
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0275424 A1

Oliver et al.

US 20130275424A1

(43) Pub. Date: Oct. 17, 2013

(54)

(71)

(72)

(73)

(21)

(22)

(63)

METHODS AND SYSTEMIS FOR OPTIMIZING
TEXT SEARCHES OVER STRUCTURED
DATA IN A MULT-TENANT ENVIRONMENT

Applicant: salesforce.com, inc. (US)

Inventors: Kevin Oliver, San Francisco, CA (US);
Scott Hansma, San Francisco, CA (US);
Craig Weissman, San Francisco, CA
(US); Paul Nakada, San Francisco, CA
(US); Jeanine Walters, San Francisco,
CA (US)

Assignee: salesforce.com, inc, San Francisco, CA
(US)

Appl. No.: 13/874,416

Filed: Apr. 30, 2013

Related U.S. Application Data
Continuation of application No. 13/589,011, filed on
Aug. 17, 2012, which is a continuation of application
No. 13/292,011, filed on Nov. 8, 2011, which is a
continuation of application No. 13/292,025, filed on

Query Processing Fiow

Nov. 8, 2011, said application No. 13/292,011 is a
continuation of application No. 1 1/293.857, filed on
Dec. 2, 2005, said application No. 13/292,025 is a
continuation of application No. 1 1/293.857, filed on
Dec. 2, 2005.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC G06F 17/3053 (2013.01)
USPC .. 707/728

(57) ABSTRACT

Search systems and methods for searching structured data
and enhancing the relevancy of search results provided to a
requesting user or application. Enhanced search results are
provided by searching a cache of a user's most recently used
items to eliminate or reduce search indexing latency. Also,
more relevant search results are provided by re-ranking
results based on use history, data security models and/or
hierarchical user role models. Further, enhanced search
results are provided by including user information in the
search index

Forraiate Query si)

Send Query to Query 6
Server

Receive Query and Read "" 85

f

Re-rank reevacy of 4.
rests

--
Security Check SS

M&J Search 63

Patent Application Publication Oct. 17, 2013 Sheet 1 of 10 US 2013/0275424 A1

6 Wi-era atabase
System (MS)

eat
Data

Storage
22

Process Space
28

Network interface 2

Network
4.

iser System
12

iser System
12

F.G. f.

Patent Application Publication Oct. 17, 2013 Sheet 2 of 10 US 2013/0275424 A1

6 Mi-eat atabase
{}8 eart atatases} Syster (VS

Tenant Management
rocess Space

Swster
Dille Tenant Storage 110

Aiea 2
Systern Process

ise Storage eat era efiat
PC Cess rocess Oess
Space Space Space

Network
4.

iser System Jser System iser System
12 12 12

F.C.. 2

US 2013/0275424 A1 Oct. 17, 2013 Sheet 3 of 10 Patent Application Publication

US 2013/0275424 A1 Oct. 17, 2013 Sheet 4 of 10 Patent Application Publication

US 2013/0275424 A1 Oct. 17, 2013 Sheet 5 of 10 Patent Application Publication

upueºs (peq|Ieg uog Kuenb 3|dues :qG ‘SI euelps dnxool ºueN ?pleas :eG (?H

Patent Application Publication Oct. 17, 2013 Sheet 6 of 10 US 2013/0275424 A1

FG. 6 Query Processing Fiow

Formulate Query S{}}

Send Query to Query - 6 ()

Receive Query and Read ““ 6:
is dex

Return top atches {538

Re-rank reievancy of 6488
results

Security Check {SS}

s 66 y& S

Patent Application Publication Oct. 17, 2013 Sheet 7 of 10 US 2013/0275424 A1

Case New Document New Feature New Fiest Recycle Sin
is kids at Saies force.cof

Tuesday October 4,205

cob Adya Ceci Seich.

Sicit

FIG 7:Sidebar Search U

US 2013/0275424 A1 Oct. 17, 2013 Sheet 8 of 10 Patent Application Publication

8

Patent Application Publication Oct. 17, 2013 Sheet 9 of 10 US 2013/0275424 A1

s.search Results
-
Saichir

it. these were 40 atching. Accouits, Opportunities, Carngaigas, Orders, avoices, Assets, Notes, iisers, Festures. Fiests, Parlier
in hite Offerings, Projects, Reviews
Search Contacts

orbicyanced Search,
Storest

Cele?car
Receities

Helsificies
LOS

et E. SineSS is a
RSOURCEGO ES in 'Ex,

& Eric Saga: E" --------------------------------------- SES."

A
OS

i- i. E. re"
23 h - - - - - is: SIS.

(SCSA

F.G. 9 search Results U

sp|º|-|pºxapu] (SA spiel-, go jo elduex= .01 (91–

US 2013/0275424 A1 Oct. 17, 2013 Sheet 10 of 10 Patent Application Publication

US 2013/0275424 A1

METHODS AND SYSTEMIS FOR OPTIMIZING
TEXT SEARCHES OVER STRUCTURED

DATA IN A MULT-TENANT ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 13/589,011, filed Aug. 17, 2012, which is a
continuation of U.S. application Ser. No. 13/292,025, filed
Nov. 8, 2011, and a continuation of U.S. application Ser. No.
13/292,011, filed Nov. 8, 2011, which are continuations of
U.S. application Ser. No. 11/293,857, filed Dec. 2, 2005, the
entire contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

