HETEROCYCLIC CARBOXAMIDES FOR USE AS THROMBIN INHIBITORS

Inventors: Jonas Branalt, Molndal (SE);
David Gustafsson, Molndal (SE);
Ingemar Nilsson, Molndal (SE);
Magnus Polla, Molndal (SE)

Assignee: ASTRAZENECA AB, Sodertalje (SE)

Appl. No.: 13/000,637
PCT Filed: Jun. 22, 2009
PCT No.: PCT/SE2009/050778
§ 371(c)(1), (2), (4) Date: Feb. 10, 2011

Publication Classification

Int. Cl.
A61K 31/422
C07D 257/04
C07D 261/02
A61K 31/41
A61P 7/02

U.S. Cl. 514/378; 548/253; 548/240; 514/381; 514/382

ABSTRACT

This invention relates to novel pharmaceutically useful compounds of formula (I), in particular compounds that are competitive inhibitors of trypsin-like serine proteases, especially thrombin, their use as medicaments, pharmaceutical compositions containing them and synthetic routes to their production. Formula (I)

![Chemical Structure](image)
HETEROCYCLIC CARBOXAMIDES FOR USE AS THROMBIN INHIBITORS

FIELD OF THE INVENTION

This invention relates to novel pharmaceutically useful compounds, in particular compounds that are competitive inhibitors of trypsin-like serine proteases, especially thrombin, their use as medicaments, pharmaceutical compositions containing them and synthetic routes to their production.

BACKGROUND

Blood coagulation is the key process involved in both haemostasis (i.e. the prevention of blood loss from a damaged vessel) and thrombosis (i.e. the formation of a blood clot in a blood vessel, sometimes leading to vessel obstruction).

Coagulation is the result of a complex series of enzymatic reactions. One of the ultimate steps in this series of reactions is the conversion of the proenzyme thrombin to the active enzyme thrombin.

Thrombin is known to play a central role in coagulation. It activates platelets, leading to platelet aggregation, converts fibrinogen into fibrin monomers, which polymerise spontaneously into fibrin polymers, and activates factor XIII, which in turn crosslinks the polymers to form insoluble fibrin. Furthermore, thrombin activates factor V, factor VIII and factor XI leading to a “positive feedback” generation of thrombin from prothrombin.

By inhibiting the aggregation of platelets and the formation and crosslinking of fibrin, effective inhibitors of thrombin would be expected to exhibit antithrombotic activity. In addition, antithrombotic activity would be expected to be enhanced by effective inhibition of the positive feedback mechanism. Indeed, the convincing antithrombotic effects of a thrombin inhibitor in man have been described by S. Schulman et al. in N. Engl. J. Med. 349, 1713-1721 (2003), L. Wallentin et al. in Lancet 362, 789-97 (2003) and H.-C. Diener et al. in Cerebrovasc. Dis. 21, 279-293 (2006).

The early development of low molecular weight inhibitors of thrombin has been described by Claesson in Blood Coagul. Fibrinol. 5, 411 (1994).

Blombäck et al. (in J. Clin. Lab. Invest. 24, suppl. 107, 59 (1969)) reported thrombin inhibitors based on the amino acid sequence situated around the cleavage site for the fibrinogen Arg chain. Of the amino acid sequences discussed, these authors suggested the tripeptide sequence Phe-Val-Arg (P9-P2-P1) (hereinafter referred to as the P3-P2-P1 sequence) would be the most effective inhibitor.

Thrombin inhibitors based (at the P1-position of the molecule) upon the 2-heterocaromatic substituted 1-yl-benzylamide structural unit are disclosed in U.S. Pat. No. 7,144,899 and WO2004032834.

Thrombin inhibitors based (at the P2-position of the molecule) upon the 1-acetyl-pyrrolidine-2-carboxylic acid amide, 1-acetyl-piperidine-2-carboxylic acid amide or 1-acetyl-azepane-2-carboxylic acid amide structural units are disclosed in U.S. Pat. No. 7,144,899.

Thrombin inhibitors based (at the P2-position of the molecule) upon the 1-acetyl-pyrrolidine-2-carboxylic acid amide or 1-acetyl-dihydropyrrrole-2-carboxylic acid amide structural units are disclosed in U.S. Pat. No. 7,144,899 and WO2004032834.

Thrombin inhibitors based (at the P2-position of the molecule) upon the 1,3-thiazolidine-2-carboxylic acid amide, 1,3-thiazolidine-4-carboxylic acid amide, pyrazolidine-3-carboxylic acid amide and 4,5-dihydro-1H-pyrazole-5-carboxylic acid amide structural units are disclosed in U.S. Pat. No. 7,470,647 and also described by Lange et al. in Bioorganic & Medicinal Chemistry Letters 16, 2648-2653 (2006).

Quantitative structure activity relationship studies of aryl heterocycle-based thrombin inhibitors are described by Roy et al. in European Journal of Medicinal Chemistry 41, 1339-1346 (2006).

Thrombin inhibitors based (at the P2-position of the molecule) upon 4-fluoropropyls are described by Staas et al. in Bioorganic & Medicinal Chemistry 14, 6900-6916 (2006).

Thrombin inhibitors based (at the P2-position of the molecule) upon pyrazinones carrying various aryl-heterocycles at the P1-position of the molecule are described by Young et al. in Journal of Medicinal Chemistry 47, 2995-3008 (2004).

