enodule

150 : 148 145 144 142
/’ EIGURES 52
130

(57) Abstract: There is described a challenge-response
method for a computing device. The method comprises
steps of: (a) receiving challenge data at a secured module
of the computing device, the challenge data comprising im-
age content encrypted using an encryption key, and the im-
age content including a nonce; (b) the secured module re-
covering the image content through decryption using one
or more keys associated with the encryption key; (¢) the se-
cured module of the computing device outputting the re-
covered image content; (d) capturing the image content as
output by the secured module; (e) processing the captured
image content so as to obtain the nonce; and (f) providing
the nonce as a response. There is also described a comput-
ing device arranged to carry out the challenge-response
method, a computer program for causing a processor to
carry out the challenge-response method, and a computer
readable medium storing such a computer program.

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-1 -

A CHALLENGE-RESPONSE METHOD
AND ASSOCIATED COMPUTING DEVICE

FIELD OF THE INVENTION
The present invention relates to a challenge-response method for a client

device, and a computing device for implementing a challenge-response method.
The challenge-response method of the present invention may be used in node

locking (i.e. hardware anchoring) applications for computing devices.

BACKGROUND OF THE INVENTION
Application software, also known as an application or an app, is computer

software designed to help the user to perform specific tasks. Examples include
enterprise software, accounting software, office suites, graphics software and
media players. In recent years, the abbreviation "app" has specifically come to
mean application software written for mobile devices. Application software
applies the power of a particular computing platform or system software to a
particular purpose. In other words, applications make use of the operation
system of a computing device to gain access to the hardware resources.
Applications also require access to a graphics environment for interaction with
the end user. These software applications (often called native applications) use a
hardware execution engine such as a Central Processing Unit (CPU). An
application’s dependency upon existing resources in a specific computing device
means that the software provider may need to provide different versions of the
application for execution on different device platforms. A virtual machine
execution model enables a software provider to distribute a single application for
execution on multiple different device platforms. Scripting languages in
combination with a graphics environment are an alternative for a virtual machine
execution model, providing similar multi-platform benefits. This approach has
been adopted for web applications and in the HTML-5 W3C recommendation.
Many applications require the software to be limited to a single end user
computing device (or client device). This can be achieved by making the

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-2.

execution of the software application dependent on a hardware function that is
specific to a single end user device.

So-called “node locking” (or “hardware anchoring”) technologies provide a
software application with a hardware dependent function for integration into its
execution path (see, for example EP2506174 and EP2506175). This provides a
mechanism to lock the execution of the application to a specific end user device.
The node locking function also enables an application to generate a message
demonstrating that the application is operating on a particular end user device.
This can be used for authentication purposes. These node locking applications
describe a challenge-response function that is specific for a particular hardware
circuit. A challenge-response methodology generally relies on a secret in a
hardware device. Knowledge of the secret enables the generation of challenge-
response pairs which enable an application to verify that the application is
executing on the intended platform. EP2506174 and EP2506175, as referenced
above, describe systems and methods for using a node locking function (a
challenge-response function) in combination with secured software applications.

Node locking technologies for software applications require the availability
of a function that is specific to a particular end user device. EP2506175 achieves
this by leveraging a specific function of a standard Subscriber Identity Module
(SIM), e.g. in a mobile telephone. As the Operating System generally does not
expose the SIM functionality to applications executing on the device, the SIM
locking mechanism of EP2506175 requires modifications to the Operating
System of the device. Thus, this challenge-response solution is undesirable in
some circumstances. EP2506174 requires specific hardware features in a
device, which makes this challenge-response solution unsuitable for use with an
existing device infrastructure.

Even if node locking techniques are available to local applications, web
based applications (e.g. based on HTML5) that operate in a browser, do not have
access to such node locking facilities since the browser Application Programming
Interface (API) does not expose such functions/facilities to the web applications.

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-3-

Digital Rights Management (DRM) technologies are well known for
controlling access to protected content files. A protected content file comprises
an encrypted content part and a usage rules part. The client DRM system first
processes the usage rules to generate a content decryption key that is used to
decrypt the content part. Note that the usage rules part typically includes
encrypted elements. The DRM implementation in the end user device is
implemented in a tamper resistant way, in order to defend against attacks against
the implementation.

DRM Systems are generally used by movie and music rights holders in
order to protect their video and audio content against unauthorised distribution.
There are wide ranges of DRM systems that have been integrated for use in
different end user devices (such as tablets, music players, mobile phones, game
consoles, and even PCs). These DRM systems are typically implemented in a
tamper resistant manner, making it difficult for an attacker to obtain the sensitive
information needed to strip the DRM protection or to emulate the DRM client
implementation.

Many end user devices (especially mobile smart phones) use Android as
an operating system. This open source operating system allows easy
modifications by end users, which could potentially lead to significant problems
with unauthorised distribution of content. The deployment of embedded
hardware DRM implementations enables content distribution to such platforms
whilst at the same time protecting against unauthorised distribution. For
example, the Galaxy S3 mobile smart phone contains a hardware-assisted and
very robust implementation of a DRM client. The implementation details of the
DRM client, such as the hardware circuits used, the robustness criteria and the
secure storage for keys, are proprietary to the various hardware providers and/or
the DRM system providers.

PCT/CN2013/073241 describes a challenge-response method for a client
device (i.e. an end user device). In particular, PCT/CN2013/073241 relates to a
DRM implementation of a challenge-response node locking function in a client
device. The “challenge” is DRM protected content which includes a nonce. A

client device is able to use its own DRM system to extract the nonce from the

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-4 -

challenge so as to provide the nonce as a response. The challenge data could
be any content encrypted using an encryption key, the content including a nonce.
However, in a specific implementation described below with reference to Figures
1 and 2, the challenge data is DRM protected audio content (e.g. a DRM
protected audio file, or streamed DRM protected audio content).

The system 10 of Figure 1 includes a random number generator 12, an
error protection module 14, an audio data insertion module 16 and a secured
DRM module 18. The random number generator 12 (which may be a pseudo-
random number generator) is operable (or arranged) to generate a nonce. |t
should be noted that, for some applications, the nonce may contain non-random
information. The error protection module 14 is an optional element of the system
and is operable to encode the nonce with an error correcting code (ECC) in order
to protect against data distortions in the nonce recovery process. In other words,
the error protection module 14 is used to add redundancy to the nonce such that
the nonce may be recovered by the client device even in cases of incomplete
data transmission, for example.

Audio content (e.g. an audio file) and the ECC protected nonce are
provided as inputs to the audio data insertion module 16. The audio data
insertion module 16 is operable to insert the ECC protected nonce into the audio
content. There are a number of ways in which the ECC protected nonce may be
embedded into the audio content. The ECC protected nonce may be added as
an audio watermark. Alternatively, the ECC protected nonce is included in the
content using a modulation encoding technique. For example, the ECC protected
nonce may be encoded/embedded using audio frequency-shift keying (AFSK) or
similar modulation encoding formats. Embedding the ECC protected nonce as
an audio watermark produces a more pleasant audio output than embedding
using AFSK or the like, but may need a longer audio fragment to embed the ECC
protected nonce. The output of the audio data insertion module 16 is
plaintext/cleartext (i.e. non-encrypted) audio content (i.e. a plaintext audio file).

