g 1219 ca Demande-Application

OPIC CIPO
OFFICE DE LA PROPRIETE B ~\“ L‘fi AP (CANADIAN INTELLECTUAL
INTELLECTUELLE DU CANADA "1\ PROPERTY OFFICE 21) (A1) 2,293 9064
(22)1999/12/22

72y LAI, TONY WEN HSUN, CA (43)2001/06/22

(71 IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(51 Int.C1.” GO6F 17/30, G11B 23/00

(549 METHODE ET DISPOSITIF D'ANALYSE D'EXTRACTION DE

DONNEES AU MOYEN DU BALAYAGE D'INDEX
534 METHOD AND APPARATUS FOR ANALYZING DATA
RETRIEVAL USING INDEX SCANNING
10
I COMPUTER
16
TERMINAL 1o -@omo}
INTERFACE
[}
18 20
LOCKING 1% - SYSTEM s
SERVICES SERVICES
. &
v . 17
30 14
RELA#ONAL Dﬁﬁm pAbi LOG
COMPONENT
DATABASE MANAGER 98 > ~—
SYSTEM BUFFER
——f MANAGER

12

USER
AND
SYSTEM

(57) A method and computer program product for analyzing data retrieval using index scanning mm a database
management system. The method mmvolves scanning an mmdex associated with a table in the database management
system and selecting pages 1n the index. For each of the selected pages, the index entries are extracted and ranked. A
distance parameter 1s then determined for each of the ranked index entries. The number of page transters 1s estimated
based on the distance parameters and the number of consecutive mndex entries which can be stored 1n the buffer pool.

I*I Industrie Canada Industry Canada

CA 02293064 1999-12-22

METHOD AND APPARATUS FOR ANALYZING DATA RETRIEVAL
USING INDEX SCANNING

ABSTRACT OF THE DISCLOSURE

A method and computer program product for analyzing data retrieval using index scanning
5 in a database management system. The method involves scanning an index associated with a table

in the database management system and selecting pages in the index. For each of the selected pages,
the index entries are extracted and ranked. A distance parameter is then determined for each of the
ranked index entries. The number of page transfers is estimated based on the distance parameters

and the number of consecutive index entries which can be stored in the buffer pool.

CA9-1999-0048

C L AT SO MM S I, A A £ 3l bty g s LR I AR Ot NI £ VM I A N Al T e et P e 0 oo o : ATl e T Dt AL NAI I ST AU S P ap LS b L ORI 66 MR IIME I el IR 2 A (TN iy ek L Ve nmwam»- weRat T e S A Y e R ARSI R N TR AT TR Mt VR PA ML sl D e e et Teee s 4

10

15

20

25

CA 02293064 1999-12-22

METHOD AND APPARATUS FOR ANALYZING DATA RETRIEVAL
USING INDEX SCANNING

FIELD OF THE INVENTION

The present invention relates to database management systems, and more particularly to a

method and apparatus for analyzing data retrieval using index scanning.

BACKGROUND OF THE INVENTION

Database management systems are well-known in the art and comprise a computer system
for recording and maintaining data. Typically, the database management system (DBMS) comprises
the combination of an appropriate computer, direct access storage devices (DASD) or disk drives,
and database management software. A relational database management system i1s a DBMS which
uses relational techniques for storing and retrieving information. The relational database
management system or RDBMS, such as the DB2 product from IBM, comprises computerized
information storage and retrieval systems in which data is stored on disk drives or DASD for semi-
permanent storage. The data is stored in the form of tables which comprise rows and columns. Each
row or tuple has one or more columns.

The RDBMS is designed to accept commands to store, retrieve, and delete data. One widely
used and well-known set of commands is based on the Structured Query Language or SQL. The
term query refers to a set of commands in SQL for retrieving data from the RDBMS. The definitions
of SQL provide that a RDBMS should respond to a particular query with a particular set of data
given a specified database content. SQL however does not specify the actual method to tind the
requested information in the tables on the disk drives. The SQL requests are nonprocedural, also
referred to as declarative, and users simply specity what is wanted, rather than specitying how to
accomplish it. There are many ways in which a query can be processed and each consumes a
different amount of processor and input/output access time. The system’s optimizer must determine
the optimal way (or access path) to get the data to the user. One way to access data is to sequentially

scan every row 1n a table for those

CA9-1999-0048 1

C s AL £Vt bR e T AR LDt AT M TE b H S ST A AR TR L AL L LM M S 1 LT RO a3 e BT A8 R R SR e mw“wmwﬂ““WWWmums.-m--uma.-m»mm»--f-»#»»MuMlmswwww-" .
:

10

15

20

235

CA 02293064 1999-12-22

rows which match the search criteria. This type of scan is known as a table scan, because the entire
table is scanned in sequence from beginning to end.

Rows of data are stored on pages on physical storage devices, usually disk drives or files.
Data is transferred between the physical storage and the computer system’s processing unit page by
page even though only a single row may be needed from a given page. The time it takes to transter
data between physical storage and the processing unit is usually many times greater than the time
it takes to process the data in the processing unit. To manipulate data in a relational database system,
the rows must first be transferred from physical storage to the processing unit, then processed in the
processing unit, and finally transferred back to physical storage. Because transferring takes so much
longer than processing, the total time required to manipulate the data can be dramatically reduced
if the number of transfers can be reduced.

