Abstract Title: Pyrrolopyridines and their use in the treatment of diseases mediated by PGD2 at the CRTH2 receptor

Compounds of formula (ia) or (lb):

wherein

R1, R2 and R3 are independently hydrogen, halo, -C1-C6 alkyl, -O(C1-C6 alkyl), -C1-C6 alkyl(C3-C7 cycloalkyl), -CON(R8)2, -SOR8, -SO2R8, -SO2N(R8)2, -N(R8)2, -NR8COR8, -CO2R8, COR8, -SR8, -OH, -NO2 or -CN;

each R8 is independently hydrogen or C1-C6 alkyl;

R4 and R5 are each independently hydrogen, or C1-C6 alkyl or together with the carbon atom to which they are attached form a C3-C7 cycloalkyl group;

R6 is hydrogen or C1-C6 alkyl;

R7 is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl or an aromatic moiety, any of which may optionally be substituted with one or more substituents selected from halo, C1-C6 alkyl, -O(C1-C6 alkyl), -R10, -OR10, C(R10)2, -CON(R10)2, -SOR10, -SO2R10, -SO2N(R10)2, -N(R10)2, -NR10COR10, -CO2R10, -COR10, -SR10, -OH, -NO2 or -CN;

wherein each R10 is independently hydrogen, C1-C6 alkyl, aryl or substituted aryl;

X is -S- or -SO2-; or pharmaceutically acceptable salts, hydrates, solvates, complexes or prodrugs thereof are useful in the treatment of allergic diseases such as asthma, allergic rhinitis and atopic dermatitis.
COMPOUNDS

The present invention relates to compounds which are useful as pharmaceuticals, to methods for preparing these compounds, compositions containing them and their use in the treatment and prevention of allergic diseases such as asthma, allergic rhinitis and atopic dermatitis and other inflammatory diseases mediated by prostaglandin D$_2$ (PGD$_2$) acting at the CRTH2 receptor on cells including eosinophils, basophils and Th2 lymphocytes.

PGD$_2$ is an eicosanoid, a class of chemical mediator synthesised by cells in response to local tissue damage, normal stimuli or hormonal stimuli or via cellular activation pathways. Eicosanoids bind to specific cell surface receptors on a wide variety of tissues throughout the body and mediate various effects in these tissues. PGD$_2$ is known to be produced by mast cells, macrophages and Th2 lymphocytes and has been detected in high concentrations in the airways of asthmatic patients challenged with antigen (Murray et al., (1986), N. Engl. J. Med. 315: 800-804). Instillation of PGD$_2$ into airways can provoke many features of the asthmatic response including bronchoconstriction (Hardy et al., (1984) N. Engl. J. Med. 311: 209-213, Sampson et al., (1997) Thorax 52: 513-518) and eosinophil accumulation (Emery et al., (1989) J. Appl. Physiol. 67: 959-962)

The potential of exogenously applied PGD$_2$ to induce inflammatory responses has been confirmed by the use of transgenic mice overexpressing human PGD$_2$ synthase which exhibit exaggerated eosinophilic lung inflammation and Th2 cytokine production in response to antigen (Fujitani et al., (2002) J. Immunol. 168: 443-449)

The first receptor specific for PGD$_2$ to be discovered was the DP receptor which is linked to elevation of the intracellular levels of cAMP. However, PGD$_2$ is thought to mediate much of its proinflammatory activity through interaction with a G protein-coupled receptor termed CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells) which is expressed by Th2 lymphocytes, eosinophils and basophils (Hirai et al., (2001) J. Exp. Med. 193: 255-261, and EP0851030 and EP-A-
1211513 and Bauer et al, EP-A-1170594) It seems clear that the effect of PGD₂ on the activation of Th2 lymphocytes and eosinophils is mediated through CRTH2 since the selective CRTH2 agonists 13,14 dihydro-15-keto-PGD₂ (DK-PGD₂) and 15R-methyl-PGD₂ can elicit this response and the effects of PGD₂ are blocked by an anti-CRTH2 antibody (Hirai et al, 2001, Monneret et al, (2003) J. Pharmacol. Exp Ther. 304 349-355) In contrast, the selective DP agonist BW245C does not promote migration of Th2 lymphocytes or eosinophils (Hirai et al, 2001; Gervais et al, (2001) J. Allergy Clin. Immunol. 108 982-988). Based on this evidence, antagonising PGD₂ at the CRTH2 receptor is an attractive approach to treat the inflammatory component of Th2-dependent allergic diseases such as asthma, allergic rhinitis and atopic dermatitis.

EP-A-1170594 suggests that the method to which it relates can be used to identify compounds which are of use in the treatment of allergic asthma, atopic dermatitis, allergic rhinitis, autoimmune disease, reperfusion injury and a number of inflammatory conditions, all of which are mediated by the action of PGD₂ at the CRTH2 receptor.

Compounds which bind to CRTH2 are taught in WO-A-03/066046 and WO-A-03/066047. These compounds are not new but were first disclosed, along with similar compounds, in GB 1356834, GB 1407658 and GB 1460348, where they were said to have anti-inflammatory, analgesic and antipyretic activity. WO-A-03066046 and WO-A-03066047 teach that the compounds to which they relate are modulators of CRTH2 receptor activity and are therefore of use in the treatment or prevention of obstructive airway diseases such as asthma, chronic obstructive pulmonary disease (COPD) and a number of other diseases including various conditions of bones and joints, skin and eyes, GI tract, central and peripheral nervous system and other tissues as well as allograft rejection.

WO-A-03/101961 and WO-A-2004/007451 also relate to compounds which are CRTH2 receptor antagonists. The compounds disclosed in both these documents are indole-1-carboxylic acid derivatives with the compounds described in WO-A-
03/101961 having an S-aryl group and the compounds of WO-A-2004/007451 having either SO-aryl or SO₂-aryl at the 3-position of the indole ring system.

Other compounds which are CRTH2 receptor antagonists are disclosed in our co-pending applications PCT/GB2004/004336, which relates to indole-1-acetic acid derivatives, PCT/GB2004/04337, which relates to indole-1-sulfonyl-3-acetic acid derivatives, and PCT/GB2004/004417, which relates to indole-1-acetic acid derivatives.

Indole-1-carboxylic acid derivatives are also disclosed in WO-A-99/50268. In this case, the compounds have a –alkylaryl group at the 3-position of the indole system. There is no suggestion that these compounds could be useful in the treatment of conditions such as asthma and allergic conditions, which are mediated by PGD₂. Rather, they are said to be of use in the treatment of complications arising from diabetes mellitus.

WO-A-96/03376 relates to indole-1-carboxamides and hydrazides with a variety of substituents at the 3-position, including –alkylaryl groups. These compounds are said to be sPLA₂ inhibitors.