There remains a need for effective inhibitors of trypsin-like serine proteases, such as thrombin. There is also a need for compounds that have a favourable pharmacokinetic profile. Such compounds would be expected to be useful as anticoagulants and therefore in the therapeutic treatment of thrombosis and related disorders.

DISCLOSURE OF THE INVENTION

In one aspect of the present invention there is provided a compound of formula (I)
wherein

- **R** is H, R, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl or C₅₋₆ cycloalkyl, wherein each of said C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl and C₅₋₆ cycloalkyl are independently substituted by 0, 1, 2, 3, 4 or 5 substituents selected from halogen and 0, 1 or 2 substituents selected from OH, oxo, cyano, NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂, C₁₋₄ alkoxy, C₅₋₆ cycloalkyl, cyclohexylalkyl, R¹ and R²;
- **R'** is C₆ alkoxy, wherein said C₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen;
- **R** is phenyl, wherein said phenyl is substituted by 0, 1, 2, 3 or 5 substituents independently selected from C₁₋₆ alkyl, C₁₋₆ alkenyl, cyano, C₂₋₆ alkoxy, cyano F, CF₃, CHF₂, CH₂F, cyano, C₁₋₆ alkoxy, R³ and SO₂R⁷;

- **R²** is H, halogen, cyano, C₁₋₆ alkyl or C₁₋₆ alkoxy, wherein said C₁₋₆ alkyl or C₁₋₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen;
- **R³** is H, COOR⁷ or SO₂R⁷ wherein said R⁷ is substituted by 0, 1, 2 or 3 substituents independently selected from OH, halogen, cyano, R² and C₅₋₇ cycloalkyl;
- **Q** is O, CH₃ or S(O)₂⁺;
- **W** is C or N;
- **n** is independently 0, 1 or 2;
- **t** is independently 0, 1 or 2;
- **u** is independently 0 or 1;
- **R⁴** is 0, 1, 2, 3, 4 or 5 substituents selected from halogen, OH, oxo, cyano, C₁₋₄ alkyl, C₅₋₆ cycloalkyl, R² and R³, wherein said C₁₋₄ alkyl is substituted by 0 or 1 substituent selected from R³, NH₂, NH(C₁₋₄ alkyl) or N(C₁₋₄ alkyl); and
- **R⁵** is 0, 1, 2, 3, 4 or 5 substituents selected from halogen, OH, oxo, cyano, C₁₋₄ alkyl, C₅₋₆ cycloalkyl, R² and R³, wherein said C₁₋₄ alkyl is substituted by 0 or 1 substituent selected from R³, NH₂, NH(C₁₋₄ alkyl) or N(C₁₋₄ alkyl); and
- or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

The compounds of formula (I) have chiral centres and some have geometric isomeric centres (E- and Z-isomers), and it is understood that the invention encompasses all such optical, diastereoisometric and geometric isomers.

In one aspect of the invention there is provided the use of a compound of formula (I) in therapy.

In a further aspect of the invention there is provided the use of a compound of formula (I) in anticoagulant therapy.

In still a further aspect of the invention there is provided the use of a compound of formula (I) in the treatment of a condition where inhibition of thrombin is beneficial.

In still a further aspect of the invention there is provided the use of a compound of formula (I) in the treatment and prevention of thromboembolic diseases.

In still a further aspect of the invention there is provided a method of treatment of a condition where inhibition of thrombin is beneficial, which method comprises administration of a therapeutically effective amount of a compound of formula (I) to a person suffering from, or susceptible to, such a condition.

In still a further aspect of the invention there is provided a method of treatment and prevention of thromboembolic disorders, which method comprises administration of a therapeutically effective amount of a compound of formula (I) to a person suffering from, or susceptible to, thrombophilia conditions.

In a further aspect of the invention there is provided pharmaceutical formulations comprising a therapeutically effective amount of a compound of formula (I), in admixture with at least one pharmaceutically acceptable diluent, excipients and/or inert carrier.

In yet a further aspect of the invention there is provided a pharmaceutical formulation comprising a compound of formula (I) for use in the treatment of those conditions where inhibition of thrombin is beneficial, such as thromboembolism and/or conditions where anticoagulant therapy is indicated.

In another aspect of the invention there is provided a process for the preparation of compounds of formula (I), and the intermediates used in the preparation thereof.
These and other aspects of the present invention are described in greater detail herein below.

DETAILED DESCRIPTION OF THE INVENTION

The object of the present invention is to provide compounds that are competitive inhibitors of trypsin-like serine proteases, especially trypsin, their use as medicaments, pharmaceutical compositions containing them and synthetic routes to their production.

Listed below are definitions of various terms used in the specification and claims to describe the present invention.

For the avoidance of doubt it is to be understood that where in this specification a group is qualified by "hereinbefore defined", "defined hereinbefore" or "defined above" the said group encompasses the first occurring and broadest definition as well as each and all of the other definitions for that group.

For the avoidance of doubt it is to be understood that in this specification "C_{1-6}" means a carbon group having 1, 2, 3, 4, 5 or 6 carbon atoms and "C_{1-4}" means a carbon group having 1, 2, 3 or 4 carbon atoms.

In this specification, unless stated otherwise, the term "alkyl" includes both straight and branched chain alkyl groups and may be, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, i-pentyl, t-pentyl, neo-pentyl, n-hexyl, i-hexyl or t-hexyl.

