

Office de la Propriété

Intellectuelle
du CanadaUn organisme
d'Industrie CanadaCanadian
Intellectual Property
OfficeAn agency of
Industry Canada

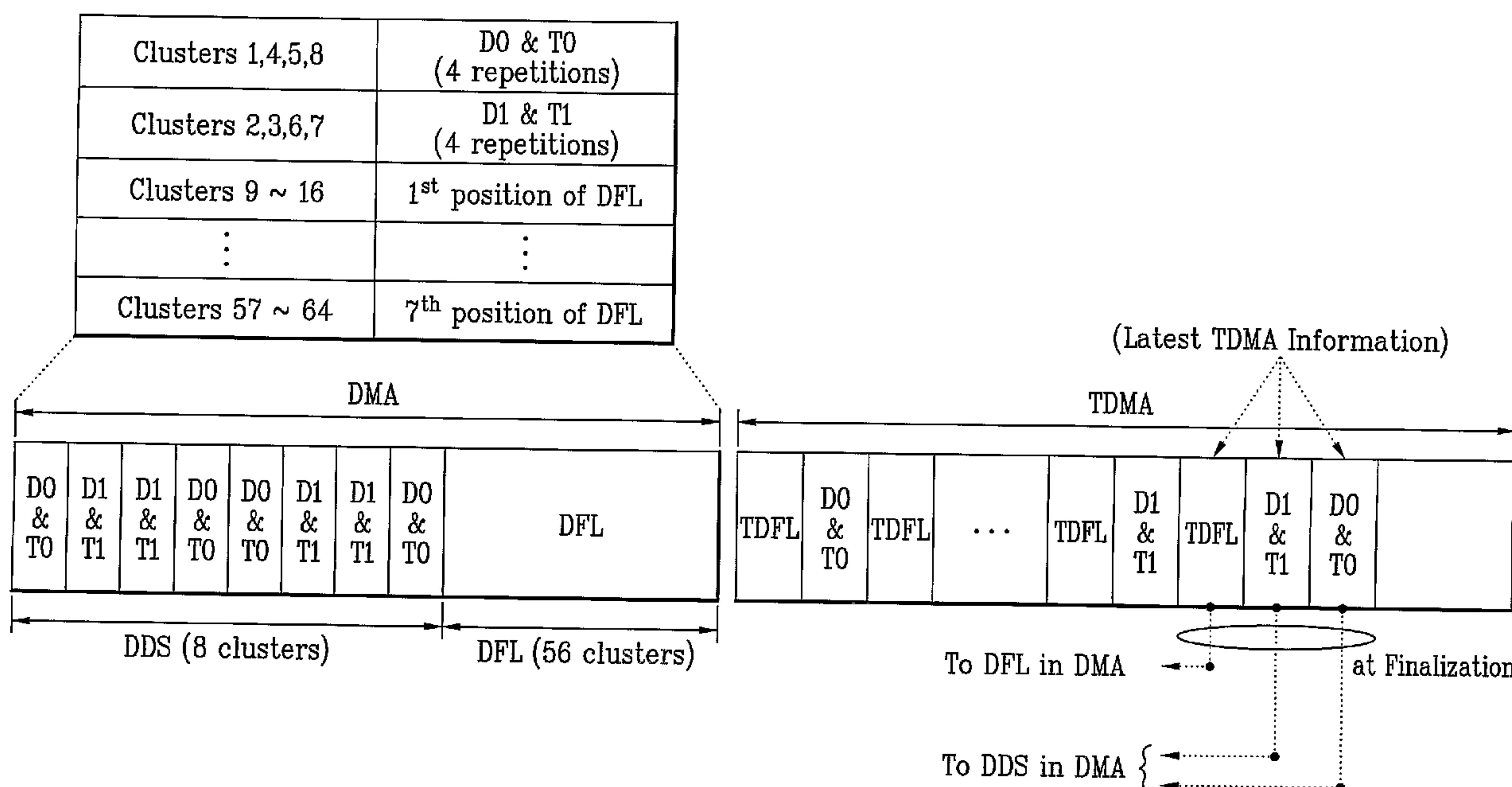
CA 2517112 C 2012/11/13

(11)(21) 2 517 112

(12) BREVET CANADIEN
CANADIAN PATENT

(13) C

(86) Date de dépôt PCT/PCT Filing Date: 2003/09/30
 (87) Date publication PCT/PCT Publication Date: 2004/09/10
 (45) Date de délivrance/Issue Date: 2012/11/13
 (85) Entrée phase nationale/National Entry: 2005/08/24
 (86) N° demande PCT/PCT Application No.: KR 2003/002008
 (87) N° publication PCT/PCT Publication No.: 2004/077415
 (30) Priorités/Priorities: 2003/02/25 (KR10-2003-0011830);
 2003/03/18 (KR10-2003-0016775)


(51) Cl.Int./Int.Cl. G11B 7/00 (2006.01),
 G11B 11/00 (2006.01), H04L 1/22 (2006.01)

(72) Inventeurs/Inventors:
 PARK, YONG CHEOL, KR;
 KIM, SUNG DAE, KR

(73) Propriétaire/Owner:
 LG ELECTRONICS INC., KR

(74) Agent: MOFFAT & CO.

(54) Titre : DISQUE OPTIQUE INSCRIPTIBLE UNE SEULE FOIS, ET PROCEDE ET APPAREIL POUR ENREGISTRER
 DES DONNEES DE TRAITEMENT SUR UN TEL DISQUE
 (54) Title: WRITE-ONCE OPTICAL DISC, AND METHOD AND APPARATUS FOR RECORDING MANAGEMENT
 INFORMATION ON WRITE-ONCE OPTICAL DISC

(57) Abrégé/Abstract:

A writable-once optical recording medium such as a BD-WO, and a method and apparatus for managing the writable-once optical recording medium, are provided. The recording medium includes at least one recording layer having at least one temporary defect management area and at least one final defect management area. The method includes recording temporary defect management information in the temporary defect management area of the recording medium, the temporary defect management information including disc usage management information indicating a recording use status of the recording medium; and transferring, at a transfer stage, the temporary defect management information from the temporary defect management area to the final defect management area of the recording medium.

ABSTRACT

A writable-once optical recording medium such as a BD-WO, and a method and apparatus for managing the writable-once optical recording medium, are provided. The recording medium includes at least one recording layer having at least one temporary defect management area and at least one final defect management area. The method includes recording temporary defect management information in the temporary defect management area of the recording medium, the temporary defect management information including disc usage management information indicating a recording use status of the recording medium; and transferring, at a transfer stage, the temporary defect management information from the temporary defect management area to the final defect management area of the recording medium.

**WRITE-ONCE OPTICAL DISC, AND METHOD AND
APPARATUS FOR RECORDING MANAGEMENT INFORMATION ON
WRITE-ONCE OPTICAL DISC**

5 **Technical Field**

The present invention relates to a writable-once optical disc and a management information recording method and apparatus, and more particularly, to a method and apparatus for efficiently recording disc usage management 10 information on a writable-once optical disc.

Background Art

Optical disc, which is a kind of optical recording media and can record a 15 large amount of data, is widely being used. Today, a kind of innovative high-density digital versatile disc (HD-DVD) such as a blue ray disc (Blu-ray Disc), which can record and store video data of high quality and audio data of high fidelity for a long time, is under development.

The Blu-ray disc is a next generation optical recording solution that can 20 store a larger amount of data than a conventional DVD. The Blu-ray disc employs a blue-violet laser with the wavelength of 405 nm which is shorter than the wavelength of 650 nm of a red laser used to access a conventional DVD. The Blu-ray disc has generally a thickness of 1.2 mm and a diameter of 12 cm. It includes a light transmission layer whose thickness is 0.1 mm so that the Blu-ray 25 disc can store a larger amount of data than the current DVDs.

Various standards related to the Blu-ray discs are in development. Among the different types of Blu-ray discs, a Blu-ray Disc Rewritable (BD-RE) and a Blu-ray Disc Write-Once (BD-WO) are being developed.

FIG. 1 schematically illustrates a structure of a recording area of a general BD-RE. Referring to FIG. 1, the BD-RE includes a recording layer divided into a lead-in area, a data area and a lead-out area. The data area includes a user data area for recording user data thereon, and an inner spare area 5 ISA0 and an outer spare area OSA0 each allocated in the inner tracks and the outer tracks of the disc. These spare areas are used as replacement areas for replacing data in a defective area of the user data area according to linear replacement.

In the BD-RE, if a defective area is found in the user data area during 10 recording, data in the defective area is transferred to and recorded on a spare area using linear replacement. Further, as defect management information for managing the defective area, position information and the like relating to the defective area and the corresponding spare area are recorded on defect management areas (DMA 1 ~ DMA 4) in the lead-in area and the lead-out area. 15 Also, since data can be recorded on and erased from any area of the BD-RE repeatedly (since the BD-RE is rewritable), the entire BD-RE can be randomly used irrespective of a specific recording mode.

In contrast, in a writable-once Blu-ray disc (BD-WO), data can be recorded only one time on a specific area of the disc. As a result, the BD-WO 20 has certain limitations pertaining to recording modes and in randomly using the entire area of the disc due to the defect management difficulty.

Further, in a BD-WO, management of the defective areas is one of the important matters that needs to be addressed, especially for data recording operations. But since the BD-WO is still in the early development stage, there 25 are no schemes, no disc structures, no apparatuses, and no methods on how to manage the defective areas of the BD-WO, which will be needed for the BD-WO to be commercially viable and operationally feasible. Accordingly, for the BD-WO, a unified specification is required that would satisfy the

aforementioned advanced requirements. But any proposed specification relating to the current BD-RE cannot be used because it does not address the needs of the BD-WO.

5 Disclosure of Invention

Accordingly, the present invention is directed to a writable-once optical disc and a management information recording method and apparatus that substantially obviate one or more problems due to limitations and disadvantages 10 of the background art.

An object of the present invention is to provide a writable-once optical disc and a management information recording method and apparatus for effectively recording and managing disc usage management information therein.

Additional advantages, objects, and features of the invention will be set 15 forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended 20 drawings.

To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, there is provided a method of managing a writable-once optical recording medium, the recording medium including at least one recording layer, the method comprising: 25 providing a user area and a non-user area on the at least one recording layer of the recording medium; providing at least one temporary defect management area in at least one of the user area and the non-user area, the at least one temporary defect management area allocated to store therein temporary defect management

information including disc usage management information, the disc usage management information indicating a recording or non-recording status of the user area of the recording medium; and providing at least one final defect management area in the non-user area.

5 In accordance with an aspect of the present invention, a method of managing a writable-once optical recording medium, the recording medium including at least one recording layer, the at least one recording layer having at least one temporary defect management area and at least one final defect management area, includes: recording temporary defect management information in the at least one temporary defect management area of the recording medium, the temporary defect management information including disc usage management information indicating a recording use status of the recording medium; and transferring the temporary defect management information from the at least one temporary defect management area to the at least one final defect management area of the recording medium.

10 In accordance with an aspect of the present invention, an apparatus for managing a writable-once optical recording medium, the recording medium including at least one recording layer, includes a combination of components configured for: providing a user area and a non-user area on the at least one recording layer of the recording medium; providing at least one temporary defect management area in at least one of the user area and the non-user area, the at least one temporary defect management area allocated to store therein temporary defect management information including disc usage management information, the disc usage management information indicating a recording or non-recording status of the user area of the recording medium; and providing at least one final defect management area in the non-user area.

15 In accordance with an aspect of the present invention, an apparatus for managing a writable-once optical recording medium, the recording medium

including at least one recording layer, the at least one recording layer having at least one temporary defect management area and at least one final defect management area, the apparatus includes a combination of components configured for: recording temporary defect management information in the at 5 least one temporary defect management area of the recording medium, the temporary defect management information including disc usage management information indicating a recording use status of the recording medium; and transferring the temporary defect management information from the at least one temporary defect management area to the at least one final defect management 10 area of the recording medium.

In accordance with an aspect of the present invention, a writable-once optical recording medium includes: at least one recording layer including a user area and a non-user area; at least one temporary defect management area provided in at least one of the user area and the non-user area of the recording 15 medium, so as to store therein temporary defect management information including disc usage management information, the disc usage management information indicating a recording or non-recording status of the user area of the recording medium; and at least one final defect management area provided in the non-user area.

20 In accordance with an aspect of the present invention, a writable-once optical recording medium includes: at least one recording layer including at least one temporary defect management area and at least one final defect management area, wherein temporary defect management information is recorded in the at least one temporary defect management area of the recording medium, the temporary defect management information including disc usage management 25 information indicating a recording use status of the recording medium, and wherein the temporary defect management information is transferred from the at least one temporary defect management area to the at least one final defect

management area of the recording medium.