0002 The present invention relates generally to systems
and methods for searching data, and more particularly to
systems and methods for enhancing search results and text
searches over structured data in a web application.
0003. Due to the popularity and accuracy of current web
search technology, users have come to expect quick up-to
date presentation of search results with the most relevant
results presented at or near the top of the search results page.
Web applications inevitably come with a similar set of expec
tations. Although in many regards a comparison is faulty, for
example a Web application's data set looks very different
compared to most web pages, with the exception of attach
ments, documents, and notes. Regardless of differences, cus
tomers almost certainly don't realize or care about this, and
expect the same functionality out of a web application-based
search. Despite all of the differences, there is much in com
mon from an input box available on every page to how it is
used primarily in order to find a specific record. This is in fact
a common usage pattern of web search known as a naviga
tional search and it is something web search engines are quite
good at. One of the reasons they excel in this area is because
they use other information besides the text on the web page
itselfin order to do the scoring (link text is one good example
of this).
0004. The ordering of search results in web applications
may not always rank the most relevant results at or near the
top of the results page. Search results are typically ranked
based solely on a “relevancy' score given by the search
engine. One example of a useful search engine for use in web
applications is Lucene from The Apache Software Founda
tion. Lucene is a text search engine library written in Java, and
is suitable for nearly any application that requires full-text
search. With Lucene, for example, the score is calculated
using a standard information retrieval algorithm based on
many factors. While this score may be quite useful in the
overall rankings, the search engine doesn't take many factors
outside the scope of the index into consideration.
0005. Although the score provided by the search engine is
quite useful, it does have limitations. Because a search is the
most common means of end-user navigation to a specific
record in a multi-tenant database system, such as that pro
vided by salesforce.com, it is desirable to provide more rel
evant results in response to a search request, and thereby
increase end-user productivity and satisfaction with the
search functionality. This would also reduce the load on the
system if users can find the record they want without having
to go to the detail pages of multiple results.

Oct. 17, 2013

0006. Also, in systems where searching of structured data
is implemented, such as in a multi-tenant database system,
search indexing latency can often be a problem, especially
where a user who recently added or modified data immedi
ately searches for items using a term that should return a
recently modified data entry. In the salesforce.com system,
for example, search queries are run against a search index that
is a replica of an organization's data. As organization data is
added or changed, a background process (a search indexer)
asynchronously updates the search index. Under peak system
load, the Volume of data change in the system may be so high
that the search index update process can run behind, e.g., 2 to
5 minutes or more behind. As a result, there may be alagtime,
e.g., 2 to 5 minutes or more, between the time data is entered
or changed in the system and the time it may appear in search
results. This is especially inconvenient for users when they
make a change to the data (e.g., modify, add, delete) then
immediately search for the data and are unable to find it
because of search indexing latency.
0007. Therefore it is desirable to provide search systems
and methods that overcome the above and other problems.
For example, it is desirable to provide search systems and
methods that eliminate or reduce search indexing latency. It is
also desirable to provide search systems and methods that
enhance the relevancy of results returned.

BRIEF SUMMARY OF THE INVENTION

0008. The present invention provides search systems and
methods for searching structured data and enhancing the rel
evancy of search results provided to a requesting user or
application.
0009. According to the present invention, enhanced search
results are provided by searching a cache of a user's most
recently used items to eliminate or reduce search indexing
latency. Also, more relevant search results are provided by
re-ranking results based on use history, data security models
and/or hierarchical user role models. Further, enhanced
search results are provided by including user information in
the search index.
0010. According to one aspect of the present invention, a
method is provided for performing a text search over struc
tured data in a database system. The method typically
includes formulating a search query including a first search
parameter, sending the search query to a query server, search
ing indexed data records in the database system using the first
search parameter, and returning a plurality of matching
records and associated relevancy scores. The method also
typically includes modifying the relevancy scores based on
activity data associated with the matching records, and order
ing the matching records in an order based on the modified
relevancy scores.
0011. According to another aspect of the present inven
tion, a method is provided for reducing or eliminating the
effects of indexing latency when performing a text search
over structured data in a database system, wherein an index
ing process asynchronously indexes the database as users add
or modify records in the database. The method typically
includes receiving a search request including a search param
eter from a first user system, and performing a first search
over indexed data records in the database system using the
search parameter. The method also typically includes per
forming a second search, using the search parameter, on a
data structure containing a copy of the most recent database
records that have been modified by the first user system or

US 2013/0275424 A1

modified in response to a request from the first user system to
add or modify data, and providing the results of the first
searchand the second search to the first user system. In certain
aspects, the first and second searches may be performed
sequentially or simultaneously.
0012. According to yet another aspect of the present
invention, a method is provided for performing a backup
search in a database system when a search index query over
structured data in a database system times-out. The method
typically includes formulating a search query by an applica
tion server, the search query including a first search param
eter, and sending the search query to a query server to search
over indexed data records in the database system. If no
response to the search query is received within a specified
timeout period, the method typically includes automatically
performing a database lookup using the search parameter in a
search name table that stores name information for data
objects in the database system.
0013. According to yet another aspect of the present
invention, a method is provided for performing a text search
over structured data in a database system. The method typi
cally includes receiving a search request including a search
parameter from a first user system, formulating a search query
including the first search parameter and user information, and
sending the search query to a query server. The method also
typically includes searching indexed data records in the data
base system using the first search parameter and the user
information, wherein the indexed data records include at least
one user information field, and returning records matching on
the search parameter, and a relevancy score for each returned
record, wherein relevancy scores of records matching on the
search parameter and matching on the user information field
are higher than the relevancy scores for matching records not
matching on the user information field. In certain aspects, the
at least one user information field includes a user ID field
and/or a user role field, and the user information in the search
query includes one or both of a user ID and a role of the user
from which the search request originated.
0014. According to a further aspect of the present inven

tion, a multi-tenant database system is provided which imple
ments one or more of the methods of performing a text search
over structured data, reducing or eliminating the effects of
indexing latency, and performing a backup search as dis
cussed and described herein.
0015 Reference to the remaining portions of the specifi
cation, including the drawings and claims, will realize other
features and advantages of the present invention. Further
features and advantages of the present invention, as well as
the structure and operation of various embodiments of the
present invention, are described in detail below with respect
to the accompanying drawings. In the drawings, like refer
ence numbers indicate identical or functionally similar ele
mentS.

BRIEF DESCRIPTION OF THE DRAWINGS

0016 FIG. 1 illustrates an environment wherein a multi
tenant database system might be used.
0017 FIG. 2 illustrates elements of FIG. 1 and various
interconnections in more detail.

0018 FIG.3 illustrates the architecture of a search system
200 according to one embodiment.
0019 FIG. 4 shows an example of a table definition of an
MRU according to one embodiment.