In this specification, unless stated otherwise, the term "cycloalkyl" refers to a saturated cyclic hydrocarbon ring system. The term "C_{3-4} cycloalkyl" may be cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

In this specification, unless stated otherwise, the term "alkenyl" includes both straight and branched chain alkenyl groups. The term C_{2-6} alkenyl includes alkenyl groups having 2 to 6 carbon atoms and one or two double bonds, and may be, but is not limited to, vinyl, allyl, propenyl, butenyl, crotyl, pentenyl, or hexenyl, and a butenyl group may for example be buten-2-yl, buten-3-yl or buten-4-yl.

In this specification, unless stated otherwise, the term "alkynyl" includes both straight and branched chain alkynyl groups. The term C_{2-6} alkynyl includes alkynyl groups having 2 to 6 carbon atoms and one or two triple bonds, and may be, but is not limited to, ethynyl, propargyl, pentynyl or hexynyl and a butynyl group may for example be butyn-3-yl or butyn-4-yl.

In this specification, unless stated otherwise, the term "cycloalkenyl" refers to a non-aromatic cyclic hydrocarbon ring system containing one or two double bonds. The term "C_{3-7} cycloalkenyl" may be, but is not limited to, cyclobutenyl, cyclopentenyl, cyclohexenyl or cycloheptenyl and a cyclopentenyl group may for example be cyclopenten-3-yl or cyclopenten-4-yl.

In this specification, unless stated otherwise, the term "alkoxy" includes both straight or branched alkoxy groups. C_{1-6} alkoxy may be, but is not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, i-pentoxy, t-pentoxy, neo-pentoxy, n-hexyloxy, i-hexyloxy or t-hexyloxy.

In this specification, unless stated otherwise, the term "5-membered heteroary1 ring containing 2, 3 or 4 heteroatoms, selected from N, O and S, wherein at least 2 heteroatoms are N, and 0 or 1 heteroatoms are O or S" includes aromatic heterocyclic rings. Examples of such rings are imidazole, tetrazole, triazole, thiadiazole or oxadiazole.

In this specification, unless stated otherwise, the term "6-membered heteroaryl ring containing 1 or 2 nitrogen atoms" includes pyridine, pyridazine, pyrimidine or pyrazine.

In this specification, unless stated otherwise, the term "4-, 5- or 6-membered cycloheptatrienyl ring having 1 or 2 heteroatoms selected from O, S and N" includes oxetane, azetidine, oxazetidine, pyrrolidine, imidazoline, tetrahydrofuran, oxazolidine, piperidine, piperazine, hexahydropyridazine, hexahydropirimidazine, morpholine, oxazidine, thi etane, thietane 1-oxide, thietane 1,1-dioxide, tetrahydrothiophene, tetrahydrothiophene 1-oxide, tetrahydrotetrahydrothiophene 1,1-dioxide, tetrahydrothiopyran, tetrahydrothiopyran 1-oxide or tetrahydrothiopyran 1,1-dioxide.

In this specification, unless stated otherwise, the term "5 or 6-membered heteroaromatic ring containing 1, 2 or 3 heteroatoms independently selected from O, S and N" includes furan, thiophene, pyrrole, oxazole, isoxazole, thiazole, isothiazole, imidazole, triazole, thiadiazole, oxadiazole, pyridine, pyridazine, pyrimidine, pyrazine or triazine.

In this specification, unless stated otherwise, the term "phenyl-fused 5- or 6-membered cycloheptatrienyl ring containing 1 or 2 heteroatoms independently selected from O, S and N" includes indoline, dihydroisindole, dihydrobenzofuran, dihydroisobenzofuran, dihydrobenzothiophene, dihydrobenzimidazole, dihydroindazole, dihydrobenzoxazole, dihydrobenzothiazole, tetrahydroquinoline, tetrahydroisoquinoline, tetrahydroquinolinine, tetrahydroquinazoline, tetrahydropteridazine, chroman, isochroman, thiocroman, isothiocroman, dihydrobenzoxazine or dihydrobenzothiazine.

In this specification, unless stated otherwise, the term "halogen" may be fluoro, chloro, bromo or iodo.

In one embodiment of the invention R^1 is a 5-membered heteroaryl ring containing 2, 3 or 4 heteroatoms, selected from N, O and S, wherein at least 2 heteroatoms are N, and 0 or 1 heteroatoms are O or S, wherein said 5-membered heteroaryl ring is substituted, at any carbon ring atom, by 0, 1 or 2 substituents independently selected from C_{1-6} alkyl and a 6-membered heteroaryl ring containing 1 or 2 nitrogen atoms, wherein said 6-membered heteroaryl ring is substituted, at any carbon ring atom, by 0, 1, 2 or 3 substituents independently selected from C_{1-6} alkyl.

In a further embodiment of the invention R^1 is a 5-membered heteroaryl ring containing 2, 3 or 4 heteroatoms, selected from N, O and S, wherein at least 2 heteroatoms are N, and 0 or 1 heteroatom is O or S.

In a further embodiment of the invention R^1 is tetrazole.
In one embodiment of the invention R is H, halo gen, cyano, Calkyl or Coalkoxy, wherein said Calkyl or Coalkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen.

In a further embodiment of the invention R is H or halo gen.