It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as 5 claimed.

Brief Description of the Drawings

Further objects and advantages of the invention can be more fully 10 understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

FIG. 1 schematically illustrates a structure of a general single-layer BD-RE;

FIG. 2 is a block diagram of an optical recording/reproducing device 15 according the present invention;

FIG. 3 illustrates a structure of a writable-once optical disc such as a single layer BD-WO according to an embodiment of the present invention;

FIG. 4 illustrates an example of a DDS structure on a rewritable disc, a TDDS structure on a BD-WO and a disc management information recording 20 method for the BD-WO according to an embodiment of the present invention;

FIG. 5 illustrates a structure of a writable-once optical disc such as a dual layer BD-WO according to an embodiment of the present invention;

FIGS. 6A and 6B illustrate a structure of the clusters in a DMA of a dual layer BD-RE, for explaining further the aspects of the present invention;

FIG. 7 illustrates a structure of a DMA and a TDMA of a dual layer BD-WO and a method of transferring data from the TDMA to the DMA according to 25 an embodiment of the present invention;

FIG. 8 illustrates a structure of a DMA and a TDMA of a dual layer BD-

WO and a method of transferring data from the TDMA to the DMA according to an embodiment of the present invention;

FIG. 9 illustrates a structure of a DMA and a TDMA of a dual layer BD-WO and a method of transferring data from the TDMA to the DMA according to 5 an embodiment of the present invention;

FIG. 10 illustrates a structure of a DMA and a TDMA of a dual layer BD-WO and a method of transferring data from the TDMA to the DMA according to an embodiment of the present invention;

FIG. 11 illustrates a structure of a DMA and a TDMA of a dual layer BD-10 WO and a method of transferring data from the TDMA to the DMA according to an embodiment of the present invention; and

FIG. 12 illustrates a structure of a writable-once optical disc such as a single layer BD-WO according to another embodiment of the present invention.

15 **Best mode for Carrying Out the Invention**

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals will be used 20 throughout the drawings to refer to the same or like parts.

FIG. 2 is an example of a block diagram of an optical disc recording/reproducing device 20 according to an embodiment of the present invention. The optical disc recording/reproducing device 20 includes an optical pickup 22 for writing/reading data to/from an optical recording medium 21, a servo unit 23 for controlling the pickup 22 to maintain a distance between an objective lens of the pickup 22 and the recording medium 21 and for tracking 25 relevant tracks on the recording medium 21, a data processor 24 for processing and supplying input data to the pickup 22 for writing, and for processing data

read from the recording medium 21, an interface 25 for exchanging data and/or commands with any external host 30, a memory or storage 27 for storing information and data therein including defect management data as needed (e.g., temporary defect management information, etc.) associated with the recording 5 medium 21, and a microprocessor or controller 26 for controlling the operations and elements of the recording/reproducing device 20. Data to be written/read to/from the recording medium 21 may also be stored in the memory 27 if needed. All the components of the recording/reproducing device 20 are operatively coupled. The recording medium 21 is a recording medium of write-once type 10 such as a BD-WO.

All the methods and disc structures discussed herein according to the present invention can be implemented using the recording/reproducing device 20 of FIG. 2 or any other suitable device/system. For example, the microcomputer 26 of the device 20 may be used to control allocation of the disc structure and to 15 control the recording of defect management data on the recording medium and the transferring of the defect management data from a temporary area (e.g., TDMA) to a permanent or final area (e.g., DMA) on the recording medium 21. The TDMA and DMA will be discussed later in more detail.

A defect management information recording method for a writable-once 20 optical disc such as a BD-WO according to the preferred embodiments of the present invention will be now described in detail with reference to the accompanying drawings. For a discussion convenience, a writable-once Blu-ray disc (BD-WO) will be exemplified. Herein, two types of a BD-WO - a single layer BD-WO and a dual layer BD-WO – are discussed. The single layer BD- 25 WO has a single recording layer, whereas the dual layer BD-WO has two recording layers.

FIG. 3 illustrates a structure of a writable-once optical recording medium such as a single-layer BD-WO according to an embodiment of the present

invention. Referring to FIG. 3, the BD-WO includes a lead-in area, a data area, and a lead-out area allocated on the single recording layer. Each of the lead-in area and the lead-out area includes a plurality of defect management areas (DMA 1 and DMA 2; DMA 3 and DMA 4) for storing therein DMA information for defect management. Each of the DMAs 1-4 has a fixed size, e.g., 32 clusters. Generally, in view of the importance of defect management, the same information is written in each of the DMAs 1-4 so that if one of the DMAs is defective, then a different DMA can be accessed to obtain the defect management information.

It should be noted that in a general BD-RE, since data can be repeatedly recorded on and erased from a DMA (although the size of the DMA is limited), a DMA of large size is not required. However, in a BD-WO according to the present invention, since data cannot be repeatedly recorded on and erased from the DMA, a DMA of large size is required for defect management.

Still referring to FIG. 3, the lead-in area further includes a temporary defect management area (TDMA 1) for temporarily storing defect management information therein. The data area includes an inner spare area ISA0, a user data area, and an outer spare area OSA0. Parts of or the entire ISA0 and OSA0 are used as replacement areas for defective areas in the user data area according to linear replacement. The outer spare area OSA0 includes a temporary defect management area (TDMA 2). The defect management information temporarily stored in the TDMA 1 and/or TDMA 2 is also referred to herein as TDMA information.

In one embodiment, the TDMA 1 allocated to the lead-in area has a fixed size, whereas the TDMA 2 allocated to the outer spare area OSA0 has a variable size depending upon the size of the spare area(s). For example, if the OSA0 has a size of $N \times 256$ clusters where $N > 0$ (N = integer), then the TDMA 2 has a size of P clusters where $P = (N \times 256)/4$.

In one example, the same information may be written in each of the TDMA 1 and 2. In another example, the TDMA 1 and 2 may be sequentially used to sequentially record the TDMA information. Regardless, during replacement writing operations for writing data of a defective area onto a spare area, TDMA information is generated (e.g., under control of the microcomputer 26) and written onto the TDMA 1 and/or 2. The TDMA are also updated periodically or as needed. When the BD-WO is ready to be finalized (e.g., data writing operation in the user data area is completed, the TDMA(s) are full, or a finalize command received from a user, etc.), then the TDMA information (latest 10 version) temporarily written in the TDMA(s) is transferred and written onto one or each of the DMAs 1-4.

The TDMA information written in each of the TDMA 1 and 2 includes temporary defect list (TDFL) information and temporary disc definition structure (TDDS) information. In one embodiment, the TDFL information includes one 15 or a plurality of TDFLs (TDFL #1 ~ TDFL #n). Each TDFL includes one or a plurality of defect entries identifying defects and corresponding replacement areas on the disc. Each defect entry includes location information pertaining to a defective area of the user data area and the corresponding replacement area. For example, during a data recording operation on the BD-WO, if a defective area is 20 found in the user data area, then data written or to be written in that defective area is written in a part (replacement area) of a spare area (e.g., ISA0 or OSA0) according to a linear replacement scheme. Then the information pertaining to the defective area and the replacement area and their relationship is entered as a defect entry in the TDFL. For instance, this information may include a first 25 physical sector number of the defective area on the disc, a first physical sector number of the replacement area (spare area) corresponding to that defective area, and any other data pertaining to the defect for defect management.

In one embodiment, the TDDS information written in each of the TDMA

1 and 2 includes one or a plurality of TDDSs (TDDS #1 ~ TDDS #n). Each TDDS has a fixed size (e.g., one cluster) and includes location information pertaining to the TDFL(s) so that the location of any TDFL can be quickly identified by accessing the TDDS(s). This location information can be written in 5 a portion of Sector 0 of the one cluster and may include one or more physical sector numbers each indicating a location of a TDFL written on the BD-WO, and any other information pertaining to the TDFL information. Here, a cluster has 32 sectors each sector having 2048 bytes.

10 Each TDDS also includes recording mode information. The recording mode information identifies a recording mode of the BD-WO and can be written in a portion of Sector 0 of the one cluster. The location information pertaining to the TDFL(s) and the recording mode information discussed above are also referred to herein as a TDDS part. Here, the TDDS part occupies the entire Sector 0 (or any other designated location area).

15 Each TDDS further includes disc usage management information, which identifies the status of a recording area of the BD-WO and which can be represented in one of the two forms: track information (Track-Info) and space bitmap information (SBM). This structure of the TDDS will be discussed in more detail later by referring to FIG. 4.

20 As the data recording operation for writing data into the data area progresses, the TDMA may be updated periodically to reflect any recently discovered defective areas and corresponding replacement areas. After each updating of the TDMA, a TDFL and a corresponding TDDS, which may include 25 all previous TDMA information and the recently generated TDMA information, may be written in the TDMA. In this aspect, the latest TDDS and TDFL written in the TDMA of the BD-WO would include the latest TDMA information. Then when the BD-WO is to be finalized, the latest TDDS and TDFL written on the BD-WO are transferred and written in one or each of the DMAs 1-4 as the final

and most-updated defect management information.

FIG. 4 illustrates a DDS structure of a rewritable disc, an example of a TDDS structure on a BD-WO and a disc management information recording method for the BD-WO according to an embodiment of the present invention.

5 As shown in FIG. 4, in the DDS of a general rewritable optical disc, only 60 byte information corresponding to an extremely small portion of 1 cluster is used to store therein the DDS information. The entire remaining part of the DDS is all set to 'zero padding'.

In contrast, in the BD-WO, the entire TDDS area is used to store therein 10 the TDDS information. As shown in FIGS. 3 and 4, the TDDS part (including the location information and the recording mode information) are written in the entire Sector 0 of the cluster assigned as the TDDS, whereas Sectors 1-31 store therein the disc usage management information (Track-Info or SBM). In another 15 example, the disc usage management information can be recorded on the first 31 sectors (Sectors 0 ~ 30) in the TDDS, and any remaining disc usage management information can be recorded on the last 32nd sector (Sector 31) in the TDDS along with the TDDS part.

The recording mode information identifies one of a plurality of recording 20 modes employed in the BD-WO according to the present invention. In this example, a value of "0000 0000" may be used to indicate a sequential recording mode, and a value of "0000 0001" may be used to indicate a random recording mode. Obviously, other examples are possible. Information about the BD-WO according to the present invention can be variously determined depending upon 25 the needs through a process of specification regulation.

The disc usage management information is varied in dependence upon the disc usage. In the BD-WO, the disc usage management information is required for accurately searching and detecting the start point of an available recording area, and is used to distinguish a recording area from a non-recording area on the

disc. In this aspect, the disc usage management information indicates where the available recording area and the recorded area are located within the data area (e.g., user data area).

As mentioned above, the disc usage management information can be
5 represented as either the track information (Track-Info) or the space bitmap information (SBM). The Track-Info is generally used when the BD-WO is recorded in a sequential recording mode. The SBM is generally used when the BD-WO is recorded in a random recording mode. These recording modes can be determined depending on the recording mode identified in the recording
10 mode information stored in the TDDS.

In conventional writable-once optical discs, the recording status/mode information is expressed as 'track information' in case of compact disc series, and as 'Rzone', 'Fragment' or 'recording range' in case of DVD series. But in the present invention, the aforementioned various expressions relating to the
15 recording status/mode information are commonly designated as 'Track-Info', and accordingly the Track-Info will be appreciated as having such meaning irrespective of expressions.

In one example, since the tracks on the BD-WO are sequentially used to record during the sequential recording mode, the Track-Info identifies the start
20 point (location) of the recording area (e.g., user data area) of the BD-WO, and the end point (location) of the last recorded portion of the recording area. This information then indicates the start of the next available portion of the recording area on the BND-WO.

The bitmap information identifies a start point of an available recordable
25 portion of the recording area on the BD-WO using bit values such as '0' and '1'. For instance, if a particular cluster area of the recording area on the BD-WO has been recorded, then it is indicated by allocating a value of '1' to every minimal recording unit (1 cluster). If a cluster area of the recording area has no recorded

data thereon, then that cluster is assigned to a value of '0'. In this manner, if the SBM indicates that a particular cluster has a value of '1' assigned thereto, then it indicates that that cluster has been already used (i.e., it has recorded data thereon). If the SBM indicates that a particular cluster has a value of '0', then it 5 indicates that that cluster has not been used yet (i.e., it has no recorded data thereon). Obviously, the reversal or some other values may be used to indicate the recording/non-recording state of each area unit such as the clusters of the user data area. Thus, the SBM makes it possible to express a recording usage status of the disc even in the random recording mode.