Oct. 17, 2013

0020 FIG. 5a illustrates a search name lookup schema,
and FIG.5b illustrates an example of a fallback search query,
according to one embodiment.
0021 FIG. 6 illustrates an example of a query processing
flow according to one embodiment.
0022 FIG. 7 illustrates an example of a user interface
display of a sidebar search page according to the present
invention.
0023 FIG. 8 illustrates an example of a user interface
display of a page for conducting an advanced search accord
ing to the present invention.
0024 FIG. 9 illustrates an example of a user interface
display of a search results page according to the present
invention.
(0025 FIG. 10 illustrates an example of database (DB)
fields and indexed fields for a standard entity according to the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

0026. The present invention provides systems and meth
ods for searching structured data and enhancing the relevancy
of search results provided to a requesting user or application.
In particular, the present invention provides systems and
methods for searching structured data stored in a multi-tenant
database system and for providing enhanced search results by
removing search indexing latency. Also, the present inven
tion, in certain aspects, provides systems and methods for
presenting more relevant search results by re-ranking results
based on use history, data security models and/or hierarchical
user role models. In certain aspects, the present invention
provides enhanced search results by including user informa
tion in the search index.
0027 FIG. 1 illustrates an environment wherein a multi
tenant database system might be used. As illustrated in FIG. 1
(and in more detail in FIG. 2) any user systems 12 might
interact via a network 14 with a multi-tenant database system
(MTS) 16. The users of those user systems 12 might be users
in differing capacities and the capacity of a particular user
system 12 might be entirely determined by permissions (per
mission levels) for the current user. For example, where a
salesperson is using a particular user system 12 to interact
with MTS 16, that user system has the capacities allotted to
that salesperson. However, while an administrator is using
that user system to interact with MTS 16, that user system has
the capacities allotted to that administrator. In systems with
an hierarchical role model, users at one permission level may
have access to applications, data and database information
accessible by a lower permission level user, but may not have
access to certain applications, database information and data
accessible by a user at a higher permission level. Thus, dif
ferent users will have different capabilities with regard to
accessing and modifying application and database informa
tion, depending on a user's security or permission level.
0028 Network 14 can be a LAN (local area network),
WAN (wide area network), wireless network, point-to-point
network, star network, token ring network, hub network, or
other configuration. As the most common type of network in
current use is a TCP/IP (Transfer Control Protocol and Inter
net Protocol) network such as the global internetwork of
networks often referred to as the “Internet with a capital “I.
that will be used in many of the examples herein. However, it
should be understood that the networks that the present inven
tion might use are not so limited, although TCP/IP is the
currently preferred protocol.

US 2013/0275424 A1

0029. User systems 12 might communicate with MTS 16
using TCP/IP and, at a higher network level, use other com
mon Internet protocols to communicate, such as HTTP, FTP,
AFS, WAP, etc. As an example, where HTTP is used, user
system 12 might include an HTTP client commonly referred
to as a “browser for sending and receiving HTTP messages
to and from an HTTP server at MTS 16. Such HTTP server
might be implemented as the sole network interface between
MTS 16 and network 14, but other techniques might be used
as well or instead. In some implementations, the interface
between MTS 16 and network 14 includes load sharing func
tionality, such as round-robin HTTP request distributors to
balance loads and distribute incoming HTTP requests evenly
over a plurality of servers. Preferably, each of the plurality of
servers has access to the MTS's data, at least as for the users
that are accessing that server.
0030. In one aspect, the system shown in FIG. 1 imple
ments a web-based customer relationship management
(CRM) system. For example, in one aspect, MTS 16 can
include application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, web pages and other information to and
from user systems 12 and to store to, and retrieve from, a
database system related data, objects and web page content.
With a multi-tenant system, tenant data is preferably arranged
so that data of one tenant is kept logically separate from that
of other tenants so that one tenant does not have access to
another's data, unless such data is expressly shared. In pre
ferred aspects, system 16 implements applications other than,
or in addition to, a CRM application. For example, system 16
may provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application.
0031 One arrangement for elements of MTS 16 is shown
in FIG. 1, including a network interface 20, storage 22 for
tenant data, storage 24 for system data accessible to MTS 16
and possibly multiple tenants, program code 26 for imple
menting various functions of MTS 16, and a process space 28
for executing MTS system processes and tenant-specific pro
cesses, such as running applications as part of an application
hosting service. Additional processes that may execute on
MTS 16 include database indexing processes.
0032. Several elements in the system shown in FIG. 1
include conventional, well-known elements that need not be
explained in detail here. For example, each user system 12
could include a desktop personal computer, workstation, lap
top, PDA, cellphone, or any wireless access protocol (WAP)
enabled device or any other computing device capable of
interfacing directly or indirectly to the Internet or other net
work connection. User system 12 typically runs an HTTP
client, e.g., a browsing program, Such as Microsoft's Internet
Explorer browser, Netscape's Navigator browser, Opera's
browser, or a WAP-enabled browser in the case of a cell
phone, PDA or other wireless device, or the like, allowing a
user (e.g., Subscriber of the multi-tenant database system) of
user system 12 to access, process and view information, pages
and applications available to it from MTS 16 over network 14.
Each user system 12 also typically includes one or more user
interface devices, such as a keyboard, a mouse, touch screen,
pen or the like, for interacting with a graphical user interface
(GUI) provided by the browser on a display (e.g., monitor
screen, LCD display, etc.) in conjunction with pages, forms,
applications and other information provided by MTS 16 or
other systems or servers. For example, the user interface
device can be used to access data and applications hosted by

