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RANKING THE IMPORTANCE OF ALERTS FOR PROBLEM DETERMINATION IN

LARGE SYSTEMS

RELATED APPLICATION INFORMATION

[0001] This application claims priority to provisional
application serial number 61/054,824 filed on May 21, 2008,

incorporated herein by reference.

BACKGROUND

Technical Field

[0002] The present invention relates to computer system and
network management and more particularly to system and methods
for determining importance of alertg in computing systems for

problem determination.

Description of the Related Art
[0003] The complexity of large computing systems has raised
unprecedented challenges for system management. Rule-based
systems are widely deployed in practice for operational system
management. However, the alerts from various rules usually have
different problem reporting accuracy because their thresholds
are often manually set based on operators' experience and

intuition. In the meantime, due to system dependencies, a
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single problem many trigger many alerts at the same time in

- large systems and a critical guestion is which alert should be
analyzed first in the following problem determination process.
[0004] In current rule-based systems, this is handled with two
possible solutions. In one solution, each rule works in its
igsolated local context and operators have to check alerts one by
one. They may use some limited domain knowledge to decide the
importance of alerts. For example, an alert from a DNS server is
more important than an alert from a printer. Such an appreoach
is not scalable and practical for large sjstems with huge
complexity.

[0005] In a second solution, event correlation mechanisms are
used to correlate a set of alerts with a specific problem, i.e.,
to define the signatures of known problems with a set of alerts.
This approach has to assume prior knowledge of various problems
and their signatures. However, many problems are not
anticipated and well understood in large and complex IT systems.
Due to system dynamics and uncertainties, even the same problem
may manifest itself in very different ways. Therefore, it is
difficult to precisely define problem signatures in complex and

dynamic systems.

%]
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SUMMARY

[0006] A system and method for prioritizing alerts includes
extracting invariants to determine a stable set of models for
determining relationships among monitored system data.
Equivalent thresholds for a plurality of rules are computed
using an invariant network developed by extracting the
invariants. For a given time window, a set of alerts are
received from a system being monitored. A measurement value of
the alerts is compared with a vector of equivalent thresholds,
and the set of aleris is ranked.

[0007] Another method for prioritizing alerts includes collecting
historical monitoring data from one or more system components;
extracting invariants to determine a stable set of models for
determining relationships among the historical monitoring system
data; collecting management rules from system components being
monitored; computing equivalent thresholds for the management
rules using an invariant network developed by extracting the
invariants; for a given time window, receiving a set of alerts
from the system components being monitored; comparing a
measurement value of the alerts with a vector of equivalent
thresholds to compute a number of threshold violations (NTVs);

and sorting the NTVs to rank the set of alerts.
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[0008] A system for prioritizing alerts includes a program
storage media configured to store an invariants network
constructed using measurements as nodes and an edges to
represent invariant relationships among monitored system data.
The invariant network is configured to compute equivalent
thresholds for a plurality of rules. An alert generator
configured to generate alerts, for a given time window for a
gystem being monitored. A peer review mechanism is configured
to compare a measurement value to a local threshold and to
equivalent thresholds mapped from other rules to determine the
importance of the alerts.

[0009] These and other features and advantages will become
apparent from the following detailed description of illustrative
embodiments thereof, which is to be read in connection with the

accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0010] The disclosure will provide details in the following
degscription of preferred embodiments with reference to the
following figures wherein:

[0011] FIG. 1 is a block/flow diagram showing a system/method for
prioritizing alerts in a computer system and/or network in

accordance with the present principles;

4
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[0012] FIG. 2 is an example of invariant network employed in
accordance with the present principles;

[0013] FIG. 3 is a graph showing an illustrative fault model for
providing a threshold for comparison to monitored data;

[0014] FIG. 4 is a graph showing a measurement being compared
against a plurity of thresholds;

[0015] FIG. 5 is a graph showing thresholds for different context
measurements;

[0016] FIG. 6 is a block/flow diagram showing an alert ranking
mechanism for prioritizing alerts in greater detail in
accordance with an illustrative embodiment; and

[0017] FIG. 7 is a block/flow diagram showing a system/method for

prioritizing alerts in accordance with the present principles.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0018] A peer review mechanism and method are provided to rank
the importance of alerts where the top ranked alerts are more
likely to be true positives. After comparing a metric value
against its threshold to generate alerts, the present principles
also compare values with the equivalent thresholds from many
other rules to determine the importance of alerts. The present

approach has been evaluated and demonstrated its effectiveness.
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[0019] The present embodiments include a peer review mechanism
where a measurement is not only compared to a local threshold
but alsc the equivalent thresholds mapped f£rom other rules to
determine the importance of its alerts. The top ranked alerts
are more important because they get consensus from other rules
and are more likely to be true positives. Operators can use the
top ranked alerts as trustworthy evidence to prioritize their
problem determination process to prevent being misled by many
false alerts.

[0020] An invariant technology is able to discover invariant
relationships between monitoring metrics. For example, if x, vy
are CPU usages of two machines, we automatically extract their
relationships, e.g., v = £{x}). With such an invariant equation,
we are enabled to map the thresheold of one metric (e.g., x) into
an equivalent wvalue in the context of another metric (e.g. y).
Therefore, we can map the thresholds of various rules into their
equivalent thresholds in a global context to rank the
“tightness” of the thresholds and further rank the importance of
alerts. The measurement is not only checked by its own rule but
also other rules from its peers. The top ranked alerts are more
important because more peers would generate such an alert by
themselves. While each threshold might not be precisely set,

the present approach can boost problem reporting accuracy by
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introducing such a collaborative peer-review mechanism. The
consensus from a group of rules is more accurate than an
individual one, whose threshold might be biased.

