Provided herein is a diesel fuel additive composition comprising cerium oxide nanoparticles, optionally a manganese compound, a detergent, and a demulsifier. In one embodiment, the demulsifier has relatively low phosphorus concentration to thereby improve the solubility of the components and the thermal stability and clarity of the resulting diesel fuel. Also provided are methods for improving fuel economy, reducing smoke production, inhibiting deposition of sludge, and improved storage stability.
FIELD

[0001] The present disclosure relates to diesel fuel additives to impart improved combustion, and improved fuel stability to the finished diesel fuel.

BACKGROUND

[0002] Cerium oxide nanoparticles have been used in diesel fuel applications as a catalyst for converters in the elimination of toxic exhaust emission gases. Cerium oxide has also shown utility in reducing the emission from diesel engines of particulate emissions. Envirox™ Fuel Born Catalyst is a diesel fuel combustion improver which reduces fuel consumption and also reduces harmful exhaust emissions.

[0003] Certain organometallic compounds have been found effective as combustion improvers for distillate fuels such as home heating oils and the like. For example, U.S. Pat. No. 3,112,789 describes the use of cyclopentadienyl manganese tricarbonyls for this purpose, and the compound methylcyclopentadienyl manganese tricarbonyl (MMT) has been sold in the form of a solution in a hydrocarbon diluent as a combustion improver for distillate fuels of this type. Bis(cyclopentadienyl)iron has also been promoted and sold as a combustion improver for use in such fuels.

[0004] U.S. Pat. Nos. 3,883,320 and 3,891,401 teach the addition of salts of a transition metal, such as manganese, and an alkaline earth metal, such as calcium, to jet fuels for reducing deposits and smoke. These patents require a manganese/calcium weight ratio of about 5/1 and the combined amounts of metals within the range of from 200 to 600 ppm (200 to 500 ppm in the '401 patent).

[0005] However, difficulties can arise in the formulating of diesel fuels with certain additive packages resulting in haze, precipitates, insolubilities, inadequate fuel economy, and insufficient smoke reduction. A need has arisen for a fuel-soluble additive composition for hydrocarbonaceous fuels that is not only capable of reducing the amount of soot, smoke and/or carbonaceous products produced on combustion of the fuel but that is capable of improving solubility in the fuel, and enhancing fuel economy resulting from the combustion of the fuel. In fulfilling this need, it is also important to provide an additive which prevents or at least inhibits the deposition of sludge on critical engine or burner parts or surfaces and which provides fuel compositions having satisfactory physical properties such as thermal stability and storage stability. It is also highly desirable to provide an additive composition which is capable of reducing or inhibiting the amount of noxious emissions (e.g., carbon monoxide, unburned hydrocarbons, polynuclear hydrocarbons, and or particulates) formed when using the fuels in an engine or in a burner or like combustion apparatus. The provision of additive compositions capable of decreasing fuel consumption is also a most desirable objective. A need therefore exists for an improved diesel fuel additive and diesel fuel additive package that provides improved combustion, improved solubility of the organo-

metallic fuel additives, reduced haze, improved smoke reduction, and enhanced fuel economy.

SUMMARY OF THE EMBODIMENTS

[0006] An embodiment presented herein provides a diesel fuel additive package containing a source of cerium, such as cerium oxide particles or nanoparticles, and a diesel fuel detergent.

[0007] In one embodiment, the diesel fuel additive package contains cerium oxide nanoparticles, a cetane number-improving agent, diesel fuel detergent and a demulsifier. More particularly, another embodiment can contain cerium oxide particles or nanoparticles, a diesel fuel detergent/dispersant containing an alkylated (HR-PIB) succinimide polyamine and cetane number improver (e.g. 2-ethyl hexyl nitrate), a demulsifier and may also contain a metal deactivator.

[0008] In one embodiment, the additive package containing cerium oxide particles or nanoparticles can be used to treat diesel fuel at a treat rate of from about 1 to about 200 ppm in the diesel fuel. Higher and lower levels of cerium oxide will be desirable for certain applications.

[0009] The diesel fuel additive package of the present disclosure can also contain mixed metal combustion improvers, such as cerium/manganese and cerium/manganese/iron compounds, alloys or mixtures. One embodiment herein employs alloys of two or more metals as, or comprising, nanoparticles for improved solubility or dispersibility in the fuel.

[0010] Another embodiment herein provides a diesel fuel containing the cerium oxide nanoparticles, cetane improver and a detergent, and a low-phosphorus demulsifier.

[0011] In another embodiment herein is presented a method of improving the efficiency of a diesel fuel for an internal combustion engine which comprises adding to the fuel prior to the introduction of the fuel to a vehicle or other apparatus comprising an internal combustion engine a diesel fuel additive package comprising cerium oxide nanoparticles, a detergent and a demulsifier.

[0013] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are intended to provide further explanation of the present disclosure, as claimed.