Oct. 17, 2013

MTS 16, and to perform searches on stored data, and other
wise allow a user to interact with various GUI pages that may
be presented to a user.
0033. As discussed above, the present invention is suitable
for use with the Internet, which refers to a specific global
internetwork of networks. However, it should be understood
that other networks can be used instead of the Internet, such as
an intranet, an extranet, a virtual private network (VPN), a
non-TCP/IP based network, any LAN or WAN or the like.
0034. According to one embodiment, each user system 12
and all of its components are operator configurable using
applications, such as a browser, including computer code run
using a central processing unit Such as an Intel Pentium pro
cessor or the like. Similarly, MTS 16 (and additional
instances of MTSs, where more than one is present) and all
of their components might be operator configurable using
application(s) including computer code run using a central
processing unit Such as an Intel Pentium processor or the like,
or multiple processor units. Computer code for operating and
configuring MTS 16 to intercommunicate and to process web
pages, applications and other data and media content as
described herein is preferably downloaded and stored on a
hard disk, but the entire program code, or portions thereof,
may also be stored in any other volatile or non-volatile
memory medium or device as is well known, such as a ROM
or RAM, or provided on any media capable of storing pro
gram code, such as a compact disk (CD) medium, digital
versatile disk (DVD) medium, a floppy disk, and the like.
Additionally, the entire program code, or portions thereof,
may be transmitted and downloaded from a software source,
e.g., over the Internet, or from another server, as is well
known, or transmitted over any other conventional network
connection as is well known (e.g., extranet, VPN, LAN, etc.)
using any communication medium and protocols (e.g., TCP/
IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will
also be appreciated that computer code for implementing
aspects of the present invention can be implemented in any
programming language that can be executed on a server or
server system such as, for example, in C, C++, HTML, any
other markup language, Java, JavaScript, any other scripting
language such as VBScript, and many other programming
languages as are well known.
0035. According to one embodiment, each MTS 16 is
configured to provide web pages, forms, applications, data
and media content to user systems 12 to Support the access by
user systems 12 as tenants of MTS 16. As such, MTS 16
provides security mechanisms to keep each tenant's data
separate unless the data is shared. If more than one MTS is
used, they may be located in close proximity to one another
(e.g., in a server farm located in a single building or campus),
or they may be distributed at locations remote from one
another (e.g., one or more servers located in city A and one or
more servers located in city B). As used herein, each MTS
could include one or more logically and/or physically con
nected servers distributed locally or across one or more geo
graphic locations. Additionally, the term "server' is meant to
include a computer system, including processing hardware
and process space(s), and an associated Storage system and
database application (e.g., OODBMS or RDBMS) as is well
known in the art. It should also be understood that "server
system” and “server are often used interchangeably herein.
Similarly, the databases described herein can be implemented
as single databases, a distributed database, a collection of
distributed databases, a database with redundant online or

US 2013/0275424 A1

offlinebackups or other redundancies, etc., and might include
a distributed database or storage network and associated pro
cessing intelligence.
0036 FIG. 2 illustrates elements of MTS 16 and various
interconnections in more detail. In this example, the network
interface is implemented as one or more HTTP application
servers 100. Also shown is system process space 102 includ
ing individual tenant process spaces 104, a system database
106, tenant database(s) 108 and a tenant management process
space 110. Tenant database 108 might be divided into indi
vidual tenant storage areas 112, which can be eitheraphysical
arrangement or a logical arrangement. Within each tenant
storage area 112, user storage 114 might similarly be allo
cated for each user. For example, a copy of a user's most
recently used (MRU) items, as will be discussed below in
more detail, might be stored to user storage area 114. Simi
larly, a copy of MRU items for an entire organization that is a
tenant might be stored to tenant storage area 112.
0037. It should also be understood that each application
server 100 may be communicably coupled to database sys
tems, e.g., system database 106 and tenant database(s) 108,
via a different network connection. For example, one server
100 might be coupled via the Internet 14, another server
100 might be coupled via a direct network link, and
another server 100 might be coupled by yet a different net
work connection. Transfer Control Protocol and Internet Pro
tocol (TCP/IP) are preferred protocols for communicating
between servers 100 and the database system, however, it will
be apparent to one skilled in the art that other transport pro
tocols may be used to optimize the system depending on the
network interconnect used.
0038. In preferred aspects, each application server 100 is
configured to handle requests for any user associated with any
organization that is a tenant. Because it is desirable to be able
to add and remove application servers from the serverpool at
any time for any reason, there is preferably no server affinity
for a user and/or organization to a specific application server
100. In one embodiment, therefore, an interface system (not
shown) implementing a load balancing function (e.g., an F5
Big-IP load balancer) is communicably coupled between the
servers 100 and the user systems 12 to distribute requests to
the servers 100. In one aspect, the load balancer uses a least
connections algorithm to route user requests to the servers
100. Other examples of load balancing algorithms, such as
round robin and observed response time, also can be used. For
example, in certain aspects, three consecutive requests from
the same user could hit three different servers, and three
requests from different users could hit the same server. In this
manner, MTS 16 is multi-tenant, wherein MTS 16 handles
storage of, and access to, different objects, data and applica
tions across disparate users and organizations.
0039. As an example of storage, one tenant might be a
company that employs a sales force where each salesperson
uses MTS 16 to manage their sales process. Thus, a user
might maintain contact data, leads data, customer follow-up
data, performance data, goals and progress data, etc., all
applicable to that user's personal sales process (e.g., intenant
database 108). In the preferred MTS arrangement, since all of
this data and the applications to access, view, modify, report,
transmit, calculate, etc., can be maintained and accessed by a
user system having nothing more than network access, the
user can manage his or her sales efforts and cycles from any
of many different user systems. For example, if a salesperson
is visiting a customer and the customer has Internet access in

