发明名称

LCD偏光片用UV固化压敏胶及其制备方法

摘要

LCD偏光片用UV固化压敏胶及其制备方法。属于胶粘剂技术领域。一种用作紫外光固化压敏胶的共混物，其特征在于，至少由三种物质按照以下质量份数组成：a. 重均分子量为100000～10000000，分散度Mw/Mn为3～10的丙烯酸酯共聚物30～60份；b. 可UV固化的组分40～70份，并且a与b之和100份；c. 光引发体系，与a与b之和100份相比为0.5～6.5份。本发明避免了使用热交联剂，采用UV交联，交联过程速度快，生产效率高，交联工艺更加容易调控。固化时间仅需要0.5～3min，避免了传统工艺漫长的热交联过程。制备的压敏胶在性能上（初粘力，剥离强度）可满足实际使用的需求。初粘力可大于14号小球，剥离强度可大于9.81N/25mm。
1. 一种用作紫外固化压敏胶，其特征在于：

先进行丙烯酸酯共聚物的制备。

在装有冷凝管，氮气置换装置，搅拌器，控温装置的反应器中，加入 180 份乙酸乙酯，99 份的 BA，1 份的 AA，0.075 份的偶氮二异丁腈；先通入氮气，用氮气置换体系内空气后，将内温升至 65℃，反应 5h 后，将内温升至 71℃，反应 2h；再加入 0.15 份的 AIBN 与 25 份乙酸乙酯的混合溶液，反应 2h 后，冷却至 40℃，完成反应；得到丙烯酸酯共聚物 H-1。

其他聚合胶层 H-2、H-3、H-4、H-5 合成方法同上，其组分如下：

<table>
<thead>
<tr>
<th></th>
<th>BA</th>
<th>LA</th>
<th>2EHA</th>
<th>SA</th>
<th>AA</th>
<th>Mw</th>
<th>多分散性</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1</td>
<td>99</td>
<td>1</td>
<td>1</td>
<td>648515</td>
<td>4.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-2</td>
<td>24</td>
<td>70</td>
<td>5</td>
<td>570110</td>
<td>7.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-3</td>
<td>70</td>
<td>25</td>
<td>5</td>
<td>575575</td>
<td>7.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-4</td>
<td>5</td>
<td>88</td>
<td>5</td>
<td>113627</td>
<td>3.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-5</td>
<td>15</td>
<td>10</td>
<td>75</td>
<td>920021</td>
<td>5.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

将共聚物 H-1 30 份与 UV 交联的单体 SR395 35 份，低聚物 CN984 35 份共混，在此基础上，加入光引发剂 1173 1%，混合至均匀，涂覆在隔离膜上，用 30m W/cm² 的高压汞灯照射 3min 后取出，得到胶层 1。

其它胶层制备方法除辐照强度和时间不同，其余和胶层 1 相同，各胶层具体如下：

胶层 2
用 20m W/cm² 的高压汞灯照射 2min 后取出；

胶层 3
用 80m W/cm² 的高压汞灯照射 0.5s 后取出；

胶层 4
用 50m W/cm² 的高压汞灯照射 1.5min 后取出；

胶层 5
用 60m W/cm² 的高压汞灯照射 0.8min 后取出；

胶层 6 用 20m W/cm² 的高压汞灯照射 2min 后取出；

胶层 7
用 30m W/cm² 的高压汞灯照射 2min 后取出；

胶层 8
用 60m W/cm² 的高压汞灯照射 2min 后取出；

其它胶层具体组分如下。
<table>
<thead>
<tr>
<th>胶层</th>
<th>H-1</th>
<th>SR395</th>
<th>CN984</th>
<th>1173</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>35</td>
<td>35</td>
<td>1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>胶层</th>
<th>H-1</th>
<th>CN965</th>
<th>BP</th>
<th>CN373</th>
<th>KH570</th>
<th>BYK-306</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>40</td>
<td>60</td>
<td>1.5%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>胶层</th>
<th>H-2</th>
<th>2EHA</th>
<th>CN710</th>
<th>1173</th>
<th>BYK-373</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>60</td>
<td>35</td>
<td>5</td>
<td>5%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>胶层</th>
<th>H-2</th>
<th>SR395</th>
<th>CN121</th>
<th>BP</th>
<th>CN373</th>
<th>1173</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>50</td>
<td>45</td>
<td>5</td>
<td>0.5%</td>
<td>0.5%</td>
<td>2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>胶层</th>
<th>H-3</th>
<th>SR239</th>
<th>CN965</th>
<th>1173</th>
<th>KH570</th>
<th>BYK-373</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>30</td>
<td>5</td>
<td>65</td>
<td>2%</td>
<td>1%</td>
<td>2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>胶层</th>
<th>H-4</th>
<th>CD420</th>
<th>1173</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>60</td>
<td>40</td>
<td>1%</td>
</tr>
</tbody>
</table>
胶层 H-4 2EHA 1173
7 40 30 1%
SR238
30
胶层 H-5 SR610 1173 KH550
8 60 10 1%
SR395
30