In still another embodiment of the invention R^2 is H or halo gen.

In one embodiment of the invention the stereochemoical configuration around the carbon in the pyrazolidine, dihydropyrazole or isoazolidine, i.e. the ring containing X and Y, which is covalently bound to the carbonyl is (S).

In one embodiment of the invention G is

R^1 R^2 R^3 R^4

or

In a further embodiment of the invention G is

R^1 R^2 R^3 R^4

In one embodiment of the invention G is

R^1 R^2 R^3 R^4

In a further embodiment of the invention G is

R^1 R^2 R^3 R^4

R^3 is H, R^3, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-6} cycloalkyl, wherein each of said C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{3-6} cycloalkyl are independently substituted by 0, 1, 2, 3, 4 or 5 substituents selected from halo gen, 0, 1 or 2 substituents selected from OH, o xo, cyano, NH, NH(C_{1-4} alkyl), N(C_{1-4} alkyl)_{2}, C_{1-4} alkyl, C_{5-6} cycloalkyl, C_{4-7} cycloalkenyl, cyclohet eoroalkyl, R^3 and R^6.

R^1 is phenyl, a 5- or 6-membered heteroaromatic ring containing 1, 2 or 3 heteroatoms independently selected from O, S and N, a 4-, 5-, or 6-membered cy cloheteroalkyl ring containing 1 or 2 heteroatoms independently selected from O, S and N; wherein said phenyl, said heteroaromatic ring, said cycloheteroalkyl ring and said phenyl-fused cycloheteroalkyl ring are substituted at any carbon ring atom, by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOEt, OH, halo gen, CF_3, CHF_2, CHF=cyano, C_{1-6} alkyl, R^2 and SO_2R^7.

R^3 is C_{1-6} alkoxy, wherein said C_{1-6} alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halo gen; and

R^3 is C_{1-6} alkoxy.

R^2 is OH, OC(O)R^7, OC(O)OR^8 or NHR^6.

R^2 is phenyl, wherein said phenyl is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from C_{1-4} alkyl, C_{1-4} alkoxy, cyano, F, CF_3, CHF_2 and CH_2F or

C_{1-4} alkyl, wherein said C_{1-4} alkyl is substituted by 0, 1, 2 or 3 substituents independently selected from methyl and ethyl and 0 or 1 substituents selected from phenyl, wherein said phenyl is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from C_{1-4} alkyl, C_{1-4} alkoxy, cyano, F, CF_3, CHF_2, CH_2F and OCOR^7.

R^3 is H, COOR^7 or SO_2R^2, wherein said R^2 is substituted by 0, 1, 2 or 3 substituents independently selected from OH, halo gen, cyano, R^2 and C_{5-7} cycloalkyl.

R^6 is C_{1-6} alkoxy, wherein said C_{1-6} alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halo gen; and

R^3 is C_{1-6} alkoxy.

In a further embodiment of the invention R^1 is C_{1-6} alkyl, wherein said C_{1-6} alkyl is substituted by 0, 1, 2, 3, 4 or 5 halo gen.

R^3 is C_{1-6} cycloalkyl, a 5- or 6-membered heteroaromatic ring containing 1, 2 or 3 heteroatoms independently selected from O, S and N,

R^3 is a 4-, 5-, or 6-membered cycloheteroalkyl ring containing 1 or 2 heteroatoms independently selected from O, S and N, or a 4-, 5-, or 6-membered cy cloheteroalkyl ring containing 1 or 2 heteroatoms independently selected from O, S and N, wherein said phenyl, said heteroaromatic ring, said cycloheteroalkyl ring and said phenyl-fused cycloheteroalkyl ring are substituted at any carbon ring atom, by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOEt, OH, halo gen, CF_3, CHF_2, CHF=cyano, C_{1-6} alkyl, R^2 and SO_2R^7.

R^1 is C_{1-6} alkoxy, wherein said C_{1-6} alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halo gen; and

R^3 is C_{1-6} alkyl.

R^2 is OH, OC(O)R^7, OC(O)OR^8 or NHR^6.

R^2 is phenyl, wherein said phenyl is substituted by 0, 1, 2, 3, 4 or 5 halo gen.

R^3 is C_{3-6} cycloalkyl, R^12 or C_{1-6} alkoxy, wherein said C_{1-6} alkoxy is substituted by 0 or 1 substituents selected from C_{1-4} cycloalkyl, N(C_{1-4} alkyl)_{2}, R^2 and R^12.

R^2 is phenyl, wherein said phenyl is substituted by 0, 1, 2, 3, 4 or 5 halo gen; and

R^2 is phenyl, wherein said phenyl is substituted by 0, 1, 2, 3, 4 or 5 halo gen; and

R^3 is OH or OC(O)R^7.
In one embodiment of the invention the stereochemical configuration around the carbon substituted by R₃ and R₄ in G is (R).

In a further embodiment G is...

R² is 0, 1, 2, 3, 4 or 5 substituents selected from halogen, OH, oxo, cyano, C₁₋₄ alkyl, C₅₋₆ cycloalkyl, R⁵ and R⁶, wherein said C₁₋₄ alkyl is substituted by 0 or 1 substituent selected from R⁵, NH₂, NH(C₁₋₄ alkyl) or N(C₁₋₄ alkyl)₂;

R³ is phenyl, which is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOH, OH, halogen, CF₃, cyano, C₁₋₄ alkyl, R⁶ and SO₂R²;

wherein R⁶ is C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen; and

R⁷ is C₁₋₄ alkyl;

Q is O or CH₂;

n is independently 0, 1 or 2; and

each t is independently 0, 1 or 2.