Oct. 17, 2013

their lobby, the salesperson can obtain critical updates as to
that customer while waiting for the customer to arrive in the
lobby.
0040. While each user's data might be separate from other
users’ data regardless of the employers of each user, some
data might be organization-wide data shared or accessible by
a plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by MTS 16 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because an MTS might Support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications and application use separate.
Also, because many tenants will opt for access to an MTS
rather than maintain their own system, redundancy, up-time
and backup are additional critical functions and need to be
implemented in the MTS.
0041. In addition to user-specific data and tenant-specific
data, MTS 16 might also maintain system level data usable by
multiple tenants or other data. Such system level data might
include industry reports, news, postings, and the like that are
sharable among tenants.
0042. In certain aspects, client systems 12 communicate
with application servers 100 to request and update system
leveland tenant-level data from MTS 16 that may require one
or more queries to database system 106 and/or database sys
tem 108. MTS 16 (e.g., an application server 100 in MTS 16)
generates automatically one or more SQL statements (the
SQL query) designed to access the desired information.
0043. Each database can generally be viewed as a collec
tion of objects, such as a set of logical tables, containing data
fitted into predefined categories. A “table' is one representa
tion of a data object, and is used herein to simplify the con
ceptual description of objects and custom objects according
to the present invention. It should be understood that “table'.
“entity” and “object” may be used interchangeably herein.
Each table generally contains one or more data categories
logically arranged as columns or fields in a viewable Schema.
Each row or record of a table contains an instance of data for
each category defined by the fields. For example, a CRM
database may include a table that describes a customer with
fields for basic contact information Such as name, address,
phone number, fax number, etc. Another table might describe
a purchase order, including fields for information Such as
customer, product, sale price, date, etc. In some multi-tenant
database systems, standard entity tables might be provided
for use by all tenants. For CRM database applications, such
standard entities might include tables for Account, Contact,
Lead and Opportunity data, each containing pre-defined
fields.
0044. In some multi-tenant database systems, such as the
salesforce.com system, tenants may be allowed to create and
store custom objects, or they may be allowed to customize
standard entities or objects, for example by creating custom
fields for standard objects, including custom index fields.
U.S. patent application Ser. No. 10/817,161, filed Apr. 2,
2004, titled “Custom Entities and Fields. In a Multi-Tenant
Database System, and which is hereby incorporated by ref
erence, teaches systems and methods for creating custom
objects as well as customizing standard objects in a multi
tenant database system.
0045 Searching
0046 FIG. 3 illustrates the architecture of a search system
200 according to one embodiment. In one aspect, the search

US 2013/0275424 A1

system of FIG.3 is implemented in the multi-tenant database
system 16 of FIG. 1. As shown, search system 200 includes
one or a plurality of query servers 210 ("queriers') commu
nicably coupled to application server(s) 100 and a database
system 220 (e.g., system database 106 and/or tenant database
108 of FIG. 2). Queriers 210 are also communicably coupled
with indexers 230. Indexers 230 are indexing processes that
query and index the database 220. It should be appreciated
that an indexer 230 can be implemented in a separate server or
computer system or it may be implemented or may execute in
a query server 210 or in an application server 100, and mul
tiple indexers may execute in different systems. Similarly, a
querier 210 may be implemented or may execute in a separate
server or computer system or it may be implemented or may
execute in an application server 100.
0047. In typical operation, an application server 100 sends
a query request to a querier 210. Where multiple queriers 210
are present, a load balancing (e.g., round robin) process may
be implemented to direct the query to a specific querier 210.
Typically, the query request is in the form of an HTTP request
including a search parameter (e.g., term or terms to be
searched), although other forms and protocols may be used.
The querier 210 that receives the query performs a search by
reading the search index(es) created by the indexers 230 to
determine one or more matches with the term(s) provided.
The results are returned to the requesting application server
100. The results are typically returned with a base “rel
evancy' score as determined by the underlying search engine
process, e.g., Lucene. Typically, a pre-designated upper limit
of N (e.g., 1000, 2000, 5000, etc.) search index results is
provided to the querier 210 by the search engine in order of
relevancy. As will be described in more detail below, the
relevancy of search results may be enhanced according to
various embodiments and aspects of the present invention.
0048. As data is added or changed in the database, a search
indexer 230 (a background process) asynchronously updates
the search index. In one aspect, a search index is stored to the
database 220, but it may be stored to a separate storage sys
tem. In a multi-tenant database environment, in one aspect, a
separate index is created for each organization. Each organi
Zation may have one or more separate indexers 230 executing
on its behalf, or one or more indexers 230 may be shared
between organizations. In one aspect, for example, one
indexer executes per instance per indexing host.
0049. Upon a database insert or update event, a timestamp

is assigned to the added or modified data. For example, in one
aspect, modified or added data is copied to a “to be indexed
table including fields for data type and timestamp. This times
tamp indicates the date (and time) from which all data in the
table needs to be indexed. As the indexer executes, to deter
mine the set of data that needs to be indexed, the indexer
queries a table's data looking for rows which have a system
modstamps—the timestamp in the to be indexed table, where
system modstamp is a field that includes the time that the
system last modified or changed the data row. The returned
rows represent the data that needs indexing. In one aspect,
chunks of row IDs are read from the “to be indexed’ table. For
each ID, the indexercqueries the database for the source row of
data and copies all the relevant fields (e.g., fields of a type that
may be indexed, such as text, phone number, e-mail address,
etc.) to an index file in the appropriate index format. In one
aspect, user information Such as the record owner field and/or
role hierarchy information field(s) are also indexed to provide

Oct. 17, 2013

more relevantly ordered results in response to a query includ
ing the userID and/or user role as search parameters as will be
discussed below.

0050. As an index for an organization grows, it may be
partitioned. For example, a large organization may have sev
eral physical partitions in the search index. Additionally,
depending on the load on the system, there may be a latency
between when data is added or modified in the database and
when it appears in an index. To hide the impact of this lag time
from the user, in one aspect, the user's most recently used
records and objects are tracked or cached for inclusion in the
search results as will be discussed in more detail below.

Most Recently Used Cache

0051 Search queries run against a search index that is built
from an organization's data. As above, as organization data is
added or changed, a background process (the search indexer)
asynchronously updates the search index. Under peak system
load, the Volume of data change in the system is such that the
search index update process can run behind, e.g., lag up to 5
minutes or more. This means there can be a lag in time
between the time data is entered or changed in the system and
the time it appears in search results. This is especially incon
Venient for users when they make a change then immediately
search for it and are unable to find it because of search index
ing latency.
0.052 To optimize the search results, in one embodiment,
the system maintains a per-user cache of recent objects the
user has added or changed. For example, the cache may hold
the last N (e.g., any number ranging up to 50 or 100 or more)
objects the user has added or modified, or it may hold all
objects a user has added or modified within a specified time
period, e.g., within the last 2 to 5 or more minutes. With
reference to FIG. 3, this cache will be referred to as the Most
Recently Used list or MRU 240. In certain aspects, the MRU
240 is stored in the database 220 keyed by organizationid and
user id. Alternatively, the MRU 240 may be stored separately
from the database 220. FIG. 4 shows an example of a table
definition of an MRU according to one embodiment. In one
aspect, when a search query is received, the system checks the
search index for relevant “matching results. The system also
searches the MRU for matching objects and returns MRU
search results. For example, an application server 100 may
itself search or scan the MRU to include relevant MRU items
in the search results after it has received index-matching
results from a querier 210, or a querier 210 may search or scan
the MRU and incorporate relevant MRU items in the search
results before providing the results to the application server
100. The index search results and MRU search results are
returned to, and displayed at, a requesting user system 12. In
one aspect, the index search results and the MRU search
results are distinguished or displayed separately.
0053. In another aspect, the results of the MRU search are
mixed in with the other search results, so users won't know
explicitly that some results came from the search index and
some from the MRU. This is useful in cases where, for
example, only one term (e.g., the first term) of multiple search
terms is used as the search parameter. For example, the MRU
results may be wrong for the search because if it only uses the
first term: e.g., if they search for “scott h’, the MRU search
just looks for “scott' and so would find scottyancey. This may
confuse the user so it is desirable to limit the MRU searching
to just the unindexed time. In one aspect, only one term, such