The secured DRM module 18 is operable to generate a DRM protected
version of the audio content for a particular client device having a particular “DRM

client ID”. In fact, the “DRM client ID” is associated with a secured DRM module

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-5-

of the particular client device. The secured DRM module 18 of Figure 1 is
operable to process the plaintext audio content using the DRM client ID so as to
generate a DRM protected version of the audio content that is suitable for
playback on the identified client device. The secured DRM module 18 achieves
this using encryption based on one or more encryption keys for the identified
client device (i.e. keys associated with the secured DRM module of the client
device). The encryption keys and encryption algorithms are known to the DRM
system only. For example, the encryption keys may be known only to the
secured DRM module 18, and the corresponding decryption keys may be known
only to the secured DRM module of the particular client device. There are many
cryptographic techniques suitable for use in such a DRM system. The DRM
protected audio content 20 is output by the secured DRM module 18.

Figure 2 schematically illustrates a client device 30 (e.g. a mobile phone
or a tablet computer) for implementing the challenge-response methodology of
PCT/CN2013/073241. The client device 30 includes an input module 32, a
secured DRM module 34, an audio decoder 36, a speaker 38, a microphone 40,
an audio recorder 42, a processor 44, and an output module 48. Together, these
elements of the client device 30 perform the node locking function (schematically
shown by the dashed line 52 in Figure 2).

The DRM protected audio content 20 output by the secured DRM module
18 of Figure 1 forms the “challenge” (or challenge data). The input module 32 is
operable to receive the challenge data 20 and to pass it to the secured DRM
module 34 of the client device 30. For example, the input module 32 may send
the challenge data with a rendering request to the secured DRM module 34. A
secured DRM module API (not shown) may be used to activate the secured DRM
module 34.

The secured DRM module 34 is operable to decrypt the challenge data 20
using a decryption key of the secured DRM module 34. Specifically, the secured
DRM module parses the DRM encoded usage rules associated with the DRM
protected audio content 20, and then decrypts the DRM protected audio content
20 in accordance with these rules. The decrypted audio content is transferred to

the audio decoder 36 using a secured data channel.

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-6 -

The audio decoder 36 produces an audible output using the speaker 38 of
the client device 30. Thus, the secured DRM module effectively outputs an
audible version of the audio content by means of the audio decoder 36 and the
speaker 38.

The microphone 40 of the client device 30 is operable to receive the
audible version of the audio content output by the speaker 38. The audio
recorder 42 is operable to record the sound captured by the microphone 40 so as
to provide a recording of the audio content. Such a recording of the audio
content will be imperfect such that the recording is a modified version of the
original audio content (as output by the audio decoder 36 and the speaker 38).
For example, the quality of the speaker 38 and the microphone 40 will affect the
recording (particularly in certain frequency bands). The recording will also
capture environmental noise. Thus, the audible version of the audio content
received by the microphone 40 (and recorded by the audio recorder 42) will
generally be slightly different from the audible version of the audio content output
by the speaker 38.

The processor 44 is operable to process the recording to obtain the nonce.
The processor includes an audio data extraction module 45 and an error
correction module 46. The audio data extraction module 45 is operable to access
the recording of the audio content made by the audio recorder 42. The audio
data extraction module 45 is further operable to recover the ECC protected nonce
from the recording using signal processing techniques. In other words, the audio
data extraction module 45 is operable to use signal processing techniques to
extract the nonce from the version of the audio content received by the
microphone 40. The signal processing techniques used by the audio data
extraction module 45 will depend on the way in which the nonce has been
included in the audio content (e.g. as an audio watermark or using a modulation
encoding technique).

Thus, Figure 2 schematically illustrates the arrangement of
PCT/CN2013/073241 in which the decrypted content is obtained by capturing an
analogue output (i.e. by recording the playback of an audio file) and processing

the captured analogue output of the content to extract an embedded data signal.

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-7 -

Having extracted the ECC protected nonce from the audio content, the
audio data extraction module 45 passes the ECC protected nonce to the optional
error correction module 46. The error correction module 46 is operable to
decode the ECC protected nonce to provide the original nonce. The output
module 48 is operable to receive the nonce from the error correction module 46
of the processor 44 and to provide the nonce as an output of the node locking
function 52. Hence, the nonce may be considered as the “response”.

Thus, the DRM protected audio content 20 is used in the client device 30
as a challenge input to a node locking function 52 in order to obtain a response
50. The response 50 should be equal to the nonce (see above) and will only be
obtainable by the particular client device 30 containing the particular secured
DRM module 34 having the relevant decryption keys. The decryption key used
may be unique to (i.e. known only to) the particular secured DRM module 34
such that all other client secured DRM modules are unable to decrypt the
challenge data 20. In other cases, the decryption key used may be unique to (i.e.
known only to) a group of client secured DRM modules such that only secured
DRM modules in the group are able to decrypt the challenge data 20 and secured
DRM modules not in the group are unable to decrypt the challenge data 20.

In the challenge-response methodology of PCT/CN2013/073241, an
application issues DRM protected content that contains the challenge. The
protected content can only be rendered on a specific computing platform. The
challenge-response methodology of PCT/CN2013/073241 thereby enables a
secured application to prevent clones from executing on different computing

platforms (e.g. different client devices).

SUMMARY OF THE INVENTION
The present invention provides an alternative node locking (challenge-

response) function for existing devices that is accessible to applications, virtual
machine applications, and web applications (scripted applications).

According to a first aspect of the present invention, there is provided a
challenge-response method for a computing device. The method comprises

steps of: (a) receiving challenge data at a secured module of the computing

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-8-

device, the challenge data comprising image content encrypted using an
encryption key, and the image content including a nonce; (b) the secured module
recovering the image content through decryption using one or more keys
associated with the encryption key; (¢) the secured module of the computing
device outputting the recovered image content; (d) capturing the image content
as output by the secured module; (e) processing the captured image content so
as to obtain the nonce; and (f) providing the nonce as a response.

Advantageously, the challenge data further comprises a rights object
including usage rules relating to the image content, and the secured module is
operable to output the recovered image content in accordance with the usage
rules.

Advantageously, the challenge data further comprises an encrypted
version of at least one of the one or more keys associated with the encryption
key, and the method further comprises the secured module recovering said at
least one key through decryption. More advantageously, the encrypted version of
said at least one key is provided in the rights object.

In one embodiment, the challenge-response method further comprises
receiving the challenge data from another computing device. For example, the
challenge data may be received from a server.

In another embodiment, the challenge-response method further comprises
using secured software on the computing device to generate the challenge data
by encrypting the image content using the encryption key.

In yet another embodiment, the challenge-response method further
comprises using secured software on the computing device to generate the
image content based on the nonce. In one example, the image content is
generated by including the nonce in pre-existing image content (e.g. the nonce
may be provided as a digital watermark on a pre-existing image). In another
example, the image content may be generated by converting the nonce into an
image (i.e. direct image content generation from the nonce).

Advantageously, the challenge data comprises video content including
said image content.

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-9-

Advantageously, the challenge-response method further comprises
rendering the image content as output by the secured module. More
advantageously, the rendering is performed using a media player application on
the computing device. In one embodiment, the rendering comprises rendering
such that the image content is not observable to an end-user of the computing
device.

Advantageously, the capturing comprises screen scraping or data
scraping.

Advantageously, the capturing comprises directly accessing the image
content as output by the secured module.

According to a second aspect of the present invention, there is provided a
computing device arranged to carry out the challenge-response method of the
first aspect.

According to a third aspect of the present invention, there is provided a
computer program which, when executed by a processor, causes the processor
to carry out the challenge-response method of the first aspect.