以上缩写具有以下含义：
AA : 丙烯酸
BA : 丙烯酸丁酯
2EHA : 丙烯酸异辛酯
SA : 丙烯酸十八酯
LA : 丙烯酸十二酯
SR395 : 丙烯酸异癸酯
SR239 : 1,6- 己二醇二甲基丙烯酸酯
SR238 : 1,6- 己二醇二丙烯酸酯
SR610 : 聚乙二醇 (600) 二丙烯酸酯
CD420 : 单官能丙烯酸酯单体
CN984 : 聚氨酯丙烯酸酯
CN965 : 聚氨酯丙烯酸酯
CN710 : 聚酯丙烯酸酯
CN121 : 改性环氧丙烯酸酯
CN373 : 卤胺类助引发剂
1173 : 2- 羟基 -2- 甲基 -1- 苯基 -1- 丙酮。
LCD 偏光片用 UV 固化压敏胶及其制备方法

技术领域：
[0001] 本发明涉及 UV 固化压敏胶。属于胶黏剂技术领域。

背景技术：
[0002] UV 固化压敏胶带，是一种只需施加较小的力就可在短时间内牢固的粘合被粘物的胶黏剂，是有粘弹性的物质。橡胶、丙烯酸酯，有机硅等都常常被用来制备不同需求的压敏胶。在液晶显示器产品中，根据不同的使用要求，需要在偏光片原板的一侧涂敷一定厚度的压敏胶，再复合上保护压敏胶的隔离膜；而在另一侧则要根据产品类型，分别复合保护膜、反射膜、半透明反射胶层膜。其中，压敏胶起粘结偏光片原板和液晶面板的重要作用。偏光片用压敏胶需要具有较佳的耐久性，耐湿热性和透明性。其中，溶剂挥发性压敏胶是至今发展最为成熟的。用作溶剂型压敏胶的共混物一般包括 A：带有交联基团（羧基，羟基）的丙烯酸共聚物 B 交联剂（通常为异氰酸酯类物质）C：硅烷偶联剂等其他组分。共混物经挥发溶剂、交联后可形成压敏胶。在工业上交联反应通常发生在烘干，硬化的过程中。但是存在两方面问题：一方面，需要很长的熟化时间才能制的所需的胶层，使生产效率低下；另一方面，由于烘干过程可能无法保证交联反应迅速发生，制得的胶层模量过低，若熟化过程不当，就会产生破品。为了解决这些问题，只有提高交联反应发生的速度，而联交联成为理想的选择。
[0003] 因此本发明提出了以下的技术方案来解决溶剂挥发性压敏胶面临的问题：1. 采用 UV 交联工艺。UV 技术具有交联速度快，无溶剂挥发，生产效率高等特点。采用 UV 技术可以省去熟化过程所带来的熟化时间长等问题。可以大大缩短生产时间，提高生产效率。2. 采用适当的光交联体系。光引发剂和可 UV 交联的单体（或低聚物）是 UV 交联的关键。可以通过采用合适的配方来确保适度的交联，防止交联过度导致得胶层性能下降。3. 丙烯酸酯共聚物作为主体。丙烯酸酯共聚物具有透明性好，胶层性能可调控等特点。本发明采用的丙烯酸酯共聚物不同于溶剂挥发性压敏胶中丙烯酸酯共聚物，在于：可以不含有与交联剂发生反应的交联基团（如羟基等），因此不需要加入热交联剂（如异氰酸酯类化合物）。这样可以避免熟化工艺（该工艺在溶剂挥发性压敏胶中用于确保交联反应充分进行）。具体来说，应采用适当的光交联体系如采用两官能或单官能的单体或低聚物，以确保交联密度过不在于太高，防止胶层硬化，丧失粘附性能。固化时间应适当，防止固化时间过短，影响最终的使用性能（如剥离性能过低）。光照时间也不易过低，否则固化时间需延长来达到完全交联，这样会浪费时间，降低生产效率。