US 2013/0275424 A1

as the first term, is used in the search of the MRU because this
simple query can be implemented using a database lookup
instead of a true search index.

0054 Thus, the present invention, advantageously allows
a user who adds or edits data and then searches for it to see the
recently added or changed data in their search results even if
the search indexing process is behind or lagging.
0055 According to another aspect, rather than searching
the user's MRU for unindexed data, the system searches all or
a subset of the MRU for an entire organization with which the
user is associated, e.g., search all the unindexed data for the
entire organization. However, searching the MRU for the
entire organization may be less desirable than searching only
the user's MRU, or a smaller subset of an organizations
MRU, in certain instances. For example, the set of unindexed
data for an entire organization could be very large, signifi
cantly slowing down the users search. Additionally, the
search over unindexed data may use a different, simpler algo
rithm that results in different results than the normal search
process. It is desirable to minimize the amount of unindexed
data that could potentially show up in the search results. The
user's MRU data typically proves to be the best set of highly
relevant data; it is more likely that the user is searching for
Something they recently modified compared to all recent
modifications for the entire organization with which the user
is associated.

Search Result Relevancy Based on Security and Role
Hierarchy Models

0056. In certain aspects, search queries are run against an
organization’s search index which contains text from all the
organization’s records in the database. For common search
terms such as “Jim” or “Main Street, the index may return
thousands of matching records, many of which may not be
visible to the user based on sharing and security settings. For
example, the user may not have access to many of the records
or rows returned based on a security model, e.g., hierarchical
permission levels. Also, most of these thousands of results are
likely not relevant, or at least less relevant, to the user.
0057 According to one embodiment, a security check is
performed wherein the search results are filtered based on
sharing rules after the results are returned from the search
engine. In one aspect, application server 100 queries the
database for sharing rules, and filters the search results based
on the sharing rules. In another aspect, a querier 210 queries
the database for sharing rules and filters the search results
before providing the search results to the requesting applica
tion server 100. To limit the database performance impact of
querying for sharing rules, an upper limit of N (e.g., 1000,
2000, 5000, etc.) search index results is established for which
the system will attempt to apply the security check. If the
search results from the index contain more than N entries, it is
very important that they are ordered by relevance to the user
so that the results the user is most likely interested in are
included in the N entries that continue to the security check
and eventually are presented to the user.
0058 According to one embodiment, the search results
are optimized by adding the record owner field to the index as
a separate search index field. In this aspect, the application
server 100 can also include the user's IDs as a search param
eter so that matches on the owner field are boosted in the
search results relevancy scores. Since the user always has
security access to anything they own, this would dramatically

Oct. 17, 2013

increase the likelihood that a query server would return hits
that the user has access to in the first N results.

0059. Furthermore, in another embodiment, search results
are optimized using a user role hierarchy model. In systems
implementing a role hierarchy, such as in the salesforce.com
system, users may have access to records owned by their
subordinates in the role hierarchy. In this embodiment, the
role of the record owner is added to the search index as a
separate search index field. At query time, the search query is
expanded to include a booston all records owned by the user's
subordinates in the role security hierarchy to further enhance
the likelihood of obtaining relevant matches. For example,
where a user at level 1 performs a search, records owned by
that user that match the search term(s) are boosted in the
relevancy score above those matching records not owned by
that user. Further, records owned by a subordinate user at level
2 that match the search term(s) are also boosted above those
matching records not owned by those users. It should be
appreciated that this aspect is not limited to a role hierarchy:
it applies to any other user hierarchies that may be imple
mented in the system, such as a sales territory hierarchy orany
other security hierarchy. Further, it should be appreciated that
a user may specifically identify a user role as a specific search
parameter, assuming of course that the identified role is not a
superior role to the user's role in the hierarchy.

Re-Ranking Search Results Based on Entity History

0060 According to one embodiment, entity (i.e., standard
or custom database object or table) history is used to modify
a search results relevancy score. For example, entity history
may indicate that a data row is more active than others within
the search result set and that it should therefore be moved to
a higher position in the search results set. Data rows that have
more activity associated with them (e.g., creating follow-up
tasks for an account or logging a phone call with a contact)
will likely be more active in the system and more relevant to
the user performing the search. Similarly, data that has been
recently updated, even by another user, may be more relevant
to the user performing the search.
0061. In a first step of the re-ranking process, according to
one embodiment, the search relevancy scores returned by the
search engine, e.g., Lucene, are normalized. For example, the
raw Lucene score can be any decimal number from 0 to M,
e.g., 10 or more. The normalization function converts the raw
score into a smaller (arbitrary) integer value, e.g. 0 through 4.
Next, a score is assigned to the data row based on an activity
measure. In one aspect, for example, a score is assigned to the
data row based on the values of last update and last activity
fields. Last update is the last time a user modifies a given
record (e.g., updating an address on an account). Last activity
is the last time a user performed any action associated with the
data row (e.g., creating a follow up task, or logging a call).
Thereafter, the normalized search score, the last update score
and the last activity score are multiplied by a weight factor to
arrive at a final relevancy score. The weight factor can be an
integer or a fraction of an integer. Search results are then
ordered with highest relevancy scores first and ultimately
presented to the user. It should be understood that an appli
cation server 100, a querier 210 or other system entity may
implement the re-ranking process.
0062 Table 1, below, shows an example of re-ranking
scores and weights according to one aspect, although the
exact values can be altered to tune the relevancy. In the Table

US 2013/0275424 A1

1 example, last activity is given more weight than last update,
because typically most activity on an entity takes place in its
child records.