Most relational database systems maintain indexes for their tables. An index is a list stored
separately from the rows and used to access the rows in a selected order. An index comprises many
index entries; each index entry includes a key value and an identifier of or pointer to a row which
contains that key value. Indexes are physically stored on index pages. To scan a table’s rows using
an index, the index entries are read sequentially and pointers in the entries are used to access the
rows in the index’s order. This type of scan is called an index sequential scan, or index scan for
short. In general, a database system’s optimizer has to choose the best scan among table scans and
various index scans. Hence, the optimizer needs to be aware of factors that affect the number ot
page transfers required.

The prior art teaches that the number of page transfers for an index scan depends not only
on the number of data pages but also on the organization of the index. For example, the prior art
teaches that an index scan through a perfectly clustered index (also referred to as a clustered index
scan) is often preferable to a table scan. An index is perfectly clustered if, in an index scan, each
data page is accessed only once. For this to occur, the data rows, when accessed in index order, must
be in the same sequence as the sequence in which they are stored in the data pages ot physical
storage. An index scan through a clustered index is fast because the number ot data page accesses
is minimized since duplicate accesses to the same data page are unnecessary.

The prior art also teaches that an index scan through a non-clustered index (also referred to

CA9-1999-0048 2

L e o e e et TIPS I MR MU T3¢ 50 NI 4 A AR NP AR AN T8 5L 4 3 LI v 07 AN e - SR ST AR I P T80 o S5 7 MMM AWM MBI ML MU m L Sl s s R S R et = St S

10

[5

20

25

CA 02293064 1999-12-22

as a non-clustered index scan) is often undesirable. An index is non-clustered if, in an index scan,
the data pages are accessed back and forth at random. Index scans through non-clustered indexes
are extremely slow, because there is much thrashing back and forth between data pages as the index
requires separate data pages to be randomly accessed and transterred into and out of the processing
unit’s main memory but accesses only one row from the many on each such page.

U.S. Patent No. 5,043,872, whichissued August27, 1991 to International Business Machines
Corporation, discloses a method for measuring the degree of clustering of an index as a single value
known as a clustering coefficient. This clustering coefficient can be used by a database system's
optimizer to estimate the number of page transfers for an index scan.

U.S. Patent No. 5,778,353, which issued July 7, 1998 also to International Business
Machines Corporation, discloses that the number of page transfers for an index scan depends not
only on the organization of the index but also on the configuration of the database system. In
particular, the number of transfers depends on the amount of the processing unit’s main memory that
is dedicated to caching data pages from a table. This memory cache is usually referred to as a bufter
pool. Theinvention disclosed in U.S. Patent No. 5,778,353 models the relationship between the size
of the buffer pool and the number of transfers required for a scan of any selected index. This
relationship is sometimes called Full index scan Page Fetch or FPF intormation.

In a traditional database management system, the database administrator or user can issue
a request to collect statistics so that the system’s optimizer has up-to-date information on tables and
indexes. For example, DB2 Universal Database provides a command called "runstats" that allows
users to collect indexes’ clustering coefficients, among other statistics. DB2's runstats command
also gives users the option of collecting FPF (i.e. Full index scan Page Fetch) information. Prior
versions of DB2 (i.e. versions 6.1 and older) compute the FPF information by simulating a set of
buffer pools while scanning an index. For each index entry, each simulated bufter pool is examined
to determine if the index entry requires a data page transfer. The FPF information thus gathered 1s
accurate, but the process of computation is extremely time-consuming. In contrast, the process of

computing the clustering coefficient is very efficient, but can often yield poor estimates of the

number of page transters.

Accordingly, there remains a need for a mechanism for analyzing data retrieval requirements

CA9-1999-0048 3

A et 14 e+ b Ay TR AP B P o € AL - L PV C N I S oL bt b1 R DA A e APAACIT M- TR A ST A A A L A T PO s £hpppmnh b el - MWWM"----""'----W- et] arma) A £ IR EE STt At AN A PO AL L IR MY AR IOPhL I My AT TS A Ly U T s LA | - 1 TRAMGmal Rt abE e 8T

10

[

20

235

CA 02293064 1999-12-22

in a database management system.

BRIEF SUMMARY OF THE INVENTION

The present invention provides mechanism for estimating the number of page transters
required to scan any selected index for any given buffer pool size. A typical use of this invention
is in the statistics collection facility of a database management system.

Advantageously, the mechanism according to the present invention provides substantial
increases in performance over the Full index scan Page Fetch (FPF) information collection method
used in prior versions of DB2 Universal Database, i.e. versions 6.1 and older. Also, because the
mechanism accounts for the buffer pool size, it is capable of much more accurate estimation than
prior methods that fail to use information about the butter pool.

The method according to the subject invention comprises two principal steps. In the first
step, the index is read and a sampling technique is optionally applied. For each data page in a
selected sample set, information is recorded regarding the distribution of index entries that refer to
the data page. In the second step, the butfer pool size and the information collected in the first step
are used to generate an estimate ot the number of page transfers.