In a further embodiment of the invention G is...

R² is 0, 1, 2 substituents selected from oxo, C₁₋₄ alkyl, R⁵ and R⁶; and

R³ is phenyl, which is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOH, OH, halogen, CF₃, cyano, C₁₋₄ alkyl, R⁶ and SO₂R²;

wherein R⁶ is C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen; and

R⁷ is C₁₋₄ alkyl;

Q is O or CH₂; and

each t is independently 0 or 1; and

In a still further embodiment of the invention G is...

R² is 0, 1 or 2 substituents selected from oxo, C₁₋₄ alkyl, R⁵ and R⁶; and

R³ is phenyl, which is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOH, OH, halogen, CF₃, cyano, C₁₋₄ alkyl, R⁶ and SO₂R²;

wherein R⁶ is C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen; and

R⁷ is C₁₋₄ alkyl;

Q is O or CH₂; and

each t is independently 0 or 1; and

R⁴ is 0, 1 or 2 substituents selected from oxo and C₁₋₄ alkyl.

In a still further embodiment of the invention G is...

R² is 0, 1, 2, 3, 4 or 5 substituents selected from halogen, OH, oxo, cyano, C₁₋₄ alkyl, C₅₋₆ cycloalkyl, R⁵ and R⁶, wherein said C₁₋₄ alkyl is substituted by 0 or 1 substituent selected from R⁵, NH₂, NH(C₁₋₄ alkyl) or N(C₁₋₄ alkyl)₂;

R³ is phenyl, which is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOH, OH, halogen, CF₃, cyano, C₁₋₄ alkyl, R⁶ and SO₂R²;

wherein R⁶ is C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen; and

R⁷ is C₁₋₄ alkyl;

Q is O or CH₂;

n is independently 0, 1 or 2; and

each t is independently 0, 1 or 2.

In a still further embodiment of the invention G is...

R² is 0, 1, 2, 3, 4 or 5 substituents selected from halogen, OH, oxo, cyano, C₁₋₄ alkyl, R⁵ and R⁶, wherein said C₁₋₄ alkyl is substituted by 0 or 1 substituent selected from R⁵, NH₂, NH(C₁₋₄ alkyl) or N(C₁₋₄ alkyl)₂;

R³ is phenyl, which is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOH, OH, halogen, CF₃, cyano, C₁₋₄ alkyl, R⁶ and SO₂R²;

wherein R⁶ is C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen; and

R⁷ is C₁₋₄ alkyl;

Q is O or CH₂; and

each t is independently 0 or 1; and

In a still further embodiment of the invention G is...

R² is OH, OC(O)R⁷, OC(O)R⁸ or NH₃;

wherein R⁷ is C₁₋₄ alkyl;

R³ is phenyl, wherein said phenyl is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from C₁₋₄ alkyl, C₅₋₆ alkoxy, cyano, F, CF₃, CHF₂ and CH₂F or

C₁₋₄ alkyl, wherein said C₁₋₄ alkyl is substituted by 0, 1, 2 or 3 substituents independently selected from methyl and ethyl and 0 or 1 substituents selected from phenyl, wherein said phenyl is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from C₁₋₄ alkyl, C₅₋₆ alkoxy, cyano, F, CF₃, CHF₂, CH₂F and CO₂R⁷; and

R⁴ is H, COOR⁷ or SO₂R⁷ wherein said R⁷ is substituted by 0, 1, 2 or 3 substituents independently selected from OH, halogen, cyano, R⁶ and C₃₋₇ cycloalkyl;

In a still further embodiment of the invention G is...

R² is 0, 1, 2 substituents selected from oxo, C₁₋₄ alkyl, R⁵ and R⁶; and

R³ is phenyl, which is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOH, OH, halogen, CF₃, cyano, C₁₋₄ alkyl, R⁶ and SO₂R²;

wherein R⁶ is C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen; and

R⁷ is C₁₋₄ alkyl;

Q is O or CH₂;

n is independently 0, 1 or 2; and

each t is independently 0 or 1; and

In a still further embodiment of the invention G is...

R² is 0, 1, 2, 3, 4 or 5 substituents selected from halogen, OH, oxo, cyano, C₁₋₄ alkyl, R⁵ and R⁶, wherein said C₁₋₄ alkyl is substituted by 0 or 1 substituent selected from R⁵, NH₂, NH(C₁₋₄ alkyl) or N(C₁₋₄ alkyl)₂;

R³ is phenyl, which is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOH, OH, halogen, CF₃, cyano, C₁₋₄ alkyl, R⁶ and SO₂R²;

wherein R⁶ is C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen; and

R⁷ is C₁₋₄ alkyl;
methyl and ethyl and 0 or 1 substituents selected from
phenyl, wherein said phenyl is substituted by 0, 1, 2, 3, 4
or 5 substituents independently selected from C1-4 alkyl,
C1-4 alkoxy, cyano, F, CF3, CHF2, CH2F and CO2R7;

Q is O or CH2;

u is independently 0 or 1; and

R13 is 0, 1 or 2 substituents selected from C1-4 alkyl,
halogen and R19;

R23 is 0, 1 or 2 substituents selected from C1-4 alkyl,
halogen and R19;

wherein R^6 is C1-6 alkoxy, wherein said C1-6
alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen.