PL 65781 and JP 43-24418 also relate to indole derivatives which are similar in structure to indomethacin and, like indomethacin, are said to have anti-inflammatory and antipyretic activity. Thus, although this may not have been appreciated at the time when these documents were published, the compounds they describe are COX inhibitors, an activity which is quite different from that of the compounds of the present invention. Indeed, COX inhibitors are contraindicated in the treatment of many of the diseases and conditions, for example inflammatory bowel disease for which the compounds of the present invention are useful, although they may sometimes be used to treat arthritic conditions.

The present invention relates to a novel group of compounds which have been found to have activity as CRTH2 receptor antagonists.
In a first aspect of the present invention there is provided a compound of general formula (Ia) or (Ib):

\[
\begin{align*}
\text{Ia} & : \quad \begin{array}{c}
R^1, R^2, R^3, R^4, R^5, R^6, R^7 \\
\end{array} \\
\text{Ib} & : \quad \begin{array}{c}
R^1, R^2, R^3, R^4, R^5, R^6, R^7 \\
\end{array}
\end{align*}
\]

wherein

- \(R^1, R^2, \) and \(R^3 \) are independently hydrogen, halo, \(-C_1-C_6\) alkyl, \(-O(C_1-C_6)alkyl\), \(-C_1-C_6 alkyl(C_3-C_7 cycloalkyl)\), \(-CON(R^8)\), \(-SOR^8\), \(-SO_2R^8\), \(-SO_2N(R^8)_2\), \(-N(R^8)_2\), \(-NR^8COR^8\), \(-CO_2R^8\), \(-COR^8\), \(-SR^8\), \(-OH\), \(-NO_2\) or \(-CN\);
- each \(R^8 \) is independently hydrogen or \(C_1-C_6 \) alkyl;

- \(R^4 \) and \(R^5 \) are each independently hydrogen, or \(C_1-C_6 \) alkyl or together with the carbon atom to which they are attached form a \(C_3-C_7 \) cycloalkyl group;

- \(R^6 \) is hydrogen or \(C_1-C_6 \) alkyl,

- \(R^7 \) is \(C_1-C_6 \) alkyl, \(C_2-C_6 \) alkenyl, \(C_2-C_6 \) alkynyl or an aromatic moiety, any of which may optionally be substituted with one or more substituents selected from halo, \(C_1-C_6 \) alkyl, \(-O(C_1-C_6)alkyl\), \(-R^{10}\), \(-OR^{10}\), \(-C(R^{10})_2\), \(-CON(R^{10})_2\), \(-SOR^{10}\), \(-SO_2R^{10}\), \(-SO_2N(R^{10})_2\), \(-N(R^{10})_2\), \(-NR^{10}COR^{10}\), \(-CO_2R^{10}\), \(-COR^{10}\), \(-SR^{10}\), \(-OH\), \(-NO_2\) or \(-CN\),

wherein each \(R^{10} \) is independently hydrogen, \(C_1-C_6 \) alkyl, aryl or substituted aryl,

- \(X \) is \(-S\) or \(-SO_2\); or a pharmaceutically acceptable salt, hydrate, solvate, complex or prodrug thereof.
The compounds of general formula (Ia) and (Ib) are antagonists of PGD$_2$ at the CRTH2 receptor and will therefore be useful in the treatment of conditions which are mediated by PGD$_2$ binding to CRTH2. These include allergic diseases, asthmatic conditions and inflammatory diseases, examples of which are allergic asthma, perennial allergic rhinitis, seasonal allergic rhinitis, atopic dermatitis, contact hypersensitivity (including contact dermatitis), conjunctivitis, especially allergic conjunctivitis, food allergies, eosinophilic gastroenteritis, inflammatory bowel disease, ulcerative colitis and Crohn’s disease, mastocytosis and also other PGD$_2$-mediated diseases, for example autoimmune diseases such as hyper IgE syndrome and systemic lupus erythematosus, psoriasis, acne, multiple sclerosis, allograft rejection, reperfusion injury and chronic obstructive pulmonary disease, as well as rheumatoid arthritis, psoriatic arthritis and osteoarthritis.

In the present specification “C$_1$-C$_6$ alkyl” refers to a straight or branched saturated hydrocarbon chain having one to six carbon atoms and optionally substituted with one or more halo substituents or with one or more C$_3$-C$_7$ cycloalkyl groups. Examples include methyl, ethyl, n-propyl, isopropyl, t-butyl, n-hexyl, trifluoromethyl, 2-chloroethyl, methylenecyclopropyl, methylenecyclobutyl, methylenecyclobutyl and methylenecyclopentyl.

“C$_1$-C$_4$ alkyl” and “C$_1$-C$_{18}$ alkyl” have similar meanings except that they contain from one to four and from one to eighteen carbon atoms respectively.

“C$_2$-C$_6$ alkenyl” and “C$_1$-C$_6$ alkynyl” refer to straight or branched carbon chains having from one to six carbon atoms and containing respectively a carbon-carbon double bond and a carbon-carbon triple bond. The groups are optionally substituted with one or more halo substituents or with one or more C$_3$-C$_7$ cycloalkyl groups. Examples include ethenyl, ethynyl, 2-propenyl and 2-propynyl.

C$_3$-C$_7$ cycloalkyl refers to a saturated 3 to 7 membered carbocyclic ring. Examples of such groups include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
In the present specification, “halo” refers to fluoro, chloro, bromo or iodo.

The terms “aromatic moiety” and “aryl” and the abbreviation “Ar” in the context of the present specification refer to an aromatic ring system having from 5 to 14 ring carbon atoms and containing up to three rings, one or more of which may be replaced by a nitrogen, oxygen or sulphur atom. Examples of aromatic moieties are benzene, pyridine, naphthalene, biphenyl, quinoline, isoquinoline, quinazoline, benzthiazole, benzoazole, benzimidazole indole, indazole and imidazole ring systems.

References to “substituted aryl” refer to an aryl moiety substituted with halo, C1-C6 alkyl, -O(C1-C6)alkyl, -CON(R10)2, -SOR10, -SO2R10, -SO2N(R10)2, -N(R10)2, -NR10COR10, -CO2R10, -COR10, -SR10, -OH, -NO2 or -CN, where R10 is as defined above, provided that it is not substituted aryl.

In all cases where a substituent contains two or more R10 groups, particularly when they are attached to the same nitrogen atom, it is preferred that at least one of the R10 groups is hydrogen or C1-C6 alkyl. More preferably, at least one of the groups is hydrogen or C1-C4 alkyl and it is particularly preferred that at least one of the R10 groups is hydrogen.

Appropriate pharmaceutically and veterinarily acceptable salts of the compounds of general formulae (Ia) and (Ib) include basic addition salts such as sodium, potassium, calcium, aluminium, zinc, magnesium and other metal salts as well as choline, diethanolamine, ethanolamine, ethyl diamine and other well known basic addition salts.