In a first aspect, the present invention provides a method for analyzing data retrieval using
index scanning in a database management system, the database management system including a
processing unit and physical storage for storing data, the physical storage being operably connected
to the processing unit, the physical storage containing at least one database table stored in a plurality
of pages, each database table having a plurality of rows of data, and one or more indexes composed
of a sequence of entries referencing the rows, and the processing unit having a memory and a portion
of the memory comprising a buffer pool for caching data pages from the database table, the method
comprises the steps of: (a) scanning one of the indexes associated with the database table ot interest
and selecting pages in the index; (b) extracting index entries for each of the selected pages; (c)
ranking the index entries; (d) determining a distance parameter for each of the ranked index entries,
wherein the distance parameter is derived from the relationship between the index and an index of
lesser rank; (e) determining the number of consecutive index entries that can be stored in the butter

pool; and (f) estimating the number of page transfers based on the distance parameters and the

CA9-1999-0048 4

e e iy e A A M I DU T VRIS HONPII R K SO0 A LIS MM KN /TN i Wk S SRS SR SN WML de et bt b (it St s AN SRV 0L 0 40 L o MLEVRE 001 R o TE TAL PS M UE O ETA MMMITON4 .58 SEAB oy s e o 72 T e .

10

15

20

25

CA 02293064 1999-12-22

number of consecutive index entries.

[n a second aspect, the present invention provides a computer program product for use on a
computer for analyzing data retrieval using index scanning in a database management system, the
database management system including a processing unit and physical storage for storing data, the
physical storage being operably connected to the processing unit, the physical storage containing at
least one database table stored in a plurality of pages, each database table having a plurality of rows
of data, and one or more indexes composed of a sequence of entries referencing the rows, and the
processing unit having a memory and a portion of the memory comprising a butfer pool for caching
data pages from the database table, the computer program product comprises: a recording medium,;
means recorded on the medium for instructing the computer to perform the steps of, (a) scanning one
of the indexes associated with the database table of interest and selecting pages 1n the index; (b)
extracting index entries for each of the selected pages; (¢) ranking the index entries; (d) determining
a distance parameter for each of the ranked index entries, wherein the distance parameter 1s derived
from the relationship between the index and an index of lesser rank; (e) determining the number of
consecutive index entries that can be stored in the buffer pool; and (f) estimating the number of page
transfers based on the distance parameters and the number of consecutive index entries.

In another aspect, the present invention provides a relational database management system
for use with a computer system wherein queries are entered by a user for retrieving data from tables,
the relational database management system includes a processing unit and physical storage for
storing data, the physical storage being operably connected to the processing unit, the physical
storage contains at least one database table stored in a plurality of pages, each database table has a
plurality of rows of data, and one or more indexes composed of a sequence of entries reterencing the
rows, and the processing unit includes a memory and a portion of the memory comprising a bufter
pool for caching data pages from the database table, the relational database management system
comprises: (a) means for scanning the indexes associated with the database table of interest and
means for selecting pages in the scanned index; (b) means for extracting index entries for each ot
the selected pages; (c) means for ranking the index entries; (d) means for determining a distance
parameter for each of the ranked index entries, wherein the distance parameter is derived from the

relationship between the index and an index entry of lesser rank; (e) means for determining the

CA9-1999-0043 5

. B T R l.MH"‘D‘)‘[|“WW¢MWWWWMM"\--...s..l.a\l..u e A S LR § S gty ek 6 TR 7 d b AT Bl 8= 8 M-w.’mmfmmm-----“-‘--Mv"-v-'--M&uwmmmmmm-#“ Ao b et mmenr e ommes wbe SR ebee W

10

15

20

25

CA 02293064 1999-12-22

number of consecutive index entries that can be stored in the buffer pool; and (f) means for

estimating the number of page transfers based on the distance parameters and the number of

consecutive index entries.

BRIEF DESCRIPTION OF THE DRAWINGS
Reference will now be made to the accompanying drawings which show, by way ot example,
preferred embodiments of the present invention and in which:
Fig. 1 shows in diagrammatic form a computer system for the present invention;
Fig. 2 shows a table and an index for the relational database management system ot Fig. I;
Fig. 3 shows exemplary distance calculations for an index;
Fig. 4 shows in flow chart form the first part of a method according to the present invention;

and

Fig. 5 shows in flow chart form the second part of the method according to the present

invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Reference is first made to Fig. 1 which shows an exemplary computer system 10 which 1s
suitable for use with the present invention. As shown in Fig. 1, the computer system 10 comprises
one or more processors connected to one or more electronic storage devices 12 and 14, such as disk
drives, that store one or more relational databases. Users of the computer system 10 use a standard
operator interface 16, such as OS/2 or other similar interface, to input commands for pertorming
various search and retrieval functions, termed queries, against the databases. In the context ot the
present invention, these queries conform to the Structured Query Language (SQL) standard, and
invoke functions performed by a Relational Database Management System (RDBMS). In the
preferred embodiment of the present invention, the RDBMS software comprises the DB2 product
offered by IBM for the MVS or OS/2 operating systems. Those skilled in the art will however
recognize that the present invention has application to any RDBMS program that utilizes SQL.