According to a fourth aspect of the present invention, there is provided a
computer readable medium storing a computer program according to the third
aspect.

Other preferred features of the present invention are set out in the

appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the present invention will now be described by way of

example with reference to the accompanying drawings in which:

Figure 1 schematically illustrates a system for generating DRM protected
audio content to form a challenge in the challenge-response method of
PCT/CN2013/073241;

Figure 2 schematically illustrates a client device for implementing the
challenge-response method of PCT/CN2013/073241;

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-10 -

Figure 3 schematically illustrates a system for generating DRM protected
video content to form a challenge in the challenge-response method of the
present invention;

Figure 3A schematically illustrates an exemplary secured DRM module for
generating DRM protected video content for use in the challenge-response
method of the present invention;

Figure 4 schematically illustrates a computing device for implementing the
challenge-response method of the present invention; and

Figure 5 schematically illustrates a computing device for implementing a
local challenge-response method of the present invention.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
In the description that follows and in the figures, certain embodiments of

the invention are described. However, it will be appreciated that the invention is
not limited to the embodiments that are described and that some embodiments
may not include all of the features that are described below. It will be evident,
however, that various modifications and changes may be made herein without
departing from the broader spirit and scope of the invention as set forth in the

appended claims.

Video content embodiment
As compared to the audio node locking of PCT/CN2013/073241 (as
described above with reference to Figures 1 and 2), the present invention relates

to image-based node locking. A preferred embodiment relates to video-based
node locking, as described below with reference to Figures 3 and 4.

A system 100 for the generation of the DRM protected video content is
shown schematically in Figure 3. The system 100 includes a nonce generator
112, an error protection module 114, a content data insertion module 116 and a
secured DRM module 118. The system 100 may be a computer server or other
computing device.

The nonce generator 112 is operable (or arranged) to generate a nonce.

The nonce generator may comprise a random number generator and/or a

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-11 -

pseudo-random number generator. It should be noted that, for some
applications, the nonce may contain non-random information.

The error protection module 114 is operable to encode the nonce with an
error correcting code (ECC) in order to protect against data distortions in the
nonce recovery process. In other words, the error protection module 114 is used
to add redundancy to the nonce such that the nonce may be recovered by a
client (i.e. end user) computing device even in cases of incomplete data
transmission (i.e. incomplete data recovery), for example. Whilst it is
advantageous to add error protection to the nonce, it is not essential. Thus, the
error protection module 114 is an optional element of the system.

Video content (e.g. a video file) 115 and the ECC protected nonce are
provided as inputs to the content data insertion module 116. (Of course, it will be
understood that if the error protection module 114 is omitted, then the nonce itself
is provided as an input to the content data insertion module 116, rather than
inputting the ECC protected nonce.) The content data insertion module 116 is
operable to insert the ECC protected nonce into the video content 115. There
are a number of ways in which the ECC protected nonce may be embedded into
the video content 115. In one embodiment, the ECC protected nonce may be
added as an image watermark or a video watermark. Alternatively, the ECC
protected nonce is included in the video content 115 using another encoding
technique. For example, a fairly simple method is to adapt some encoding
parameters (DCT coefficients, motion vectors, etc.) to embed the ECC protected
nonce into the video content 115. The output of the content data insertion
module 116 is plaintext/cleartext (i.e. non-encrypted) video content (i.e. a
plaintext video file).

The secured DRM module 118 is operable to generate a DRM protected
version of the video content for a particular computing device (client device)
having a particular “DRM client ID”. In fact, the “DRM client ID” is associated with
a secured DRM module of the particular computing device. The secured DRM
module 118 of Figure 3 is operable to process the plaintext video content using
the DRM client ID so as to generate a DRM protected version of the video

content that is suitable for playback on the identified computing device. The

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-12-

secured DRM module 118 achieves this by encrypting the video content using
one or more content encryption keys (CEKs). When using a symmetric
encryption cipher, the decryption key(s) (which will be used by the identified client
computing device to decrypt the encrypted video content) are identical to the
encryption key(s). In other words, the decryption key(s) are the CEK(s). In this
symmetric case, it is also necessary to provide the CEK(s) (or one or more keys
associated with the CEKSs) to the identified client computing device. This may be
done by including the CEK(s) in encrypted form in a rights object which is
packaged with the encrypted video content by means of the secured DRM
module 118. Further details are provided below. When using an asymmetric
encryption cipher, the decryption key(s) are not the same as the encryption
key(s), but are associated with the encryption key(s) (i.e. the decryption key(s)
are key(s) associated with the CEK(s)). For example, the encryption key could
be a public key associated with the client computing device and its DRM client ID,
and the decryption key could be the client computing device’s corresponding
private key. The encryption cipher/algorithm may be a known (standard)
cryptographic function such as DES or AES. At least some of the CEK(s) (and
associated decryption key(s) for an asymmetric cipher) will be known only to the
DRM system (i.e. known only to the secured DRM module 118 and/or the
corresponding DRM module in the client computing device which will be used for
decryption of the content). It will be understood that there are many
cryptographic techniques suitable for use in such a DRM system, and these will
not be further described here.

Advantageously, the secured DRM module 118 is further operable to
package the encrypted video content with an associated rights object 219 so as
to form the DRM protected video content 120, as illustrated schematically in
Figure 3A. The secured DRM module 118 includes an encryption module and a
content packager or multiplexer 223. Furthermore, the secured DRM module 118
has access to the DRM client ID of the particular client computing device for
which the secured DRM module 118 is operable to provide DRM protected
content 120. In one embodiment, the secured DRM module 118 contains a

database where a number of DRM client IDs and associated keys are stored. In

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-13 -

this case, the secured DRM module 118 may generate a rights object 219 for the
particular client computing device by accessing the database so as to obtain the
DRM client ID and associated usage rules and CEK(s) that are needed to
generate the rights object 219.

The video content including the nonce is input into the encryption module
217 of the secured DRM module 118, and is encrypted using the CEK. The
encrypted video content is then output by the encryption module 217 and
packaged with the associated rights object 219 by the content packager 223 of
the secured DRM module 118. The content 120 output by the secured DRM
module 118 then includes both the encrypted video content and the rights object
219. Data within the rights object 219 may or may not be encrypted. The rights
object 219 is further described below.

The rights object 219 may include data defining how the encrypted video
content is allowed to be used, once decrypted. In particular, the rights object 219
may be used to configure access rights to the decrypted video content.
Importantly, the rights object 219 can be configured to allow screen scraping (or
data scraping) of the decrypted content to enable a data capturing module 142 of
a client computing device 130 to obtain the relevant data to provide a response
(further details are provided below with reference to Figure 4). The rights object
219 may include data defining that the video content may only be accessible to
particular software application(s) in the client computing device, and/or may data
defining that the video content only be viewed a predetermined number of times,
or during a particular time window, etc. Usage rules of the rights object may
alternatively/additionally enforce a maximum number of calls to the node lock
function (again, see Figure 4 and the associated description for further details).