Where appropriate, pharmaceutically or veterinarily acceptable salts may also include salts of organic acids, especially carboxylic acids, including but not limited to acetate, trifluoroacetate, lactate, gluconate, citrate, tartrate, maleate, malate, pantothenate, adipate, alginate, aspartate, benzoate, butyrate, digluconate, cyclopentanate, glucoheptanate, glyceroephosphatid, oxalate, heptanoate, hexanoate, fumarate, nicotinate, palmoate, pectinate, 3-phenylpropionate, picrate, pivalate,
propionate, tartrate, lactobionate, pivolate, camphorate, undecanoate and succinate, organic sulphonate acids such as methanesulphonate, ethanesulphonate, 2-hydroxyethane sulphonate, camphorsulphonate, 2-naphthalenesulphonate, benzenesulphonate, p-chlorobenzenesulphonate and p-toluensulphonate, and inorganic acids such as hydrochloride, hydrobromide, hydroiodide, sulphate, bisulphate, hemisulphate, thiocyanate, persulphate, phosphoric and sulphonic acids

Salts which are not pharmaceutically or veterinarily acceptable may still be valuable as intermediates.

Prodrugs are any covalently bonded compounds which release the active parent drug according to general formula (Ia) and (Ib) in vivo. Examples of prodrugs include alkyl esters of the compounds of general formula (Ia) and (Ib), for example the esters of general formula (IIa) and (IIb) below.

If a chiral centre or another form of isomeric centre is present in a compound of the present invention, all forms of such isomer or isomers, including enantiomers and diastereoisomers, are intended to be covered herein. Compounds of the invention containing a chiral centre may be used as a racemic mixture, an enantiomerically enriched mixture, or the racemic mixture may be separated using well-known techniques and an individual enantiomer may be used alone.

In the compounds of general formula (Ia) and (Ib), it is preferred that, independently or in any combination:

R¹ is halo or hydrogen,

R² is halo or hydrogen;

R³ is halo or hydrogen,

In preferred compounds of general formula (Ia) and (Ib), R⁴ and R⁵ are each independently hydrogen or C₁-C₄ alkyl. However, in more active compounds, at least one, and preferably both of R⁴ and R⁵ are hydrogen.
Compounds of general formula (Ia) and (Ib) preferably have an R^6 group chosen from H or C_1-C_6 alkyl; most suitably R^6 is hydrogen, methyl or ethyl.

In more active compounds of the present invention R^7 is an aromatic moiety having one or two rings and substituted with one or more substituents selected from halo, -C_1-C_4 alkyl, -O(C_1-C_4 alkyl), -SO_2(C_1-C_4 alkyl), -R^{10} and -OR^{10}, where R^{10} is preferably aryl or substituted aryl.

Among the most preferred compounds are the following.

1 [3-(4-chlorophenylsulfanyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl] acetic acid,
2 [3-(4-chlorophenylsulfonyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl] acetic acid,
or a C_1-C_4 alkyl ester of one of the above.

In a further aspect of the present invention, there is provided a compound of general formula (IIa) or (IIb)

\[
\begin{align*}
\text{IIa} & \quad \text{IIb} \\
\begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3 \text{R}_4 \\
\text{R}_5 \\
\text{X} & \quad \text{N}^+ \\
\text{R}_6 \\
\text{R}_7 \\
\text{R}_{11} \\
\end{array}
\end{align*}
\]

wherein R^1, R^2, R^3, R^4, R^5, R^6 and R^7 are as defined for general formula (Ia) and (Ib), and R^{11} is C_1-C_6 alkyl, aryl, (CH_2)_mOC(=O)C_1-C_6alkyl, (CH_2)_mN(R^{12})_2, CH\{\text{(CH}_2\}^m\text{O(C=O)R}^{13}\}

\[
\begin{align*}
m & \text{is 1 or 2;} \\
R^{12} & \text{is hydrogen or methyl;} \\
R^{13} & \text{is C}_1-C_{18} \text{ alkyl}
\end{align*}
\]

Compounds of general formulae (IIa) and (IIb) are novel and may be used as prodrugs for compounds of general formula (Ia) and (Ib). When the compound of
general formula (IIa) or (IIb) acts as a prodrug, it is later transformed to the drug by
the action of an esterase in the blood or in a tissue of the patient

Examples of particularly suitable R^{11} groups when the compound of general formula
(IIa) or (IIb) is used as a prodrug include.
methyl, ethyl, propyl, phenyl, $\text{CH}_2\text{OC}(=\text{O})\text{tBu}$, $\text{CH}_2\text{CH}_2\text{N(Me)}_2$, $\text{CH}_2\text{CH}_2\text{NH}_2$ or
$\text{CH}($CH$_2$O(C=O)$R^{13})_2$ wherein R^{13} is as defined above

Other preferred substituents are as detailed for general formulae (Ia) and (Ib) above

In addition to their use as prodrugs, compounds of formula (IIa) and (IIb) wherein
R^{11} is C_1-C_6 alkyl may be used in a process for the preparation of a compound of
general formula (Ia) or (Ib), the process comprising reacting the compound of
general formula (IIa) or (IIb) with a base such as sodium hydroxide or lithium
hydroxide. The reaction may take place in an aqueous solvent or an organic solvent
or a mixture of the two. A typical solvent used for the reaction is a mixture of
tetrahydrofuran and water

Compounds of general formula (Ib) may also be prepared from compounds of
general formula (Ia) by oxidation. The oxidation may be achieved using an oxidising
agent such as a peroxyacid, for example 3-chloroperoxybenzoic acid (m-CPBA).
Typically, the reaction will be conducted at room temperature in an organic solvent
such as ethyl acetate. A similar method can also be used for the conversion of
compounds of general formula (IIa) to compounds of general formula (IIb)

A synthetic route to example compounds of general formulae (Ia) and (Ib) is set out
in Scheme 1
Compounds of general formula (IIa) in which X is SO₂ may be prepared from the corresponding compounds of general formula (IIa) in which X is S by reaction with an oxidising agent such as potassium peroxymonosulphate, which is sold under the trade mark Oxone.

Compounds of general formula (IIa) in which X is S may be prepared from compounds of general formula (III)

wherein R₁, R₂, R₃, R⁶ and R⁷ are as defined for general formula (Ia) and (Ib) by reaction with a compound of general formula (IV)

\[Z \cdot C(R^4R^5) \cdot CO_2R^{11} \] (IV)

wherein R⁴ and R⁵ are as defined for general formula (Ia) and (Ib) and Z is a leaving group in particular a halo group, for example chloro or bromo.
The reaction is conducted under strongly basic conditions, for example using a metal hydride such as sodium hydride. Suitable solvents include organic solvents such as dimethylformamide (DMF).

Compounds of general formula (IV) are well known and are readily available or can be prepared by methods known to those skilled in the art.