10 FIG. 12 illustrates a structure of a writable-once optical recording medium, such as a single-layer BD-WO, according to another embodiment of the present invention. The BD-WO structure of FIG. 12 is identical to the BD-WO structure of FIG. 3, except that the TDDS part, which includes the location information of the TDPL(s) and the recording mode information, is updated and 15 written after each update state, as shown in FIG. 12. In this aspect, the disc usage management information (Track-Info or SBM) is stored in Sectors 0-30 of one cluster, and the TDDS part is stored in Sector 31 of the one cluster. The TDDS part occupies the entire Sector 31. In another example, the TDDS part may be stored in the entire Sector 0 of one cluster, and the Track-Info or SBM 20 may be stored in Sectors 1-31 of the one cluster.

25 FIG. 5 illustrates a structure of a dual layer BD-WO according to an embodiment of the present invention. The structure of the dual layer BD-WO and designations of each area shown in FIG. 5 are exemplary for description convenience and understanding, and does not limit to the scope of the present invention.

Referring to FIG. 5, the BD-WO includes two recording layers. The first recording layer (Layer 0 or L0) includes a lead-in area, a data area 40a, and an outer zone area Outer Zone 0. The second recording layer (Layer 1 or L1)

includes a lead-out area, a data area 40b and an outer zone area Outer Zone 1. The lead-in area of the first recording layer (Layer 0) includes a temporary defect management area TDMA 1 and a plurality of final defect management areas DMA1a and DMA 2a. The lead-out area of the second recording layer 5 (Layer 1) includes a temporary defect management area TDMA 4, and a plurality of final defect management areas DMA 1b and DMA 2b. Additional final defect management areas (e.g., DMAs 3a, 3b, 4a, 4b) are also provided in the Outer Zone 0 and/or the Outer Zone 1.

The data area 40a of the first recording layer (Layer 0) includes an inner 10 spare area ISA0, a user data area 42a, and an outer spare area OSA0. The data area 40b of the second recording layer (Layer 1) includes an inner spare area ISA1, a user data area 42b, and an outer spare area OSA1. The outer spare area OSA0 and/or the outer spare area OSA1 includes a TDMA (e.g., TDMA 2 or TDMA 3). The arrows depicted in each of the areas shown in FIG. 5 are 15 examples of a data recording direction.

Similar to the single layer BD-WO, the TDMA 1 and 4 may have a fixed size, whereas the TDMA 2 and 3 in the spare areas may have a variable size depending upon the size of the spare area(s). For example, if the OSA0/OSA1 has a size of $N \times 256$ clusters where $N > 0$ (N = integer), then the TDMA 20 TDMA 3 has a size of P clusters where $P = (N \times 256)/4$.

The use and structure of the DMAs and TDMA on the single layer BD-WO as discussed above applies equally to the DMAs and TDMA on the dual layer BD-WO. One difference is that each of the DMAs 1a-4b in each recording layer of the dual layer BD-WO has a size of 32 clusters such that a DMA in the 25 first recording layer and a corresponding DMA in the second recording layer constitute one full DMA. For instance, the DMAs 1a and 1b constitute one DMA, the DMAs 2a and 2b constitute one DMA, the DMAs 3a and 3b constitute one DMA, and the DMAs 4a and 4b constitute one DMA. In this

regard, same information is recorded in each of the DMAs 1a, 2a, 3a and 4a of the first recording layer. Information, which may be different from the information recorded in the DMAs 1a, 2a, 3a, 4a, is recorded in each of the DMAs 1b, 2b, 3b and 4b.

5 When the BD-WO is to be finalized (e.g., data writing operation in the user data area is completed, the TDMA(s) are full, or a finalize command received from a user, a host, a disk manufacturer, etc.), the TDMA information already stored in the TDMA(s) is now written onto the DMA(s) as DMA information. This process of transferring the TDMA information into the DMA 10 will now be discussed according to the embodiments of the present invention by referring to FIGS. 6A-11, where dual layer BD-WOs are discussed.

FIGS. 6A and 6B illustrate a structure of clusters for one DMA of a general dual layer BD-RE (rewritable disc) and are provided to explain further the aspects of the present invention. The method of transferring the TDMA 15 information for the BD-WO according to the present invention assures some reciprocity with the rewritable optical disc (BD-RE).

Similar to the DMA structure of the BD-WO, the BD-RE includes as shown in FIG. 6A, one DMA composed of a DMA part (Clusters 1 –32) from the first recording layer and a DMA part (Clusters 33-64) from the second 20 recording layer, which are accessed according to the tracking direction indicated with the arrow. As shown in FIG. 6B, the same DDS information is repeatedly recorded on the Clusters 1 ~ 4 of the DMA, and the DFL information is repeatedly recorded on the Clusters 9 ~ 64 of the DMA. However, in the BD-RE, the Clusters 5 ~ 8 are not used at all for defect management.

25 The present invention as shown in, e.g., FIGS. 7-11 provides a newly defined DMA structure for a dual layer BD-WO based on the DMA structure of the BD-RE of FIGS. 6A and 6B, for assuring reciprocity with the rewritable optical disc (BD-RE). Referring to FIGS. 7 to 11, several embodiments of the

present invention will be discussed wherein, when the latest disc management information is finalized in a TDMA of the BD-WO, a disc finalize command is received, the TDMA(s) is full, etc., it is transferred and recorded on a DMA of the BD-WO. Particularly, the latest TDFL information and the latest TDDS information in a TDMA are transferred to the DMA as DFL information and DDS information, respectively. This transfer process is also called herein as the TDMA information transfer process.

It should be understood that one DMA shown in each of FIGS. 7 to 10 corresponds to one DMA composed of DMA parts from the first and second recording layers. For instance, one DMA (Clusters 1 ~ 64) shown in each of FIGS. 7-10 is composed of the DMA 2a (Clusters 1-32) in the first recording layer and the DMA 2b (Clusters 33-64) in the second recording layer of the BD-WO shown in FIG. 5. Also one TDMA shown in each of FIGS. 7-11 corresponds to a TDMA (e.g., TDMA 1, 2, 3 or 4) on the BD-WO shown in FIG. 15 5.

FIG. 7 illustrates a structure of a DMA and a TDMA of a dual layer BD-WO and a method of transferring data from the TDMA to the DMA according to an embodiment of the present invention.

Referring to FIG. 7, during the TDMA information transfer process, the 20 latest defect management information (latest TDFL information and latest TDDS information) in the TDMA is transferred to and recorded on a DMA of the BD-WO. Among the TDDS information, the TDDS part (including the TDFL location information and the recording mode information) and the disc usage management information (Track-Info or SBM) (e.g., as shown in FIGS. 3 and 4) 25 are transferred onto the DMA. In this example, the Clusters 1-8 of the DMA are designated as a DDS section, whereas the Clusters 9-64 of the DMA are designated as a DFL section. All the clusters of the DMA in the BD-WO are designated for storing management data.

More specifically, the disc usage management information (D0) and the TDSS part (T0) for the first recording layer L0, which may be written separately in the TDMA from the disc usage management information (D1) and the TDSS part (T1) for the second recording layer L1, are transferred and written 5 separately and repeatedly into the DMA. In this example, the D0 and T0 for the first recording layer L0 are repeatedly (four times) recorded on the Clusters 1 to 4 of the DDS section. Further, the D1 and T1 for the second recording layer L1 are repeatedly (four times) recorded on the Clusters 5 to 8 of the DDS section in the DMA. As a result, the DDS section of the DMA includes the latest TDSS 10 part and the latest disc usage management information for the first and second recording layers written in the following order: D0&T0, D0&T0, D0&T0, D0&T0, D1&T1, D1&T1, D1&T1, D1&T1, where D0&T0 or D1&T1 is recorded in one unit size, e.g., one cluster size. In this aspect, in one example, the T0/T1 written in the DDS section of the DMA may identify the location of 15 the DFLs in the DMA on the BD-WO, and not necessarily the location of the TDFLs in the TDMA on the BD-WO.

Moreover, the Clusters 9-64 (DFL section) of the DMA are used to store 20 therein DFL information which corresponds to or is based on the latest TDFL information in the TDMA. In this example, the same DFL information can be written repeatedly (e.g., up to seven times) in the DFL section of the DMA. Storing the same information repeatedly in the DDS section or the DFL section ensures that the DMA information is not lost (e.g., due to a defect in a portion of the DMA) and is accurately and completely accessed each time it is needed.

In one embodiment, the latest disc usage management information is 25 recorded each on the front part of a first DMA in the lead-in area and/or on the front/rear part of a DMA in the lead-out area (depending on whether the disc is a single layer or multiple layer). This allows the disc usage management information to be accessed quickly at the initial loading time of the disc. Further,

the data reliability and data preservation can be assured by repetitive recording of same information in different parts of the disc. For instance, if the Clusters 1-32 of the DMA shown in FIG. 7 is assumed to correspond to the DMA 2a shown in FIG. 5, then the information recorded in the Clusters 1-32 shown in FIG. 7 is 5 repeatedly recorded in each of the other DMAs 1a, 3a and 4a of the first recording layer. Similarly, if the Clusters 33-64 of the DMA shown in FIG. 7 is assumed to correspond to the DMA 2b shown in FIG. 5, then the information recorded in the Clusters 33-64 shown FIG. 7 is repeatedly recorded in each of the other DMAs 1b, 3b and 4b of the second recording layer.

10 FIG. 8 illustrates a structure of a DMA and a TDMA of a dual layer BD-WO and a method of transferring data from the TDMA to the DMA according to an embodiment of the present invention. This example is identical to the example of FIG. 7, except that in this example, the latest disc usage management information D0 and the latest TDDS part T0 for the first recording layer L0 is 4-times recorded in the Clusters 1-2 and 5-6 of the DMA, and the latest disc usage management information D1 and the latest TDDS part T1 for the second recording layer L1 is also 4-times recorded in the Clusters 3-4 and 7-8 of the DMA. As a result, the DDS section of the DMA includes the latest TDDS part and the latest disc usage management information for the first and second 15 recording layers written in the following order: D0&T0, D0&T0, D1&T1, D1&T1, D0&T0, D0&T0, D1&T1, D1&T1, where D0&T0 or D1&T1 is recorded in one unit size, e.g., one cluster size. In another variation, the Clusters 5 to 8 in the DMA can be in a reserved state without any repetitive recording such that only the Clusters 1-4 (and not the Clusters 5-8) have the D0, 20 T0, D1 and T1 recorded thereon.

25 FIG. 9 illustrates a structure of a DMA and a TDMA of a dual layer BD-WO and a method of transferring data from the TDMA to the DMA according to an embodiment of the present invention. This example is identical to the

example of FIG. 7, except that in this example, each of the (D0&T0) and (D1&T1) for the first and second recording layers L0 and L1 is alternatively and repeatedly recorded in the DDS section of the DMA by the unit of, e.g., one cluster.

5 Particularly, as shown in FIG. 9, the latest D0 and T0 for the first recording layer L0 is recorded in each of the Clusters 1, 3, 5 and 7 of the DMA, and the latest D1 and T1 for the second recording layer L1 is recorded in each of the Clusters 2, 4, 6 and 8 of the DMA. As a result, the DDS section of the DMA includes the latest TDDS part and the latest disc usage management information 10 for the first and second recording layers written in the following order: D0&T0, D1&T1, D0&T0, D1&T1, D0&T0, D1&T1, D0&T0, D1&T1, where D0&T0 or D1&T1 is recorded in one unit size, e.g., one cluster size. In another variation, the Clusters 5 to 8 in the DMA can be in a reserved state without any repetitive recording such that only the Clusters 1-4 (and not the Clusters 5-8) have the D0, 15 T0, D1 and T1 recorded thereon.

FIG. 10 illustrates a structure of a DMA and a TDMA of a dual layer BD-WO and a method of transferring data from the TDMA to the DMA according to an embodiment of the present invention. This example is identical to the example of FIG. 7, except that in this example, the latest D0&T0 and D1&T1 20 are recorded in the DDS section of the DMA in that order. Then the same information is recorded in the reverse order in the subsequent fields, or the subsequent fields are reserved.

Particularly, in this example, as shown in FIG. 10, the latest D0 and T0 for the first recording layer L0 are recorded in each of the Clusters 1, 4, 5 and 8 25 of the DMA, and the latest D1 and T1 for the second recording layer L1 are recorded in each of the Clusters 2, 3, 6 and 7 of the DMA. As a result, the DDS section of the DMA includes the latest TDDS part and the latest disc usage management information for the first and second recording layers written in the

following order: D0&T0, D1&T1, D1&T1, D0&T0, D0&T0, D1&T1, D1&T1, D0&T0, where D0&T0 or D1&T1 is recorded in one unit size, e.g., one cluster size. In another variation, the Clusters 5 to 8 in the DMA are in a reserved state without any repetitive recording such that only the Clusters 1-4 (and not the 5 Clusters 5-8) have the D0, T0, D1 and T1 recorded thereon in the order of: DO&T0, D1&T1, D1&T1, and DO&T0.