The rights object 219 may also include an encrypted version of one or
more keys associated with the encryption key(s). For example, the decryption
key(s) may be provided in encrypted form as part of the rights object 219.
Alternatively, it is possible to provide an encrypted version of a seed (or key)
which can be used to obtain the decryption key(s) or similar. As mentioned
above, for a symmetric encryption cipher, this means that the rights object 219

comprises the CEK(s) (or one or more keys associated with the CEK(s)) in

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-14 -

encrypted form. An encrypted version of the decryption key(s) (or of one or more
other keys associated with the encryption key) may also be included for an
asymmetric cipher if desired. The important factor is that only the specified client
computing device (i.e. the end user device associated with the DRM client ID)
should be able to decrypt the encrypted content. Thus, either the decryption
key(s) should be known only to that computing device (as in the example above
where the CEK is the public key of the device and the decryption key is the
private key of the device), or sufficient information should be provided to the
device as part of the rights object 219 in encrypted form such that that that device
alone is able to obtain the decryption key(s). For example, in a symmetric cipher
example, the CEK(s) may be provided in encrypted form as part of the rights
object 219 in such a way that knowledge of the private key or the DRM client ID
of that device is required to enable decryption of the CEK(s). The rights object
219 may further define any limitations on usage of the decryption key(s). For
example, usage limitations might include number of times the decryption key(s)
can be used, time windows during which the decryption key(s) can be used, etc.

The secured DRM module outputs the DRM protected video content 120,
which includes the encrypted video content and the associated rights object.

Figure 4 schematically illustrates a computing device 130 for
implementing the present challenge-response methodology. The computing
device 130 may be a client device (i.e. an end-user device) and is intended to
process the protected DRM content 120 output by the secured DRM module 118
of Figure 3. Exemplary computing devices 130 include mobile devices (such as
smart phones or tablets), PCs, and laptops. Other computing devices 130 are
also envisaged.

The computing device 130 includes an input module 132, a secured DRM
module 134, a content decoder 136, a content rendering module 138, a content
output module 140, a data capturing module 142, a processor 144, and an output
module 148. Together, these elements of the computing device 130 perform the
node locking function (schematically shown by the dashed line 152 in Figure 4).
Clearly, the computing device 130 may include other modules/elements relating

to other functionality of the computing device 130. Some modules/elements

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-15 -

(including some of those shown in Figure 4) may be shared by multiple functional
blocks of the computing device 130. Therefore, Figure 4 is only a schematic
depiction of some elements of the computing device 130.

The DRM protected video content 120 output by the secured DRM module
118 of Figure 3 forms the “challenge” (or challenge data) in the present
challenge-response methodology. The input module 132 is operable to receive
the challenge data 120 and to pass it to the secured DRM module 134 of the
computing device 130 such that the challenge data 120 is received at the
secured module 134. For example, the input module 132 may send the
challenge data with a rendering request to the secured DRM module 134. A
secured DRM module API (not shown) may be used to activate the secured DRM
module 134. The input module 132 may be separate from the secured DRM
module 134 (as shown schematically in Figure 4), or may form part of the
secured DRM module 134 such that the secured DRM module 134 itself receives
the challenge data 120.

The secured DRM module 134 is operable to decrypt the challenge data
120 using one or more keys associated with the encryption key(s). In other
words, the secured module 134 is able to recover the video content through
decryption. As mentioned above, the one or more key(s) associated with the
encryption key(s) are either already known to the secured DRM module 134 (e.g.
the decryption key is the private key of the secured DRM module 134), or the one
or more key(s) associated with the encryption key(s) are accessible to the
secured DRM module 134 based on the rights object 219 received as part of the
challenge data 120 (e.g. the rights object 219 comprises an encrypted version of
the one or more key(s) associated with the encryption key(s)). Specifically, the
secured DRM module 134 parses the DRM encoded usage rules associated with
the DRM protected video content 120, and then decrypts the DRM protected
video content 120 in accordance with these rules. In the asymmetric encryption
cipher embodiment mentioned above, the decryption key may be the private key
of the secured DRM module 134, and the encryption key may be a public key
associated with the secured DRM module 134 which is known to the secured

DRM module 118 of Figure 3. Alternatively, in the symmetric encryption cipher

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-16 -

embodiment mentioned above, the decryption key is the same as the encryption
key. In this case, the encryption key is a symmetric secret CEK shared by both
the secured DRM module 134 of the computing device and the secured DRM
module 118 that was used to encrypt the video content to form the challenge data
120. Having recovered the video content through decryption, the secured DRM
module 134 outputs the recovered (i.e. decrypted) video content in accordance
with any usage rules specified in the rights object 219.

The decrypted video content is transferred to the content decoder 136.
Having decoded the video content, the content rendering module 138 renders the
video content on the computing device 130 in some manner. In a preferred
embodiment, the content rendering module 138 is a media player application
used to render the DRM protected content on the computing device 130. The
rendered content may be output via an optional content output module 140.

At least a fragment of the decrypted video content (i.e. the output of the
secured DRM module 134) is captured by a data capturing module 142 of the
computing device 130 in accordance with any usage rules in the rights object
219. This capture may occur before or after decoding the content using the
content decoder 136, and before or after rendering the content using the content
rendering module 138. Therefore, Figure 4 shows three separate pathways from
the secured DRM module 134 to the data capturing module 142. In each case,
the data is captured by the data capturing module 142 prior to the content being
output via the content output module 140. In some DRM systems, the DRM
usage rules contained within the rights object 219 may be used to control which
software applications on the computing device 130 have access rights to the
output of the secured DRM module 134. Thus, the rights object 219 may be
configured to define which data capture pathway is used by a particular software
application. Which data capture pathway is used may affect whether secured
data channels are used between the secured DRM module 134 and the content
decoder 136, between the content decoder 136 and the content rendering
module 138, and between the content rendering module 138 and the content
output module 140. A secured data channel is intended to prevent other

applications from accessing the decrypted video content. At least one of the

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-17 -

three data channels mentioned above should be non-secured (at least for the
node-locking function) so as to enable the node locking function 152 to directly
intercept the decrypted data. This may be accomplished by the rights object 219
configuring at least one of the three data channels to be non-secured for a
particular software application based on the usage rules. The version of the
video fragment captured by the data capturing module 142 will generally be an
exact copy (i.e. an unmodified version) of the original video content 120. The
output of the secured DRM module 134 is usually not observable by a non-
privileged software application (i.e. a software application outside the DRM
trusted zone of applications). However, in order to enable the node-locking
functionality, the DRM usage rules of the rights object 219 are configured to
make the output of the secured DRM module 134 observable in certain
circumstances. For example, the rights object 219 can be used to configure the
secured DRM module 134 to allow third party access to the output of the secured
DRM module 134. Such third party access may have restrictions applied (e.g.
access only by specified non-privileged software application(s), access only a
certain number of times, etc.) In another example, the rights object can be used
to configure the secured DRM module 134 to send a message (using a
communication channel or a shared data file) to a specified non-privileged
software application.

In a preferred embodiment, the data capturing module 142 captures the
video fragment by screen scraping. In other words, the data capturing module
142 either is a screen scraping module or at least comprises a screen scraping
module. This provides a more robust data capture mechanism than the audio
capture mechanism described above with reference to Figures 1 and 2. Screen
scraping is normally associated with the programmatic collection of visual data
from a source, instead of parsing data as in web scraping. Some screen
scraping techniques include capturing the bitmap data from the screen of a
device and running it through an OCR engine or, in the case of GUI applications,
querying the graphical controls by programmatically obtaining references to their
underlying programming objects. In the present case, the computing device 130

may include a screen or monitor on which the content is rendered. In other

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-18 -

words, the content output module 140 may be considered to be a screen.
Alternatively, the protected content may be rendered so as to cause the image or
video fragment not to be observable to the end-user (i.e. invisible playback). For
example, the image content of the video fragment could be displayed in an off-
screen window or in a not visible window, and the audio content of the video
fragment could be played back at very low volumes, on a muted speaker or on a
virtual speaker. It should be noted that it is still possible to screen scrape or data
scrape such invisible or muted playback of content. If invisible playback is used,
the node locking application can use a broad range of data embedding
techniques to embed the nonce since it is not necessary to insert an invisible
watermark.