[0021] Embodiments described herein may be entirely hardware,
entirely software or including both hardware and software
elements. In a preferred embodiment, the present invention is
implemented in software, which includes but is not limited to
firmware, resident software, microcode, etc.

[0022] Embodiments may include a computer program product
accessible from a computer-usable or computer-readable medium
providing program code for use by or in connection with a
computer or any instruction execution system. A computer-
usable or computer readable medium may include any apparatus
that stores, communicates, propagates, or transports the program
for use by or in connection with the instruction execution
system, apparatus, or device. The medium can be magnetic,
optical, electronic, electromagnetic, infrared, or semiconductor
system (or apparatus or device) or a propagation medium. The
medium may include a computer-readable medium such as a
gsemiconductor or sgolid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a read-only

memory (ROM), a rigid magnetic disk and an optical disk, etc.
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[0023] Referring now to the drawings in which like numerals
represent the same or similar elements and initially to FIG. 1,
a block/flow diagram shows a system/method evaluates alerts by
ranking the importance of the alerts from rule-based systems of
heterogeneous and complex systems. Since there is no way to
directly compare various metrics with different semantics and
their fault models are unknown in practice, an approach to rank
the alerts based on their probability of reporting true
positives ig beneficial.

[0024] A large system 102 may include a system having one or more
processors and memory devices. The large system 102 may include
one or more smaller systems. Each of the smaller systems may
include a set of rules for determining and ranking system or
software program alerts.

[0025] With the popularity of online services, many large-scale
distributed systems and data centers have been built as the
critical infrastructures to accommodate millions of online users
gimultaneously. The complexity of these giant systems has also
raised unprecedented challenges for operators to maintain and
manage them. These systems are usually deployed by integrating
thousands of heterogenecus components including servers,
routers, storage devices and sofitware, which are typically

provided by different vendors. Compared to large hardware-based
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systems such as telephone systems, the numerous software
components running on computing systems obscure the dependencies
and interactions among system components. While individual
components like operating éystems are already complex encough,
the magssive number of implicit component dependencies introduced
by scftware have dramatically increased the complexity of
today’s computing systems. Meantime, many of such large systems
are not static but always evolving with numerous changes such as
security patch installations, software or hardware upgrades and
configuration modifications. Therefore, the system scale,
heterogeneity and dynamics as well as hidden dependencies all
contribute to the difficulties in complexity management.

[0026] Many of such large systems are egsentially mission crit-
ical systems and even minutes of system down time could lead to
big revenue loss in business and further affect our normal life.
For example, a system failure of BlackBerry™ email service
affected millions of customers on April 17, 2007. Therefore,
service providers usually setup a large system management team
to operate their infrastructures and services. 1In practice,
operators collect large volumes of monitoring data from system
compenents to track the status of their infrastructures.

[0027] Since it is impossible to manually scan and interpret a

large volume of data in real time, operators usually set many
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rules to check data and trigger alerts. For example, if a
selected metric (e.g., CPU usage) exceeds a given threshold, an
alert will be generated to notify the operators who might follow
up with an examination. However, due to system complexity, it
is difficult to set good thresholds in rules, and a bad
threshold often leads to false positives or false negatives in
problem reporting.

[0028] Different operators may set different rules and thresholds
in their systems based on their personal management experiences
and intuition. For example, compared to a novice, an
experienced operator may set better rules and thresholds; some
operators might always tend to set higher thresholds than
others. As a result, the alerts originating from various rules
may have differxent accuracy in problem reporting and some alerts
may be more “important” than others. It is difficult to
normalize various rules and thresholds in rule management,
especially for large systems that are managed by many operators.
[0029] Due to system dependencies, a single fault or performance
problem may trigger many alerts at the same time. The guestion
becomes which alert should be analyzed first because analyzing
all alerts might take too much time to fix the problem and
obviously not all of alerts are of the same importance. For

mission critical systems, it is very important to reduce MTTR

10
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(Mean Time to Recovery) so as to keep high system reliability
and availability.

[0030] In block 103, historical monitoring data is collected from
the system components of the large system. In block 104,
invariants are extracted, which will be explained in greater
detail hereinafter. There exist many hidden invariant
relationships among various monitoring data, whose intensity
responds to the volume of external work-loads accordingly. Such
an invariant relationship enables us to compare the threshold of
one metric with that of another metric. In current rule-based
systems, each rule works in its isolated local context by
comparing a measurement with its threshold. Such a measurement
is further compared with the equivalent thresholds mapped from
other rules to rank its alerts in a global context. The top
ranked alerts are more likely to be true positives that should
be examined first in problem determination.

[0031] We introduce a collaborative peer review mechanism 130 in
importance ranking so that a measurement is not only checked by
its own rule but also other rules. As a result, an alert is
ranked as more important if it gets more consensus from other
rules.

[0032] System Invariants: System invariants characterize the

hidden invariant relationships among system monitoring metrics.

11
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We use such an invariant relationship to map the threshold of
one metric into an equivalent threshold in another metric, which
enables ranking the thresholds from various rules and
determining the importance of alerts.

[0033] Operators collect large amounts of monitoring data (103)
from complex systems (102) to track their operational status.
Log files and network traffic statistics are typical examples of
such monitoring data. This monitoring data can be considered as
the cobservable of internal system state. For online services,
when a large volume of user requests flow through distributed
systems, many of internal measurements respond to the volume of
workloads accordingly. For example, network traffic volume and
CPU usage are driven to go up and down by the intensity of
workloads. Flow intensity describes the intensity with which
internal measurements respond to the volume of workloads. For
example, a number of S5QL queries and average CPU usage (per
sampling unit) are examples of such flow intensity measurements.
For convenience, we use variables like x and y to represent flow
intensity measurements.