The above sequence of D0&T0, D1&T1, D1&T1, and D0&T0 prevents all or most of the disc usage management information for one recording layer from being simultaneously destroyed or illegible due to the fact that the 10 recording area of the disc is substantially shaped in circles and a defect such as a scratch on the disc is generated in a linear direction across one or more circles.

In the embodiments of FIGS. 7-10, if the track information (Track-Info) is used as the disc usage management information for the BD-WO, then the first and second disc usage management information DO and D1 for the first and 15 second recording layers will be the same. As a result, the same latest disc usage management information is recorded in the DMA for both the first and second recording layers.

FIG. 11 illustrates a structure of a DMA and a TDMA of a dual layer BD-WO and a method of transferring data from the TDMA to the DMA according to 20 an embodiment of the present invention. This example is identical to the example of FIG. 7, except that in this example, the latest D0 and T0 for the first recording layer L0 are repeatedly (e.g., four times) recorded in the Clusters 1 to 4 of the DMA, and the latest D1 and T1 for the second recording layer L1 are repeatedly (e.g., four times) recorded in the Clusters 33 to 36 of the DMA. Here, 25 the Clusters 1-32 of the DMA are located on the first recording layer L0 (e.g., as the DMA 2a of FIG. 5), and the Clusters 33-64 of the DMA are located on the second recording layer L1 (e.g., as the DMA 2b of FIG. 5). As a result, the disc usage management information for the first recording layer is distinguished from

the disc usage management information for the second recording layer by being recorded in different recording layers. Also, the Clusters 5-8 and 37-40 are reserved and the Clusters 9-32 and 41-64 are used to store therein DFL information as discussed above.

5 Although the specific number and order of the repetitions have been identified for recording the D0&T0 and D1&T1 in association with the FIGS. 7-11 embodiments, the present invention is not limited to such and encompasses any other number and/or different order of the repetitions.

10 **Industrial applicability**

According to the present invention, in a single layer BD-WO case, the latest T0 and D0 for the single recording layer are repeatedly recorded in the DDS section of the DMA. Similarly, the latest TDFL information is repeatedly recorded as needed in the DFL section of the DMA.

15 It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their
20 equivalents.

WHAT IS CLAIMED:

1. A method of recording management data on a writable-once optical recording medium, the recording medium including a recording layer including a data area having a non-user data area and a user data area consisting of recording units,

characterized by

the recording layer having a temporary defect management area and a defect management area, the method comprising:

recording disc usage management information in the temporary defect management area of the recording medium, the disc usage management information indicating whether each of the recording units has recorded data thereon; and

recording latest disc usage management information from the temporary defect management area to the defect management area when the recording medium is to be finalized.

2. The method according to claim 1, wherein the disc usage management information is separately provided per recording layer.

3. The method of claim 1 or 2, wherein the latest disc usage management information includes a first disc usage management information (D0) for a first recording layer of the recording medium and a second disc usage management information (D1) for a second recording layer of the recording medium, such that the first and second disc usage management information is recorded sequentially in at least one of the defect management areas of the recording layers according to the following order: D0, D0, D0, D0, D1, D1, D1 and D1.

4. The method of claim 1 or 2, wherein the latest disc usage management information includes a first disc usage management information (D0) for a first recording layer of the recording medium and a second disc usage management information (D1) for a second recording layer of the recording medium, such that the first and second disc usage management information is recorded sequentially in at least one of the defect

management areas of the recording layers according to the following order: D0, D0, D1, D1, D0, D0, D1 and D1.

5. The method of claim 1 or 2, wherein the latest disc usage management information includes a first disc usage management information (D0) for a first recording layer of the recording medium and a second disc usage management information (D1) for a second recording layer of the recording medium, such that the first and second disc usage management information is recorded sequentially in at least one of the defect management areas of the recording layers according to the following order: D0, D1, D0, D1, D0, D1 and D1.

6. The method of claim 1 or 2, wherein the latest disc usage management information includes a first disc usage management information (D0) for a first recording layer of the recording medium and a second disc usage management information (D1) for a second recording layer of the recording medium, such that the first and second disc usage management information is recorded sequentially in at least one of the defect management areas of the recording layers according to the following order: D0, D1, D1 and D0.

7. The method according to claim 1 or 2, wherein the recording medium includes a plurality of recording layers each having a defect management area, and latest disc usage management information for each of the recording layers is separately and correspondingly recorded in a defect management area of the corresponding recording layer.

8. The method of one of claims 1 to 7, wherein the user data area is divided into a plurality of tracks, and the disc usage management information represents track position information identifying an end point of a last recorded track on the recording medium.

9. The method of one of claims 1 to 8, wherein the disc usage management

information represents a space bit map.

10. The method according to one of claims 1 to 9, wherein the recording medium is to be finalized if a data recording operation in the user data area of the recording medium is completed, if the temporary defect management area is full, or if a finalize command is received.

11. The method according to one of claims 1 to 10, further comprising:

recording temporary defect list information and temporary disc definition structure information in the temporary defect management area; and

recording latest temporary defect list information and latest temporary disc definition structure information from the temporary defect management area to the defect management area when the recording medium is to be finalized.

12. The method according to one of claims 1 to 11, wherein the each of recording units is a cluster.

13. An apparatus for recording management data on a writable-once optical recording medium, the recording medium including a recording layer having a data area including a non-user data area and a user data area consisting of recording units,

characterized by

the recording layer having a temporary defect management area and a defect management area, the apparatus comprising:

an optical pickup configured to record data on the recording medium; and

a controller configured to control the optical pickup to record disc usage management information in the temporary defect management area of the recording medium, the disc usage management information indicating whether each recording unit has recorded data thereon; and control the optical pickup to record latest disc usage management information from the temporary defect management area to the defect management area, when the recording medium is to be finalized.

14. The apparatus according to claim 13, wherein the controller is configured to provide the disc usage management information separately per recording layer.

15. The apparatus according to claim 13 or 14, wherein the recording medium comprises a first and second recording layers,

wherein the controller is configured to control the optical pickup to record first disc usage management information (D0) for the first recording layer and second disc usage management information (D1) for the second recording layer so that the first and second disc usage management information is recorded sequentially in at least one of the defect management areas of the recording layers according to the following order: D0, D1, D1 and D0.

16. The apparatus according to claim 13 or 14, wherein the recording medium comprises a plurality of recording layers, each having a defect management area,

wherein the controller is configured to control latest disc usage management information for each of the recording layers to be separately and correspondingly recorded in a defect management area of the corresponding recording layer.

17. The apparatus according to one of claims 13 to 16, wherein the controller is configured to control the optical pickup to record temporary defect list information and temporary disc definition structure information in the temporary defect management area; and control the optical pickup to record latest temporary defect list and disc definition structure information from the temporary defect management area to the defect management area when the recording medium is to be finalized

18. The apparatus according to claim one of claims 13 to 17, wherein the controller is configured to control the recording medium to be finalized if a data recording operation in the user data area is completed, if the temporary defect management area is full, or if a finalized command is received via an interface unit from

a host.

19. The apparatus according to one of claims 13 to 18, wherein the each of the recording units is a cluster.

20. A writable-once optical recording medium comprising a recording layer including a data area having a non-user data area and a user data area consisting of recording units,

characterized by

the recording layer having a temporary defect management area and a defect management area,

wherein the temporary defect management area of the recording medium stores therein disc usage management information indicating whether each of the recording units has recorded data thereon, and

wherein the defect management area stores therein latest disc usage management information recorded from the temporary defect management when the recording medium is to be finalized.

21. The recording medium according to claim 20, wherein the recording medium stores the disc usage management information separately per recording layer.

22. The recording medium of claim 20 or 21, wherein the latest disc usage management information includes a first disc usage management information (D0) for a first recording layer of the recording medium and a second disc usage management information (D1) for a second recording layer of the recording medium, such that the first and second disc usage management information is located sequentially in at least one of the defect management areas of the recording layers according to the following order: D0, D0, D0, D0, D1, D1, D1 and D1.

23. The recording medium of claim 20 or 21, wherein the latest disc usage

management information includes a first disc usage management information (D0) for a first recording layer of the recording medium and a second disc usage management information (D1) for a second recording layer of the recording medium, such that the first and second disc usage management information is located sequentially in at least one of the defect management areas of the recording layers according to the following order: D0, D0, D1, D1, D0, D0, D1 and D1.

24. The recording medium of claim 20 or 21, wherein the latest disc usage management information includes a first disc usage management information (D0) for a first recording layer of the recording medium and a second disc usage management information (D1) for a second recording layer of the recording medium, such that the first and second disc usage management information is located sequentially in at least one of the defect management areas of the recording layers according to the following order: D0, D1, D0, D1, D0, D1, D0 and D1.

25. The recording medium of claim 20 or 21, wherein the latest disc usage management information includes a first disc usage management information (D0) for a first recording layer of the recording medium and a second disc usage management information (D1) for a second recording layer of the recording medium, such that the first and second disc usage management information is located sequentially in at least one of the defect management areas of the recording layers according to the following order: D0, D1, D1 and D0.

26. The recording medium according to claim 20 or 21, wherein the recording medium includes a plurality of recording layers each having a defect management area, and latest disc usage management information for each of the recording layers is separately and correspondingly located in a defect management area of the corresponding recording layer.

27. The recording medium of one of claims 20 to 26, wherein the user data area

is divided into a plurality of tracks, and the disc usage management information represents track position information identifying an end point of a last recorded track on the recording medium.

28. The recording medium of one of claims 20 to 27, wherein the disc usage management information represents a space bit map.

29. The recording medium according to one of claims 20 to 28, wherein the recording medium is to be finalized if a data recording operation in the user data area of the recording medium is completed, if the temporary defect management area is full, or if a finalize command is received.

30. The recording medium according to one of claims 20 to 29, wherein the temporary defect management area further stores therein temporary defect list information and temporary disc definition structure information, and the defect management area further stores therein latest temporary defect management information written on the recording medium when the recording medium is to be finalized.

31. The recording medium according to one of claims 20 to 30, wherein each of the recording units is a cluster.

32. A method for reproducing management data from a writable-once optical recording medium, the recording medium including a recording layer having a data area including a non-user data area and a user data area consisting of recording units,

characterized by

the recording layer having temporary defect management area and a defect management area, the method comprising:

before the recording medium is finalized, reproducing, from the temporary defect management area, disc usage management information indicating whether each of the recording units has recorded data thereon; and

after the recording medium is finalized, reproducing, from the defect management area, disc usage management information recorded to the defect management area from the temporary defect management area when finalizing the recording medium.

33. The method according to claim 32, wherein the recording medium comprises a first and a second recording layers, and the disc usage management information includes first disc usage management information (D0) for the first recording layer and second disc usage management information (D1) for the second recording layer,

wherein the first and second disc usage management information recorded sequentially according to the following order: D0, D1, D1 and D0 is reproduced from at least one of the defect management areas of the recording layers.

34. The method according to claim 32, wherein the recording medium comprises a plurality of recording layers,

wherein the disc usage management information for each of the recording layers is reproduced separately and correspondingly from the defect management area of the corresponding recording layer.

35. The method according to one of claims 32 to 34, further comprising:

reproducing temporary defect list information and temporary disc definition structure information from the temporary defect management area before the recording medium is finalized; and

reproduced defect list information and disc definition structure information from the defect management area after the recording medium is finalized

36. The method according to one of claims 32 to 35, wherein each of the recording units is a cluster.

37. An apparatus for reproducing management data from a writable-once optical

recording medium, the recording medium including recording layer having a data area comprising a non-user data area and a user data area consisting of recording units,

characterized by

the recording layer having temporary defect management area and a defect management area, the apparatus comprising:

an optical pickup configured to reproduce data from the recording medium;

a controller operatively coupled to the pickup and configured to control, before the recording medium is finalized, the pickup to reproduce disc usage management information from the temporary defect management area, the disc usage management information indicating whether each of the recording units has recorded data thereon; and after the recording medium is finalized, control the pickup to reproduce disc usage management information recorded to the defect management area from the temporary defect management area when finalizing the recording medium.