The processor 144 is operable to access the video fragment captured by
the data capturing module 142. The processor 144 is operable to process the
video fragment captured by the data capturing module 142 to obtain the nonce.
The processor 144 is further operable to recover the ECC protected nonce from
the captured video fragment using signal processing techniques. In other words,
the processor 144 is operable to use signal processing techniques to extract the
nonce from the video fragment captured by the data capturing module 142. The
signal processing techniques used by the processor 144 will depend on the way
in which the nonce has been included in the video content (e.g. as a video
watermark or using a modulation encoding technique). Such techniques will be
familiar to a person skilled in the art.

Having extracted the ECC protected nonce from the captured data, the
processor 144 passes the ECC protected nonce to the error correction module
146. The error correction module 146 is operable to decode the ECC protected
nonce to provide the original nonce. Like the error protection module 114, the
error correction module 146 is an optional element of the system. It is not
required if the nonce does not have added redundancy for error protection
purposes.

The output module 148 is operable to receive the nonce from the error
correction module 146 and to provide the nonce as an output of the node locking

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-19 -

function 152. Hence, the nonce may be considered as the “response” in the
present challenge-response methodology.

Thus, the DRM protected video content 120 is used in the computing
device 130 as a challenge input to a node locking function 152 in order to obtain
a response 150. The response 150 should be equal to the nonce (see above)
and will only be obtainable by the particular computing device 130 containing the
particular secured DRM module 134 having the relevant key information. Usually
the key information will be unique to (i.e. known only to) the particular secured
DRM module 134 such that all other client secured DRM modules are unable to
decrypt the challenge data 120. In other cases, it is envisaged that the key
information will be unique to (i.e. known only to) a group of client secured DRM
modules such that only secured DRM modules in the group are able to decrypt
the challenge data 120 and secured DRM modules not in the group are unable to
decrypt the challenge data 120. However, a decryption key (or a set of keys)
unique to each secured DRM module 134 is the preferred embodiment.

Whereas an analogue path is used to capture the rendered audio output of
the secured DRM module 34 of Figure 2, the arrangement shown in Figure 4
uses a data capturing module 142 that captures the digital output of the secured
DRM module 134 at an earlier stage of the protected content playback chain.
This may require configuring the secured DRM module 134 to disable some data
protection measures, e.g. by including relevant parameters in the usage rules of
the rights object 219 in the protected DRM content 120. For example, the
protected DRM content 120 may be configured for playback without security
measures which prevent screen scraping. As described above, such
configuration may be specific to particular software application(s) executing on
the computing device 130.

Depending on the location at which the data is intercepted and captured
by the data capturing module 142, a different algorithm needs to be used by the
processor 144 to generate the response. In a very simple example, the video is
the repetition of a single image containing a single DCT block with the DCT
coefficients encoding the nonce. The DCT coefficients may encode the nonce

directly (i.e. without the need to insert the nonce into pre-prepared or pre-existing

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-20 -

video/image content 115). Alternatively, at least a few of the DCT coefficients of
a pre-prepared image/video 115 could be amended based on the nonce. In this
simple DCT encoding example, the data processing by the processor 144 would
include (a) calculation of a DCT of the captured data, and (b) processing the DCT
coefficients to obtain the encoded nonce. Another simple variant could involve
encoding a motion vector based on the nonce. The data processing by the
processor 144 would then include (a) estimating the motion vector using a ‘zero’
shift image, and (b) processing the motion vector(s) to obtain the encoded nonce.
There is a wide range of more sophisticated data insertion mechanisms
described in the field of audio and video watermarking, as will be appreciated by
a person skilled in the art.

For the purposes of the video content example described above, it is
irrelevant whether the video content includes audio content as well as images.
Therefore, the term “video” is herein intended to encompass silent video as well
as video which includes an accompanying audio soundtrack.

In addition, it will be appreciated that the video content need not comprise
moving pictures, but could instead encompass a still image, or a video fabricated
by repetition of a still image. In either case, the same node-locking methodology
may be used, but the way in which the nonce is embedded may change — for
example the use of motion vectors would not be appropriate for still images.

Node locking in software applications

The present DRM-based challenge-response methodology may be used
for node locking in software applications. In particular, the methodology
described above with respect to Figures 3 and 4 provides a node-locking
technique for a software application that captures a DRM protected video
fragment (i.e. the challenge) containing an identifying data pattern (or nonce),
processes the captured fragment to extract the identifying pattern (i.e. the
response), and uses it in further calculations during execution of the software
application. As the DRM protected file 120 is configured for a specific end-user

device, the video file cannot be played back on other end-user devices. The

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

=99 -

hardware based implementation of the DRM client (i.e. the secured DRM module
134) thus links the identifying pattern (or nonce) to the specific end-user device
130. This node-locking function is available to native software applications. The
widely available browser support for playback of (DRM protected) video files
enables the invention to provide node-locking functions for web applications.

For example, a software application (e.g. a web application or a native
application) may contain some personalization data which includes the DRM
protected video content 120 that is targeted for a specific end-user device 130.
As mentioned above, the DRM protected video content 120 can be seen as a
challenge. The application presents this challenge 120 to a DRM-protected video
playback module (i.e. the node locking function of Figure 4) and obtains the
corresponding response 150 from the signal processing of the captured video
fragment, as described above. The application may have several challenges 120
stored in the personalization data so as to avoid replay attacks. A reply attack
involves successfully executing the personalized application on an end-user
device other than the intended end user device 130 (i.e. other than the device for
which the application has been personalized). This is done by capturing the
video fragment from a screen of the intended device 130, and using this
previously recorded video signal to provide a valid response in another end user
device. Preventing replay attacks may also be achieved by setting appropriate
usage rules (e.g. play once) in the rights object 219 for the DRM protected video

content 120.

Node locking for authentication

The present DRM-based challenge-response methodology may be used
for authentication of computing devices in software applications such as web
applications. In this case, the software application executing on a computing
device 130 receives the challenge 120 (i.e. the DRM protected video content
120) from a remote web server 100, which is used to generate the challenge 120.
This authentication implementation may be considered as a series of sequential
steps, as described below with reference to features shown in Figures 3 and 4:

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

=99

. The application (executing on the computing device 130) sends a request

for a challenge to a server 100. This request includes the DRM identity of
the computing device 130 (i.e. the request includes DRM client ID of the
secured DRM module 134 of the computing device 130).

. The server 100 generates a nonce using the nonce generator 112.
. The server 100 optionally adds error protection to the nonce using the

error protection module 114.

. The server 100 uses the content data insertion module 116 to embed the

(error-protected) nonce into some video content.

. The server 100 uses its secured DRM module 118 to DRM protect the

video content. Alternatively, the server 100 may request an external DRM
server system to DRM protect the generated video content. The DRM
protected video content forms the challenge 120.

. The server 100 then sends the challenge 120 to the web application

executing on the computing device 130, as requested in step 1.

. The application running on the computing device 130 receives and

recovers the challenge 120 through decryption (using the computing
device’s input module 132 and secured DRM module 134 respectively)
before decoding, rendering and outputting the DRM protected video
content (using the computing device’s content decoder 136, content
rendering module 138 and content output module 140 respectively).