[0034] Since flow intensity measurements are mainly driven to
change by the same external factor - the intensity of work-
loads, they have similar evolving curves along time t. As time

series, many flow intensity measurements have strong

12
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correlations, and here we use equations like vy = f£({x)} to
characterize the relationship between two measurements x and y.
If such relationships always hold along time, they are
considered the invariants of the underlying system. No matter
how workloads change, such system invariants remain the same.
Note that the equation y = f£{x} and not the measurements x and y
is considered an invariant.

[0035] With flow intensities measured at various points across
large systems, we need to consider how to extract their re-
lationships (block 104}, i.e., with measurements x and vy,
determine how to learn a function f so that we can have y =
f(x)? We illustratively employ AutoRegressive models with
eXogenous inputs (ARX) to learn their linear relationships. At
time t, we denote the flow intensities measured at two points by
x(t) and y(t) respectively. The ARX model describes the

following relationship between two flow intensities:
o)+ ayle 1)+ +a,y(t—n)

=h@&—k}w~+bw_xﬁ—k—nr+ﬂ+b (1)

[0036] where [n, m, k] are the order of the model, and the
relationship determines how many previous steps are affecting

the current output. o and b, are the coefficient parameters

that reflect how strongly a previous step affects a current

13
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output. For convenience, we use # to denote the set of
coefficient parameters, i.e., 9==b”~3ambw~3hwnb}t

[0037] Given a window of monitoring data {x(t)y(t)ll<t<N, the Least
Squares Method (LSM) may be employed to f£ind the best & that
minimizes the error between the learned model and the given
monitoring data. Details on how to calculate # is included in
our previous work, see Jiang et al, in “Discovering Likely
Invariants of Distributed Transaction Sysatems for Automatic
System Management”, The 3™ Internmational Conference on Automatic
Computing (ICAC2006), pages 199-208, Dublin, Ireland, June 2006,
incorporated herein by reference. We use the following equation
to calculate a normalized fitness score for model validation:

> p0)-3(e)’
PIAGES§

F@)=|1- , (2)

[0038] where y is the mean of the real monitoring data y{t}.
Given the monitoring data x(t} and &, ﬁﬁw) igs the output from

the model gshown in Equation (1) . Basically Eguation (2)
introduces a metric to evaluate how well the learned model
approximates the real data. Given two flow intensities, we can
always learn a medel but only a model with high fitness score

characterizes the actual relationship. We can set a range of

14
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the order [n, m, k] rather than a fixed number to learn a list
of model candidates and then select the model with the highest
fitness score.

[0039] After we learn a model for two flow intensities, we still
need to verify whether such a relationship can hold over time.
To extract invariants from monitoring data, we try any
combination of two measurements to construct a model first and
then continue to validate whether this model fits with new
observationg, i.e., we use a brute-force search to construct all
hypotheses of invariants first and then sequentially test the
validity of these hypotheses in operation. Note that we always
have sufficient monitoring data from a 24*365 operational system
to validate these hypotheses over time. For each time window of
monitoring data, we use Equation {(2) to calculate the fitness
gcore F(#). BSince models with low fitness scores do not

characterize the real data relationships, we choose a threshold
F to filter out those models in sequential testing. Therefore,

at each time window, a model with a fitness score lower than F
will be removed from the following testing process. After
gseveral time windows, the remaining stable sets of models are

considered as the system invariants.

15
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[0040] These invariants widely exist in large distributed
gystems, which are governed by the physical properties or
software logic constraints of system components. For a typical
three-tier web system including a web server, an application
server and a database sexrver, we collected, e.g., 111
measurements and further extracted 975 invariants among them.
[0041] Referring to FIG. 2, value propagation in invariant
networks will now be explained. FIG. 2 illustrates a small
example of an invariant network that profiles the relationships

among flow intensity measurements. Each node i (represenited as

nodes 1-8) represents a measurement J/, while each edge represents

i

an invariant relationship between the two associated

measurements. Since we use a threshold ﬁ to filter out those
models with low fitness scores, not every pair of measurements
would have invariant relationships. Therefore, there also exist
disconnected sub-networks 7 and 8 in FIG. 2. All edges are bi-
directional because we always construct two models (with reverse
input and output) between two measurements.

[0042] Now consider a triangle relationship among three

measurements such as QLQ,A} Assume that we have I, =f(],) and

L::gﬁgl where £ and g are both linear functions as shown in

Equation (1). Based on the triangle relationship, theoretically

16
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we can conclude that I4wgﬂ5) = g{fUJ) According to the linear

property of functions £ and g, the function g(f(D should be
linear as well, which implies that there should exist an
invariant relationship between the measurements /, and J,.
However, since we use a threshold to filter out those models
with low fitness scores, such a linear relationship may not be
robust enough to bes considered as an invariant. This explains
why there is no direct edge between [, and I,.

[0043] while each individual invariant models some local rela-
tionship between its associated measurements, the network of
invariants could essentially capture many invariant constraints
underlying large systems. Therefore, rather than using one or
gseveral models, we combine a large number of invariants into a
network to characterize a large system and further use this
network for system management tasks in block 104 of FIG. 1. A
value can be propagated from one node into its equivalent values
at other nodes by following the network. Later, this mechanism
is used to compare the thresholds from varicus rules.