As shown in Fig. 1, the DB2 architecture for the MVS operating system includes three major

components: an IMS Resource Lock Manager (IRLM) 18, a System Services module 20, and a

CA9-1999-0048 6

.. P —— oAb 15 e MO TR BT 1 MRS Bk 45D 47 ML MU LA vy ESR FHADARRY st Nyt Lnm o =1 141818 _“__A_h“:_\.“_.“h“.“mwﬂmmm- .m\‘u-dﬁmvw]wmm‘h-mw-uv-n”wuguwoumvum“mmktr Jimcboh A SRR BRI Dot AN R Bl p- ki e A phee oAbt crnte ta s E sgernvies ataei s Laks 4 2

10

15

20

25

i

CA 02293064 1999-12-22

Database Services module 22. The IRLM 18 handles locking services because DB2 treats data as
a shared resource, thereby allowing any number of users to access the same data simultaneously.
As a consequence, concurrency control is required to isolate users and to maintain data integrity.
The System Services module 20 controls the overall DB2 program execution environment, which
includes managing log data sets 14, gathering statistics, handling startup and shutdown, and
providing management support.

At the center of the DB2 architecture is the Database Services module 22. The Database
Services module 22 contains several sub-modules, including the Relational Database System (RDS)
24, the Data Manager 26, and other components such as a SQL compiler. As will be understood by
those skilled in the art, these sub-modules support the functions of the SQL language, 1.e. definition,
access control, retrieval, and update of user and system data.

The DB2 architecture like most RDBMS maintains indexes for the tables. The index
comprises a list and is stored separately from the rows and used to access the rows in a selected
order. An index comprises many index entries; each index entry includes a key value and an
identifier of or pointer to a row which contains that key value. Indexes are physically stored on
index pages. To scan a table’s rows using an index, the index entries are read sequentially and
pointers in the entries are used to access the rows in the index’s order.

Reference is made to Fig. 2, which shows an exemplary database table 30 and an exemplary
database index 32 in the context of the present invention. The database table 30 comprises six rows
32 of data, each row 32 is shown individually as 32a, 32b, 32¢, 32d, 32¢ and 32f. The rows 32 are
stored over three pages 34, indicated individually as 34a, 34b and 34¢ 1n Fig. 2.

The index 32 comprises an ordered list of entries 42, indicated individually as 42a, 42b, 42c,
42d, 42¢ and 42f. Each entry 42 includes an index key value 44 (shown individually as 44a, 44b,
44c¢, 44d, 44e, and 44f) and a row identifier or RID 46 (shown individually as 46a, 46b, 46¢, 46d,
46e and 46f). Each RID 46 comprises a disk address or page number of a table row 48 and an otfset
49,

As shown in Fig. 2, the entries 42 in the index 32 are listed in increasing (ascending)
alphabetical order by last name. For purposes of describing the present invention, the index 32 will

be considered as a sequence of data page numbers and the index keys 44 and offsets are not relevant

CA9-1999-0048 7

10

5

20

235

CA 02293064 1999-12-22

to the invention. Since the indexes 32 are ordered, it is convenient to consecutively number the
index entries 42. It will be appreciated that the numbers for the index entries 42 are not physically
stored in the index 32, but are assigned when the entire index 32 is scanned. These numbers tor the
index entries 42 will be referred to as ranks. For example, the second entry 42b in the index 32 has
rank 2.

In the computer system 10 for the relational database management system (RDBMS), only
a limited amount of the main memory for the processor unit is available for caching data pages. This
memory cache is usually referred to as a buffer pool. Ifatable (e.g. the table 30 in F1g. 2) has more
data pages 34 than can fit in the memory, i.e. the buffer pool, then during an index scan, some data
pages may have to be discarded from the buffer pool to provide room for other pages. A known
method for choosing pages to discard is the "Least Recently Used" or LRU algorithm. Whenever
a page must be discarded, the LRU algorithm selects the page that was accessed least recently among
all butter pool pages.

The mechanism according to the present invention utilizes distances for the entries 42 in the
index 32. The distance associated with a given index entry 1s defined as:

(1) the difference in rank between the given index entry and the index entry previous to

the given entry that refers to the same data page, or
(2) infinity, if there does not exist any index entry previous to the given index entry that

refers to the same page as the given entry.

Reference is next made to Fig. 3, which shows the index denoted by primed reference 32'
with distances 52 for each entry of an index 32'. Fig. 3 also shows the ranks 50 for the index 32'.
[t is to be understood that the distance 52 for any index entry 42 must be at least 1. An index entry
42 with low distance (e.g. entry 42d) as compared to an index entry 42 with a high distance (e.g. the
entry 42g) is more likely to require a page transfer since the data page referenced by the entry 42 1s
less likely to stay in the buffer pool (i.e. main memory for the processor unit). An index entry 42
with infinite distance, e.g. index entries 42a to 42¢ or 42e, always requires a page transter.