. The computing device 130 then uses the data capturing module 142 to

capture at least a fragment of the DRM protected video content.

. Then, the computing device 130 processes the captured fragment using

the processor 44 so as to obtain the ECC protected nonce.

10. The computing device 130 optionally uses the error correction module 146

to obtain the nonce from the ECC protected nonce. The nonce is output

by the output module 148 as the response 150.

11.The response 150 is returned (i.e. sent) to the server 100 to demonstrate

that the application is executing on the intended platform (i.e. on an
authorized computing device 130). This approach can be used for

authentication.

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-923-

12.The computing device 130 may use the response 150 in the execution of
the application. For example, the response 150 may be used within the
application to at least partially enable the continued execution of the
application on the end user device 130.

As described above, it is also possible to include a rights object 219 in the
DRM protected video content 120 for further configuration of the secured DRM

module of the computing device 130.

Local node locking embodiment

As described above in relation to node locking in software applications, a
number of server-generated challenges may be stored by a software application
to enable node locking on the computing device 130. Such challenges will need
to be loaded into the software application on the computing device 130. This
loading can use a communication interface to a server 100 or a pre-packaging
step during installation of the software application. This poses some constraints
on the software application since either a communication link has to be available,
or a finite number of pre-packaged challenges can be used. Similarly, the
authentication implementation described above requires a communication link
between the server 100 and the computing device 130 to enable steps 1, 6 and
11 to be carried out, since each of these steps requires communication between
the server 100 and the computing device 130. Therefore, in an alternative
embodiment of the invention, a local node locking function is provided which
executes entirely on a local computing device such as the computing device 130.

The way DRM systems work (when using symmetric cryptographic
ciphers) is that a content encryption key (CEK) is delivered using a rights object.
The packaging of content is done using a content packager which takes the CEK,
uses it to encrypt the content, and packages the encrypted content with the rights
object into a protected content file. Therefore, if the content packager
functionality (e.g. the challenge generation functionality of Figure 3) is
implemented within the software application itself (i.e. on the computing device

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-924 -

130), it becomes possible to issue random node locking challenges. Such an
embodiment is described below.

An important aspect of a node locking operation is that there should be a
way to verify the response so the software application can be confident that it is
running on the intended platform (i.e. an authorised computing device). The
process to calculate the response from the captured data can be implemented in
a non-secured piece of software. In other words, the data capturing module 142,
the processor 144, the error correction module 146 and the output module 148 of
Figure 4 can all be implemented as non-secured software modules on the
computing device 130. However, in order to prevent attacks, it is necessary to
implement the challenge generation functionality of Figure 3 using secured
software techniques. The challenge generation functionality uses the nonce
generator 112 for generating the nonce (which acts as the challenge in this local
node locking embodiment), the optional error protection module 114 for optional
error protection of the nonce, the content data insertion module 116 for
embedding the (error-protected) nonce into a piece of video content, and the
secured DRM module 118 which acts as the content packager in this instance. In
addition, any software which configures the continued execution of the software
application to rely on the intended response should use secured software
techniques.

There are many secured software techniques known in the art. For
example, software obfuscation and/or white-box cryptography can be used to
implement the secured software described above. Such techniques are briefly
discussed in the Annex below, and some techniques use a transformed data
domain to process sensitive data in a secured manner. In particular, the original
data is stored and processed as transformed data such that it is difficult or
impossible for an attacker to derive the original data. In general, secured
software is arranged so that the associated software code has resistance against
a white-box attack.

In one embodiment, a pre-packaged content sample can be included with
the software application (on the computing device 130) as transformed data. The

embedding process (using the content data insertion module 116) then can take

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-925-

place in the transformed data domain using a transformed (and possibly error-
protected) nonce. This effectively hides the embedding process from attackers.
The transformed content with the embedded response can be passed to a white-
box encryption module for encryption using white-box encryption which is
configured to operate on transformed data. The white-box encryption module is
configured with a fixed CEK or has a facility to load a CEK.

Figure 5 schematically illustrates an example of a local node locking
function 252 which executes entirely on a local computing device such as the
computing device 130. Components in Figure 5 that are similar to those depicted
in Figures 3, 3A and 4 are depicted with the same reference numeral as those
used in Figures 3, 3A and 4. The computing device 130 includes the nonce
generator 112, the error protection module 114, the content data insertion module
116, the secured DRM module 118 (including a white-box encryption module 317
(in place of the generic encryption module 217) and the content packager 223, as
shown schematically by the dotted line), the secured DRM module 134, the
content decoder 136, the content rendering module 138, the content output
module 140, the data capturing module 142, the processor 144, and the output
module 148. Except for the nonce generator 112, these elements of the
computing device 130 together perform the node locking function (schematically
shown by the dashed line 252 in Figure 5). In an alternative embodiment, the
error protection and error correction could occur outside the node locking function
252 if desired.

In use of the computing device of Figure 5, consider a software application
on the computing device 130 which wishes to use (i.e. call) the node-locking
function 252. The software application uses the nonce generator 112 to generate
a nonce as transformed data. As described above, the nonce may be random,
pseudo-random, or non-random. The nonce is later used to generate a
“‘challenge”. The transformed nonce is received by the (optional) error protection
module 114 of the node locking function 252 to apply error protection to the
transformed nonce if required. The transformed nonce is then embedded in the
pre-packaged content sample 115 which is included with the software application

as transformed data. The embedding process (using the content data insertion

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

- 26 -

module 116) takes place in the transformed data domain using the transformed
(and possibly error-protected) nonce. The transformed content with the
embedded nonce is passed to the white-box encryption module 317 for
encryption using white-box encryption which is configured to operate on
transformed data. The white-box encryption module 317 is configured with a
fixed CEK or has a facility to load a CEK. The secured software (white-box
cryptography) technology secures the CEK under the white-box attack scenario.
The encrypted content and nonce data is then passed to a content packager or
multiplexer 223 to package the encrypted data together with the rights object 219
associated with usage of the content, thereby outputting protected DRM content
120 which acts as a challenge. The rights object 219 is described above in detail
in the “Video content embodiment” section. However, it should be noted that
when the secured DRM module 118 (which generates the protected DRM content
120) is operable to execute on the client computing device 130 (as in Figure 5)
rather than on the server computing device 100 (as in Figure 3), that module 118
lacks a rights objects generation capability. Instead, it uses pre-packaged rights
object(s) with suitable keys and usage rules.

The secured DRM module 134 receives the protected DRM content 120
and is operable to recover the combined content and nonce data through
decryption using one or more keys associated with the encryption key.
Specifically, the secured DRM module 134 parses the DRM encoded usage rules
in the rights object 219 packaged within the protected DRM content 120, and
then decrypts the encrypted video content in accordance with these rules.
Further details regarding the relevant key(s) are given above in the “Video
content embodiment” section.

Having decrypted the combined content and nonce data, the output from
the secured DRM module 134 is passed in turn to the content decoder 136, the
content rendering module 138 and the content output module 140. At some point
in this chain, as described above with reference to Figure 4, the data is captured
by the data capturing module 142 and passed in turn to the processor 144, the
error correction module 146 and the output module 148 as so as to generate the

response 150. Again, this process is described above with reference to Figure 4.

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-97-

Of course, in this local embodiment, the response is a transformed nonce (i.e. the
nonce is in the transformed data domain).