[0044] Without loss of generalization, assume that [ =x.
According to FIG. 2, we can reach the nodes {Q,@} with one hop

from I,. Given [, =x, the guestion becomes how to follow the

invarianis to estimate other measurements. Since we use the

17
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model shown in Egquation (1) to extract invariants among
measurements, all invariants are the instances of this model
template. In Eguation (1), if we set the inputs x({t}) = x at all
time steps, the output y(t) converges to a constant value y(t) =
vy, which can be derived from the following equations:

y=ay+-+a,y=bx+--+b, x+b,

Z“b+b
1+Z,t ;

[0045] For convenience, we use f;, to represent the propagation

(3)

Z“%r+b

function from [, to [;, i.e., j& . Note that the order
1+§2h1*

of invariant models is very small with n,m<2. With Equation

(3), given I, =x, we can derive the values of [, and I,. Since

these measurements are the inputs of other invariants, in the

gpame way, we can further propagate their values with one hop to

I, and [,, and with two hops to [,. We cannot estimate the
values of [/, and /; because they are not reachable from /[ .
[0046] In FIG. 2, some nodes such as /,, I, and I, can be reached

from /, via multiple paths. Between the same two nodes, multiple

paths may include different numbers of edges and each invariant
(edge} also may have different accuracy in modeling two node

relationships. The question is how to locate the best path for
18
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propagating a value from one node to another. At first, we will
choose the shortest path (i.e., with minimal number of hops) to
propagate the value between two nodes. Each invariant includes
some modeling error when it characterizes the relationship
between two measurements. These modeling errors could accumu-
late along a path and a longer path usually results in a larger
estimation error.

[0047] A fitness score may be introduced to measure the
robustness of invariants and an invariant with a higher fitness

gecore leads to better accuracy in value propagation. For

simplicity, here we use F; to represent the average fitness

score between the measurements [, and Ij. If there 1s no

invariant between [, and I;, we set F,=0. Given a specific path
s between two nodes, we can always derive an accumulated score

g, =IlF;, to evaluate the accuracy of the whole path. For multiple
paths with same number of edges between two nodes, we can use a
dynamic programming algorithm to determine the path with the
highest score ¢, and then follow this path to propagate the

value. Therefore, given a value at one node, we can always
follow the invariant network to propagate this value to all

other reachable nodes.

19
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[0048] Referring again to FIG. 1, blocks 106 and 108 form an
alerts ranking mechanism 130. In block 112, management rules
are collected from the system, and in block 106, all equivalent
thresholds are computed based on the rules (block 112) and the
invariants (block 104).

[0049] At time t, a set of alerts are received from the system(s)
in block 110, and a real measurement value of each alert is
compared with its vector of equivalent thresholds to calculate
its Number of Threshold Violations (NTV} in block 108. The NTVs
are sorted to rank the set of received alerts. The program path
returns to block 110 for a next time window.

[0050] Rules and Fault Models: Operators deploy monitoring agents
and collect real-time monitoring data to track the operational
status of their systems (block 103). Rule-based systems are
widely used to scan data and trigger alerts for problem de-
termination. However, it is difficult to set good rules and
thresholds in complex systems. In practice, operators often set
up rules and thresholds based on their system management
experience and intuition. As a result, alerts originating from
various rules often include a large number of false positives.
Large numbers of false positives often frustrate field operators

so that they either ignore the alerts or increase their thresh-
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olds to filter out the alerts, which may conversely lead to high
false negative rates.

[005]1] In the present system, rules are employed in block 112 to
assist in the determination of equivalent thresholds across
systems. Large systems are often monitored and managed by
hundreds of operators who have responsibilities for different
system segments. Each operator may have his own preference or
bias to set up rules and thresholds in his local portion of
gystems. In fact, some system components may also include
management rules designed by their vendors. S8Since all these
rules and thresholds are set in their local context with
heterogeneous components, it is difficult to normalize
thresholds and manage rules in large systems. Due to system
dependencies, a single problem may trigger a storm of alerts in
large systems. Many of the alerts might be false positives
because of a biased threshold setting.

[0052] Since these rules cannot be easily compared under
heterogeneous settings, it is difficult to decide which alerts
are important. In a small system, operators may use domain
knowledge to decide which category of alerts is more important.
For example, an alert from a DNS server might be more important
than that from a printer. However, for large systems with huge

complexity, such an approach is obviously not scalable and

21
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practical. Many large systems are critical infrastructures for
service providers to run their online services and generate rev-
enues. Operators have to fix any problems promptly so as to
maintain high system reliability and availability. Therefore,
it is too time-consuming to analyze every alert without any
guidelines and operator may also waste much time on analyzing
false positives. To this end, the present principles provide a
new approach to rank the importance of alerté, which operators
can consult as a guideline to prioritize their problem deter-
mination process.

[0053] To this end, rules (112) for a system may include any
limitation or pattern. In one example, a rule includes a

predicate and an action. For example, given a measurement X

(e.g. CPU usage), we have such a rule as: ifCr>le then

generate alertl, where x" is the threshold. The predicate can
include other single logic conditions like wx<x'* or several
joint conditions such as "x>x" and y>y” . The alert may also
include text messages to explain itself. Such rule definitions
are employed for alarm management in commercial systems. For
example, in VMware's alarm management, users can define rules to
monitor a VM'’s CPU and memory usage as well as its heartbeat

number and generate alerts with two triggering options: “Is

o)
b
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Above (<)™ and “Is Below (<}". A default monitor for a virtual
machine heartbeat is set to “Is Below” while default monitor for
all other metrics is set to “Is Above?. For simplicity, we use
several rules as shown in the above example to illustrate the
basic concepts of the present embodiments.