In a still further embodiment of the invention G is

R4 is OH or OC(O)R7;

R11 is 0, 1 or 2 substituents selected from C1-4 alkyl,
F, Cl, OCH3, OCF3, OCH2F and OCH2F;

R14 is 0, 1 or 2 substituents selected from C1-4 alkyl,
F, Cl, OCH3, OCF3, OCH2F and OCH2F;

Q is O or CH2; and

u is independently 0 or 1.

In one embodiment of the invention the compound of formula (I) is selected from:

N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-
([2R]-2-(4-fluorophenyl)-2-hydroxyacetyl)-4,5-dihydro-
1H-pyrazole-5-carboxamide,

N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-
([2,3-difluorophenyl)(hydroxy)acetyl]-4,5-dihydro-
1H-pyrazole-5-carboxamide,

N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-
3-cyclopropyl-2-hydroxypropanoyl)-N-[5-chloro-2-(1H-
tetrazol-1-yl)benzyl]-4,5-dihydro-1H-pyrazole-5-carboxamide,

N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-
([3,5-difluorophenyl)(hydroxy)acetyl]-4,5-dihydro-
1H-pyrazole-5-carboxamide,

N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-
([2R]-2-cyclopentyl-2-hydroxyacet)l]-4,5-dihydro-
1H-pyrazole-5-carboxamide,

N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-
([2R]-2-cyclopentyl-2-hydroxyacet)l]-4,5-dihydro-
1H-pyrazole-5-carboxamide,

N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-
([2R]-2-cyclopentyl-2-hydroxyacet)l]-4,5-dihydro-
1H-pyrazole-5-carboxamide,
[0189] (3S)-2-(O-tert-Butyl-D-sereryl)-N-[5-chloro-2-(1H-tetrazol-1-yl)benzyl]isoxazolidine-3-carboxamide,
[0190] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2,4-difluorophenyl)(hydroxy)acetyl]isoxazolidine-3-carboxamide,
[0191] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2,3-difluorophenyl)(hydroxy)acetyl]isoxazolidine-3-carboxamide,
[0192] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(3,5-difluorophenyl)(hydroxy)acetyl]isoxazolidine-3-carboxamide,
[0193] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2-fluorophenyl)(hydroxy)acetyl]isoxazolidine-3-carboxamide,
[0194] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[hydroxy-(3-methylphenyl)acetyl]isoxazolidine-3-carboxamide,
[0195] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxyhexanoyl]isoxazolidine-3-carboxamide,
[0196] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-5-methylhexanoyl]isoxazolidine-3-carboxamide,
[0197] (3S)-2-[(2R)-3-tert-Butoxy-2-hydroxypropanoyl]-N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]isoxazolidine-3-carboxamide,
[0198] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-cyclopentyl-2-hydroxyacetyl]isoxazolidine-3-carboxamide,
[0199] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-cyclohexyl-2-hydroxyacetyl]isoxazolidine-3-carboxamide,
[0200] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-3-(1-methylecyclopropyl)propanoyl]isoxazolidine-3-carboxamide,
[0201] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-2-phenylacetyl]isoxazolidine-3-carboxamide,
[0202] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-3,3-dimethylbutanoyl]isoxazolidine-3-carboxamide,
[0203] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-4,4-dimethylpentanoyl]isoxazolidine-3-carboxamide,
[0204] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-3-phenylpropanoyl]isoxazolidine-3-carboxamide,
[0205] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(3-cyanophenyl)(hydroxy)acetyl]isoxazolidine-3-carboxamide,
[0206] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-2-phenylacetyl]pyrazolidine-3-carboxamide,
[0207] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2-fluorophenyl)(hydroxy)acetyl]pyrazolidine-3-carboxamide,
[0208] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2,4-difluorophenyl)(hydroxy)acetyl]pyrazolidine-3-carboxamide,
[0209] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]pyrazolidine-3-carboxamide,
[0210] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(4-hydroxy-3,4-dihydro-2H-1,3-benzene-4-yl)carbonyl]pyrazolidine-3-carboxamide,
[0211] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-4,4-dimethylpentanoyl]pyrazolidine-3-carboxamide,
[0212] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-cyclohexyl-2-hydroxyacetyl]pyrazolidine-3-carboxamide,
[0213] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-3,3-dimethylbutanoyl]pyrazolidine-3-carboxamide or
[0214] (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-3,3-dimethylbutanoyl]pyrazolidine-3-carboxamide,
[0215] or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.
[0216] In another aspect of the present invention there is provided a compound of formula (X)

[X]