Compounds of general formula (III) may be prepared by reacting a compound of general formula (V).

\[
\begin{align*}
\text{V} \\
\text{wherein } R^6 \text{ is as defined for general formulae (Ia) and (Ib),} \\
\text{with a compound of general formula (VI)} \\
\text{Y-S-R^7} \quad (VI)
\end{align*}
\]

where \(R^7 \) is as defined for general formulae (Ia) and (Ib) and \(Y \) is chloro, bromo or iodo.

The reaction may be conducted at room temperature in a polar organic solvent such as acetonitrile.

Compounds of general formula (VI) may be prepared from thiols of general formula

\[
\text{HS-R^7} \quad (VII)
\]
where R^7 is as defined for general formulae (Ia) and (Ib) by reaction with a halogenating agent such as N-bromosuccinimide or N-chlorosuccinimide. The reaction takes place at room temperature and may be conducted in a suitable organic solvent such as toluene.

A synthetic route to an example of a pyrrolo[3,2-b]pyridine compound of general formula (V) is illustrated in Scheme 2 below.

![Scheme 2](image)

As illustrated in Scheme 2, compounds of general formula (V) may be prepared from an optionally protected 2-alkynyl-pyridin-3-yl amine of general formula (VIII)

![VIII](image)

wherein R^7 is as defined for general formulae (Ia) and (Ib) and Q is H or a suitable protecting group such as tert-butoxycarbonyl (Boc). When Q is H, cyclisation can be achieved using potassium hydride, as set out in Example 1. When Q is a protecting group such as Boc, the compound of general formula (VIII) can be cyclised by
heating in the presence of a copper (I) salt, for example copper (I) iodide. Suitably, the reaction is carried out in an organic solvent such as dimethyl formamide (DMF).

Compounds of general formula (VIII) may be prepared by reacting 2-bromo- or 2-iodo-3-aminopyridine in which the amino group is optionally protected by a suitable group such as Boc, with a compound of general formula (IX):

\[
\text{CH} = \text{C-R}^7 \\
\text{(IX)}
\]

wherein \(R^7 \) is as defined for general formulae (Ia) and (Ib)

The reaction is suitably carried out in the presence of a copper (I) salt, in particular copper (I) iodide.

Compounds of general formula (IX) are well known in the art and are readily available or can be prepared by known methods.

Optionally protected 2-bromo or 2-iodo-3-aminopyridine are also well known in the art and can be prepared by known methods.

Compounds of general formula (Ia) and (Ib) are antagonists of PGD\(_2\) at the CRTH2 receptor and compounds of general formula (IIa) and (IIb) are prodrugs for compounds of general formula (Ia) and (Ib). Compounds of general formulae (Ia) and (Ib) and (IIa) and (IIb) are therefore useful in a method for the treatment of diseases and conditions mediated by PGD\(_2\) at the CRTH2 receptor, the method comprising administering to a patient in need of such treatment a suitable amount of a compound of general formula (Ia), (Ib), (IIa) or (IIb).

In a third aspect of the invention, there is provided a compound of general formula (Ia), (Ib), (IIa) or (IIb) for use in medicine, particularly for use in the treatment or prevention of diseases and conditions mediated by PGD\(_2\) at the CRTH2 receptor
Furthermore, there is also provided the use of a compound of general formula (Ia), (Ib), (IIa) or (IIb) in the preparation of an agent for the treatment or prevention of diseases and conditions mediated by PGD$_2$ at the CRTH2 receptor.

As mentioned above, such diseases and conditions include allergic asthma, perennial allergic rhinitis, seasonal allergic rhinitis, atopic dermatitis, contact hypersensitivity (including contact dermatitis), conjunctivitis, especially allergic conjunctivitis, food allergies, eosinophilic gastroenteritis, inflammatory bowel disease, ulcerative colitis and Crohn's disease, mastocytosis and also other PGD$_2$-mediated diseases, for example autoimmune diseases such as hyper IgE syndrome and systemic lupus erythematus, psoriasis, acne, multiple sclerosis, allograft rejection, reperfusion injury and chronic obstructive pulmonary disease, as well as rheumatoid arthritis, psoriatic arthritis and osteoarthritis.

The compounds of general formula (Ia), (Ib), (IIa) or (IIb) must be formulated in an appropriate manner depending upon the diseases or conditions they are required to treat.

Therefore, in a further aspect of the invention there is provided a pharmaceutical composition comprising a compound of general formula (Ia), (Ib), (IIa) or (IIb) together with a pharmaceutical excipient or carrier. Other active materials may also be present, as may be considered appropriate or advisable for the disease or condition being treated or prevented.

The carrier, or, if more than one be present, each of the carriers, must be acceptable in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient.

The formulations include those suitable for oral, rectal, nasal, bronchial (inhaled), topical (including eye drops, buccal and sublingual), vaginal or parenteral (including
subcutaneous, intramuscular, intravenous and intradermal) administration and may be prepared by any methods well known in the art of pharmacy.

The route of administration will depend upon the condition to be treated but preferred compositions are formulated for oral, nasal, bronchial or topical administration.

The composition may be prepared by bringing into association the above defined active agent with the carrier. In general, the formulations are prepared by uniformly and intimately bringing into association the active agent with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product. The invention extends to methods for preparing a pharmaceutical composition comprising bringing a compound of general formula (Ia), (Ib), (IIa) or (IIb) in conjunction or association with a pharmaceutically or veterinarily acceptable carrier or vehicle.

Formulations for oral administration in the present invention may be presented as discrete units such as capsules, sachets or tablets each containing a predetermined amount of the active agent; as a powder or granules, as a solution or a suspension of the active agent in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water in oil liquid emulsion; or as a bolus etc.

For compositions for oral administration (e.g. tablets and capsules), the term “acceptable carrier” includes vehicles such as common excipients e.g. binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, polyvinylpyrrolidone (Povidone), methylcellulose, ethylcellulose, sodium carboxymethylcellulose, hydroxypropylmethylcellulose, sucrose and starch, fillers and carriers, for example corn starch, gelatin, lactose, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate, sodium chloride and alginic acid; and lubricants such as magnesium stearate, sodium stearate and other metallic stearates, glycerol stearate stearic acid, silicone fluid, talc waxes, oils and colloidal silica. Flavouring agents such as peppermint, oil of wintergreen, cherry flavouring and the like can also be
used. It may be desirable to add a colouring agent to make the dosage form readily identifiable. Tablets may also be coated by methods well known in the art.

A tablet may be made by compression or moulding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active agent in a free flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent. Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active agent.

Other formulations suitable for oral administration include lozenges comprising the active agent in a flavoured base, usually sucrose and acacia or tragacanth, pastilles comprising the active agent in an inert base such as gelatin and glycerin, or sucrose and acacia, and mouthwashes comprising the active agent in a suitable liquid carrier.

For topical application to the skin, compounds of general formula (Ia), (Ib), (IIa) or (IIb) may be made up into a cream, ointment, jelly, solution or suspension etc. Cream or ointment formulations that may be used for the drug are conventional formulations well known in the art, for example, as described in standard text books of pharmaceutics such as the British Pharmacopoeia.