[0054] Theoretically, there is an unknown fault model behind a
rule. Referring to FIG. 3, two examples of such models are
represented by two curves 201 and 202, respectively. The x-axis
is the value of the measurement x while the v-axis represents

the probability of fault occurrence. Since the rule is set with

the predicate x>x', it implies that the probability of fault
occurrence increases (or at least stays constant) with the
growth of x. Otherwise, operators will not set such a predicate
to generate alerts. Conversely, if the predicate is x<x', the

probability of fault occurrence is expected to increase with the
decrease of Xx. Operators may also set a predicate like xf<ax<x§

if a fault only occurs during a specific range of x. A joint

condition will be described because xf<:t<x§ can be replaced
with two basic logic equations x>x/ and x<ux!.

[0055] Fault models underlying the basic predicates like x>x'
will now be described. The fault model shown in curve 201 (the

thick line) represents an ideal situation behind the rule
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setiting, where the probability of fault occcurrence is equal to
one after a critical wvalue. If this wvalue is chosen as the
threshold, we will get no false positives and negatives.
However, a more realistic model is shown in curve 202 (the
dotted line), where a given threshold will always lead to false
positives and/or negatives in problem reporting. Since these
theoretic fault models of various measurements are essentially
unknown in practice, operators have to select the thresholds
based on their experience and system knowledge. For example, an
operator may use the statistics of historical data to decide a
threshold.

[0056] Ranking the Importance of Alerts: In the embodiments
described herein, we do not modify the rules and thresholds in
existing rule-based systems, i.e., the mechanism for generating
alerts is untouched. In fact, for heterogeneous components,
only the operators administrating these components may have the
right system knowledge to set up rules and thresholds. Instead,
after receiving alerts from various system components in block
110 of FIG. 1, we analyze the importance of alerts with a peer
review mechanism 130 so as to reduce false positive rates, which
are the common headaches in system operation. The “importance”
here is defined as the Probability of Reporting a True Positive

(PRTP) . In the following context, we use Prob(true|x) {it is a
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conditional probability} to denote the probability of reporting
a true positive under the measurement value x. Without loss of
generalization, assume that we have the following set of rules

asgociated with the measurements in FIG. 2:

1. 1f (I, » X}, then generate alertl;
2. if (I, > y), then generate alert2;
3. if(Ig » z), then generate alert3;

where x,y,z are the thresholds. Now, given /,=x, we follow the
invariant network shown in FiIG. 2 to propagate this value and

calculate its equivalent values I; at node 2 and [, at node &
respectively. In the same way, given [,=y, we can also
calculate its equivalent values I at node 1 and /] at node 6

respectively. In addition, [ and I; can also be calculated in

the same way. For every measurement listed in the above rules,
it has three threshold values including its local threshold and

two equivalent threshold values mapped from the other two rules.

For example, for the measurement [ , it has its local threshold x

and two equivalent threshold values, I/ and [ (which are
determined in block 106 of FIG. 1).

[0057] Since the original thresholds x, y and z have different
semantics, we cannot compare them directly. For example,

assuming that x is about CPU usage and y is about network usage,
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it is meaningless to compare them in different contexts. Since
the other thresholds y and z are mapped into the local context
of x, we can compare their equivalent values with x to rank the
importance of alerts.

[0058] Referring to FIG. 4, comparing a measurement with multiple

thresholds is illustratively depicted. Assuming that we have
IT <x<[!! as shown, according to the fault model of FIG. 3, we

can conclude that:
Pr ob(true‘f N )S Pr ob(r'rue|x) <Pr ob(truelf 7 ) . (4)

[0059] Since the predicate logic of the above rules is “>%, the
PRTP will not decrease with the growth of the measurement.

Based on this property, we can rank the order of the PRTPs
without knowing their real values at different thresholds.
Therefore, we do not need a known fault model to rank the PRTPs.
Instead, we just need the predicate logic and rank the
equivalent thresholds of rules to derive their PRTPs’ ranking in
block 108 of FIG. 1. If the predicate logic of the rules is
“<%*, the order of PRTPs in Inequality (4) should be reversed.
[0060] In FIG. 4, we rank the thresholds of the rules and their
PRTPs in the context of I;. The question is whether such an

order will change in the context of anocther measurement. For

example, what is the order of y, 7; and /; in the context of 7,?
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[0061] ¥FIG. 5 illustrates these thresholds in different contexts
of measurements. Since /, and J, have a linear relationship, if
x<[] along the axis of I,, we will also have y>IJ along the axis
of I,. Therefore, the order of thresholds will not change even

if we map them into different context of measurements. As a
result, the order of their PRTPs will mnot change either. Since
the fault models underlying various measurements are different,

the real values of PRTPs calculated in different measurement

contexts might be quite different. For example, I&obﬁﬁmmh)
(calculated with the fault model of /) may be different from

Pro@z@vmfg) (calculated with the fault model of J,} though their

thresholds x and /; are equivalent. However, the order of PRTPs

will not change no matter which fault models are used, i.e., if

I&obh@1wh)<l%obh@1mpf) in the context of 7, we will also have

Promﬁ@1w1§)<IkobH&mmb0 in the context of I7,.