DETAILED DESCRIPTION OF EMBODIMENTS

[0014] The present disclosure provides in one embodiment a diesel fuel additive package comprising cerium oxide particles or nanoparticles that are soluble or dispersible in diesel fuel. More importantly, the diesel fuel additive package contains in one embodiment a demulsifier compound to reduce or eliminate the foaming and/or emulsion problems often observed in the pumping, distribution, tank-filling and use of additized diesel fuels.
[0015] In one embodiment, the demulsifier employed in the present diesel fuel additive has a phosphorus level of greater than 30 mg/kg of demulsifier. However, it has been presently discovered that by reducing the phosphorus content, whether deliberately present or present as a contaminant, of the demulsifier in the diesel fuel additive, the stability of the fuel additive composition and of the resulting fuel is greatly enhanced and a significant reduction in hazing is obtained. Thus, a level of phosphorus in the demulsifier of up to about 30 mg/kg can be used, or a phosphorus level of about 24 mg/kg has been employed, in another example about 8 mg/kg of phosphorus was employed, and in yet another formulation about 0.12 mg/kg phosphorus level was employed in the diesel fuel demulsifier. As the phosphorus level was reduced, a surprising and unexpected improvement in hazing reduction and fuel stability was attained.

[0016] Demulsifiers (or dehazers) herein can be any of the commercially available materials such as but not limited to alkoxylated phenol formaldehyde polymers, such as those commercially available as “NALCO” (Trade Mark) 7007 (ex.Nulco), and “TOLAD” (Trade Mark) 2683 (ex.Petrolite), alkoxylated phenols and resins derived therefrom, oxylated alkylphenolic resin, and formaldehyde polymer with 4-(1,1-dimethylethyl)phenol, methylxylirane and oxirane, ethoxylated EO/PO resin, polyglycol ester, ethylene oxide resin.

[0017] Therefore, there is presented herein a diesel fuel additive package containing cerium oxide nanoparticles generally having a size not exceeding one micron and in one embodiment not exceeding 300 nm, for example 1 to 300 nm, such as from 1 to 150 nm, in particular 1 to 50 nm, and especially 1 to 20 nm. This diesel fuel additive package can also contain at least one diesel fuel detergent/dispersant selected from the group consisting of succinimides, Mannich bases, amides, amines, and polyetheramines.

[0018] In addition, the diesel fuel additive package can contain a demulsifier with reduced phosphorus levels of, for example, up to about 24 mg/kg, or about 8 mg/kg to about 24 mg/kg, or from about 0.1 mg/kg to about 8 mg/kg. In this manner is achieved a diesel fuel additive package able to impart to the diesel fuel superior hazing reduction, improved additive solubility, increased fuel stability, smoke reduction, combustion improvement, and enhanced fuel economy.

[0019] Another benefit of the present disclosure is the improvement in the performance of the demulsifier in its intended performance in the fuel additive and in the finished fuel. Emulsions tend to form in fuels having detergents/dispersants, hence the need for the demulsifier. Any reaction which deactivates or reacts with the demulsifier reduces the demulsification efficacy, leading to more emulsification. In this manner is provided a method to improve the demulsification of a fuel additive comprising adding to the fuel additive the cerium oxide nanoparticles, a detergent and a demulsifier, wherein the demulsifier has less than about 30 mg/kg phosphorus. In another embodiment, the demulsifier has up to about 24 mg/kg, or in a separate example about 8 mg/kg to about 24 mg/kg, or in yet another example from about 0.1 mg/kg to about 8 mg/kg of phosphorus.

[0020] The amounts of cerium oxide nanoparticles, detergent and demulsifier useful in the embodiments presently disclosed can vary depending on the desired application, the nature of the diesel fuel, and other desired components in the additive package or the finished fuel.

[0021] In another embodiment is provided a diesel fuel composition that comprises a major amount of a diesel fuel and a minor combustion improving amount of an additive composition comprising: a) one or more fuel-soluble component comprising one or more manganese or cerium compounds, mixtures or alloys; b) one or more fuel-soluble alkali or alkaline earth metal-containing detergents—e.g., one or more neutral or basic alkali or alkaline earth metal salts of at least one sulphonic acid, and/or at least one carboxylic acid, and/or at least one sulphydryl acid, and/or at least one allylphenol, and/or at least one sulphurised allylphenol; and c) a demulsifier of reduced phosphorus content as defined hereinabove, wherein component a) is present in an amount sufficient to supply from 0.1 to 5 ppm manganese or cerium or both to the fuel and component b) is present in an amount sufficient to supply from 5 to 50 ppm alkali and/or alkaline earth metal to the fuel composition. This embodiment can also contain one or more alkyl nitrate cetane number-improving agents.