TABLE 1.

Entity

Formula and values Score Weight

Search Score normalized 0-4 3
Last Update 1
<1 hour old 4
<1 day old 3
<7 days old 2
<30 days old 1
Older than 30 days O
Last Activity 2
<1 hour old 4
<1 day old 3
<7 days old 2
<30 days old 1
Older than 30 days O
Not Set 2
Tie Breaker NA
Account name (lower case)

0063. In Table 1, the entity can be any entity provided in
the system Such as standard entities or custom entities. In the
salesforce.com system, for example, this could include Such
standard entities include Accounts, Leads and Contacts as
well as custom entities.
0064. Table 2 shows an example of search engine results
and the order in which they currently might be displayed (raw
score is the Lucene score):

TABLE 2

Normalized Last Last
Account Name Raw Score Score Update Activity

Acme 1.30 4 2 years ago 2 years ago
Acme East Co. 1.14 4 9 days ago 2 weeks ago
Acme Brand Inc 1.11 4 30 minutes 10 minutes

ago ago
Acmesoft 0.72 3 8 days ago 2 days ago

0065. In this example, after the re-ranking process
described above with reference to the example of Table 1, the
3rd result would jump to the top of the list with a re-ranked
score of 24. Although this is a contrived example, one can see
how the raw scores that are somewhat lumped close together
may not be in a desired ordering, as a user is more likely to be
interested in the Acme Brand Inc. account, which has had
Some recent activity, than the Acme account which has been
dormant for two years. In fact, in this case, the Acme account
which previously would have been ranked at the top without
re-ranking has fallen to the bottom of the list. Although the
data set for this example is contrived, it shows the power of the
re-ranking process of the present invention.
0066. It should understood that any entity fields in addi
tion to those fields that are representative of an activity mea
Sure may be used in the calculation of a final score and that
various weightings may be provided to different fields as
desired. As examples, an Opportunity entity in the salesforce.
com system might be scored with weights for fields such as
closed, close date and last activity as shown in the example
below.

Oct. 17, 2013

Opportunity

Formula and values Score Weight

Search Score normalized 0-4 6

Closed

open

closed

Close Date 1

Over 7 days in the past
Within 7 days of today (past or future)
In the next 30 days
In the next 90 days
Over 90 days, or not set
Last Activity 1
<1 hour old

<1 day old
<7 days old
<30 days old
Older than 30 days
Not Set

Tie Breaker NA

Name (lower case)

0067 Similarly, a Cases entity in the salesforce.com sys
tem might be scored with weights for fields such as escalated,
closed, and last update as shown in the example below.

Re-ranked score

12 + 0 + 0 = 12
12 + 2 + 2 = 16
12 + 4 + 8 = 24

9 + 1 + 4 = 14

Cases

Formula and values Score Weight

4 Search Score normalized 0-4
Escalated 4
Is escalated 1
Not escalated O
Closed 3
open 1
closed
Last Update 1
<1 hour old

<1 day old
<7 days old

<30 days old
Older than 30 days
Not Set
Tie Breaker NA

Case subject (lower case)

O

US 2013/0275424 A1

Fallback Search Mode

0068 According to one aspect, if the application server
100 does not receive a response from a query server within a
specified timeout period, it performs a “fallback search’. For
example, the query server may not respond because it is
overloaded with requests, or down for maintenance. In one
aspect, a fallback Search involves bypassing the search index
and running a query against the database directly. FIG. 5a
illustrates a “Search Name Lookup' schema, and FIG. 5b
illustrates an example of a fallback search query, according to
one embodiment. The fallback search queries the “Search
Name Lookup” table, which is a denormalized table that
stores name information for all entities in the system. This
may not be as powerful as an index search as it only searches
the name field, but often will give the user useful information.
0069. In one aspect, the search results returned from the
fallback Search query are also filtered against Security per
missions and then returned to the user with a message
explaining that the search results are not optimized using the
index.

Search Query Processing Flow

0070 FIG. 6 illustrates an example of a search query pro
cess flow according to one embodiment of the present inven
tion. In step 600, the application server 100 formulates a
query to be processed. The query formulated by application
server 100 may be in response to a specific search request
received from a user system 12, e.g., including specific Search
parameters such as a specific term or terms to be searched.
Alternatively, the query formulated by application server 100
may be generated automatically based on some other user
input or system status that may not be a specific search
request. For example, a query may beformulated as part of an
automatic Solution suggestion application or in response to
information input from a form posted by a user. The formu
lated query in certain aspects is in the form of a formatted
HTTP message. In addition to a search parameter Such as one
or more terms to be searched, the query in one aspect includes
information about the user (e.g., userID and/or the user's role
in a role hierarchy) so as to implicitly boost the relevancy of
the results generated by the search engine.
0071. In step 610, the formulated search query is sent to a
query server 210. In step 620, the query server 210 receives
the search query and performs a search using the received
parameters, e.g., by reading the index across a storage area
network. For multi-partition indexes, this is done in parallel in
one aspect. The top N matching results, including a “rel
evancy' score, are returned to the query server 210, including
results that the user may not have security access to or per
mission to view.

0072. In step 630, the search results are returned to the
requesting application server 100. In one aspect, the top N
matches, including a rank and/or the “relevancy' score, are
returned. Closer matches to the search term(s) will have a
higher relevancy score.
0073. In step 640, the search results are re-ranked based on
activity, e.g., based on history or activity information Such as
last update and last activity of a data item. In one aspect, this
step is performed by the application server 100 after the
results have been received from querier 210. In another
aspect, this step is performed by the query server 210 prior to
returning results to the application server 100.