发明内容：
[0004] 本发明的目的是提供一种初粘力，剥离强度等性能较佳的溶剂型丙烯酸酯压敏胶。这种压敏胶并不含有低分子量的丙烯酸树脂和增塑剂。主要用作偏光片压敏胶，也可应用于制造一般的包装用压敏胶带，压敏标签等。
[0005] 实现本发明的技术方案是：压敏胶至少由三种物质组成的共混物经 UV 交联工艺
制得，其特征在于，至少由三种物质按照以下质量份数组成：a. 重均分子量为 100000～1000000，分散度 Mw/Mn 为 3～10 的丙烯酸酯共聚物 30～60 份；b. 可 UV 固化的组分 40～70 份，并且 a 与 b 之和 100 份；c. 光引发体系，与 a 与 b 之和 100 份相比为 0.5～6.5 份；制得丙烯酸酯共聚物的共聚单体为具有下面的通式来表示的（甲基）丙烯酸酯单体：

![Chemical Structure]

其中 R1 为氢原子或甲基，R2 是碳原子数为 1～18 的氢原子或烷基。丙烯酸酯共聚物是自由基共聚得到的。热引发剂为偶氮二异丁基（AIBN）或过氧化二苯甲酰（BPO）中的一种，热引发剂加入的总量为单体总重量的 0.03%～0.6%。共聚温度为 50℃～100℃，优选 60℃～90℃，反应过程完全通过氮气保护。本专利高聚物的合成路线遵循 CN200910236530.5，LCP 偏光片用丙烯酸酯压敏胶及其制备方法，何勇，蹇牦，聂俊。

UV 固化组分为单官能或双官能的单体或两官能低聚物中的一种或几种的混合物。其中，单官能单体为单官能（甲基）丙烯酸酯，包括：（甲基）丙烯酸月桂酯，2（2-乙氧基乙氧基）乙基丙烯酸酯（EOEOEA），（甲基）丙烯酸十八酯，四氢呋喃（甲基）丙烯酸酯，（甲基）丙烯酸异癸酯，（甲基）丙烯酸异辛酯，（甲基）丙烯酸正辛酯，（甲基）丙烯酸十三烷基酯，（甲基）丙烯酸异丁酯，聚丙二醇单甲基丙烯酸酯，甲基丙烯酸缩水甘油醚等。双官能单体为双官能（甲基）丙烯酸酯，包括：1,3-丁二醇二丙烯酸酯，1,4-丁二醇（甲基）二丙烯酸酯，二乙二醇二丙烯酸酯，1,6-己二醇二丙烯酸酯，新戊二醇二丙烯酸酯，聚乙二醇（200）二丙烯酸酯，聚乙二醇（600）二丙烯酸酯，三缩乙二醇二丙烯酸酯，二缩乙二醇二丙烯酸酯，二丙二醇二丙烯酸酯，二缩三乙二醇二甲基丙烯酸酯，乙二醇二甲基丙烯酸酯，三缩二乙二醇二甲基丙烯酸酯等。两官能低聚物为两官能（甲基）聚氨酯丙烯酸酯齐聚物，为两官能聚酯丙烯酸酯齐聚物，其官能度（甲基）丙烯酸酯齐聚物中的一种或几种的混合物。

光引发体系为光引发剂和助引发剂。光引发剂：0.5～5 份，助引发剂：0～1.5 份。所述紫外光引发剂为二苯甲酰，2-羟基-2-甲基-1-苯基丙酮，2-羟基-2-甲基-1-对羟基苯基苯甲酮，24-6 三甲基苯甲酰苯基氧化膦，246-三甲基苯甲酰二苯基氧化膦中的一种或一种以上的混合物。紫外光助引发剂为叔胺类丙烯酸酯。其中夺氢型光引发剂如二苯甲酰需配合助引发剂使用，而裂解型光引发剂可不加入助引发剂。

偶联剂，流平剂等助剂可根据实际需求加入 0.5～3%。用于方便涂布或进一步提高胶层内聚性能等。偶联剂为硅烷类偶联剂为 γ-氨丙基三乙氧基硅烷（KH550），γ-2，
3- 环氧丙氧基丙基三甲氧基硅烷 (KH560)、γ- 甲基丙烯酸氧基丙基三甲氧基硅烷 (KH570) 中的一种。偶联剂可以提高对玻璃的附着能力。