[0022] It has been found that the cerium oxide particles can be stabilized in the fuel or fuel additive package by the presence of a detergent/dispersant. Particular detergents which can be used in the present invention include a basic nitrogen-containing detergent. Suitable ashless detergents/dispersants include amides, amines, polyetheramines, Mannich bases and succinimides which are preferred, although metal-containing detergents are also effective herein.

[0023] These dispersants are described in numerous patent specifications, mainly as additives for use in lubricant compositions, but their use in hydrocarbon fuels has also been described. Ashless dispersants leave little or no metal-containing residue on combustion. They generally contain only carbon, hydrogen, oxygen and in most cases nitrogen, but sometimes contain in addition other non-metallic elements such as phosphorus, sulphur or boron. A particularly useful ashless dispersant/detergent herein is derived from “high reactive” polyisobutylene (HR-PIB) substituted on a maleic anhydride reacted with a polyamine to achieve a level of about 5.4% nitrogen to achieve enhanced dispersancy. Such a material is available from Afton Chemical Corporation as HiTEC® 4007. The detergent/dispersant can be used in the fuel additive packages herein at levels of from about 5 to about 20% by weight.

[0024] In one embodiment, the detergent is a succinimide, which has an average of at least 3 nitrogen atoms per moleule. The succinimide is preferably aliphatic and may be saturated or unsaturated, especially ethyleneically unsaturated, e.g., an allyl or alkynyl succinimide. Typically the detergent is formed from an alkyl or alkynyl succinimide acylating agent, generally having at least 55 carbon atoms in the alkyl or alkynyl group, and an alkylene polyamine mixture having an average of at least 3 nitrogen atoms per molecule. In another embodiment the polyamine has 4 to 6 nitrogen atoms per molecule. Preferably it can be formed from a polyisobutylene succinic acylating agent derived from polyisobutylene having a number average molecular weight of 500 to 10,000 and an ethylene polyamine which can include cyclic and acyclic parts, having an average composition from triethylene tetramine to pentaethylene hexamine. Thus the chain will typically have a molecular weight from 500 to 2500, especially 750 to 1500 with those having molecular weights around 900 and 1300 being particularly useful although a succinimide with an aliphatic chain with a molecular weight of about 2100 is also useful. Further
details can be found in U.S. Pat. Nos. 5,932,525 and 6,048,373 and EP-A 432,941, 460390 and 1,237,373.

[0025] Examples of suitable metal-containing detergents useful herein include, but are not limited to, such substances as lithium phosphates, sodium phosphates, potassium phosphates, calcium phosphates, magnesium phosphates, sulphurised lithium phosphates, sulphurised sodium phosphates, sulphurised potassium phosphates, sulphurised calcium phosphates, and sulphurised magnesium phosphates wherein each aromatic group has one or more aliphatic groups to impart hydrocarbon solubility; the basic salts of any of the foregoing phenols or sulphurised phenols (often referred to as “overbased” phenols or “overbased sulphurised phenols”); lithium sulphonates, sodium sulphonates, potassium sulphonates, calcium sulphonates, and magnesium sulphonates wherein each sulphonic acid moiety is attached to an aromatic nucleus which in turn usually contains one or more aliphatic substituents to impart hydrocarbon solubility; the basic salts of any of the foregoing sulphonates (often referred to as “overbased sulphonates”); lithium salicylates, sodium salicylates, potassium salicylates, calcium salicylates, and magnesium salicylates wherein the aromatic moiety is usually substituted by one or more aliphatic substituents to impart hydrocarbon solubility; the basic salts of any of the foregoing salicylates (often referred to as “overbased salicylates”); the lithium, sodium, potassium, calcium and magnesium salts of hydrolysed phosphosulphurised olefins having 10 to 2000 carbon atoms or of hydrolysed phosphosulphurised alcohols and/or aliphatic-substituted phenolic compounds having 10 to 2000 carbon atoms; lithium, sodium, potassium, calcium and magnesium salts of aliphatic carboxylic acids and aliphatic-substituted cycloaliphatic carboxylic acids; the basic salts of the foregoing carboxylic acids (often referred to as “overbased carboxylates”) and many other similar alkali and alkaline earth metal salts of oil-soluble organic acids. Mixtures of salts of two or more different alkali and/or alkaline earth metals can be used. Likewise, mixtures of two or more different acids or two or more different types of acids (e.g., one or more calcium phosphates with one or more calcium sulphonates) can also be used. While rubidium, cesium and strontium salts are feasible, their expense renders them impractical for most uses.

[0026] According to one embodiment of the present disclosure, the cerium oxide nanoparticles are added to diesel fuel at an early stage by being incorporated into the diesel fuel additive package. It has been found that incorporating the particles in this way can lead to improved fuel efficiency in the diesel engine by preventing agglomeration and hence loss of surface area of the cerium particles. The present disclosure improves the previous performance of cerium oxide particles or nanoparticles in fuel by allowing the cerium oxide to more fully perform its roles. This is achieved by reducing the cerium removal from the fuel by sediment formation thereby keeping more of the cerium atoms available for combustion catalysis and emission reduction or other benefits.