Reference is next made to the pseudocode listings below which illustrate a specific

embodiment of a method according to the present invention. The method according to the invention

CA9-1999-0048 8

Ve s e caran .._...,.a...-....mm..MWMWWWW“”‘““““""“M‘MW“MM"‘"*“‘” """""""" € TN e e

10

15

20

235

CA 02293064 1999-12-22

comprises two principal processing operations or procedures 100 and 200. The first processing
operation 100 involves obtaining up-to-date information to determine index entry distances 52 for
the index 32' (Fig. 3). This operation is typically part of the statistics collection routines in the
RDBMS. The entry distances 52 are then used by the second processing module 200. The second
processing operation 200 comprises two sub-operations 200a and 200b. The first sub-operation 200a
involves further computation of the distance information, and is called either in the statistics
collection routines or in the RDBMS’s optimizer while the optimizer is generating an access plan
for a user request. The second sub-operation 200b estimates the number of page transters, and 1s

called either in the statistics collection routines or in the optimizer.

First Processing Operation 100

111 [nitialize array C of counts to O

112 For each index page Ip

[13 Read index page Ip

[14 For each index entry le in Ip

115 Obtain index entry Ie

116 Extract page number P from le

L7 [f P satisfies the sampling criterion, then
118 [f P 1s already 1n the sample, then
118.1 Compute distance d of e
118.2 Increment C,; by r

119 Else

119.1 Add P to the sample

119.2 Increment C, by r .

120 End if

121 End if

122 End loop

123 End loop

Second Processing Operation 200

CA9-1999-0043 S

B L R LU e e e e e b+ W G I AT S NGO TR ML TIPS Al Har TR~ Mt bbb - 12 4 1 1t g i DDA P il B R I H 8] T 000044 0 a2 =LAy g Belbe anrr gt by ok e A AN DI ST A AT S WS s A8 e T A ' '

10

15

20

25

CA 02293064 1999-12-22

First Sub-Operation 200a
211 For all I between 1 and N (inclusive)

212 Compute p,, the proportion of index entries with distance no less than I

213 End loop

Second Sub-Operation 200b

221 Initialize D, L to O

222 Repeat loop

223 SetL=L+1,D=D+p,
224 Until D>=B

2235 Return N*p,,,, which is an estimate of the number of page transfers

Referring to the pseudocode, the first processing operation 100 includes the following
processing steps. The first step at Line 111 involves initializing an array C of counters to 0. The
array C is used to store distances 52 (Fig. 3) of the entries 42 in the index 32', such that C; 1s a count
of the number of index entries 42 associated with distance i. In the pseudocode the parameter C,
represents the number of index entries 42 associated with infinite distance, since in actuality no
index entry 42 will have a distance of zero. The next operation at Lines 112-116 involves
performing a full scan of the index 32 to obtain the numbers of the data pages 34 stored in the index
32. The next step at Line 117 involves applying a sampling criterion to each page number P. Any
page number that fails to satisfy the sampling criterion is skipped. A sampling parameter r1s chosen
with the objective of processing only 1 out of r data pages. The sampling parameter r may be chosen
by the user or by the RDBMS. The sampling criterion is typically quite simple, for example only
page numbers divisible by r are selected.

For a page number P that satisfies the sampling criterion, the next step at Line 118 involves
testing if the page has been encountered previously in the index. If yes, then the next step at Lines
118.1-118.2 involves calculating the distance d of the corresponding index entry and updating the
array C counts. The distance is easily calculated if the rank of the previous index entry referring to
page P is recorded during the index scan. If the page P has not been previously encountered, the

page P is recorded and the array of C of counts is updated at Lines 119-119.2. To account for the

CA9-1999-0048 10

10

15

20

235

CA 02293064 1999-12-22

effect of sampling, the count is incremented by r.

Referring again to the pseudocode, the second processing procedure or operation 200
comprises the first 200a and the second 200b processing sub-operations. The first processing sub-
operation 200a at Lines 211-213 involves computing the proportion p, of index entries 42 with a
distance 48 no less than I, or, in other words, the sum of all counts of distances no less than I,
divided by the total sum of all counts of all distances. This operation requires an estimate ot the
number N of index entries 42, which may be computed by the statistics collection routines in the
RDBMS or optionally during the first processing operation 100, and the size B of the butter pool,
measured 1n pages.

The second processing sub-operation 200b involves estimating the number of page transfers
to the buffer pool (i.e. main processor memory). Starting at Line 221, variables D and L are
initialized to zero. The variable D provides an estimate of the average number ot distinct page
numbers in a group of L consecutive index entries. The next step at Lines 222-224 involves
applying a formulae to increase D and L until D is no less than B, where B is the size of the bufter
pool (i.e. memory available for page transfers). After this operation, the variable L provides an
estimate of the average number of consecutive index entries that are required to fill the butter pool
of size B. It is assumed that index entries associated with distances greater than L require page
transfers, and the value returned at Line 225 is N*p,,,. Since N is the number of index entries, and
p,.; is the proportion of index entries with distance greater than L, the product N*p, ., 1s the number
of index entries with distance greater than L, and the number given by N*P |, provides an estimate
of the number of page transfers.

Reference is next made to Figs. 4 and 5, which show the embodiment of the method
according to the present invention in flowchart form. Fig. 4 shows the steps for the method in the
first processing operation 100, and Fig. 5 shows the steps for the method in the second processing
operation 200.