38. The apparatus according to claim 37, wherein the recording medium comprises a first and a second recording layers, and the disc usage management information includes first disc usage management information (D0) for the first recording layer and second disc usage management information (D1) for the second recording layer,

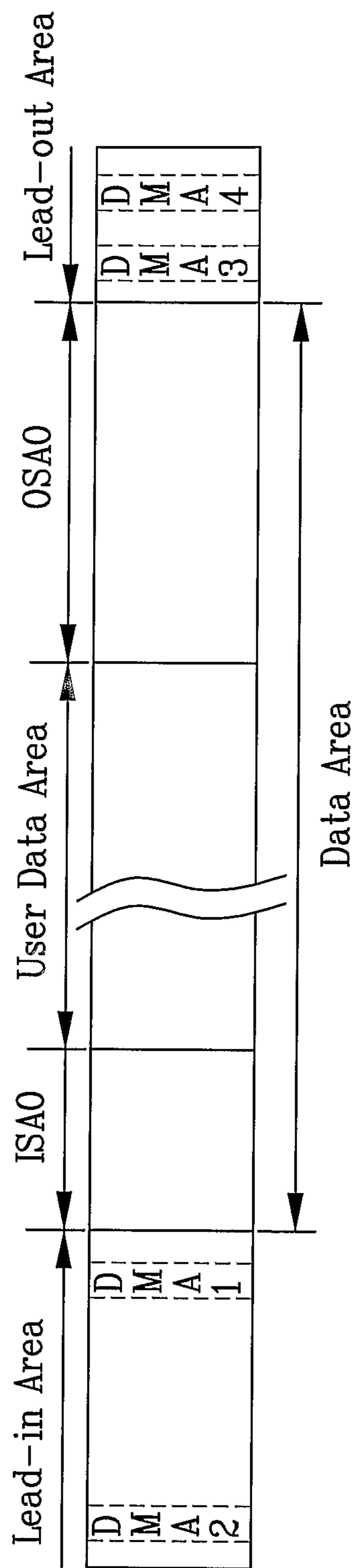
wherein the controller is configured to control the optical pickup to reproduce, from at least one of the defect management areas of the recording layers, the first and second disc usage management information recorded sequentially according to the following order: D0, D1, D1 and D0.

39. The apparatus according to one of claims 37, wherein the recording medium comprises a plurality of recording layers, each having a defect management area,

wherein the controller is configured to control the optical pickup to reproduce disc usage management information for each of the recording layers separately and correspondingly from a defect management area of the corresponding recording layer.

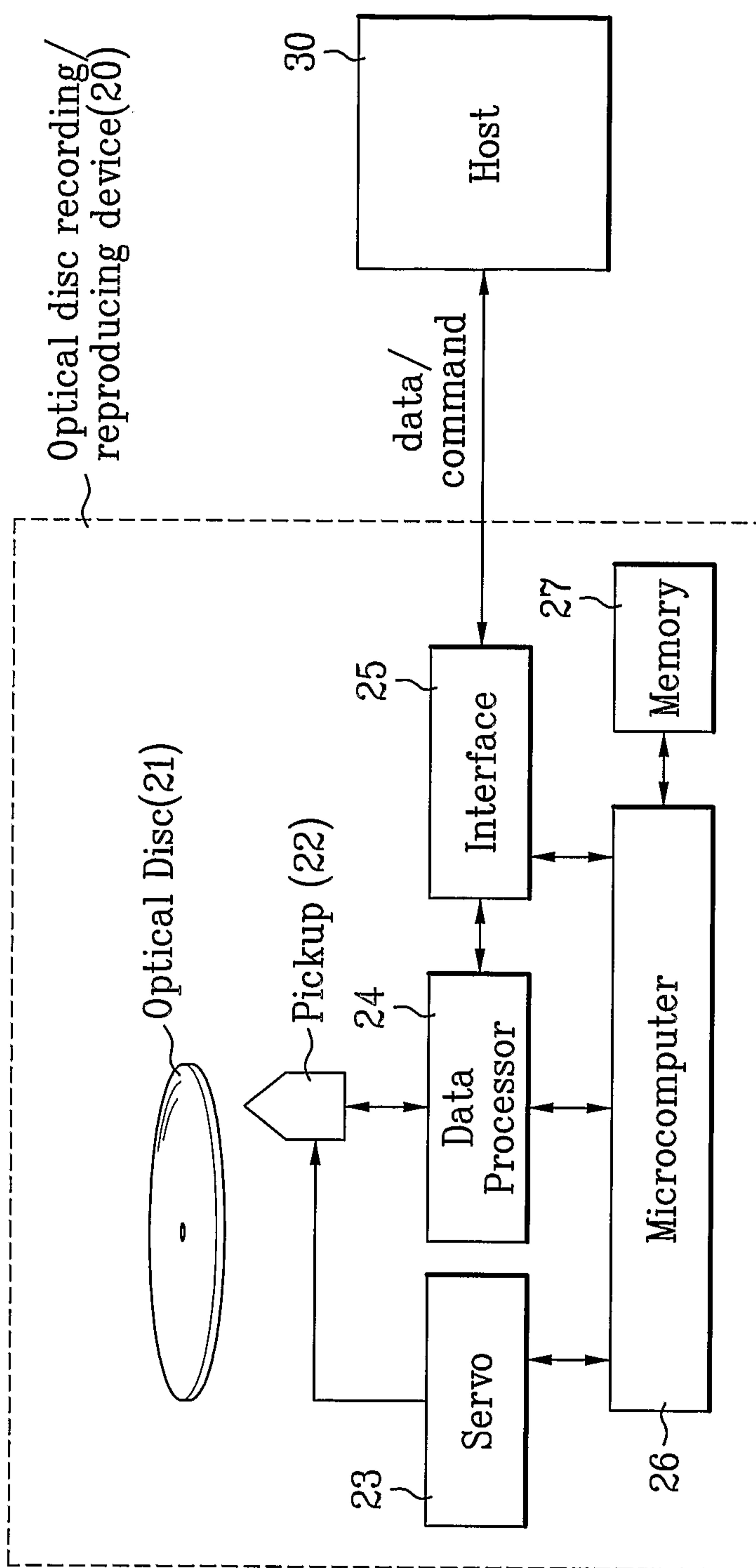
40. The apparatus according to one of claims 37 to 39, wherein the controller is configured to control the optical pickup to further reproduce;

temporary defect list information and temporary disc definition structure information from the temporary defect management area before the recording medium is finalized; and


defect list information and disc definition structure information from the defect management area after the recording medium is finalized.