[0027] Another benefit of the present disclosure is reduced filter blockage of fuel filters because of the reduction in or elimination of sediment, precipitation and/or haze caused by, for example, interactions between the cerium atoms or particles and fuel additive components or/and contaminants. Malfunctioning fuel filters can lead to difficulties in engine operation and finally to a complete shut down. One example is the reduced interaction between phosphorus and the cerium oxide particles or nanoparticles according to the present disclosure to reduce fuel filter blockage. A measure of this benefit is observable from IP 387 Filtration Test. Thus, there is provided herein a method to reduce filter blockage of fuel filters in a vehicle or other apparatus employing a diesel engine combusting a diesel fuel and having a fuel filter, said method comprising adding to the diesel fuel prior to the introduction of the fuel to a vehicle or other apparatus a diesel fuel additive package comprising cerium oxide nanoparticles, a detergent and a demulsifier.

[0028] Accordingly, the present disclosure provides a method of improving the efficiency of a fuel for an internal combustion engine which comprises adding to the fuel prior to the introduction of the fuel to a vehicle or other apparatus comprising an internal combustion engine a fuel soluble metallic material containing cerium oxide and/or a manganese source, and a detergent and a demulsifier as fuel additives. By introducing the cerium oxide in this way there is little or no need for any vehicle fuel management system necessitated by other methods of introduction such as on-board dosing. Fuel efficiency will result from the incorporation of the cerium oxide particles in the fuel.

[0029] Accordingly, the present disclosure also provides a fuel additive composition, which comprises cerium oxide nanoparticles and/or a manganese source together with a detergent, preferably an aliphatic succinimide and a demulsifier having less than about 8 mg/kg of phosphorus. In another embodiment the fuel additive composition further comprises a demulsifier, as defined hereinabove, and a cetane improver agent.

[0030] Typically the concentration of cerium oxide particles or nanoparticles in the diesel fuel additive will be from 0.1 to 10%, generally 0.5 to 5%, by weight.

[0031] Typically the fuel additives which are incorporated at a refinery may include cetane number improvers, cold flow improvers, antioxidants, and metal deactivators. Accordingly the fuel additive compositions of the present disclosure can incorporate one or more of these. Thus, the present disclosure provides fuel additive compositions comprising cerium oxide nanoparticles and/or colloids, a detergent, a demulsifier, and optionally one or more of the components selected from the group consisting of cetane number improvers (also called ignition improvers) (such as alkyl nitrates), cold flow improvers (such as polyesters), and antioxidants (such as phenolics such as 2,6-di-tert-butylphenol, or phenylenediamines such as N,N’-di-sec-butyl-p-phenylenediamine), and metal deactivators such as salicylic acid derivatives, e.g. N,N-disalicylidene-1,2-propane diamine.

[0032] Lubricity additive, anti-rust agents and antifoams are also useful in the diesel fuel additive packages of the present disclosure.

[0033] In another embodiment of the present disclosure, the fuel additive composition can contain a mixture, blend, compound of or alloy of two or more metals, plus a detergent/dispersant and a demulsifier with up to about 30 mg/kg of phosphorus. Mixed metal catalyst systems are known but the use thereof with detergents and a demulsifier able to reduce or eliminate haze, instability or precipitates is needed and presently provided.

[0034] Thus, an improved fuel additive composition of the present disclosure can comprise a material containing two or more metal-containing combustion catalysts, a detergent/ dispersant, and a demulsifier having up to about 30 mg/kg of
phosphorus. In another embodiment, the demulsifier has up to about 24 mg/kg, or in a separate example about 8 mg/kg to about 24 mg/kg, or in yet another example from about 0.1 mg/kg to about 8 mg/kg of phosphorus. The detergent/dispersant and the demulsifier can be, for example, as described hereinabove. These metal-containing combustion catalysts can be cerium oxide particles or nanoparticles, manganese sources, such as methylcyclopentadienyl manganese tricarbonyl, and iron sources, such as solubilized iron oxide and ferrocene. By “manganese” herein is meant any manganese or manganese-containing material, compound or precursor, such as but not limited to methyl cyclopentadienyl manganese tricarbonyl, available from Afton Chemical Corporation as MMT®, and manganese sulfonate, manganese phenate, manganese salicylate, cyclopentadienyl manganese tricarbonyl, alkyl cyclopentadienyl manganese tri carbonyl, organic manganese tricarbonyl derivatives, alkyl cyclopentadienyl manganese derivatives, bis-cyclopentadi enyl manganese, bis-alkyl cyclopentadienyl manganese, neutral and overbased manganese salicylates, neutral and overbased manganese phenates, neutral and overbased manganese sulfonates, manganese carboxylates, manganese oxide and combinations and mixtures thereof. [0035] Therefore, a cerium/manganese mixture or alloy can be used herein; a cerium/manganese/iron mixture or alloy can be used herein; a cerium/iron mixture or alloy can be used herein; or a manganese/iron mixture or alloy can be used herein.