[0011] 流平剂包括聚丙烯酸酯、有机硅树脂, 氟表面活性剂。包括 BYK-306, BYK-373, HX-3010 等

[0012] 本发明的技术效果 : 本发明技术方案制备压敏胶, 具有以下优势: 避免了使用热交联剂, 采用 UV 交联, 交联过程速度快, 生产效率高, 交联工艺更加容易调控。固化时间仅需要 0.5 ~ 3min, 避免了传统工艺漫长的热交联过程。制备的压敏胶在性能上 (初粘力, 剥离强度) 可满足实际使用的需求。初粘力可大于 14 号小球, 剥离强度可大于 9.81N/25mm。

具体实施方式

[0013] 下述实施例可以更进一步说明本发明的特点, 但并不受这些例子和例子中各组分, 配比和生产厂家的限制。实施例中的 “份” 为重量基准。

[0014] 分子量及分子量分布由 Waters 公司生产的 GPC 测得, 重均分子量测定时是通过标准聚苯乙烯标样计算得到的。GPC 测试的样品浓度为 2mg/mL, 样品导入量为 50 μL, 温度 30℃, 流速 1ml/min 的条件下, 由四氢呋喃溶解测定。

[0015] 初粘力测定采用滚球斜坡停止试验法, 采用 GB/T4852-2002 测试标准, 测量角 30℃。

[0016] 剥离强度测定采用 GB-T2792-1981 测试标准。

[0017] 实施例中的缩写具有以下含义 : AA: 丙烯酸
BA: 丙烯酸丁酯
2EHA : 丙烯酸异辛酯
SA : 丙烯酸十八酯
LA : 丙烯酸十二酯
SR395 : 丙烯酸异癸酯, 沙多玛公司产品。
SR239 :1, 6- 己二醇二甲基丙烯酸酯, 沙多玛公司产品。
SR238 :1, 6- 己二醇二丙烯酸酯 (HDDA), 沙多玛公司产品。
SR610 : 聚乙二醇 (600) 二丙烯酸酯, 沙多玛公司产品。
CD420 : 单官能丙烯酸酯单体, 沙多玛公司产品。
CN984 : 聚氨酯丙烯酸酯, 沙多玛公司产品。
CN965 : 聚氨酯丙烯酸酯, 沙多玛公司产品。
CN710 : 聚氨酯丙烯酸酯, 沙多玛公司产品。
CN121 : 改性环氧丙烯酸酯, 沙多玛公司产品。
CN373 : 间苯二甲酸二丁基异氰酸酯, 沙多玛公司产品。
1173 :2- 甲基 -2- 甲基 -1- 苯基 -1- 丙酮
聚合例 1 : 在装有冷凝管, 充气置换装置, 搅拌器, 控温装置的反应器中, 加入 180 份乙酸乙酯 (EtOAc), 99 份的 BA, 1 份的 AA, 0.075 份的偶氮二异丁氰 (AIBN)。先通入氮气 (N2), 用氮气置换体系内空气后, 将内温升至 65℃, 反应 5h 后, 将内温升至 71℃, 反应 2h。再加入 0.15
份的AIBN与25份乙酸乙酯的混合溶液，反应2h后，冷却至40℃，完成反应。得到丙烯酸酯
共聚物H-1。

表1

<table>
<thead>
<tr>
<th>BA</th>
<th>LA</th>
<th>2EHA</th>
<th>SA</th>
<th>AA</th>
<th>Mw</th>
<th>多分散性</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-1</td>
<td>9</td>
<td>1</td>
<td>648515</td>
<td>4.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-2</td>
<td>24</td>
<td>70</td>
<td>5</td>
<td>1</td>
<td>570110</td>
<td>7.29</td>
</tr>
<tr>
<td>H-3</td>
<td>70</td>
<td>25</td>
<td>5</td>
<td>1</td>
<td>575575</td>
<td>7.10</td>
</tr>
<tr>
<td>H-4</td>
<td>15</td>
<td>88</td>
<td>3</td>
<td>1</td>
<td>113627</td>
<td>3.11</td>
</tr>
<tr>
<td>H-5</td>
<td>75</td>
<td>920021</td>
<td>5.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表1. 丙烯酸酯共聚物组成

实施例1 实施例1

实施例H-130份与UV交联的单体SR39535份，低聚物CN98435份共混，在此基础上，加入光引发剂11731% 混合（见表1 实施例1）至均匀。涂覆在隔离膜上，用30mW/cm²的高压汞气灯照射3min后取出，就可得到用于测试的胶层。