41. The apparatus according to one of claims 37 to 40, wherein each of the recording units is a cluster.

1/12


FIG. 1
Background Art

BD-RE

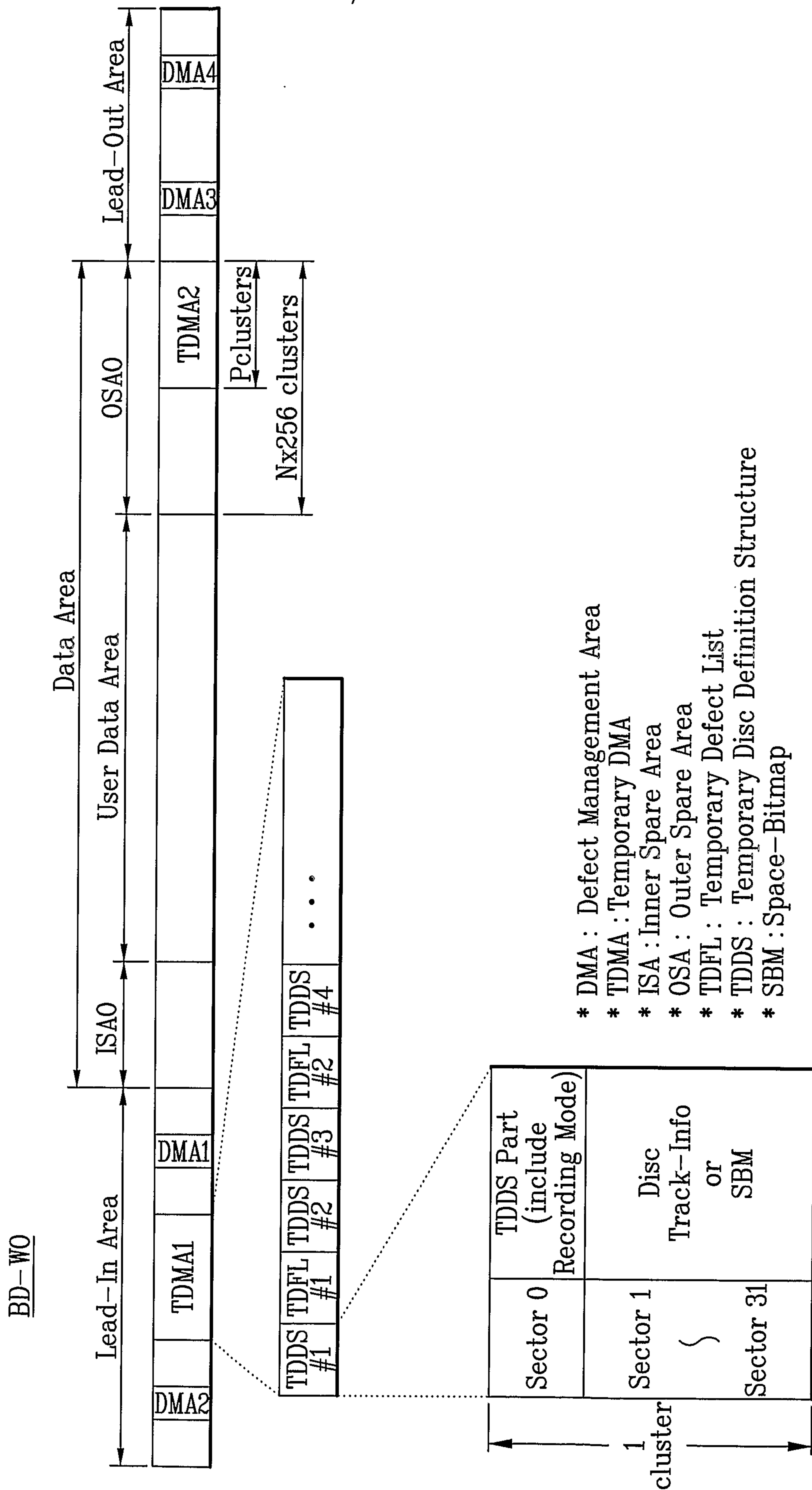

2/12

FIG. 2

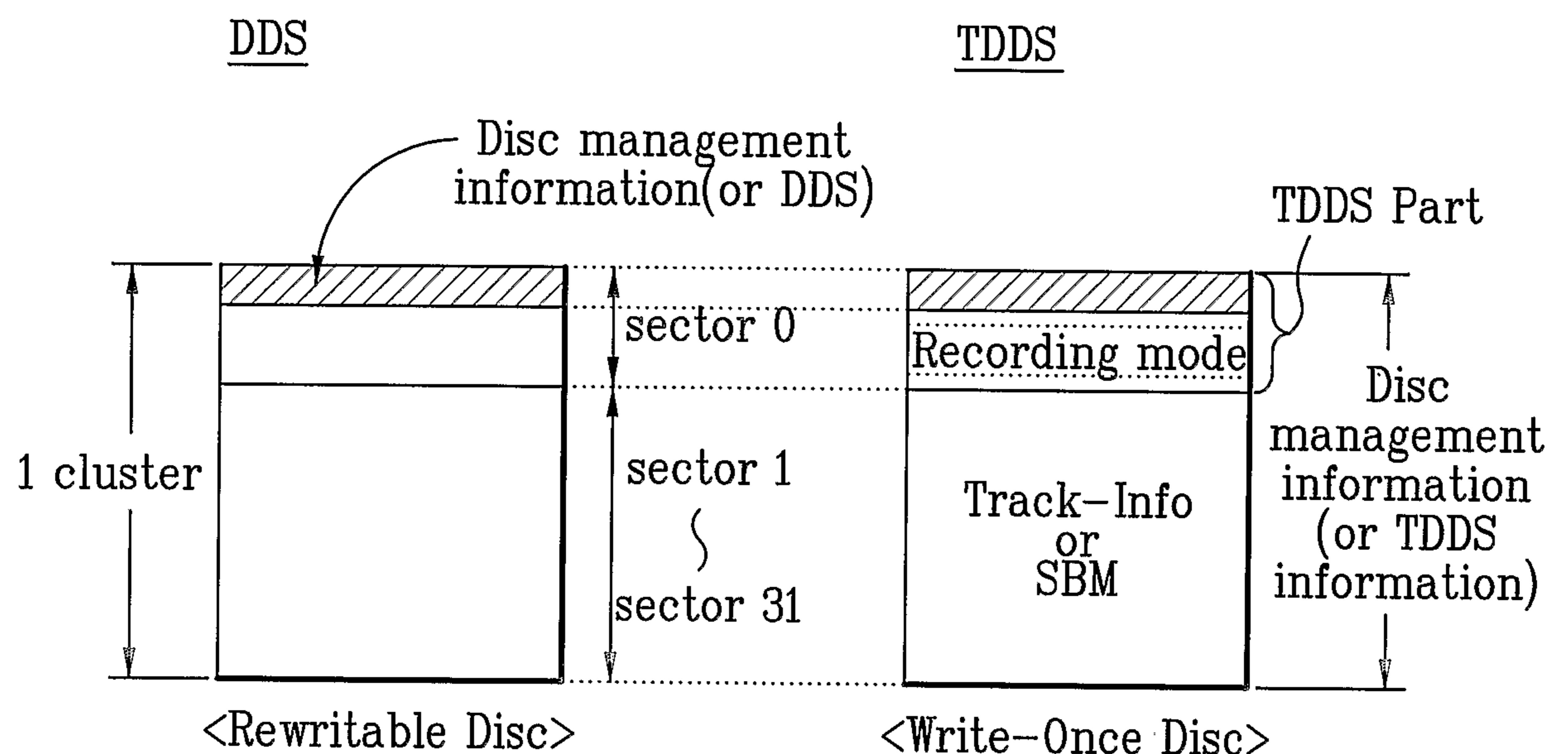
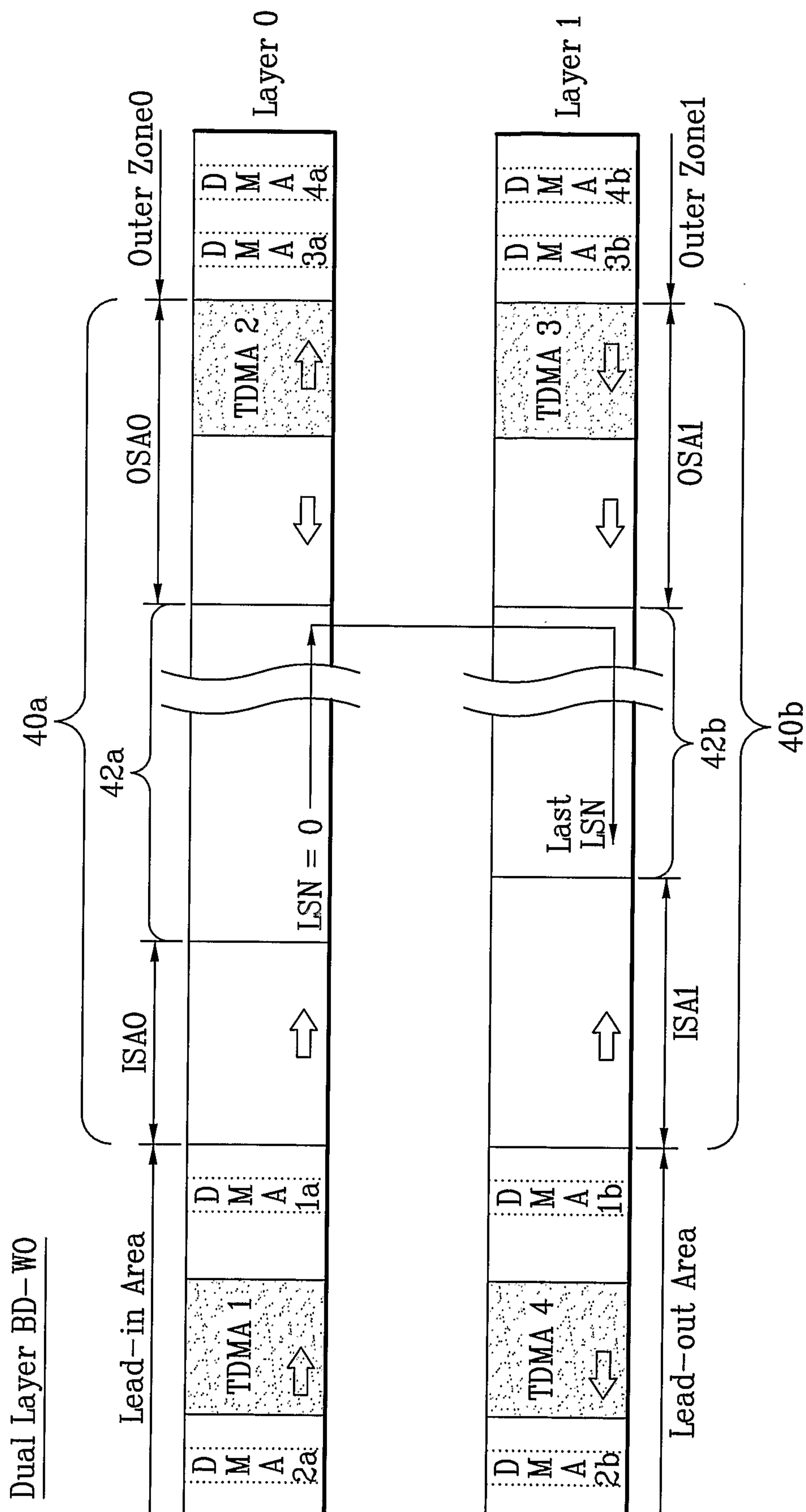

3/12

FIG. 3

4/12

FIG. 4



* Recording mode

- 0000 0000b : Sequential Recording