Compounds of general formula (Ia), (Ib), (IIa) or (IIb) may be used for the treatment of the respiratory tract by nasal, bronchial or buccal administration of, for example, aerosols or sprays which can disperse the pharmacological active ingredient in the form of a powder or in the form of drops of a solution or suspension. Pharmaceutical compositions with powder-dispersing properties usually contain, in addition to the active ingredient, a liquid propellant with a boiling point below room temperature and, if desired, adjuncts, such as liquid or solid non-ionic or anionic surfactants and/or diluents. Pharmaceutical compositions in which the pharmacological active ingredient is in solution contain, in addition to this, a suitable propellant, and
furthermore, if necessary, an additional solvent and/or a stabiliser. Instead of the
propellant, compressed air can also be used, it being possible for this to be produced
as required by means of a suitable compression and expansion device.

Parenteral formulations will generally be sterile.

Typically, the dose of the compound will be about 0.01 to 100 mg/kg, so as to
maintain the concentration of drug in the plasma at a concentration effective to
inhibit PGD₂ at the CRTH2 receptor. The precise amount of a compound of general
formula (Ia), (Ib), (IIa) or (IIb) which is therapeutically effective, and the route by
which such compound is best administered, is readily determined by one of ordinary
skill in the art by comparing the blood level of the agent to the concentration required
to have a therapeutic effect.

Compounds of general formula (Ia), (Ib), (IIa) or (IIb) may be used in combination
with other active agents which are useful for the treatment of allergic and other
inflammatory diseases mediated by PGD₂ at the CRTH2 receptor.

Therefore, the pharmaceutical composition described above may contain one or more
additional active agents useful in the treatment of diseases and conditions mediated
by PGD₂ at the CRTH2 receptor.

These additional active agents are not necessarily inhibitors of PGD₂ at the CRTH2
receptor – they may have a completely different mode of action. Examples of such
additional active agents include existing therapies for allergic and other
inflammatory diseases including:
- β2 agonists such as salmeterol,
- corticosteroids such as fluticasone,
- antihistamines such as loratidine,
- leukotriene antagonists such as montelukast,
- anti-IgE antibody therapies such as omalizumab,
anti-infectives such as fusidic acid (particularly for the treatment of atopic dermatitis),
anti-fungals such as clotrimazole (particularly for the treatment of atopic dermatitis),
immunosuppressants such as tacrolimus and particularly pimecrolimus in the case of inflammatory skin disease.

CRTH2 antagonists may also be combined with therapies that are in development for inflammatory indications including other antagonists of PGD₂ acting at other receptors such as DP antagonists, inhibitors of phoshodiesterase type 4 such as cilonilast;
drugs that modulate cytokine production such as inhibitors of TNFα converting enzyme (TACE);
drugs that modulate the activity of Th2 cytokines IL-4 and IL-5 such as blocking monoclonal antibodies and soluble receptors;
PPAR-γ agonists such as rosiglitazone,
5-lipoxygenase inhibitors such as zileuton.

In yet a further aspect of the invention, there is provided a product comprising a compound of general formula (Ia), (Ib), (IIa) or (IIb) and one or more of the agents listed above as a combined preparation for simultaneous, separate or sequential use in the treatment of a disease or condition mediated by the action of PGD₂ at the CRTH2 receptor.

The invention will now be described in greater detail with reference to the following non limiting examples.

Example 1 – Synthesis of [3-(4-Chloro-phenylsulfanyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl]-acetic acid (Compound 1)

a. 2-Prop-1-ynyl-pyridin-3-ylamine

Copper (I) iodide (83 mg, 0.43 mmol) and then dichlorobis(triphenylphosphine) palladium (II) (214 mg, 0.31 mmol) were sequentially added to a stirred solution of 2-bromo-3-aminopyridine (1.07 g, 6.20 mmol) in triethylamine (15 ml) at room
temperature in a tube under nitrogen. The solution was cooled to -78 °C and then
propyne (~3 ml, 0.05 mol), freshly condensed into triethylamine (5 ml) at -78 °C,
was added to the mixture in one portion. The vessel was immediately sealed and the
resulting mixture was stirred at room temperature for 18 h. The pressure was then
released from the vessel and the mixture was diluted with water (100 ml). The
product was extracted into ethyl acetate (3 x 100 ml) and the combined organic
extracts were then dried and concentrated in vacuo to leave a brown residue.
Purification by flash column chromatography on silica gel eluting with 1:1 heptane
ethyl acetate to neat ethyl acetate gave the alkyne (746 mg, 91%) as a beige solid,
Tr = 0.59 min, m/z (ES') (M+H)+ 132.95.

b. 2-Methyl-1H-pyrrolo[3,2-b]pyridine
2-Prop-1-ynyl-pyridin-3-ylamine (110 mg, 0.83 mmol) in anhydrous DMF (1 ml)
was added dropwise over 1 min to a stirred suspension of potassium hydride (442
mg, 3.30 mmol; 30% in mineral oil) in anhydrous tetrahydrofuran (2 ml) at room
temperature. The brown mixture was stirred at room temperature for 2 h and then a
saturated solution of ammonium chloride (5 ml) was added. The product was
extracted with ethyl acetate (3 x 30 ml) and the combined organic extracts were then
dried and concentrated in vacuo to leave a residue which was purified by flash
column chromatography on silica gel eluting with ethyl acetate and then 10% methanol dichloromethane to give the azaindole (66 mg, 60%) as an off-white
solid, Tr = 0.61 min, m/z (ES') (M+H)+ 132.99.

c. 3-(4-Chloro-phenylsulfanyl)-2-methyl-1H-pyrrolo[3,2-b]pyridine
4-Chlorobenzenesulfonyl chloride (101 ml, 2.80 mmol, 0.28 M in toluene) was
added dropwise over 5 min to a stirred solution of 2-methyl-1H-pyrrolo[3,2-b]
pyridine (374 mg, 2.80 mmol) in anhydrous acetonitrile (20 ml) at room
temperature. The mixture was stirred at room temperature for 2 h and then filtered to
remove the white solid. The filtrate was then concentrated in vacuo to leave a
residue which was purified by flash column chromatography on silica gel eluting
with 1:1 heptane ethyl acetate to 10% methanol dichloromethane to give the
thioether (135 mg, 17%) as a white-beige solid, Tr = 0.1 46 min, m/z (ES') (M+H)^+ 275.08

d. [3-(4-Chloro-phenylsulfanyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl]-acetic acid ethyl ester
Sodium hydride (11.4 mg, 0.29 mmol, 60% in mineral oil) was added in one portion to a stirred solution of 3-(4-chloro-phenylsulfanyl)-2-methyl-1H-pyrrolo[3,2-b]pyridine (72 mg, 0.26 mmol) in anhydrous DMF (2 ml) at room temperature. The solution was stirred at room temperature for 30 min and then ethyl bromoacetate (29 µl, 0.26 mmol) was added in one portion. The resulting mixture stirred at room temperature for 3 h and then concentrated in vacuo to leave a brown residue. Purification by flash column chromatography on silica gel eluting with 1:1 heptane:ethyl acetate to neat ethyl acetate gave the ester (87 mg, 93%) as a yellow solid, Tr = 1.28 min, m/z (ES') (M+H)^+ 361.05.