As shown in Fig. 4, the first step in the first processing operation 100 involves an
initialization operation 101 in which the counter array C is set to zero or cleared. The next sequence
of steps starting at block 102 involves performing a full scan of the index to extract the numbers of

the data pages stored in the index. The operation in block 102 involves reading the index page Ip

CA9-1999-0048 11

* edRt LR - M

10

15

20

23

A e

1'

CA 02293064 1999-12-22

and extracting the index entry le (shown as 46 in Fig. 2) in block 104. The next step in block 106
comprises extracting the page number P from the index entry Ie obtained in step 104.

Referring still to Fig. 4, the next sequence of steps involves determining whether the page
P extracted in block 106 belongs in the sample and computing the distance of the index entry. In
decision block 108, a check is made to determine if the page P belongs in the sample. If yes, then
a check is made in decision block 110 to determine if the page P has already been included in the
sample. If not, the page P is placed in the sample (block 112) and the counter C, 1s incremented
(block 114). If the page P is already in the sample, then the distance d of the index entry I, 1s
computed in block 116, and the counter C, is incremented in block 118. Next a check is made in
decision block 120 to determine if there are any more index entries for the page P in the index. If
there are more index entries, then the index entry Ie is extracted from the index page Ip (as described
above for block 104). If there are no more index entries in the index page, then a check 1s made 1n
decision block 122 to determine if there any more pages in the index. If there are no more pages in
the index, then the processing in the first processing operation 100 is completed (block 124).

Referring again to Fig. 4, if the page P does not belong in the sample as determined 1n
decision block 108, then a check is made in decision block 120 to determine if there any more index
entries [, for the page. If there are no more index entries I, then a check is made in decision block
122 to determine if there any more pages in the index, and if there are no more pages, then the
processing in the first processing operation 100 is again completed in block 124.

Referring next to Fig. 5, the method for the second processing operation 200 comprises the
first sub-operation 200a and the second sub-operation 200b. As shown in Fig. 5, the first sub-
operation 200a involves computing the proportion of index entries P; having a distance no less than
I. This operation is implemented as a loop in blocks 201, 202 and 204. Once all the proportions
have been computed for all the index entries [(decision block 203), the second sub-operation 200b
is performed starting at block 211. The first step in block 211 involves initializing the variable D
and the variable L. The variable D is an estimate of the average number of distinct page numbers
in a group of L consecutive index entries. Next in block 212, the variables D and L are incremented
until the variable D is greater than or equal to the buffer pool size B as determined in decision block

214. In this sense, the variable L becomes an estimate of the number of consecutive index entries

CA9-1999-0043 12

10

15

20

25

CA 02293064 1999-12-22

that are required to fill the bufter pool (i.e. cache in main memory) having size B. After the number
of consecutive index entries to fill the buffer pool is determined (block 214), an estimate of page
transfers N*P, ., is returned in block 216. The number of page transters N*P, ., 1s determined by
considering that index entries having a distance greater than L will result in a page transter.

The present invention is particularly suitable for use in conjunction with the system disclosed
in U.S. Patent No. 5,778,353 for collecting approximate "Full scan Page Fetch" (FPF) information.

It will be appreciated that, although specific implementation of this invention has been
described above for purposes of illustration, many modifications and extensions may be made
without departing from the spirit and scope of the invention. For example, multiple indexes may be
scanned and processed. Also, rather than storing exact counts of distances as in the processing
operation 100, a histogram may be used to maintain counts of ranges of distances instead of counts
of individual distances. Furthermore, multiple histograms may be used to store distance information
for different subsets of index entries which may or may not overlap. The values of P, in the first sub-
operation 200a in the second processing module 200 may be calculated for only a small subset of
values of [, and the missing values of P, can be interpolated as necessary in the second sub-operation
200b. Moreover, the formulae to increase L and D in the second sub-operation 200b may be
replaced by other formulae that utilize additional information.

[t will also be understood that this invention is not limited to relational database queries, but
can be applied to optimizing the access paths in joining relational database tables. Further, the
invention is considered to have value outside the field of relational database management systems,
in the broader realm of estimating page accesses in other data processing applications. It will be
understood that outside the area of relational databases, there is data commonly considered to be
stored in "records" and other structures (analogous to the indexes described above) are used to access
the records in sequences other than that in which they were stored.

Therefore, the presently discussed embodiments are considered to be 1illustrative and not
restrictive, the scope of the invention being indicated by the appended claims rather than the
foregoing description, and all changes which come within the meaning and range of equivalency ot

the claims are therefore intended to be embraced therein.

CA9-1999-0048 13

10

15

20

25

CA 02293064 1999-12-22

CLAIMS

The embodiments of the invention in which an exclusive property or privilege 1s claimed are defined

as follows:

L. A method for analyzing data retrieval using index scanning in a database management
system, the database management system including a processing unit and physical storage tor storing
data, the physical storage being operably connected to the processing unit, the physical storage
containing at least one database table stored in a plurality of pages, each database table having a
plurality of rows of data, and one or more indexes composed of a sequence of entries referencing the
rows, and the processing unit having a memory and a portion of the memory comprising a butfer
pool for caching data pages from the database table, said method comprising the steps of:

(a) scanning one of the indexes associated with the database table of interest and selecting
pages 1n the index;

(b) extracting index entries for each of the selected pages;

(¢) ranking said index entries;

(d) determining a distance parameter for each of said ranked index entries, wherein said
distance parameter is derived from the relationship between said index and an index ot
lesser rank;

(e) determining the number of consecutive index entries that can be stored in the butfer pool;
and

(f) estimating the number of page transfers based on the distance parameters and the number

ot consecutive index entries.