[0036] There is provided herein a fuel additive which comprises cerium oxide and a manganese source, a detergent, and a demulsifier with phosphorus content of up to about 24 mg/kg. In a separate example, the phosphorus in the demulsifier is about 8 mg/kg to about 24 mg/kg, or in yet another example from about 0.1 mg/kg to about 8 mg/kg of phosphorus.

[0037] Furthermore, cerium oxide particles or nanoparticles can be combined with ferrocene (an iron source) in the preparation of a fuel additive composition further comprising a detergent/dispersant and a demulsifier. Thus, for example, a fuel additive composition is provided comprising cerium oxide (e.g. Envirox™ from Oxonica), ferrocene (widely available), a succinimide detergent/dispersant (HITEC® 4007 from Afton Chemical Corporation) and derived from 950 MW polysobutylene with greater than 70% vinylidene groups plus maleic anhydride, reacted with a polyamine to achieve a final N content of about 6.0%, and a demulsifier (Tolad 9357 from Baker Petrolite) which will have excellent combustion improver activity, no haze or precipitate, good smoke reduction, and enhanced fuel economy.

Model Mixed Metal Systems

[0038]

<table>
<thead>
<tr>
<th>Example 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerium/manganese alloy</td>
<td>1–200 ppm</td>
</tr>
<tr>
<td>Ferrocene (widely available)</td>
<td>5–30 wgt %</td>
</tr>
<tr>
<td>Detergent/dispersant (HITEC® 4007 Afton Chemical)</td>
<td>5–15 wgt %</td>
</tr>
<tr>
<td>Demulsifier (Tolad 9357 from Baker Petrolite)</td>
<td>1–10 wgt %</td>
</tr>
<tr>
<td>Aromatic and/or aliphatic solvent(s)</td>
<td>45–89 wgt %</td>
</tr>
</tbody>
</table>

Example 3

Cerium/manganese/iron alloy	1–200 ppm
Detergent/dispersant (HITEC® 4007 Afton Chemical)	5–15 wgt %
Demulsifier (Tolad 9357 from Baker Petrolite)	1–10 wgt %
Aromatic and/or aliphatic solvent(s)	45–89 wgt %

[0039] The following examples further illustrate aspects of the present disclosure but do not limit the present disclosure.

EXAMPLES

Example 1

HITEC® 4656 Diesel Fuel Additive (Afton Chemical Corporation) is based on about 50% by weight of 2-ethyl hexyl nitrate cetane improver and 15% by weight of a HR-PHB succinimide detergent/dispersant with about 6.0 weight % nitrogen (HITEC® 4007 available from Afton Chemical Corporation). HITEC® 4656 was combined with 250 ppm of a source of cerium oxide particles in aliphatic solvent to deliver 5 ppm of cerium oxide particles (Envirox™ available from Oxonica). This combination can be used directly in a diesel fuel or diluted in aliphatic or aromatic solvent to prepare a diesel fuel additive.

Example 2

HITEC® 4656 Diesel Fuel Additive (Afton Chemical Corporation) is based on about 50% by weight of 2-ethyl hexyl nitrate cetane improver and 15% by weight of a HR-PHB succinimide detergent/dispersant with about 6.0 weight % nitrogen (HITEC® 4007 available from Afton Chemical Corporation). HITEC® 4656 was combined with 250 ppm of a source of cerium oxide particles in aliphatic solvent to deliver 5 ppm of cerium oxide particles (Envirox™ available from Oxonica). This combination can be used directly in a diesel fuel or diluted in aliphatic or aromatic solvent to prepare a diesel fuel additive.

Example 3

HITEC® 4656 Diesel Fuel Additive (Afton Chemical Corporation) is based on about 50% by weight of 2-ethyl hexyl nitrate cetane improver and 15% by weight of a HR-PHB succinimide detergent/dispersant with about 6.0 weight % nitrogen (HITEC® 4007 available from Afton Chemical Corporation). HITEC® 4656 was combined with 250 ppm of a source of cerium oxide particles in aliphatic solvent to deliver 5 ppm of cerium oxide particles (Envirox™ available from Oxonica). This combination can be used directly in a diesel fuel or diluted in aliphatic or aromatic solvent to prepare a diesel fuel additive.

Example 4

HITEC® 4656 Diesel Fuel Additive (Afton Chemical Corporation) is based on about 50% by weight of 2-ethyl hexyl nitrate cetane improver and 15% by weight of a HR-PHB succinimide detergent/dispersant with about 6.0 weight % nitrogen (HITEC® 4007 available from Afton Chemical Corporation). HITEC® 4656 was combined with 250 ppm of a source of cerium oxide particles in aliphatic solvent to deliver 5 ppm of cerium oxide particles (Envirox™ available from Oxonica). This combination can be used directly in a diesel fuel or diluted in aliphatic or aromatic solvent to prepare a diesel fuel additive.