Thus, the local node locking embodiment of Figure 5 shows the protected
content playback and the steps to generate a response 150 from the playback
processing chain. In addition, Figure 5 shows the content protection and DRM
packaging. The content 115 and the rights object 219 are associated with the
secured software application 134 of the computing device 134. Figure 5 does not
show the steps to configure the software application to verify a particular
response from the protected content playback. Nonetheless, this verification
process has been described above.

Variations

The following variations may be combined in any way, unless otherwise
stated.

Figures 3 and 4 illustrate an embodiment in which protected DRM content
120 is generated by a server system 100, and this content 120 forms a challenge
to a computing device 130, which implements the subsequent node-locking
functionality locally. In contrast, Figure 5 illustrates an embodiment in which all
functions (including the content generation) are implemented locally in the
computing device 130. Secured software techniques are used as necessary.
Intermediate implementations are also envisaged where some (but not all) of the
content generation modules of Figure 3 are moved to the local computing device
130. For example, the error protection module 114 and the content data insertion
module 116 (or the equivalent encoding module described above) could be
implemented at the server 100, whilst the secured DRM module 118 for
generating the DRM protected content 120 could be implemented locally in the
computing device 130 using secured software techniques.

In alternative embodiments, there is no need to provide the video content
115 into which the nonce is embedded. Instead, it is possible to encode the
nonce itself as an image or video file, without the need to insert the nonce into
another piece of image or video content 115. Thus, this embodiment relates to

direct image or video content generation based on the nonce. For example, the

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-28-

nonce may be encoded into an image using a barcode. An even simpler
example encodes the nonce into an image using greyscale values where each
pixel is an encoding of a byte of data. Thus, in this embodiment, the pre-
packaged content sample 115 and the content data insertion module 116 are
replaced with an encoding module (not shown) for encoding the nonce into image
(or video) format. In other words, the nonce is itself converted into an image

using the encoding module.

It will be appreciated that the methods described have been shown as
individual steps carried out in a specific order. However, the skilled person will
appreciate that these steps may be combined or carried out in a different order
whilst still achieving the desired result.

It will be appreciated that embodiments of the invention may be
implemented using a variety of different information processing systems. In
particular, although the figures and the discussion thereof provide an exemplary
computing system and methods, these are presented merely to provide a useful
reference in discussing various aspects of the invention. Embodiments of the
invention may be carried out on any suitable data processing device, such as a
personal computer, laptop, personal digital assistant, mobile telephone, set top
box, television, server computer, etc. Of course, the description of the systems
and methods has been simplified for purposes of discussion, and they are just
one of many different types of system and method that may be used for
embodiments of the invention. It will be appreciated that the boundaries between
logic blocks (e.g. the input module 132 and the secured module 134) are merely
illustrative and that alternative embodiments may merge logic blocks or elements,
or may impose an alternate decomposition of functionality upon various logic
blocks or elements.

It will be appreciated that the above-mentioned functionality may be
implemented as one or more corresponding modules as hardware and/or
software. For example, the above-mentioned functionality may be implemented
as one or more software components for execution by a processor of the system.

Alternatively, the above-mentioned functionality may be implemented as

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-929-

hardware, such as on one or more field-programmable-gate-arrays (FPGAS),
and/or one or more application-specific-integrated-circuits (ASICs), and/or one or
more digital-signal-processors (DSPs), and/or other hardware arrangements.
Method steps implemented in flowcharts contained herein, or as described
above, may each be implemented by corresponding respective modules; multiple
method steps implemented in flowcharts contained herein, or as described
above, may together be implemented by a single module.

It will be appreciated that, insofar as embodiments of the invention are
implemented by a computer program, then a storage medium and a transmission
medium carrying the computer program form aspects of the invention. The
computer program may have one or more program instructions, or program code,
which, when executed by a computer carries out an embodiment of the invention.
The term “program,” as used herein, may be a sequence of instructions designed
for execution on a computer system, and may include a subroutine, a function, a
procedure, a module, an object method, an object implementation, an executable
application, an applet, a servlet, source code, object code, a shared library, a
dynamic linked library, and/or other sequences of instructions designed for
execution on a computer system. The storage medium may be a magnetic disc
(such as a hard drive or a floppy disc), an optical disc (such as a CD-ROM, a
DVD-ROM or a BluRay disc), or a memory (such as a ROM, a RAM, EEPROM,
EPROM, Flash memory or a portable/removable memory device), etc. The
transmission medium may be a communications signal, a data broadcast, a

communications link between two or more computers, etc.

Annex — Software obfuscation and white-box cryptography

An obfuscated item of software may store secret information (such as a
cryptographic key) in a protected or obfuscated manner to thereby make it more
difficult (if not impossible) for an attacker to deduce or access that secret
information (whereas if a user device were provided with the item of software in
an unprotected form, then the operator of the user device might have been able
to deduce or access that secret information).

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-30 -

For example, the item of software may comprise a decision (or a decision
block or a branch point) that is based, at least in part, on one or more items of
data to be processed by the item of software. If the item of software were
provided to a user device (e.g. computing device 130) in an unprotected form,
then an attacker may be able to force the item of software to execute so that a
path of execution is followed after processing the decision even though that path
of execution were not meant to have been followed. For example, the decision
may comprise testing whether a program variable B is TRUE or FALSE, and the
item of software may be arranged so that, if the decision identifies that B is TRUE
then execution path P+ is followed/executed whereas if the decision identifies that
B is FALSE then execution path Pr is followed/executed. In this case, the
attacker could (for example by using a debugger) force the item of software to
follow path Pg if the decision identified that B is TRUE and/or force the item of
software to follow path P+ if the decision identified that B is FALSE. Therefore,
some software obfuscation techniques aim to prevent (or at least make it more
difficult) for the attacker to do this by applying one or more software protection
techniques to the decision within the item of software.

In another example, the item of software may comprise one or more of a
security-related function; an access-control function; a cryptographic function;
and a rights-management function. Such functions often involve the use of
secret data, such as one or more cryptographic keys. The processing may
involve using and/or operating on or with one or more cryptographic keys. If an
attacker were able to identify or determine the secret data, then a security breach
has occurred and control or management of data (such as audio and/or video
content) that is protected by the secret data may be circumvented. Therefore, in
some software obfuscation techniques aim to prevent (or at least make it more
difficult) for the attacker to identify or determine the one or more pieces of secret
data by applying one or more software protection techniques to such functions
within the item of software.

A “white-box” environment is an execution environment for an item of
software in which an attacker of the item of software is assumed to have full

access to, and visibility of, the data being operated on (including intermediate

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-31 -

values), memory contents and execution/process flow of the item of software.
Moreover, in the white-box environment, the attacker is assumed to be able to
modify the data being operated on, the memory contents and the
execution/process flow of the item of software, for example by using a debugger
—in this way, the attacker can experiment on, and try to manipulate the operation
of, the item of software, with the aim of circumventing initially intended
functionality and/or identifying secret information and/or for other purposes.
Indeed, one may even assume that the attacker is aware of the underlying
algorithm being performed by the item of software. However, the item of software
may need to use secret information (e.g. one or more cryptographic keys), where
this information needs to remain hidden from the attacker. Similarly, it would be
desirable to prevent the attacker from modifying the execution/control flow of the
item of software, for example preventing the attacker forcing the item of software
to take one execution path after a decision block instead of a legitimate execution
path. There are numerous techniques, referred to herein as “white-box
obfuscation techniques”, for transforming the item of software so thatitis
resistant to white-box attacks. Examples of such white-box obfuscation
techniques can be found, in Examples of such white-box obfuscation techniques
can be found, in “White-Box Cryptography and an AES Implementation”, S. Chow
et al, Selected Areas in Cryptography, 9" Annual International Workshop, SAC
2002, Lecture Notes in Computer Science 2595 (2003), p250-270 and “A White-
box DES Implementation for DRM Applications”, S. Chow et al, Digital Rights
Management, ACM CCS-9 Workshop, DRM 2002, Lecture Notes in Computer
Science 2696 (2003), p1-15, the entire disclosures of which are incorporated
herein by reference. Additional examples can be found in US61/055,694 and
W02009/140774, the entire disclosures of which are incorporated herein by
reference. Some white-box obfuscation techniques implement data flow
obfuscation — see, for example, US7,350,085, US7,397,916, US6,594,761 and
US6,842,862, the entire disclosures of which are incorporated herein by
reference. Some white-box obfuscation techniques implement control flow
obfuscation — see, for example, US6,779,114, US6,594,761 and US6,842,862