2. The method as claimed in claim 1, further including after said step (c) the steps ot selecting
pages for the database table according to a sampling criterion and storing respective page numbers
for said selected pages, and wherein said step (d) comprises determining distance parameters for

ranked index entries associated with said page numbers.

CA9-1999-0048 14

10

[5

20

25

CA 02293064 1999-12-22

3. The method as claimed in claim 1 or 2, wherein said step (f) comprises estimating the

number of page transfers based on the distance parameters exceeding the number of consecutive

index entries determined 1n step (e).

4, The computer program product as claimed in claim 1, wherein said distance parameters

comprise counts of distance ranges for the index entries.

5. The computer program product as claimed in claim 1, wherein said step (d) comprises

determining distance parameters for one or more subsets ot said index entries.

6. A computer program product for use on a computer for analyzing data retrieval using index
scanning in a database management system, the database management system including a processing
unit and physical storage for storing data, the physical storage being operably connected to the
processing unit, the physical storage containing at least one database table stored in a plurality of
pages, each database table having a plurality of rows of data, and one or more indexes composed of
a sequence of entries referencing the rows, and the processing unit having a memory and a portion
of the memory comprising a buffer pool for caching data pages from the database table, said
computer program product comprising:

a recording medium,;

means recorded on said medium for instructing said computer to perform the steps of,

(a) scanning one of the indexes associated with the database table of interest and selecting
pages in the index;

(b) extracting index entries for each ot the selected pages;

(c) ranking said index entries;

(d) determining a distance parameter for each of said ranked index entries, wherein said
distance parameter is derived from the relationship between said index and an index of lesser rank;

(e) determining the number of consecutive index entries that can be stored in the butter pool;
and

(f) estimating the number of page transfers based on the distance parameters and the number

CA9-1999-0048 15

10

L[5

20

o2 DLV Oy 4 M C Y 4 b i My A e) |

CA 02293064 1999-12-22

of consecutive index entries.

7. The computer program product as claimed in claim 6, further including atter said step (c) the
steps of selecting pages for the database table according to a sampling criterion and storing

respective page numbers for said selected pages, and wherein said step (d) comprises determining

distance parameters for ranked index entries associated with said page numbers.

8. The computer program product as claimed in claim 6 or 7, wherein said step (f) comprises
estimating the number of page transfers based on the distance parameters exceeding the number ot

consecutive index entries determined 1n step (e).

9. The computer program product as claimed in claim 6, wherein said distance parameters

comprise counts of distance ranges for the index entries.

10. The computer program product as claimed in claim 6, wherein said step (d) comprises

determining distance parameters for one or more subsets of said index entries.

1. A computer program product for use on a computer for analyzing data retrieval using index
scanning in a database management system, the database management system including a processing
unit and physical storage for storing data, the physical storage being operably connected to the
processing unit, the physical storage containing at least one database table stored in a plurality of
pages, each database table having a plurality of rows of data, and one or more indexes composed of
a sequence of entries referencing the rows, and the processing unit having a memory and a portion
of the memory comprising a buffer pool for caching data pages from the database table, said
computer program product comprising:

a recording medium;

means recorded on said medium for instructing said computer to perform the steps of,

(a) scanning one of the indexes associated with the database table of interest and selecting

pages 1n the index;

CA9-1999-0048 16

10

15

20

25

CA 02293064 1999-12-22

(b) extracting index entries for each of the selected pages;

(¢) ranking said index entries;

(d) selecting pages for the database table according to a sampling criterion and storing
respective page numbers for said selected pages;

(e) determining a distance parameter for each of said ranked index entries assoctated with
said page numbers, wherein said distance parameter is derived from the relationship between said
index and an index entry of lesser rank;

(f) determining the number of consecutive index entries that can be stored 1n the butter pool;

(g) estimating the number of page transfers based on the distance parameters and the number

ot consecutive index entries.

2. The computer program product as claimed in claim 11, wherein said step (g) comprises

estimating the number of page transfers based on the distance parameters exceeding the number ot

consecutive index entries determined 1n step (1).