[0062] Referring to FIG. 1, for some large systems (102), it is
resource-consuming to feed large volumes of real-time monitoring
data to a central point (e.g. network operation center) for data
analysis. Instead, monitoring data (103) is processed by local
rule-based agents, which forward their alexits rather than the

data itself to the central point, i.e., we only see alerts but
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not monitoring data at the central point. In this case (denoted
by Case I), we collect historical monitoring data (in block 103)
offline to extract invariants {(in block 104) and then collect
the rules from various system components (in block 112).
Following the extracted invariant network 104, we calculate the
equivalent thresholds of rules in block 106 and further rank
them in block 108 to decide the importance order of their alerts
from block 110. For example, with Inequality {(4), we rank the
alerts with the following descent order of importance: alert2,
alertl and alerit3. Since the lowest ranked alerts are likely to
be false positives, operators might want to double check whether
they have set the right thresholds for this portion of alerts.
[0063] Since the order of alerts will not change in different
context of measurements, we can map all threshelds into the same
context of a single measurement for comparison. Given n
threshelds in an invariant network, here we just need n—-1
mappings to compare these thresholds. All these steps may he
done offline. Now, at any time &, after we receive a subset of
alerts in block 110, we follow the order computed offline to
rank this specific subset of alerts. For example, if both
alert?2 and alert3 are received at time t, we know that alert2 is
more important than alert3 based on the ranking of all alerts.

FIG. 1 illustrates the offline and online portions of Case I.
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Note that since real-time data is not avallable at the central
point, we essentially use the static thresholds rather than the

current measurement values to rank the importance of alerts,
i.e., mathematically we assume that Prob@1mp;[>x)=fkob@1mhl where

I is the measurement value and x is its threshold. This follows
the fault model represented by curve 201 in FIG. 3.
[0064] In the above case, we do not consider how much the current

measurement I deviates from its threshold x. In general, the
curve 202 shown in FIG. 3 illustrates that I%ob&nwp;f>x)

increases as the value of I grows. If both measurement values
and alerts are available at the central point, we should use the
real values rather than their thresholds to rank alerts. In
this case (denoted by Case II), as shown in FIG. 4, we compare
the real measurement value against all equivalent thresholds to
determine the Number of Threshold Viclaticns (NTV). Note that
we only do such comparisons to calculate NIV after we receive an
alert, i.e., the real value at least violates its local thresh-

old so that its NTV is at least 1. For example, in FIG. 4, if
x<I <I}, NTV is 2 because I, is larger than the thresholds x and

Ij. If I,>I, NTV is 3. ©Note that the order of equivalent

thresholds remaing the same in different context of

measurements. These equivalent thresholds are essentially used
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as the reference positions in different contexts to compare real
values and later we use NTVs to rank alerts.

[0065] If a real measurement violates more equivalent thresholds,
its alert has a higher PRTP and it is more important to follow
up with an examination. Besgides its local rule, the NTV
esgentially represents the number of other rules (peers) that
agree with such an alert.

[0066] In Case II, we follow the same offline steps shown in FIG.
1 to collect monitoring data (103) and rules (112), extract
invariants (104) and calculate the equivalent threshold values
(106). However, given n measurements with thresholds in an
invariant network, each threshold is mapped into the context of
the other rn-1 measurements and we have total nOr—ﬂ mappings. As
a result, each measurement has n thresholds including its local
threshold and n-1 equivalent thresholds mapped from other rules.

For example, [, has its local threshold x and two equivalent

thresholds I and /] mapped from the other two rules as well.

A1l these steps are done offline and each measurement has a
vector to store the equivalent thresholds in its context. Now
at time t, after we receive a set of alerts online (110), the
real measurement value associated with each alert is compared
with all equivalent thresholds to determine its NTV. We then

sort their NTVs to rank the importance of alerts.
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[0067] The difference between Case I and Case II is whether we
use real measurement values to rank alerts. In Case II, the
central point receives the alerts as well as real measurement
data. Conversely, in Case I, only the alerts are forwarded to
the central point. However, the approaches in two cases can be
unified with Method 1.

METHOD 1:
1. Collect historical monitoring data from systems;
2. Extract invariants;
3. Collect management rules from systems;
4. Compute all equivalent thresholds.
5. At time t, receive a set of alerts from systems;
6. Compare the real measurement value of each alert with its
vector of equivalent thresholds to calculate its Number of
Threshold Violations (NTV);
7. Sort NTVs to rank the set of received alerts;
8. Return to Step 5.
[0068] At step 6, if we replace the real measurement value with
its local threshold value, essentially we can compare this local
threshold with the equivalent thresholds of other rules to get
NTV. If we sort the NTVs, we will get the same order of alerts
as that resulting from Case I. Some rules may have a dynamic

thresholding mechanism. For every new threshold, at step 4,
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Method 1 should re-propagate its new value to the other n — 1
nodes once.

[0069] In Case II, we can map the real measurement values into
the same context and compare them directly to rank alerts.
However, when many rules are violated under various system
faults, their measurements may not follow the original invariant
relationships anymore. Therefore, we cannot use the same
invariant network to propagate a value from one node to others
at this time. In fact, if we still have the same invariant
network, the real values observed at two nodes should exactly
reflect their mapping relationship and they are already
“egquivalent”, i.e., we can just observe the real values rather
than map their values. Instead, in Method 1, it is the
threshold value that propagates through the invariant network
because the thresholds of various rules are arbitrarily set and
do not follow those invariant relationships. Conversely,
measurement values are observed from real systems, and they
naturally follow the constraints of their underlying systems.
[0070] Real measurements are locally compared to the equivalent
thresholds that are mapped from other rules. Note that these
equivalent thresholds are mathematically derived but do not
exist in real systems. They are employed as the references to

compare the aggressiveness or conservativeness of operators’
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threshold selection practice. Even if some invariants will not
hold at some threshold values in reality, the “virtual”
equivalent thresholds can still be calculated in the same way
and used as the references to compare the “tightness” of various
rules. In addition, it is unnecessary to rank alerts with small
differences. For example, if the real measurement values of two
alerts both viclate all equivalent thresholds, they are equally
critical though their real values may have some differences.
Therefore, in Method 1, we use NTVs rather than real
measurements to rank alerts.