[0040] The product of Example 1 was combined with 2.27% by weight percent of another demulsifier (Tolad 9357, formaldehyde polymer with 4-(1,1-dimethyl)
phenol, methyloxirane and oxirane in an aromatic solvent) which had a phosphorus content of 0.199 mg/kg. This fuel additive package had excellent clarity, very low haze, and no appreciable precipitate (only 0.15 grams of sediment per 1 kg of fuel additive package). This resulting diesel fuel additive package was combined with diesel fuel at a treat rate of 1350 ppm resulting in excellent fuel stability, no precipitate and no haze. In this final diesel fuel product the cerium oxide content was 0.37 weight % (5 ppm), and the phosphorus level is therefore only a trace amount. The final diesel fuel product was considered excellent in terms of smoke reduction, fuel economy, fuel stability, solubility and improved combustion.

As can be seen from the above examples, when HiTEC® 4656 Diesel Fuel Additive (alkyl nitrate cetane number improver) with Todalk 9338 demulsifier was mixed with Envirox™ cerium oxide nanoparticles the resulting fuel additive product produced a sediment of 1.39 grams per 1 kg of additive. When HiTEC® 4656 Diesel Fuel Additive (alkyl nitrate cetane number improver) with Todalk 2898 demulsifier was mixed with Envirox™ cerium oxide nanoparticles the product produced a sediment of 0.35 grams per 1 kg of additive. When HiTEC® 4656 Diesel Fuel Additive (alkyl nitrate cetane number improver) with Todalk 9357 demulsifier was mixed with Envirox™ the product produced a sediment of 0.15 grams per 1 kg of additive.

Haze Measurements

HiTEC® 4656 with Todalk 9338 mixed with Envirox™ produces a haze of 1552 NTU. HiTEC® 4656 with Todalk 2898 mixed with Envirox™ produces a haze of 880 NTU. HiTEC® 4656 with Todalk 9357 mixed with Envirox™ produces a haze of 175 NTU. (NTU is known in the industry as "non-arbitrary units"). Clearly the unexpected improvement is the reduction in haze when combining the cetane number improver, the cerium oxide nanoparticles, and a low phosphorus-containing demulsifier.

<table>
<thead>
<tr>
<th>Additive</th>
<th>Demuls</th>
<th>Envirox</th>
<th>Haze (NTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>335</td>
</tr>
<tr>
<td>H4656</td>
<td>T9338</td>
<td>Y</td>
<td>5.74</td>
</tr>
<tr>
<td>H4656</td>
<td>T2899</td>
<td>N</td>
<td>5.61</td>
</tr>
<tr>
<td>H4656</td>
<td>T9337</td>
<td>N</td>
<td>5.18</td>
</tr>
<tr>
<td>H4656</td>
<td>T9338</td>
<td>Y</td>
<td>1552</td>
</tr>
<tr>
<td>H4656</td>
<td>T2898</td>
<td>Y</td>
<td>880</td>
</tr>
<tr>
<td>H4656</td>
<td>T9357</td>
<td>Y</td>
<td>175</td>
</tr>
</tbody>
</table>

In addition, applicants carried out antifoam testing on the fuel additive products produced containing the alkyl nitrate cetane number improver and the cerium oxide nanoparticles with surprising results. It was observed that the cerium oxide has a positive influence on foam reduction. With the Envirox™ product alone, the fuel foam decay time was halved, but when used in conjunction with a HiTEC® 4656 type product, the foam performance was improved beyond the normal HiTEC® 4656 foam performance. Thus, an unexpected benefit is obtained in diesel fuel foam reduction when combining cerium oxide nanoparticles and an alkylnitrate cetane number improver.

SUMMARY OF DEFOAMING EXPERIMENTS

Base reference diesel fuel has a decay time of 45 seconds, with a foam height of 100 mls;

Diesel fuel treated with 250 ppm Envirox™ has a decay time of 21.2 seconds and a foam height of 100 mls;

Diesel fuel treated with 1100 ppm HiTEC® 4656 has a decay time of 6.9 seconds and a foam height of 80 mls;

Diesel treated with 250 ppm Envirox™ plus 1100 ppm HiTEC® 4656 has a decay time of 2.8 seconds and a foam height of 55 mls.

Clearly, there is an unexpected excellent improvement in foam reduction achieved by combining the cerium oxide nanoparticles and the alkyl nitrate cetane number improver in the diesel fuel. Thus, there is provided herein a method for foam reduction in a diesel fuel by providing to the fuel a fuel additive package comprising cerium oxide nanoparticles and an alkyl nitrate cetane number improver additive.