R³

O

O

[0217] X is N, O or NH;
[0218] Y is CH₂ when X is O or NH, with X and Y connected via a single bond, or
[0219] Y is CH when X is N, with X and Y connected via a double bond;
[0220] R³ is C₁₋₆ alkyl, C₃₋₆ cycloalkyl, a 5 or 6-membered heterocyclic ring containing 1 or 2 heteroatoms independently selected from O, S and N,
[0221] a 4-, 5- or 6-membered cyclohexylalkyl ring containing 1 or 2 heteroatoms independently selected from O, S and N, or R¹, wherein said C₁₋₆ alkyl, said C₃₋₆ cycloalkyl, said heterocyclic ring and said cyclohexylalkyl ring are substituted by 0 or 1 substituents selected from NH₂, NH(C₁₋₄ alkyl), N(C₁₋₄ alkyl)₂, C₁₋₆ cycloalkyl, R⁶ or R¹₂;
[0222] R² is C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen; and
[0223] R¹₂ is phenyl, wherein said phenyl is substituted by 0, 1 or 2 substituents selected from halogen and R⁶;
[0224] In yet another aspect of the present invention there is provided a compound of formula (XI)

[XI]

X

Y

W

R¹₁

[0225] X is N, O or NH;
[0226] Y is CH₂ when X is O or NH, with X and Y connected via a single bond, or
[0227] Y is CH when X is N, with X and Y connected via a double bond;
[0228] Q is O or CH₂;
[0229] u is independently 0 or 1; and
[0230] R¹ is 0, 1 or 2 substituents selected from C₁₋₄ alkyl, halogen and R⁰;
[0231] R² is 0, 1 or 2 substituents selected from C₁₋₄ alkyl, halogen and R⁰;
[0232] R³ is C₁₋₆ alkoxy, wherein said C₁₋₆ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen.
[0233] The present invention further provides a process for the preparation of a compound of formula (I) as defined above which comprises:
[0234] (A) reacting a compound of formula (II),

\[
\begin{align*}
&X \quad Y \\
&H \\
&C \quad O \\
\end{align*}
\]

wherein X and Y are as defined in formula (I), or a derivative thereof that is protected at the amino group, with an amine of formula (III)

\[
\begin{align*}
&H_2N \\
&\quad R^1 \\
&\quad R^2 \\
\end{align*}
\]

[0235] wherein X and Y are as defined in formula (I), or a derivative thereof that is protected at the amino group, with an amine of formula (III)

[0236] wherein R¹ and R² are as defined in formula (I) to deliver a compound of formula (IV), or a derivative thereof that is protected at the amino group,

\[
\begin{align*}
&X \quad Y \\
&\quad R^1 \\
&\quad R^2; \\
&\quad H \\
&C \quad O \\
\end{align*}
\]

[0238] wherein X, Y, R¹ and R² are as defined in formula (I), with a compound of formula (V)

\[
\begin{align*}
&\quad R^3 \\
&\quad R^4; \\
&\quad H \\
&C \quad O \\
\end{align*}
\]

[0239] wherein R³ is as hereinbefore defined and R⁴ is OH, or a derivative thereof that is either protected at the hydroxy substituent or at both the hydroxy substituent and at the carboxylic acid, to deliver a compound of formula (I);

[0240] (C) reacting a compound of formula (IV),

\[
\begin{align*}
&\quad R^3 \\
&\quad R^4; \\
&\quad H \\
&C \quad O \\
\end{align*}
\]

[0241] wherein X, Y, R¹ and R² are as defined in formula (I), with a compound of formula (VI)

[0242] wherein R¹, R², W, Q and u are as hereinbefore defined and R⁴ is OH, or a derivative thereof that is either protected at the hydroxy substituent or at both the hydroxy substituent and at the carboxylic acid, to deliver a compound of formula (I);

[0243] (D) reacting a compound of formula (IV),

\[
\begin{align*}
&\quad R^3 \\
&\quad R^4; \\
&\quad H \\
&C \quad O \\
\end{align*}
\]

[0244] wherein X, Y, R¹ and R² are as defined in formula (I), with a compound of formula (V)
[0245] wherein \(R^3 \) is as hereinbefore defined and \(R^4 \) is NHR\(^x\), wherein \(R^5 \) is as hereinbefore defined, or a derivative thereof that is protected at the amino substituent, to deliver a compound of formula (I);

[0246] (E) reacting a compound of formula (IV),

[0247] wherein \(X, Y, R^4 \) and \(R^2 \) are as defined in formula (I), with a compound of formula (VI)

[0248] wherein \(R^{10}, R^{11}, W, Q \) and \(u \) are as hereinbefore defined and \(R^4 \) is NHR\(^x\), wherein \(R^5 \) is as hereinbefore defined, or a derivative thereof that is protected at the amino substituent, to deliver a compound of formula (I);

[0249] (F) reacting a compound of formula (IV),

[0250] wherein \(X, Y, R^4 \) and \(R^2 \) are as defined in formula (I), with a compound of formula (VII)

[0251] wherein \(R^{10}, Q \) and \(t \) are as hereinbefore defined, or a derivative thereof that is protected at the amino group, to deliver a compound of formula (I);

[0252] (G) reacting a compound of formula (II),

[0253] wherein \(X \) and \(Y \) are as defined in formula (I), or a derivative thereof that is protected at the carboxylic acid, with a compound of formula (V)

[0254] wherein \(R^3 \) is as hereinbefore defined and \(R^4 \) is OH, or a derivative thereof that is either protected at the hydroxy substituent or at both the hydroxy substituent and at the carboxylic acid, to deliver a compound of formula (VIII);

[0255] (H) reacting a compound of formula (II),

[0256] wherein \(X \) and \(Y \) are as defined in formula (I), or a derivative thereof that is protected at the carboxylic acid, with a compound of formula (VI)