e. [3-(4-Chloro-phenylsulfanyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl]-acetic acid
Sodium hydride (2.8 mg, 0.07 mmol, 60% in mineral oil) was added in one portion to a stirred solution of 3-(4-chloro-phenylsulfanyl)-2-methyl-1H-pyrrolo[3,2-b]pyridine (16 mg, 0.06 mmol) in anhydrous DMF (2 ml) at room temperature. The solution was stirred at room temperature for 30 min and then ethyl bromoacetate (6 µl, 0.06 mmol) was added in one portion. The resulting mixture was stirred at room temperature for 16 h. Lithium hydroxide monohydrate (9.6 mg, 0.23 mmol) and then tetrahydrofuran-water (3 ml; 2:1) were sequentially added and the resulting mixture stirred at room temperature for 2 h. The solution was then adjusted to pH 7 with 1 M hydrochloric acid and the solution concentrated in vacuo to dryness to leave a brown solid. The solid was then dissolved in water (5 ml) and extracted with ethyl acetate (2 x 10 ml) and then IPA:chloroform (10 ml; 1:1). The combined organic extracts were then dried and concentrated in vacuo to leave the carboxylic acid (6 mg, 31%) as a beige solid, δH (400 MHz, d6-DMSO) 8.28 (1H, dd J 4.6, 1.2 Hz, Ar), 7.82 (1H, dd J 8.2, 1.1 Hz, Ar), 7.25 (2H, d J 8.7 Hz, Ar), 7.12 (1H, dd J 8.2, 4.6 Hz, Ar),
7 01 (2H, d J 8 7 Hz, Ar), 4.67 (2H, s, NCH₂CO₂H), 2.46 (3H, s, CCH₃); Tr = 1 08 min, m/z (ES⁺) (M+H)⁺ 333 22.

Example 2 – Synthesis of [3-(4-Chloro-benzenesulfonyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl]-acetic acid (Compound 2)

- **[3-(4-Chloro-benzenesulfonyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl]-acetic acid ethyl ester**

Oxone® (446 mg, 0.72 mmol) was added in one portion to a stirred solution of [3-(4-chloro-phenylsulfanyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl]-acetic acid ethyl ester (87 mg, 0.24 mmol) in 1,4-dioxane : water (5 ml, 4:1) at room temperature. The resulting mixture was stirred at room temperature for 5 h and then concentrated in vacuo to leave a white residue. The residue was partitioned between ethyl acetate and water and the organic layer separated. The aqueous phase was extracted with ethyl acetate and the combined organic extracts were dried and concentrated in vacuo to leave a residue. Purification by flash column chromatography on silica gel eluting with 1 : 1 heptane : ethyl acetate to neat ethyl acetate gave the sulfone (94 mg, 100%) as a white solid, Tr = 1 16 min, m/z (ES⁺) (M+H)⁺ 393 22

- **[3-(4-Chloro-benzenesulfonyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl]-acetic acid**

Lithium hydroxide monohydrate (60 mg, 1.44 mmol) was added in one portion to a stirred solution of [3-(4-chloro-benzenesulfonyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl]-acetic acid ethyl ester (94 mg, 0.24 mmol) in tetrahydrofuran : water (6 ml, 2 : 1) at room temperature. The resulting mixture was stirred at room temperature for 8 h. The solution was adjusted to pH 7 with 1M hydrochloric acid and then concentrated *in vacuo* to precipitate a yellow solid. The solid was filtered, washed with water (5 ml) and heptane (5 ml) and finally dried under vacuum to give the carboxylic acid (20 mg, 23%) as a white solid, δH (400 MHz, d₆-DMSO) 8 41 (1H, d J 3 4 Hz, Ar), 8 12 (2H, d J 8 7 Hz, Ar), 7 84 (1H, d J 7 3 Hz, Ar), 7 63 (2H, d J 8 7 Hz, Ar), 7 19 (1H, dd J 8 3, 4 7 Hz, Ar), 4 50 (2H, s, NCH₂CO₂H), 2 72 (3H, s, CCH₃), Tr = 0 98 min, m/z (ES⁺) (M+H)⁺ 365 18
Example 3 – Measurement of CRTH2 Antagonist Activity

Materials and Methods

Materials

Calcium-3 dye was purchased from Molecular Devices (Wokingham, UK) Monopoly resolving medium was obtained from Dainippon Pharmaceuticals (Osaka, Japan) Macs anti-CD16 microbeads were from Miltenyi biotec (Bisley, Surrey) ChemoTx plates were purchased from Neuroprobe (Gaithesburg, MD) Poly-D-lysine coated 96-well plates were obtained from Greiner (Gloucestershire, UK) [3H]PGD2 was from Amersham Biosciences (Buckinghamshire, UK) [3H]SQ29548 was purchased from Perkin Elmer Life Sciences (Buckinghamshire, UK) All other reagents were obtained from Sigma-Aldrich (Dorset, UK), unless otherwise stated

Methods

Cell culture

Chinese Hamster Ovary cells were transfected with CRTH2 or DP receptors (CHO/CRTTH2 and CHO/DP) and were maintained in culture in a humidified atmosphere at 37°C (5% CO2) in Minimum Essential Medium (MEM) supplemented with 10% foetal bovine serum, 2 mM glutamine, and 1 mg ml⁻¹ active G418 The cells were passaged every 2-3 days For radioligand binding assay, cells were prepared in triple-layer flasks or in 175 cm² square flasks (for membrane preparation) For calcium mobilisation assay, cells were grown in a 96 well plate 24h prior to the assay at a density of 80,000 cells per well.

Preparation of cell membranes

Membranes were prepared either from CHO/CRTTH2 and CHO/DP cells, or from platelets (as a source of TP receptors) CHO cells grown to confluency were washed with PBS and detached using a Versene solution (15 ml per flask). When the cells were grown in 175 cm² square flask, they were collected by scrapping in PBS The cell suspensions were centrifuged (1,700 rpm, 10 min, 4°C) and resuspended in 15 ml of buffer (1xHBSS, supplemented with 10 mM HEPES, pH 7.3) Cell suspensions were then homogenised using an Ultra Turrax at setting 4-6 for 20 s The homogenate was centrifuged at 1,700 rpm for 10 min and the supernatant was
collected and centrifuged at 20,000 rpm for 1h at 4°C. The resulting pellet was resuspended in buffer and stored at -80°C in aliquots of 200-500 μl. The protein concentration was determined by the method of Bradford (1976), using bovine serum albumin as standard. The platelets were washed by centrifugation at 600xg for 10 min and resuspended in ice-cold assay buffer (10 mM Tris-HCl, pH 7.4, 5 mM Glucose, 120 mM NaCl, 10 μM indomethacin) and directly centrifuged at 20,000 rpm for 30 min at 4°C. The resulting pellet was treated as described above.