[0071] Referring to FIG. 6, the alerts ranking mechanism 130 is
shown in greater detail. In block 131, an invariant network is
employed to calculate equivalent thresholds for various rules.
In block 132, a real measurement is compared with its vector of
equivalent thresholds to compute a number of threshold
violations (NTV). In block 133, the NTV‘s of each measurement
are sorted to rank the importance of their alerts.

[0072] The present embodiments could add value to existing
invariant technology in at least the following aspects: 1. It
can immediately improve the current rule-based systems by
introducing the present approach to rank the importance of
alerts so that operators can prioritize their problem

determination process to fix problems much faster with higher
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accuracy. The present approach is able to filter out those
alerts that are more likely to be false posgitives. 2. Since
the low ranked alerts are more likely to be false positives,
operators can ugse this information to double check whether they
have set the right thresholds for these portions of alerts and
further improve the problem reporting accuracy. This could
greatly reduce the cost of system management since operators
will not be flocded with large number of false alerts.

[0073] Extensions: In current rule-based systems, each
measurement is compared with its own thresheld to generate
alerts and each rule works in its isolated local context. Such
a measurement is further compared with the equivalent thresholds
mapped from other rules to determine the importance of its
alert.. Therefore, with invariant networks, we are enabled to
bring individual thresholds into a global context. We introduce
a peer-review mechanism so that a measurement is not only
checked by its own rule but also other rules from its peers.
Alerts are ranked based on NTVs, which represent how many peers
agree with a local threshold. An alert with higher NTVs should
be ranked more important because more peers would generate such
an alert by themselves. Operators set rules and thresholds by
their experience and intuition. While each threshold might not

be precisely set, the present approach can boost problem
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reporting accuracy by introducing such a collaborative peer-
review mechanism. The consensus from a group of rules is more
accurate than an individual one, whoge threshold might be
biased. Though we use the “fault models” to illustrate our comn-
cept, our appreoach can alsco be used to manage alerts for other
tasks such as performance and security management. For example,
we may replace fault models with attack models or anomaly models
for alarm management of security problems.

[0074] We assume that the predicate logic of all rules is

“x>x'* (denoted by *>" logic), where x is the measurement and x7

ig its threshold. If the predicate logic of rules is

“I<IT”

(denoted by "<* logic), our approach and Method 1 remain
the same. However, under "“<” logic, if a measurement value gets
smaller, its NTVs will be higher, which is reversed under ">"
logic. In practice, some rules hgve “>% logic while others may
have “<" logic. The gquestion is how to rank alerts from the
mixture of these rules. Since the fault models behind various
measurements are unknown, we rank the PRTPgs of alerts without
knowing their real values. However, due to different fault
models, we cannot rank the PRTPg by comparing one threshold in
#s# logic with another one in "<’ logic, i.e., the order of

PRTPs cannot be directly derived from the order of thresholds.

For example, under ">% logic, the PRTP increases as the mea-
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surement value grows. Conversely, under “<” logic, the PRTP
decreases as the measurement value grows. We can only rank
these alerts with their real PRTP values which are unknown in
practice. Therefore, based on the predicate logic of rules, we
have to split alerts into two clusiers and rank them separately.
[0075] In fact, rules with “>% or “<“ are set to monitor
different system states such as system overloading or system
down. At a specific gsystem state, many of alerts may only
belong to one cluster. Note that we only rank the set of alerts

received at the same time steps.

[0076] The predicate of some rules may also include joint

conditions such as “x/ <x<x;” and “x>x" and y>y"”. The same

question is how to rank alerts from such rules with others. A

joint condition can be composed with several basic “>" and "<*

T 5

logics. For example, “x/ <x<x;” can be rewritten as “x>x/” and

“x<xI". For all “>* logic in a joint “and” condition, the logic

with the highest equivalent threshold is used to rank its alert
because it subsumes all other *>” logic. Conversely, for all
“<" logic in a joint “and” condition, the logic with the lowest
equivalent threshold is used to rank its alert because it

gubsumes all other “<” logic as well.
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[0077] For multiple logic in a joint “or” condition, we can use
the real measurement values to determine which logic is
satisfied and only this logic is then used to rank the alert
associated with this condition. Note that a joint “or”
condition is not common in practice because it cannot
distinguish different scenarios in problem reporting.

Therefore, we can convert multiple “s* logic (or “<" logic}) in a
joint condition into a single “>* logic (or “<” logic). If a
joint condition includes both “>” and “<” logic, we will rank
the single alert among both clusters of “>" and "<” alerts. A
rule with a joint condition can be converted into a rule with a
single “>"“ logic and/or a single “<"“ logic, which can be further
ranked with other rules.

[0078] As shown in FIG. 2, there may exist several disconnected
invariant networks and not every measurement node is always
reachable from another one. It is difficult to rank the alerts
originating from the measurements that are not reachable from
each other. It is the invariant network that essentially
enables us to estimate equivalent threshold values and further
rank the importance of alerxts. Therefore, we can only rank the
alerts from the measurements within the same sub-network but not
across disconnected sub-networks. However, in practice most of

measurements belong to the same invariant network because they
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respond to the same external factor - the volume of work-loads
accordingly. Compared to analyzing each alert separately, it is
still meaningful to rank alerts within each invariant sub-
network and further analyze every cluster of alerts with their
importance order.

[0079] Referring to FIG. 7, a system/method for prioritizing
alerts is illustratively depicted. In block 402, invariants are
extracted to determine a stable set of models for determining
relationships among monitored system data. This may include
computing a fitness score for monitored data models in a given
time window in block 404; filtering data models below a fitness
threshold in block 405; and over a plurality of time windows,
congsidering remaining monitored data models as invariants in
block 406.