Oct. 17, 2013

0074. In step 650, the search results are filtered based on
security permissions. In one aspect, all data that matches the
search parameters are returned to the application server 100,
including the data that the user may not have security access
to or permission to view. In this aspect, application server 100
performs step 650. In another aspect, the query server per
forms step 650 and filters the N search results based on
security permissions of the user, and sends the filtered results
to the application server 100.
(0075. In step 660, the MRU 240 is processed to determine
items that match the search parameters. In one aspect, appli
cation server 100 performs the MRU search 660. In another
aspect, a query server 210 performs the MRU search 660. The
results of the MRU search are combined with the index search
results. In one aspect, MRU search 660 is performed substan
tially simultaneously with the search performed in step 620.
0076. As will be appreciated, processing steps 640, 650
and 660 need not be performed in any specific order. Further,
each of processing steps 640, 650 and 660 is optional; any
combination of one or more of processing steps 640, 650 and
660 may be performed by an application server 100 and/or a
query server 210 in any order.
0077. In one embodiment, if the application server does
not receive a response from the query server within a specified
timeout period, the application performs a “fallback' search
as described above. The timeout period may be exceeded due
to the query server being overloaded or the system being
down for maintenance. In one aspect, the fallback Search
simulates index searching functionality by performing a data
base query against a denormalized search name lookup table.
This may not be as powerful as an index search, but will likely
give the user useful information.

User Interface

0078. In certain aspects, visual search tools are provided to
a user to access and search structured data stored in database
220. For example, a graphical user interface including pages
with search links may be displayed to a user on a display of
user system 12.
(0079 FIG. 7 illustrates an example of a user interface
display of a sidebar search page 700 according to the present
invention. Page 700 includes an entry box for receiving as
user input one or more terms to be searched. Upon entry of a
term or terms and selection of the search button, the term(s)
are sent to an application server 100, which then performs the
appropriate search as discussed herein. Additionally, a link to
an “advanced search' page (e.g., see FIG. 8) is presented on
page 700. In addition to an advanced search page link, page
700 also includes sets of tabs (e.g., Home, Cases, Reports ..
.), where each tab represents a user interface into an element
of an application or into a database object. Selection of a tab
provides a user access to the object or element of the appli
cation represented by the tab. A tab set is a group of related
tabs that work as a unit to provide application functionality. In
this manner, selection of the displayed tabs and tab sets by a
user allows for convenient Switching between applications
and/or database objects as desired. U.S. patent application
Ser. No. 1 1/075,546, filed Mar. 8, 2005, titled “Systems and
Methods for Implementing Multi-Application Tabs and Tab
Sets.” which is hereby incorporated by reference, discusses
tabs and tab sets in more detail.
0080 FIG. 8 illustrates an example of a user interface
display of a page 800 for conducting an advanced search
according to the present invention. As can be seen, in one

US 2013/0275424 A1

aspect, the advanced search page 800 allows a user to enter a
term or terms to be searched as well as to limit the search to
specific object types and/or specific entities by selecting the
specific objects and/or entities to be searched. Page 800 also
allows a user to limit the search to only items that the user
owns, such that only results that match on the user ID are
returned.
0081 FIG. 9 illustrates an example of a user interface
display of a search results page 900 according to the present
invention. Data for search results page 900 is provided to a
user system 12 by application server 100. In certain aspects,
as shown, the results page presented to a user includes search
results organized by object in relevancy order. In addition to
providing ordered search results, page 900 provides the user
with an ability to revise the search or to start a new search.
I0082 FIG. 10 illustrates an example of database (DB)
fields and indexed fields for a standard entity according to the
present invention. In certain aspects, fields selected for index
ing by an indexercan be limited differently for different types
of searches performed, e.g., Sidebar search or advanced
search.
I0083. While the invention has been described by way of
example and in terms of the specific embodiments, it is to be
understood that the invention is not limited to the disclosed
embodiments. To the contrary, it is intended to cover various
modifications and similar arrangements as would be apparent
to those skilled in the art. Therefore, the scope of the
appended claims should be accorded the broadest interpreta
tion so as to encompass all such modifications and similar
arrangements.
What is claimed is:
1. A computer program product, comprising a non-transi

tory computer usable medium having a computer readable
program code embodied therein, the computer readable pro
gram code adapted to be executed to implement a method, the
method comprising:

formulating a search query including a first search param
eter;

sending the search query to a query server;
searching indexed data records in a database system using

the first search parameter, and
returning a plurality of matching records, based on the

Searching:
wherein the matching records have associated relevancy

scores and are ordered in an order that is based, at least
in part, on activity data associated with the matching
records.

2. The computer program product of claim 1, wherein
formulating the search query is performed by an application
server in response to a specific search request received from a
user system including the search parameter.

3. The computer program product of claim 2, wherein the
indexed data records include a userID field and/or a user role

Oct. 17, 2013

field, and wherein the search query includes one or both of a
user ID and a role of the user from which the search request
was received.

4. The computer program product of claim 1, further com
prising displaying at least a portion of the search results in the
order.

5. A method, comprising:
formulating a search query including a first search param

eter;
sending the search query to a query server;
searching indexed data records in a database system using

the first search parameter; and
returning a plurality of matching records, based on the

searching, utilizing a processor,
wherein the matching records have associated relevancy

scores and are ordered in an order that is based, at least
in part, on activity data associated with the matching
records.

6. The method of claim 5, wherein the formulating the
search query is performed by an application server in
response to a specific search request received from a user
system including the search parameter.

7. The method of claim 6, wherein the indexed data records
include a user ID field and/or a user role field, and the search
query includes one or both of a user ID and a role of the user
from which the search request originated.

8. The method of claim 5, wherein the activity data
includes one of data in a last activity field and/or data in a last
update field.

9. An apparatus for performing a text search over structured
data in a database system, comprising:

a processor for:
formulating a search query including a first search

parameter;
sending the search query to a query server;
searching indexed data records in a database system

using the first search parameter; and
returning a plurality of matching records, based on the

Searching:
wherein the system is operable Such that the matching

records have associated relevancy scores and are
ordered in an order that is based, at least in part, on
activity data associated with the matching records.

10. The apparatus of claim 9, wherein the formulating the
search query is performed by an application server in
response to a specific search request received from a user
system including the search parameter.

11. The apparatus of claim 10, wherein the indexed data
records include a userID field and/or a user rolefield, and the
search query includes one or both of a userID and a role of the
user from which the search request originated.

12. The apparatus of claim 9, wherein the activity data
includes one of data in a last activity field and/or data in a last
update field.