By the incorporation of the present disclosure into vehicles or devices, significant improvements in mechanical design and methods of use are provided. In one embodiment herein is provided an emissions control system for the after-treatment of a diesel fuel combustion process exhaust stream comprising: an exhaust passageway for the passage of an exhaust stream containing exhaust byproducts from the combustion of a diesel fuel, a particulate filter selected from the group consisting of continuously regenerating technology diesel particulate filter, a diesel particulate filter, and a catalyzed diesel particulate filter, located within the exhaust passageway and adapted to contact the exhaust stream, wherein the fuel has an additive package introduced into it, the additive package comprising cerium oxide and/or manganese, a detergent, an alkyl nitrate ignition improver, and optionally a demulsifier, whereby the operation of the particulate filter is enhanced by maximizing the dispersancy of the cerium oxide. This prevents the agglomeration of the cerium oxide particles which would otherwise reduce the interaction of cerium oxide with the exhaust particulates. Furthermore, improved dispersing of the cerium oxide particles according to the present disclosure reduces their agglomeration and minimizes or eliminates the potential for fuel filter plugging. In addition, a method of use is provided for improving the performance of a diesel particulate filter by reducing the negative impact on the surface of the filter present in the absence of the use of the fuel additive packages described herein.

In certain engine designs, the injector nozzle holes are non-cylindrical but are flared outwardly with increasing diameter toward the combustion chamber with the intent to keep the injector hole dry after each injection of fuel. These designs are found to be extremely prone to coking which negatively impacts fuel flow, uniformity of combustion, and promotes deposit build-up because the fuel dynamic flow cannot sweep the surfaces of the injector holes clean.
Therefore a need exists to protect the injector nozzle hole by improved exposure to the combustion chamber gases which will now include the cerium atoms and cerium oxide particles. By the present disclosure, the cerium and cerium oxide particles can serve to oxidize and remove the carbonaceous deposits in and around the nozzle hole. Thus is provided herein a method for use in a diesel engine having non-cylindrical injector nozzle holes of a diesel fuel additive package comprising cerium oxide, a detergent/dispersant, and a demulsifier having less than 24 mg/kg of phosphorus.

In a separate example, the phosphorus in the demulsifier is about 8 mg/kg to about 24 mg/kg, or in yet another example from about 0.1 mg/kg to about 8 mg/kg of phosphorus.

Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure disclosed herein. As used throughout the specification and claims, “a” and/or “an” may refer to one or more than one. Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, percent, ratio, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.

What is claimed is:

1. A method of improving the efficiency of a diesel fuel for an internal combustion engine which comprises adding to the fuel prior to the introduction of the fuel to a vehicle or other apparatus comprising an internal combustion engine a diesel fuel additive package comprising cerium oxide nanoparticles, a detergent/dispersant and a demulsifier.

2. The method of claim 1, wherein the detergent/dispersant is present in the additive package in an amount of from about 5 to about 20 weight percent.

3. The method of claim 1, wherein the detergent/dispersant is selected from the group consisting of alkylaryl substituted succinimides, amides, amines, Mannich bases, and polyetheramines.

4. The method of claim 1, wherein the additive package further comprises one or more of a material selected from the group consisting of a cetane number improver, and a metal de-activator.

5. The method of claim 1, wherein the additive package further comprises a source of manganese.

6. The method of claim 1, wherein the additive package further comprises a demulsifier selected from the group consisting of an oxylated alkylphenolic resin, and formaldehyde polymer with 4-(1,1-dimethylethyl)phenol, methyloxirane and oxirane.

7. The method of claim 1, wherein the demulsifier has a phosphorus content of up to about 24 mg/kg.

8. The method of claim 1, wherein the demulsifier has a phosphorus content of about 8 mg/kg to about 24 mg/kg.

9. The method of claim 1, wherein the demulsifier has a phosphorus content of from about 0.1 mg/kg to about 8 mg/kg.

10. The method of claim 1, wherein the demulsifier has a phosphorus content of about 0.2 mg/kg.

11. The method of claim 1, wherein the fuel additive comprises 1 to 200 ppm cerium oxide nanoparticles of 1 to about 300 nm particle size; 5 to 15 wt% percent detergent/dispersant selected from the group consisting of alkylated succinimides, Mannich bases, amides, amines, and polyetheramines; and 1 to 10 wt% percent of a demulsifier selected from the group consisting of an oxylated alkylphenolic resin, and formaldehyde polymer with 4-(1,1-dimethylethyl)phenol, methyloxirane and oxirane, wherein the phosphorus level of the demulsifier is less than 8 mg/kg.

12. The method of claim 1, wherein the detergent/dispersant comprises a fuel-soluble alkali or alkaline earth metal-containing detergent.

13. A fuel additive which comprises cerium oxide and/or a manganese source and a detergent.

14. A fuel additive according to claim 13, wherein the concentration of cerium oxide and/or manganese is from 0.1 to 10% by weight.