the entire disclosures of which are incorporated herein by. However, it will be

WO 2016/045746 PCT/EP2014/070669

-32-

appreciated that other white-box obfuscation techniques exist and that examples
of the may use any white-box obfuscation techniques.

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-33-

CLAIMS

1. A challenge-response method for a computing device, the method
comprising steps of:

receiving challenge data at a secured module of the computing device, the
challenge data comprising image content encrypted using an encryption key, and
the image content including a nonce;

the secured module recovering the image content through decryption
using one or more keys associated with the encryption key;

the secured module of the computing device outputting the recovered
image content;

capturing the image content as output by the secured module;

processing the captured image content so as to obtain the nonce; and

providing the nonce as a response.

2. The challenge-response method of claim 1 wherein the challenge data
further comprises a rights object including usage rules relating to the image
content, and the secured module is operable to output the recovered image

content in accordance with the usage rules.

3. The challenge-response method of claim 1 or claim 2 wherein the
challenge data further comprises an encrypted version of at least one of the one
or more keys associated with the encryption key, and the method further
comprises the secured module recovering said at least one key through
decryption.

4. The challenge-response method of claim 3 when dependent on claim 2
wherein the encrypted version of said at least one key is provided in the rights

object.

5. The challenge-response method of any of claims 1 to 4 further comprising

receiving the challenge data from another computing device.

10

15

20

25

30

WO 2016/045746 PCT/EP2014/070669

-34 -

6. The challenge-response method of any of claims 1 to 4 further comprising:
using secured software on the computing device to generate the challenge
data by encrypting the image content using the encryption key.

7. The challenge-response method of claim 6 further comprising:
using secured software on the computing device to generate the image
content based on the nonce.

8. The challenge-response method of claim 7 wherein the image content is
generated by including the nonce in pre-existing image content.

9. The challenge-response method of claim 7 wherein the image content is
generated by converting the nonce into an image.

10. The challenge-response method of any preceding claim wherein the
challenge data comprises video content including said image content.

11. The challenge-response method of any preceding claim further comprising

rendering the image content as output by the secured module.

12. The challenge-response method of claim 11 wherein the rendering is
performed using a media player application on the computing device.

13. The challenge-response method of claim 11 or claim 12 wherein the
rendering comprises rendering such that the image content is not observable to

an end-user of the computing device.

14. The challenge-response method of any of claims 1 to 13 wherein the

capturing comprises screen scraping or data scraping.

10

WO 2016/045746 PCT/EP2014/070669

-35-

15. The challenge-response method of any of claims 1 to 13 wherein the
capturing comprises directly accessing the image content as output by the

secured module.

16. A computing device arranged to carry out the challenge-response method

of any preceding claim.

17. A computer program which, when executed by a processor, causes the

processor to carry out the challenge-response method of any of claims 1 to 15.

18. A computer readable medium storing a computer program according to

claim 17.

WO 2016/045746 PCT/EP2014/070669

1/3
12 14
Random Error DEM Client 1D
number p-Nonce—# protection _i
generatar module o Audio data Secured

insertion te—p DRM

//' . —J—b module module
i , 16 18
FIGURE 1
(" Node Locking Function 7
|
20 | 32 34 40
E Input Secured .
k » DRM ,
B module module S“_}
|
]
|
|
i
I Error Audio data .
Hesponse | Output o correction — extraction Audio
module recorder
, f module module
i 1 -
50 | 48 | | 44 1o
I 48 45
{

/, FIGURE 2 52

WO 2016/045746

PCT/EP2014/070669
2/3
112 114
&\ \-ﬂ DRM Chent 1D
- 120
Monce ” | Eeror —
generstor B Lt ﬁfg%:@mi-un L Content _
rrindule dsts Secured
artion || ORM
module : ,f_u,

116

FIGURE 3

I dee, %mkmg Function

118

112 ; 114
. | Errar i
Nonce e;m"“; R
e el pratection
senerator ['8 7 module | 2 Coment |

! insertion »| encryption
I ..Jﬂ" mcdule madule N
P 317
' 116
: 134 136 138 140
| \ y \)
| Secured Content Content Content
I : DR » f)seéédar b rendering | putput
I module module module
|
|
| , '

. | Output g”"““’f Dam;

Response module Mt correction | Processor % capturing
I module micdule

150 i 148 146 144 142
FIGURE 5 252

130

WO 2016/045746

3/3

118

_\

Secured DRM module

module

Encryption

PCT/EP2014/070669

120

{ Node Locking Function
| 132 134 136 138 140
Input Secured Content Contemt Content
mmzme el IR !}écﬂ der ¥ rendering * output
module ‘ module module
Error Data
Output et COFTRCHON Processor capturing
miadule , !
module module
148 146 144 142
152

FIGURE 4

B s i i s i oo St it i sk b s it i

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2014/070669

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/10 GO6F21/12
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HOA4N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

abstract
paragraphs [0031] - [0057]

[CA]; BODIS MICHAEL LOUIS JOHN [CA]; SUI
JIAYUAN [C) 27 September 2012 (2012-09-27)

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 7 111 167 B1 (YEUNG MINERVA M [US] ET 1-18
AL) 19 September 2006 (2006-09-19)
column 4, line 64 - column 5, line 54
column 8, lines 47-49
X US 20147108810 Al (CHENNA SRINIVAS [IN]) 1,5,7.,9,
17 April 2014 (2014-04-17) 11,12,
14-18
paragraphs [0024] - [0029]
A WO 2012/126077 Al (IRDETO CANADA CORP 1-18

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

5 June 2015

Date of mailing of the international search report

12/06/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Segura, Gustavo

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2014/070669
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2006/143481 Al (MORTEN GLENN A [US]) 1-18
29 June 2006 (2006-06-29)
paragraphs [0073] - [0092]
A US 2005/278716 Al (KOPPEN ECKHART [FI] ET 1-4

AL) 15 December 2005 (2005-12-15)
paragraph [0003]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2014/070669
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 7111167 Bl 19-09-2006 NONE
US 2014108810 Al 17-04-2014 NONE
WO 2012126077 Al 27-09-2012 CA 2830846 Al 27-09-2012
CN 103797489 A 14-05-2014
EP 2689375 Al 29-01-2014
US 2014006803 Al 02-01-2014
WO 2012126077 Al 27-09-2012
US 2006143481 Al 29-06-2006 US 2006143481 Al 29-06-2006
WO 2007100975 A2 07-09-2007
US 2005278716 Al 15-12-2005 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - wo-search-report
	Page 41 - wo-search-report
	Page 42 - wo-search-report