13. A relational database management system for use with a computer system wherein queries
are entered by a user for retrieving data from tables, the relational database management system
including a processing unit and physical storage for storing data, the physical storage being operably
connected to the processing unit, the physical storage containing at least one database table stored
in a plurality of pages, each database table having a plurality of rows of data, and one or more
indexes composed of a sequence of entries referencing the rows, and the processing unit having a
memory and a portion of the memory comprising a buffer pool for caching data pages trom the
database table, said relational database management system comprising:

(a) means for scanning the indexes associated with the database table of interest and means
for selecting pages in the scanned index;

(b) means for extracting index entries for each of the selected pages;

(¢) means for ranking said index entries;

(d) means for determining a distance parameter for each of'said ranked index entries, wherein

said distance parameter is derived from the relationship between said index and an index entry ot

CA9-1999-0048 17

F A AT ppciasade ot LA ¢ A = b1 bt) a1 s T kg A RERRY by et 748+ BEEAAL Aot AT ST AT AL 06 N Al MM I 1 127 PA T 333 s, ey -0 L ST bl et AT Yt AN - SR RTINS N B A it L w4 g IR v SOV AL | T3 P A bt =BV P 4 14 500 00 ot d e s et Srabera | L B 1R A P WSS S AR MR | et e e

10

15

20

CA 02293064 1999-12-22

lesser rank;

(¢) means for determining the number of consecutive index entries that can be stored in the

butter pool; and

(f) means for estimating the number of page transfers based on the distance parameters and

the number of consecutive index entries.

4. Therelational database management system as claimed in claim 13, wherein said means for

selecting pages includes means for selecting pages according to a predetermined criterion and means

for storing page numbers for said selected pages.

5. Therelational database management system as claimed in claim 13 or 14,wherein said means
for estimating comprises means for estimating the number of page transfers based on the distance

parameters exceeding the number of consecutive index entries.

16. Therelational database management system as claimed in claim 13, wherein said means for

determining distance parameters includes means for generating counts of distance ranges tor the

index entries.

17. Therelational database management system as claimed in claim 13, wherein said means for
determining distance parameters includes means for generating distance parameters for one or more

subsets of said index entries.

18. Data storage media recorded with a computer program which, in combination with a general
purpose computer configured for a database management system and equipped to read into memory
and execute program data from the data storage media, constituting a method in accordance with any

of claims 1, 2, 3, 4 or 5.

CA9-1999-0048 18

CA 02293064 2000-02-16

10
- COMPUTER
16
TERMINAL ¢ MONITOR
INTERFACE
—ﬁ o ——
18 20
LOCKING 1*— o SYSTEM |
SERVICES SERVICES
= ®
r B
30 14
24 26 OTHER LOG
RELATIONAL DATA COMPONENTS ___/
DATABASE MANAGER 28
SYSTEM BUFFER
|] MANAGER

12

USER
AND
SYSTEM

\TABLEy

CA 02293064 2000-02-16

FIG. 2

32

/

INDEX
NAME

———————————————— iz

a/,Adams - 44a 2,1 -- 46a

RID(PAGE, OFFSET)

————

42
/Baker -- 44b 1,1 -- 46b —
42b
Jones -- 44c 3,2 -- 46¢C
420/ A
Smith -- 44d 3,1 -- 46d-~
e
|fSmith - 44c 1,2 - 46e ~
42¢

T?omas - 44f 2,2 -- 46f

42f
48 49

TABLE
LAST NAME FIRST NAME
(DATA PAGE 1)
» Daker ANN «—— 323
Smith John «——— 32b
34a
- (DATA PAGE 2)
Adams Joe - — 32C
__w Thomas Bill «— 32d
34b
| -
N\ (DATA PAGE 3)
Smith Mary 32¢
Jones Sam -— 32f
34c¢

. 2 e .- <im0 AMEARI LA B B L b d Tu - N L . e - PAN S dBA . At- .. . ® e ee, m s om® e wpe peys prwde P08 s s, g .

50

RANK

CA 02293064 2000-02-16

32
/
INDEX
RID (PAGE)
42a --- 1
42b --- 3
42c - 4
42d --- 4
42¢c --- 2
42f --- 3
429 --- 1
42h --- 2

aa e o e o L = R =T o Tedebnd KoKl N arWTavrss——

DISTANCE

CA

02293064 2000-02-16

e

START

:

101
INITIALIZE

'

102
READ INDEX PAGE Ip

I

100

104

EXTRACT INDEX ENTRY le FROM Ip

¢

100

EXTRACT PAGE NUMBER P FROM le

YES

108
P

NO

BELONGS IN
SAMPLE?

YES

110
=

NO

ALREADY
IS IN
AMPLE?

YES

116
COMPUTE DISTANCE
d OF te

'

118
INCREMENT Cqg4

4

120
MORE

Y

112
ADD P TO SAMPLE

l

114
INCREMENT Cp

INDEX —
ENTRIES?

122
MORE

NO

PAGES IN
INDEX"

CA

02293064 2000-02-16

201

FOR EACH
REMAINING |

I

202
| COMPUTE Pi

203

" DONE FOR
o ALLI

211
INITIALIZE D, L

4
A Spn ;s

AREAA AAAAA e
l AT b sl

212
INCREMENT D, L

216
RETURN N PL+1

N

END

‘////' 200b

200a

10

/

a COMPUTER
16
TERMINAL 1o MONITOR
INTERFACE
k
18 20
LOCKING 1+ > SYSTEM
SERVICES SERVICES
/ ‘
Y y N A
30 14
24 26 OTHER LOG
RELATIONAL DATA COMPONENTS N
DATABASE MAMNAGER 98
SYSTEM BUFFER
MANA
a GER

12

USER
AND

SYSTEM

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - abstract drawing