实施例2

实施例2 按表1中实施例2的组分及配比将各组分混合均匀。均匀涂覆在隔离膜上，用
20mW/cm²的高压汞气灯照射2min后取出，就可得到用于测试的胶层。

实施例3

实施例3 按表1中实施例2的组分及配比将各组分混合均匀。均匀涂覆在隔离膜上，用
80mW/cm²的高压汞气灯照射0.5s后取出，就可得到用于测试的胶层。

实施例4

实施例4 按表1中实施例2的组分及配比将各组分混合均匀。均匀涂覆在隔离膜上，用
50mW/cm²的高压汞气灯照射1.5min后取出，就可得到用于测试的胶层。

实施例5

实施例5 按表1中实施例2的组分及配比将各组分混合均匀。均匀涂覆在隔离膜上，用
60mW/cm²的高压汞气灯照射0.8min后取出，就可得到用于测试的胶层。

实施例6

实施例6 按表1中实施例2的组分及配比将各组分混合均匀。均匀涂覆在隔离膜上，用
70mW/cm²的高压汞气灯照射1min后取出，就可得到用于测试的胶层。

实施例7

实施例7 按表1中实施例2的组分及配比将各组分混合均匀。均匀涂覆在隔离膜上，用
20mW/cm²的高压汞气灯照射2min后取出，就可得到用于测试的胶层。
[0053] 实施例 8
[0054] 按表 1 中实施例 2 的组分及配比将各组分混合均匀。均匀涂覆在隔离膜上，用 20mW/cm²的高压汞灯照射 2min 后取出，就可得到用于测试的胶层。
[0055] 实施例 9
[0056] 按表 1 中实施例 2 的组分及配比将各组分混合均匀。均匀涂覆在隔离膜上，用 30mW/cm²的高压汞灯照射 2min 后取出，就可得到用于测试的胶层。
[0057] 实施例 10
[0058] 按表 1 中实施例 2 的组分及配比将各组分混合均匀。均匀涂覆在隔离膜上，用 60mW/cm²的高压汞灯照射 2min 后取出，就可得到用于测试的胶层。
[0059] 其它实施例制备方法同实施例 1，具体组分在表 2

<table>
<thead>
<tr>
<th></th>
<th>共聚单体</th>
<th>低聚物</th>
<th>光引发剂</th>
<th>胶助引偶联剂</th>
<th>流平剂</th>
<th>初粘</th>
<th>剥离强度</th>
</tr>
</thead>
<tbody>
<tr>
<td>例 H-1</td>
<td>SR395</td>
<td>CN984</td>
<td>1173</td>
<td></td>
<td></td>
<td>15</td>
<td>11.0</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>35</td>
<td>35</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>例 H-1</td>
<td>CN965</td>
<td>BP</td>
<td>CN373</td>
<td>HK570</td>
<td>BYK-306</td>
<td>16</td>
<td>22.4</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>60</td>
<td>1.5%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>例 H-2</td>
<td>2EHA</td>
<td>CN710</td>
<td>1173</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>35</td>
<td>5</td>
<td>5%</td>
<td></td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>例 H-2</td>
<td>SR395</td>
<td>CN121</td>
<td>BP</td>
<td>CN373</td>
<td></td>
<td>16</td>
<td>17.5</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>45</td>
<td>5</td>
<td>0.5%</td>
<td>0.5%</td>
<td>1173</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>例 H-3</td>
<td>SR239</td>
<td>CN965</td>
<td>1173</td>
<td>HK570</td>
<td>BYK-373</td>
<td>14</td>
<td>22.0</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>5</td>
<td>65</td>
<td>2%</td>
<td>1%</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

[0061]
表 2. 实施例的混合比例。

由表 2 可以看出，采用光交联的压敏胶有很好的初粘性能。可以满足实际需求。1. 一种用作紫外光固化压敏胶的共混物，其特征在于，至少由三种物质按照以下质量份数组成：a. 重均分子量为 100000 ～ 1000000，分散度 M_w/M_n 为 3 ～ 10 的丙烯酸酯共聚物 30 ～ 60 份；b. 可 UV 固化的组分 40 ～ 70 份，并且 a 与 b 之和 100 份；c. 光引发体系，与 a 与 b 之和 100 份相比为 0.5 ～ 6.5 份；制得丙烯酸酯共聚物的共聚单体为具有下面的通式来表示的（甲基）丙烯酸酯单体。