[0080] In block 408, equivalent thresholds are computed for a
plurality of rules using an invariant network developed by
extracting the invariants. The invariant network includes nodes
which represent measurements. In block 410, values are
propagated between the nodes of the invariant network to
estimate other measurements. In block 411, the propagation of
values includes mapping thresholds from‘other nodes to provide

eguivalent thresholds.
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[0081] In block 412, for a given time window, a set of alerts is
received from a system being monitored. 1In block 414, a
measurement value of the alerts is compared with a vector of
equivalent thresholds. This comparison of equivalent thresholds
is used to determine an importance of an alert corresponding to
the measurement value. The importance may include a probability
of reporting a true positive. The comparison may be based on
the number of thresheold viclations (NTVs) in block 415.

[0082] In block 416, the set of alerts are ranked. The ranking
includes handling the alerts in order of importance in block
418. The ranking may be provided by sorting the NTVs to rank
the set of alerts.

[0083] Having describgd preferred embodiments of a system and
method for ranking the importance of alerts for problem
determination in large systems (which are intended to be
illustrative and not limiting), it is noted that modifications
and variations can be made by persons skilled in the art in
light of the above teachings. It iz therefore to be understood
that changes may be made in the particular embodiments disclosed
which are within the scope and spirit of the invention as
outlined by the appended claims. Having thus described aspects

of the invention, with the details and particularity required by
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the patent laws, what is claimed and desired protected by

Letters Patent is set forth in the appended claims.
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WHAT IS CLAIMED IS:

1. A method for prioritizing alerts, comprising:

extracting invariants to determine a stable set of models
for determining relationships among monitored system data;

computing equivalent thresholds for a plurality of rules
using an invariant network developed by extracting the
invariants;

for a given time window, receiving a set of alerts from a
system being monitored;

comparing a measurement value of the alerts with a vector
of equivalent thresholds; and

ranking the set of alerts.

2. The method as recited in claim 1, wherein extracting
invariants includes:

computing a fitness score for monitored data models in a
given time window;

filtering out the monitored data models below a fitness
threshold; and

over a plurality of time windows, considering remaining

monitored data models as invariants.
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3. The method as recited in claim 1, wherein the
invariant network includes nodes which represent measurements
and further comprising propagating values between the nodes of

the invariant network to estimate other measurements.

4. The method as recited in e¢laim 1, wherein propagating
values includes mapping thresholds from other nodes to provide

equivalent thresholds.

5. The method as recited in claim 1, wherein comparing a
measurement value of the alerts with a vector of egquivalent
thresholds includes comparing equivalent thresholds to determine
an importance of an alert corresponding to the measurement

value.

6. The method as recited in claim 1, wherein the

importance includes a probability of reporting a true positive.

7. The method as recited in claim 1, wherein ranking

includes handling the alerts in order of importance.

8. The method as recited in claim 1, wherein comparing a

measurement value of the alerts with a vector of eguivalent
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thresholds includes determining a number of threshold vioclations

(NTVs) ; and sorting the NTVs to rank the set of alerts.

o. A computer readable medium comprising a computer
readable program, wherein the computer readable program when
executed on a computer causes the computer to perform the steps

of claim 1.

10. A method for prioritizing alerts, comprising:

collecting historical monitoring data from one or more
gystem components;

extracting invariants to determine a stable set of models
for determining relationships among the historical monitoring
syatem data;

collecting management rules from system components being
monitored;

computing equivalent thresholds for the management rules
using an invariant network developed by extracting the

invariants;

for a given time window, receiving a set of alerts from the

gystem components being monitored;
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comparing a measurement value of the alerts with a vector
of equivalent thresholds to compute a number of threshold
violations (NTVs); and

gorting the NTVs to rank the set of alerts.

11. The method as recited in claim 10, wherein extracting
invariants includes:

computing a fitness score for monitored data models in a
given time window;

filtering out the monitored data models below a fitness
threshold; and

over a plurality of time windows, considering remaining

menitored data models as invariants.

12. The method as recited in claim 10, wherein the
invariant network includes nodes which represent measurements
and further comprising propagating values between the nodes of

the invariant network to estimate other measurements.

13. The method as recited in claim 12, wherein propagating

values includes mapping thresholds from other nodes to provide

equivalent thresholds.
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14. The method as recited in claim 10, wherein comparing a
measurement value of the alerts with a vector of equivalent
thresholds includes comparing equivalent thresholds to determine
an importance of an alert corresponding to the measurement

value.

15. The method as recited in claim 10, wherein the

importance includes a probability of reporting a true positive.

16. The method as recited in claim 10, wherein sorting

includes handling the alerts in order of importance.

17. A computer readable medium comprising a computer
readable program, wherein the computer readable program when
executed on a computer causes the computer to perform the steps

of claim 10.

18. A system for prioritizing alerts, comprising:

a program storage media configured to store an invariants
network constructed using measurements as nodes and an edges to
represent invariant relationships among monitored system data,
the invariant network being configured to compute equivalent

thresholds for a plurality of rules;
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an alert generator configured to generate alerts, for a
given time window for a system being monitored; and

a peer review mechanism configured to compare a measurement
value to a local threshold and to equivalent thresholds mapped

from other rules to determine the importance of the alerts.

12. The system as recited in c¢laim 18, wherein the
invariant network includes nodes which represent measurements
and values are propagated between the nodes of the invariant

network to estimate other thresholds or measurements.

20. The system as recited in claim 18, wherein the

importance includes a probability of reporting a true positive.

21. The system as recited in claim 18, wherein the

measurement value of the alerts includes a vector of equivalent

thresholds having a number of thresheold viclations (NTVs).
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FIG. 7
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