Radioassay binding assays

[^3H]PGD₂ (160 Ci/mmol) binding experiments were performed on membranes prepared as described above. Assays were performed in a final volume of 100 μl of buffer (1XHBSS/HEPES 10 mM, pH 7.3). Cell membranes (15μg) Cell membranes 15mg were preincubated at room temperature with varying concentration of competing ligand for 15 min. [^3H]PGD₂ (mol, final concentration) was then added and the incubation continued for a further one hour at room temperature. The reaction was terminated by the addition of 200 μl ice-cold assay buffer to each well, followed by rapid filtration through Whatman GF/B glass fibre filters using a Unifilter Cell harvester (PerkinElmer Life Sciences) and six washes of 300 μl of ice-cold buffer. The Unifilter plates were dried at room temperature for at least 1h and the radioactivity retained on the filters was determined on a Beta Trilux counter (PerkinElmer Life Sciences), following addition of 40 μl of Optiphase Hi-Safe 3 (Wallac) liquid scintillation. Non specific binding was defined in the presence of 10 μM unlabelled PGD₂. Assays were performed in duplicate.

The results of the radioligand binding experiments to the CRTH2 and DP receptors are shown in Tables 1 and 2.

Table 1 – Radioligand binding data (Ki on CRTH2 Receptor).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Ki (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>143</td>
</tr>
<tr>
<td>2</td>
<td>736</td>
</tr>
</tbody>
</table>
Table 2 – Radioligand binding data (Ki on DP Receptor)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Ki (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>10000</td>
</tr>
<tr>
<td></td>
<td>>10000</td>
</tr>
</tbody>
</table>

The results of the experiments demonstrate that for compounds of general formula (Ia) and (Ib) the affinity for the CRTH2 receptor is higher than for DP receptor

Compounds of general formula (Ia) and (Ib) bound to CRTH2 receptor expressed in CHO cells with a range of affinity varying from very high to moderate. In fact the Ki values determined in competition versus [3H]PGD₂ varied from 500 pM to 1 μM

Compounds of general formula (Ia) and (Ib) had no activity (or very weak activity) at the DP receptors. The binding selectivity of the illustrated compounds of general formula (Ia) and (Ib) for CRTH2 receptor was greater than 200 fold for CRTH2 receptor, compared to DP receptors. However, the inventors have found that by varying the R⁸ substituent of the compounds of general formula (Ia) and (Ib), it is possible to vary the degree of selectivity for the CRTH2 receptor.

Calcium mobilisation Assay

Cells were seeded onto poly-D-lysine coated 96-well plates at a density of 80,000 cells per well and incubated at 37°C overnight to allow the cells to adhere. Cells were washed twice with HBSS and incubated for 1h at 37°C in 100μl HBSS and 100μl calcium-3-dye (Molecular Devices), supplemented with 4mM probenecid.

Changes in fluorescence were monitored over a 50s time course with agonist addition at 17s using a Flexstation (Molecular Devices).

Effect of CRTH2 agonists on calcium mobilisation in CHO-CRTH2 cells

PGD₂ caused a dose-dependent increase in intracellular Ca²⁺ mobilisation in CHO/CRTTH2 cells, with an EC₅₀ = 2.4 ± 0.5nM (n=3) (Figure 2).
Effect of compounds of general formula (Ia) and (Ib) on the calcium mobilisation induced by PGD₂

PGD₂-stimulated Ca²⁺ flux was fully inhibited by the compounds of general formula (Ia) and (Ib) and the IC₅₀ value for each compound in the calcium assay was comparable to its Ki value in Radioligand binding. IC₅₀ values of compounds of general formula (Ia) and (Ib) varied from 5 nM to 1 µM. The results for several compounds of general formula (Ia) and (Ib) are shown in Table 3. Increasing doses of the compounds of general formula (Ia) and (Ib) caused a dose-dependent and parallel shift of the PGD₂ dose response curve in CHO/CRTH2 cells, thereby indicating that the compounds are competitive CRTH2 antagonists.

The antagonistic effect of the compounds of general formula (Ia) and (Ib) appears to be CRTH2 selective, since no inhibitory effect was seen with ATP-stimulated Ca²⁺ flux.

Table 3 – Inhibition of PGD₂-induced calcium flux

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC₅₀ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>393</td>
</tr>
</tbody>
</table>
CLAIMS

1. A compound of general formula (Ia) or (Ib).

wherein

R^1, R^2 and R^3 are independently hydrogen, halo, -C_1-C_6 alkyl, -O(C_1-C_6 alkyl),
-C_1-C_6 alkyl(C_3-C_7 cycloalkyl), -CON(R^8)_, _-SOR^8_, _-SO_2R^8_, _-SO_2N(R^8)(R^8)_2, _-N(R^8)(R^8)_2,
-NR^8COR^8_, _-CO_2R^8_, _COR^8_, _-SR^8_, _-OH_, _-NO_2 or _-CN,

each R^8 is independently hydrogen or C_1-C_6 alkyl;

R^4 and R^5 are each independently hydrogen, or C_1-C_6 alkyl or together with
the carbon atom to which they are attached form a C_3-C_7 cycloalkyl group,

R^6 is hydrogen or C_1-C_6 alkyl,

R^7 is C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl or an aromatic moiety, any of which
may optionally be substituted with one or more substituents selected from halo,
C_1-C_6 alkyl, -O(C_1-C_6)alkyl, -R^{10}, _-OR^{10}, _-CON(R^{10})_2, _-SOR^{10}, _-SO_2R^{10}, _-SO_2N(R^{10})(R^{10})_2, _-N(R^{10})(R^{10})_2, _-NR^{10}COR^{10}, _-CO_2R^{10}, _-COR^{10}, _-SR^{10}, _-OH, _-NO_2 or _-CN,

wherein each R^{10} is independently hydrogen, C_1-C_6 alkyl, aryl or substituted
aryl,

X is _-S_ or _-SO_2_,

or a pharmaceutically acceptable salt, hydrate, solvate, complex or prodrug thereof.
A compound of general formula (IIa) or (IIb)

\[
\text{IIa}
\]

\[
\text{IIb}
\]

wherein \(R^1, R^2, R^3, R^4, R^5, R^6\) and \(R^7\) are as defined in claim 1; and

\(R^{11}\) is C\(_1\)-C\(_6\) alkyl, aryl, (CH\(_2\))\(_m\)OC(=O)C\(_1\)-C\(_6\)alkyl, (CH\(_2\))\(_m\)N(R\(_{12}\))\(_2\),

\(m\) is 1 or 2,

\(R^{12}\) is hydrogen or methyl,

\(R^{13}\) is C\(_1\)-C\(_{18}\) alkyl.