- 0000 0001b : Random Recording

5/12

FIG. 5

6/12

FIG. 6A

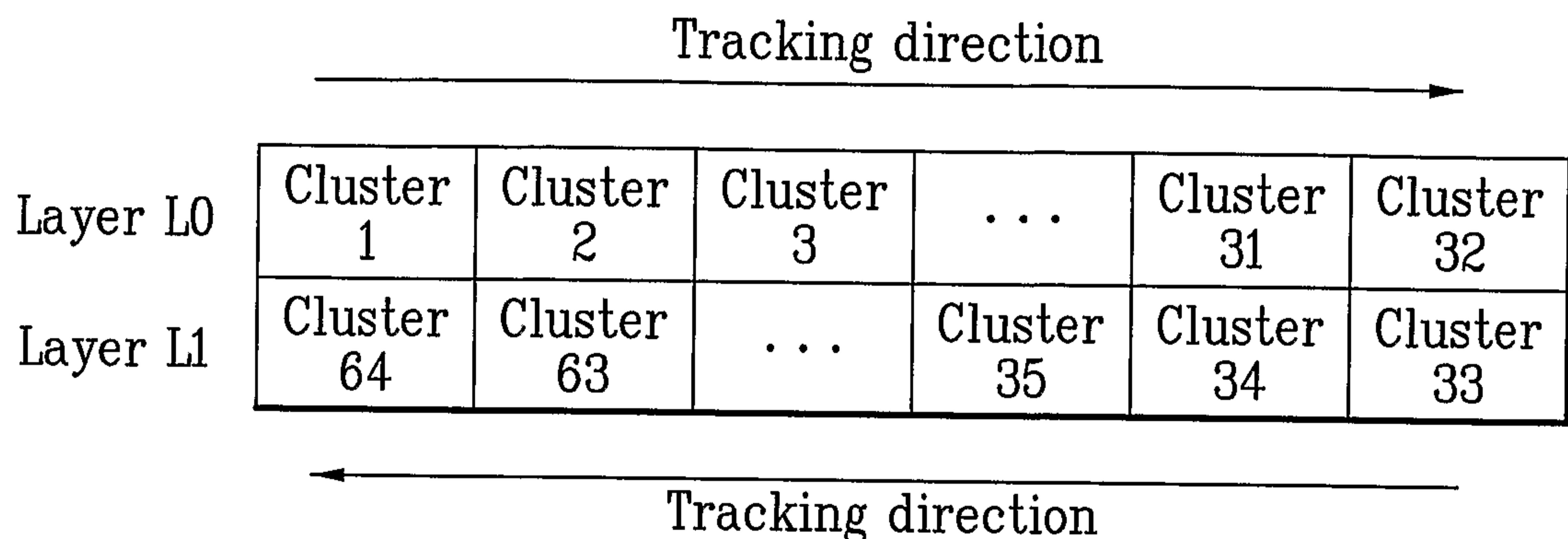

BD-RE

FIG. 6B

BD-RE

Clusters 1 ~ 4	DDS (4 repetitions)
Clusters 5 ~ 8	Reserved
Clusters 9 ~ 16	1 st position of DFL
:	:
Clusters 57 ~ 64	7 th position of DFL

八
FIG.

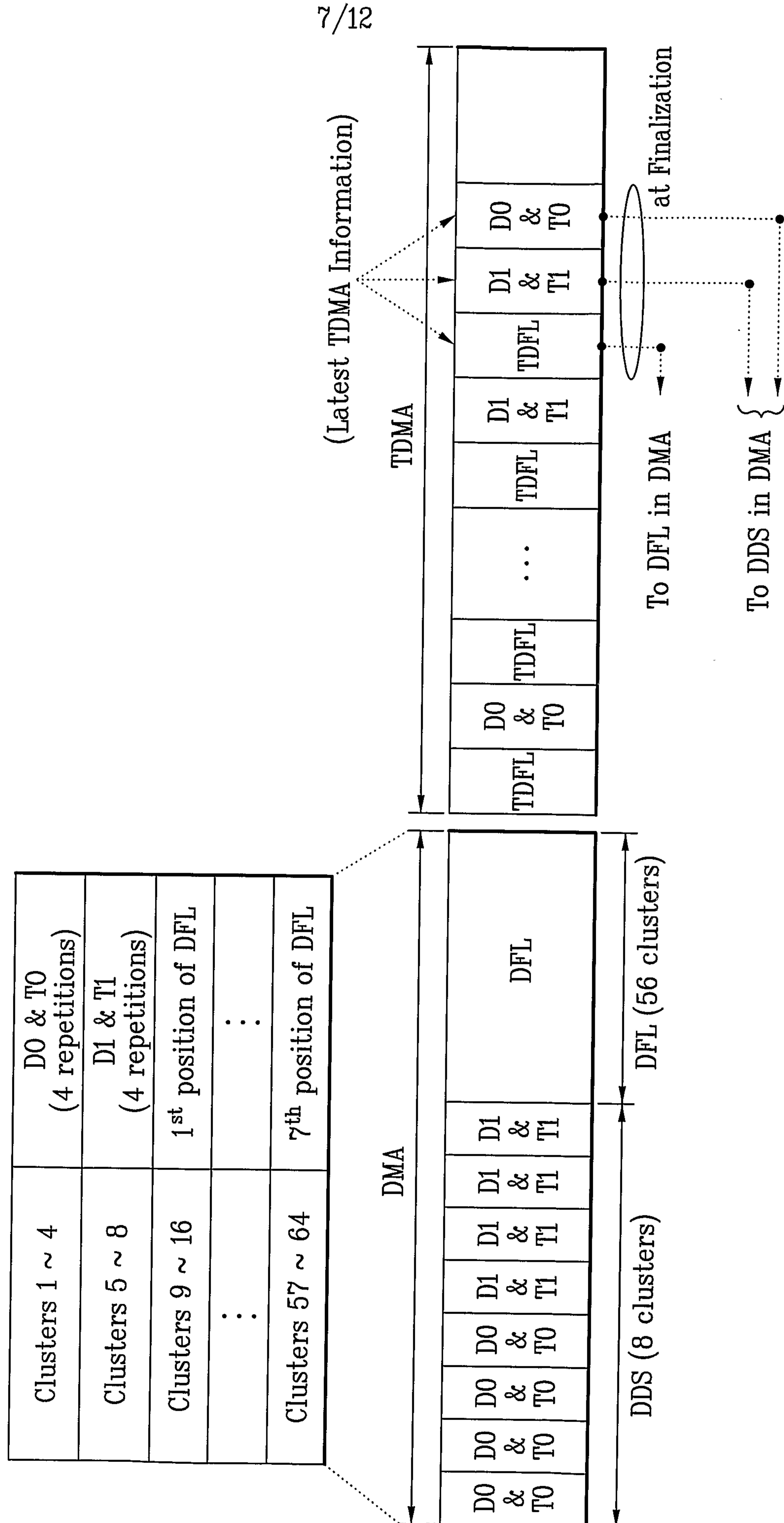
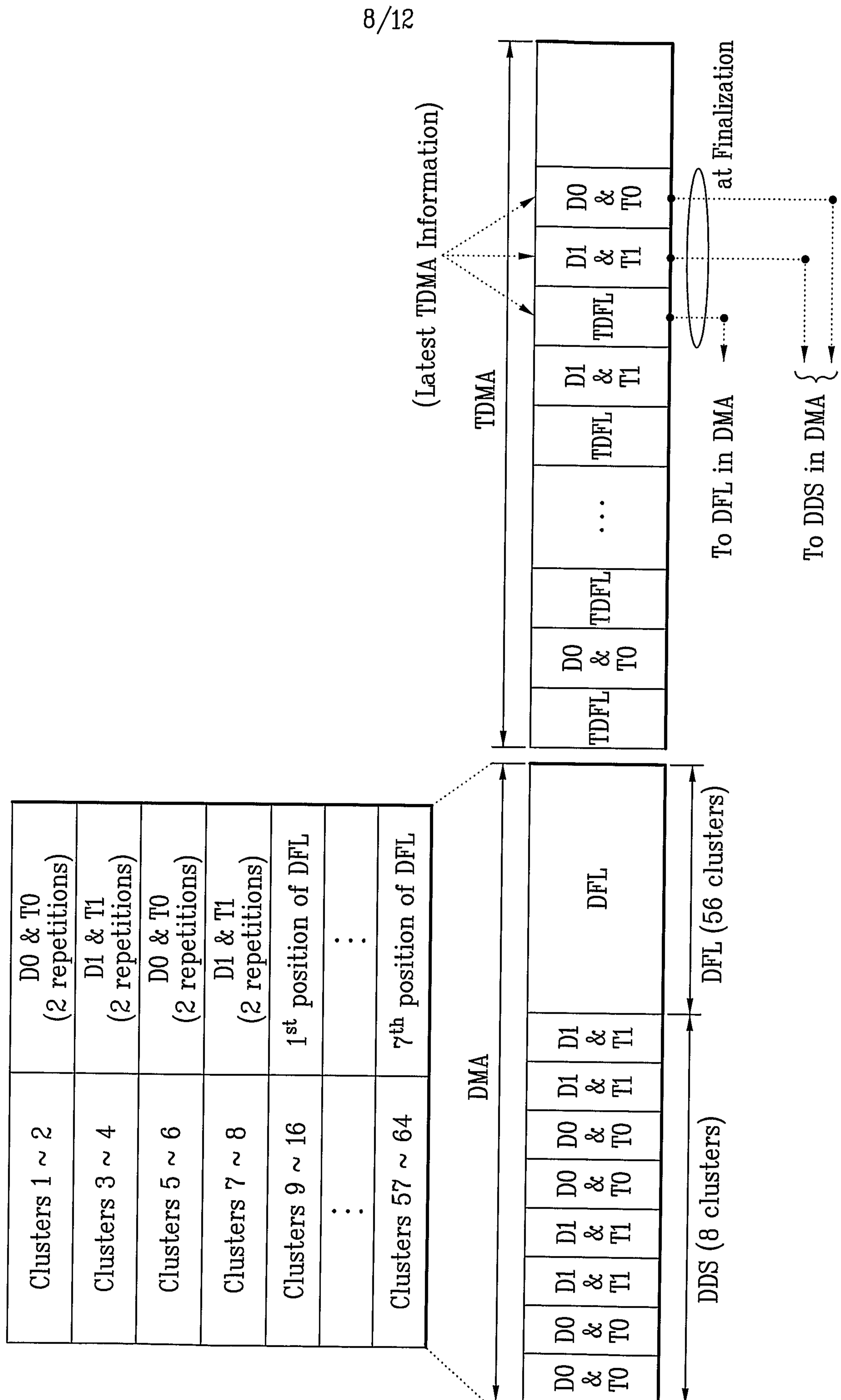