15. A fuel additive according to claim 13, wherein the concentration of cerium oxide nanoparticles and/or manganese is from 0.5 to 5% by weight.

16. A fuel additive according to claim 13, wherein the detergent is a basic nitrogen-containing ashless detergent.

17. A fuel additive according to claim 13, wherein the detergent is a succinimide which has an average of at least 3 nitrogen atoms per molecule.

18. A fuel additive according to claim 13, wherein the succinimide is derived from an alkyl or alkenyl succinic acylating agent having at least 35 carbon 50 atoms in the alkyl or alkenyl part and an alkylene polyamine mixture having an average of at least 3 nitrogen atoms per molecule.

19. A fuel additive according to claim 13, wherein the succinimide is derived from a polyisobutylene succinic acylating agent obtainable from a polyisobutene having a number average molecular weight of 500 to 10,000 and an ethylene polyamine having an average composition from triethylene tetraamine to pentaethylene hexamine.

20. A fuel additive according to claim 13, wherein the aliphatic chain of the succinimide has a molecular weight 500 to 2500.

21. A fuel additive according to claim 13, wherein the aliphatic chain of the succinimide has a molecular weight 750 to 1500.

22. A fuel additive according to anyone of claims 13 to 21 which also comprises one or more of a material selected from the group consisting of dehazer, anti-foaming agent, ignition improver, anti-rust agent, redorant, anti-oxidant, metal deactivator, lubricity agent and demulsifier.

23. A fuel additive according to claim 13, which comprises a solvent which is an aliphatic or aromatic hydrocarbon or an aliphatic alcohol.
24. A method for improving diesel fuel stability, said method comprising adding to the fuel prior to the introduction of the fuel to a vehicle or other apparatus comprising an internal combustion engine a diesel fuel additive package comprising cerium oxide nanoparticles, a detergent and a demulsifier.

25. A method for improving combustion in a diesel engine, said method comprising adding to the fuel prior to the introduction of the fuel to a vehicle or other apparatus comprising an internal combustion engine a diesel fuel additive package comprising cerium oxide nanoparticles, a detergent and a demulsifier.

26. A method for reducing smoke from combustion in a diesel engine, said method comprising a method for improving diesel fuel stability, said method comprising adding to the fuel prior to the introduction of the fuel to a vehicle or other apparatus comprising an internal combustion engine a diesel fuel additive package comprising cerium oxide nanoparticles, a detergent and a demulsifier.

27. A method for improving the solubility of an organometallic fuel additive in a diesel fuel, said method comprising adding to the fuel prior to the introduction of the fuel to a vehicle or other apparatus comprising an internal combustion engine a diesel fuel additive package comprising cerium oxide nanoparticles, a detergent and a demulsifier.

28. A method for reducing the haze in a diesel fuel having diesel fuel additives, said method comprising adding to the fuel prior to the introduction of the fuel to a vehicle or other apparatus comprising an internal combustion engine a diesel fuel additive package comprising cerium oxide nanoparticles, a detergent and a demulsifier.

29. A method to reduce filter blockage of fuel filters in a vehicle or other apparatus employing a diesel engine combustion a diesel fuel and having a fuel filter, said method comprising adding to the diesel fuel prior to the introduction of the fuel to a vehicle or other apparatus a diesel fuel additive package comprising cerium oxide nanoparticles, a detergent and a demulsifier.

30. A method to improve the demulsification of a fuel additive comprising adding to the fuel additive cerium oxide nanoparticles, a detergent and a demulsifier, wherein the demulsifier has less than about 30 mg/kg of phosphorus.

31. An improved fuel additive composition of the present disclosure can comprise a material containing two or more metal-containing combustion catalysts, a detergent/dispersant, and a demulsifier having up to about 30 mg/kg of phosphorus.

32. A method for foam reduction in a diesel fuel, said method comprising providing to the fuel a fuel additive package comprising cerium oxide nanoparticles and an alkyl nitrate cetane number improver additive.

33. An emissions control system for the after-treatment of a diesel fuel combustion process exhaust stream comprising: an exhaust passageway for the passage of an exhaust stream containing exhaust byproducts from the combustion of a diesel fuel, an oxidation catalyst, a particulate filter selected from the group consisting of continuously regenerating technology diesel particulate filter, a diesel particulate filter, and a catalyzed diesel particulate filter, located within the exhaust passageway and adapted to contact the exhaust stream, wherein the fuel has an additive package introduced into it, the additive package comprising cerium oxide and/or manganese, a detergent, an alkyl nitrate ignition improver, and optionally a demulsifier, whereby the operation of the particulate filter is enhanced.

34. A method for improving an emissions control system for the after-treatment of a diesel fuel combustion process exhaust stream comprising...

35. Use in a diesel engine having non-cylindrical injector nozzle holes of a diesel fuel additive package comprising cerium oxide, a detergent/dispersant, and a demulsifier having less than 24 mg/kg of phosphorus.

* * * * *