A compound as claimed in claim 1 or claim 2 wherein, independently or in any combination:

\(R^1\) is halo or hydrogen;

\(R^2\) is halo or hydrogen,

\(R^3\) is halo or hydrogen.

A compound as claimed in claim 3 wherein \(R^1, R^2\) and \(R^3\) are hydrogen.

A compound as claimed in any one of claims 1 to 4 wherein \(R^4\) and \(R^5\) are each independently hydrogen or C\(_1\)-C\(_4\) alkyl.

A compound as claimed in claim 4, wherein both \(R^4\) and \(R^5\) are hydrogen.

A compound as claimed in any one of claims 1 to 6, wherein \(R^6\) is H or C\(_1\)-C\(_6\)

alkyl.
8. A compound as claimed in claim 7 wherein R⁶ is hydrogen, methyl or ethyl

9. A compound as claimed in any one of claims 1 to 8 wherein R⁷ is an aromatic moiety having one or two rings and substituted with one or more substituents selected from halo, -C₁-C₄ alkyl, -O(C₁-C₄ alkyl), -SO₂(C₁-C₄ alkyl), -R¹⁰ and -OR¹⁰, where R¹⁰ is aryl or substituted aryl.

10. [3-(4-chlorophenylsulfanyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl] acetic acid,
 [3-(4-chlorophenylsulfonyl)-2-methyl-pyrrolo[3,2-b]pyridin-1-yl] acetic acid,
 or a C₁-C₄ alkyl ester of one of the above

11. A process for the preparation of a compound as claimed in claim 1, the process comprising treating a compound of general formula (IIa) or (IIb) as defined in claim 2 with a base.

12. A process for the preparation of a compound of general formula (Ib) as claimed in claim 1, the process comprising treating a compound of general formula (Ia) as claimed in claim 1 with an oxidising agent.

13. A compound as claimed in any one of claims 1 to 10 for use in medicine, particularly for use in the treatment or prevention of diseases and conditions mediated by PGD₂ at the CRTH2 receptor

14. The use of a compound as claimed in any one of claims 1 to 10 in the preparation of an agent for the treatment or prevention of diseases and conditions mediated by PGD₂ at the CRTH2 receptor.

15. A compound or the use as claimed in claim 13 or claim 14 wherein the disease or condition is allergic asthma, perennial allergic rhinitis, seasonal allergic rhinitis, atopic dermatitis, contact hypersensitivity (including contact dermatitis) conjunctivitis, especially allergic conjunctivitis, food allergies, eosinophilic gastroenteritis, inflammatory bowel disease, ulcerative colitis and Crohn’s disease,
mastocytosis, another PGD₂-mediated disease, for example autoimmune diseases such as hyper IgE syndrome and systemic lupus erythematus, psoriasis, acne, multiple sclerosis, allograft rejection, reperfusion injury and chronic obstructive pulmonary disease, or rheumatoid arthritis, psoriatic arthritis and osteoarthritis

16 A pharmaceutical composition comprising a compound as claimed in any one of claims 1 to 10 together with a pharmaceutical excipient or carrier.

17 A pharmaceutical composition as claimed in claim 16 formulated for oral, rectal, nasal, bronchial (inhaled), topical (including eye drops, buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration

18 A composition as claimed in claim 17 formulated for oral, nasal, bronchial or topical administration

19 A composition as claimed in any one of claims 16 to 18 containing one or more additional active agents useful in the treatment of diseases and conditions mediated by PGD₂ at the CRTH2 receptor.

20 A composition as claimed in claim 19, wherein the additional active agents are selected from
β2 agonists such as salmeterol;
corticosteroids such as fluticasone,
antihistamines such as loratidine,
leukotriene antagonists such as montelukast;
anti-IgE antibody therapies such as omalizumab,
anti-infectives such as fusidic acid (particularly for the treatment of atopic dermatitis);
anti-fungals such as clotrimazole (particularly for the treatment of atopic dermatitis),
immunosuppressants such as tacrolimus and particularly pimecrolimus in the case of inflammatory skin disease
CRTH2 antagonists may also be combined with therapies that are in development for inflammatory indications including other antagonists of PGD₂ acting at other receptors such as DP antagonists, inhibitors of phosphodiesterase type 4 such as cilonilast; drugs that modulate cytokine production such as inhibitors of TNFα converting enzyme (TACE), drugs that modulate the activity of Th2 cytokines IL-4 and IL-5 such as blocking monoclonal antibodies and soluble receptors; PPAR-γ agonists such as rosiglitazone; 5-lipoxygenase inhibitors such as zileuton.

A process for the preparation of a pharmaceutical composition as claimed in any one of claims 16 to 20 comprising bringing a compound as claimed in any one of claims 1 to 10 in conjunction or association with a pharmaceutically or veterinarily acceptable carrier or vehicle.

A product comprising a compound as claimed in any one of claims 1 to 10 and one or more of the agents listed in claim 21 as a combined preparation for simultaneous, separate or sequential use in the treatment of a disease or condition mediated by the action of PGD₂ at the CRTH2 receptor.

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

<table>
<thead>
<tr>
<th>Category</th>
<th>Relevant to claims</th>
<th>Identity of document and passage or figure of particular relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,E</td>
<td>1, 2, 11-14, 16, 21-22 at least</td>
<td>WO 2005/054232 A1 (ASTRAZENECA AB) see examples 7 and 9</td>
</tr>
<tr>
<td>X</td>
<td>1, 2, 11-13, 16, 21-22 at least</td>
<td>WO 2004/074286 A1 (Wyeth) see generic formula on page 3 line 30 to page 4 line 16, page 9 lines 2-10 and example 10</td>
</tr>
<tr>
<td>X</td>
<td>1, 2, 11-13, 16, 21-22 at least</td>
<td>WO 03/044015 A (THE INSTITUTES FOR PHARMACEUTICAL DISCOVERY LLC) see generic formula on page 3 line 9 to page 6 line 25, examples 189-190</td>
</tr>
</tbody>
</table>

Categories:

- **X**: Document indicating lack of novelty or inventive step
- **Y**: Document indicating lack of inventive step if combined with one or more other documents of same category
- **&**: Member of the same patent family
- **A**: Document indicating technological background and/or state of the art
- **P**: Document published on or after the declared priority date but before the filing date of this invention
- **E**: Patent document published on or after, but with priority date earlier than, the filing date of this application

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC

<table>
<thead>
<tr>
<th>C2C</th>
</tr>
</thead>
</table>
| Worldwide search of patent documents classified in the following areas of the IPC
| C07D |
| The following online and other databases have been used in the preparation of this search report
| CAS ONLINE, WPI, EPDOC, TXTE |