FIG. 8

<div

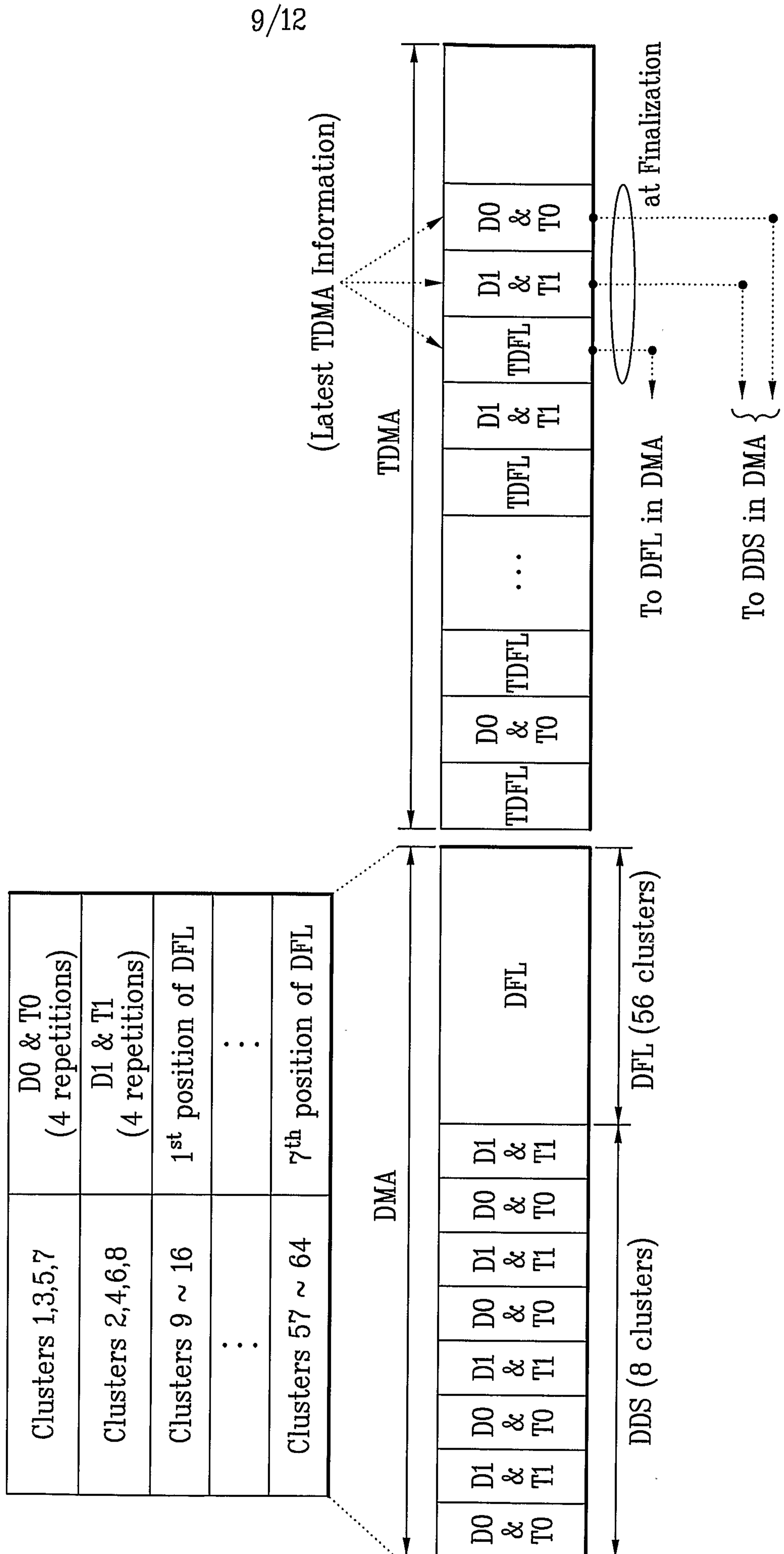
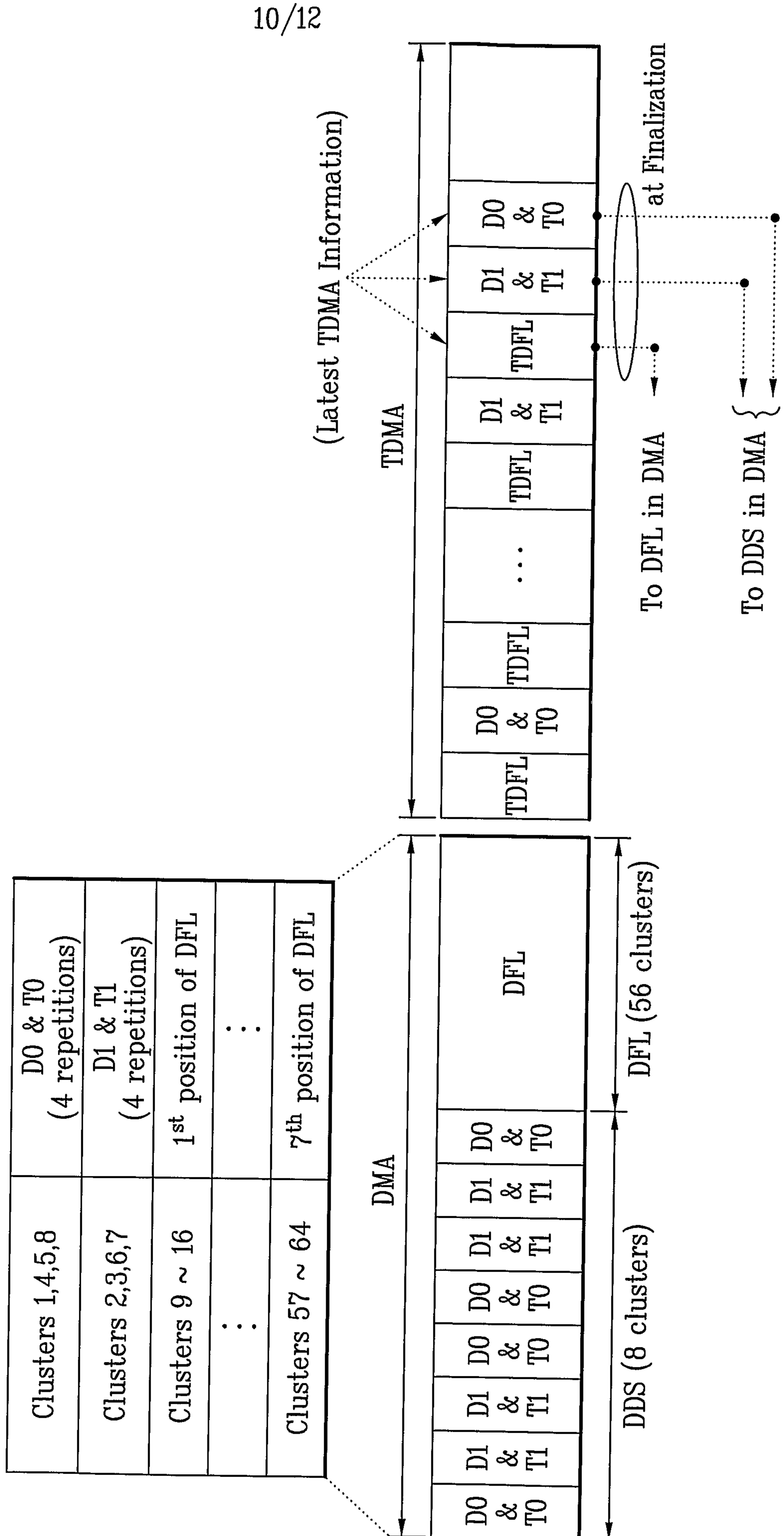
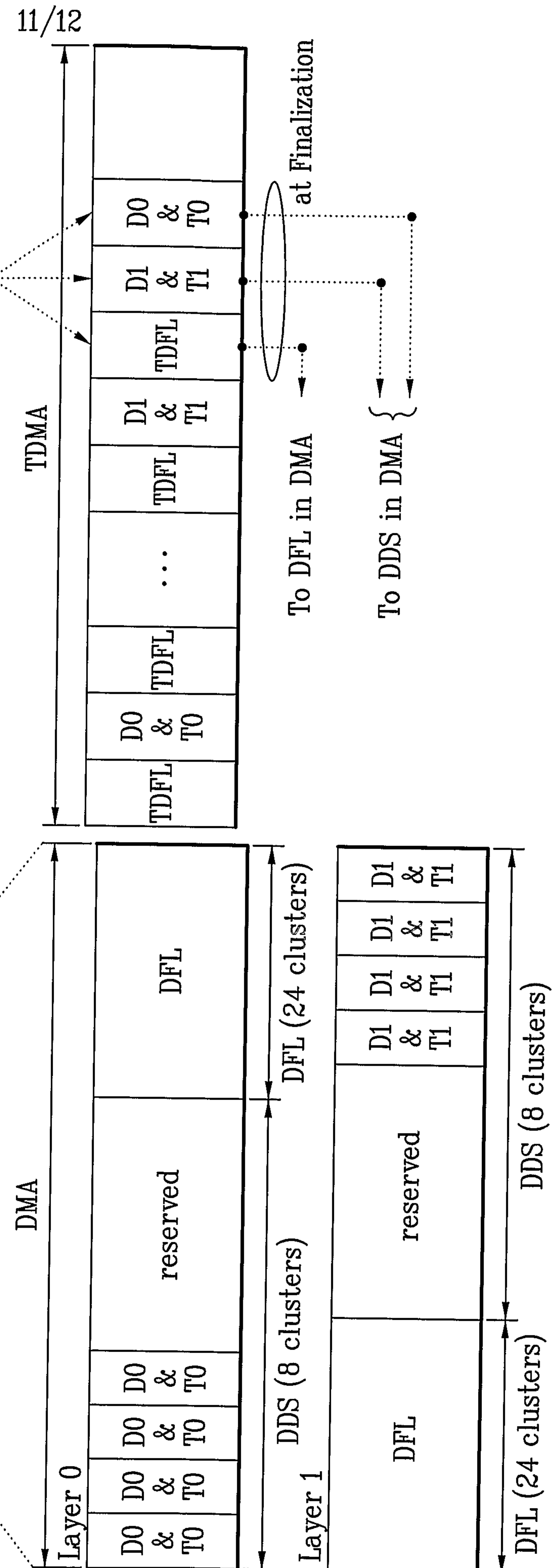
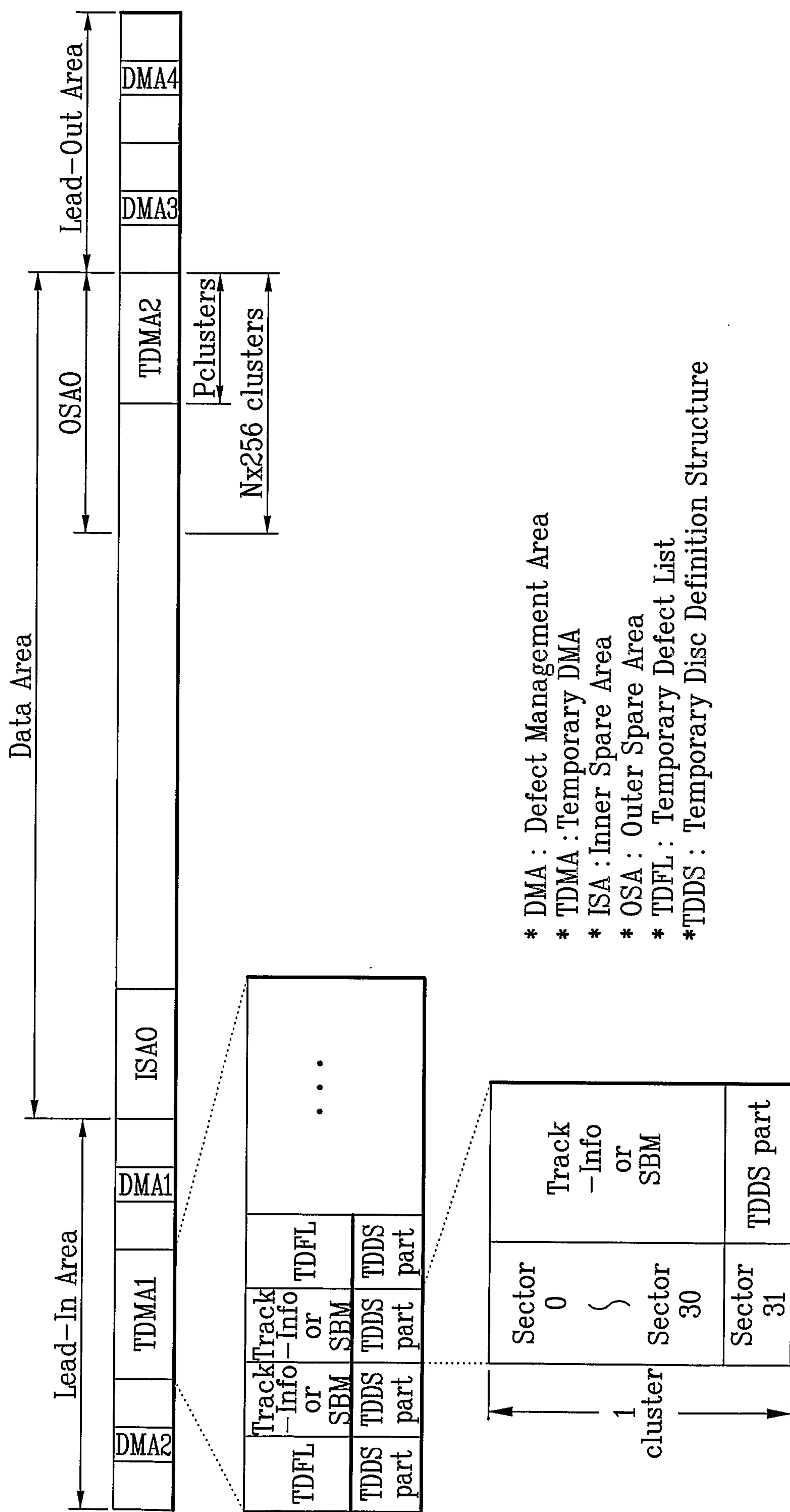
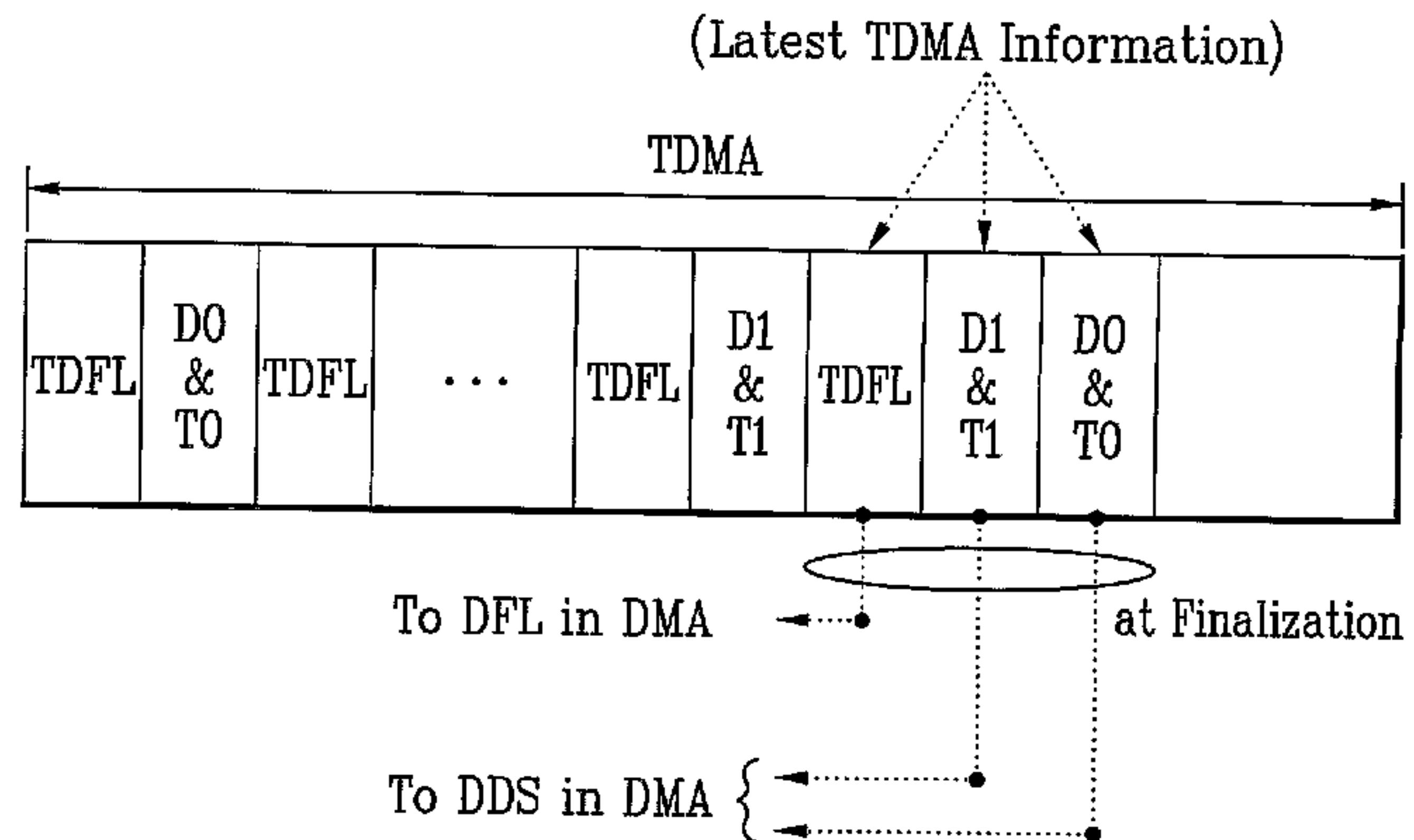
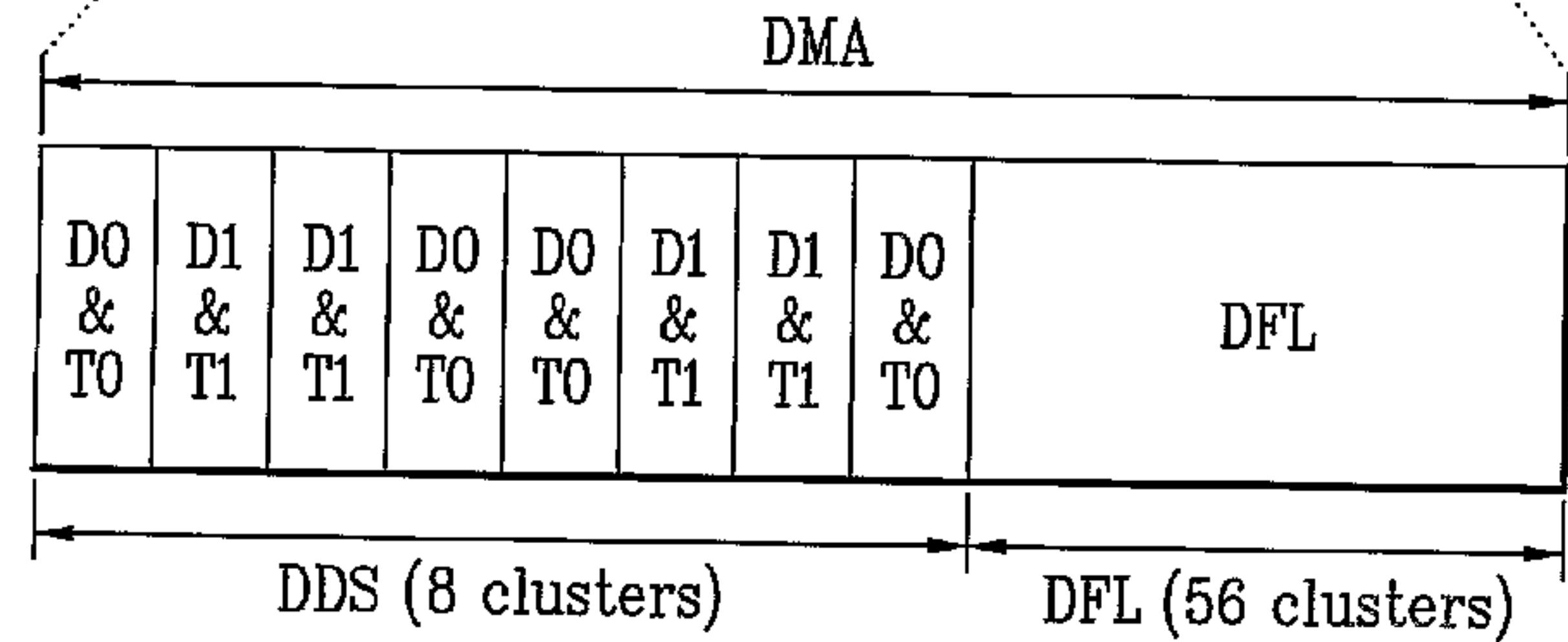


FIG. 10


FIG. 11

Clusters 1 ~ 4	D0 & T0 (4 repetitions)
Clusters 5 ~ 8	reserved
Clusters 9 ~ 16	1 st position of DFL
⋮	⋮
Clusters 33 ~ 36	D1 & T1 (4 repetitions)
Clusters 37 ~ 40	reserved
⋮	⋮
Clusters 57 ~ 64	6 th position of DFL

12/12

FIG. 12

Clusters 1,4,5,8	D0 & T0 (4 repetitions)
Clusters 2,3,6,7	D1 & T1 (4 repetitions)
Clusters 9 ~ 16	1 st position of DFL
:	:
Clusters 57 ~ 64	7 th position of DFL