[0257] wherein \(R^{10}, R^{11}, W, Q \) and \(u \) are as hereinbefore defined and \(R^4 \) is OH, or a derivative thereof that is either protected at the hydroxy substituent or at both the hydroxy substituent and at the carboxylic acid, to deliver a compound of formula (IX)
(I) reacting a compound of formula (VIII), or a derivative thereof that is protected at the carboxylic acid,

![Formula VIII](image)

wherein X, Y and R is as hereinbefore defined and R is OH, or a derivative thereof that is protected at the OH group, to deliver a compound of formula (X)

![Formula X](image)

(II) reacting a compound of formula (IX), or a derivative thereof that is protected at the carboxylic acid, (IX)

![Formula IX](image)

wherein R', R', X, Y, W, Q and u are as hereinbefore defined and R is OH, or a derivative thereof that is protected at the OH group, to deliver a compound of formula (XI)

![Formula XI](image)

(III) reacting a compound of formula (II), (II)

![Formula II](image)

wherein X and Y are as defined in formula (I), or a derivative thereof that is protected at the carboxylic acid, with a compound of formula (XII)

![Formula XII](image)

(V) reacting a compound of formula (XIII), wherein X, Y and R are as hereinbefore defined, or a derivative thereof that is protected at the carboxylic acid, under reducing conditions to deliver a compound of formula (VIII)

![Formula XIII](image)

(VII) reacting a compound of formula (XIV), (XIV)

![Formula XIV](image)

wherein R is OH, alkoxy, aryloxy or R', wherein R" is a chiral auxiliary, e.g., 2,10-camphorsultam, 6,6-dimethyl-7,10-methylene-3-oxa-1-azaspiro[4,5]decan-2-one or 4-benzyl-2-oxazolidinone, with trimethylsilyldiazomethane to deliver a compound of formula (XV)

![Formula XV](image)
wherein \(Y \) is CH, \(X \) is N, \(R' \) is OH, alkoxy or \(R'' \) is OH, and the bond between \(X \) and \(Y \) is a double bond.

(O) reacting a compound of formula (XVI),

wherein \(R' \) is OH, \(L \) is Cl, Br, I or OSOCF, and \(X \) is O, N or a protected derivative thereof, in the presence of base to deliver a compound of formula (XV)

wherein \(Y \) is CH, \(X \) is N or O, \(R' \) is OH or alkoxy and the bond between \(X \) and \(Y \) is a single bond.

Processes (A)-(H) and (L) may be carried out using known procedures for preparation of amides from carboxylic acids, or analogously, e.g. as hereinafter described in the Examples. It may be carried out in a solvent, e.g. DCM, MeCN, H2O, EtOAc or DMF, in the presence of an appropriate base, e.g. pyridine, DMAP, NMM, TEA, NaHCO3, 2,6-collidine or DIPEA, and a suitable reagent, e.g. oxalyl chloride, cyanuric chloride, EDC/HOBt, DCC/HOBt, HBTU, PyBOP, T3P or TBTU. The reaction temperature may be from 0°C to 100°C, or at the reflux temperature of the solvent if <100°C, but conveniently room temperature.

Processes (I) and (J) may be carried out using known procedures for preparation of lactones, or analogously, e.g. as hereinafter described in the Examples. It may be carried out in an organic solvent, e.g. CHCl3, benzene, toluene, EtOH or THF, in the presence of a suitable reagent, e.g. TsOH, MsOH, NaOH, pivaloyl chloride/TEA or DMAP/BOP. The reaction temperature may be from 0°C to 100°C, or at the reflux temperature of the solvent if <100°C, but conveniently room temperature.

Process (K) may be carried out using known procedures for preparation of amides from lactones, or analogously, e.g. as hereinafter described in the Examples. It may be carried out in an organic solvent, e.g. DCM, THF or MeOH, in the presence of a suitable reagent, e.g. TEA. The reaction temperature may be from 0°C to 100°C, or at the reflux temperature of the solvent if <100°C, but conveniently room temperature.

Process (M) may be carried out using known procedures for preparation of alcohols from ketones, or analogously, e.g. as hereinafter described in the Examples. It may be carried out in an organic solvent, e.g. THF, in the presence of a suitable reagent, e.g. NaH, Zn(THF)2, PhSiH3 in the presence of a suitable catalyst, e.g. Rh(PPh3)3Cl or Rh(II)-2-(2-pyridyl)-4-carboxymethoxy-1,3-thiazolinedione, or alternatively, in the presence of H2 and a suitable catalyst, e.g. Ru/C, Rh-DIOP or Rh-CYDIO. The reaction temperature may be from 0°C to 100°C, or at the reflux temperature of the solvent if <100°C, but conveniently room temperature.

Process (N) may be carried out using known procedures for preparation of pyrazolines from olefins, or analogously, e.g. as hereinafter described in the Examples. It may be carried out in an organic solvent, e.g. methylene chloride, hexane or THF. The reaction temperature may be from 0°C to 100°C, or at the reflux temperature of the solvent if <100°C, but conveniently room temperature.

Process (O) may be carried out using known procedures for preparation of pyrazolines or isoxazolines, or analogously, e.g. as hereinafter described in the Examples. It may be carried out in an organic solvent, e.g. THF, in the presence of a suitable reagent, e.g. NaHMDS, LHMDS or tetrabutylammonium fluoride. The reaction temperature may be from 0°C to 100°C, or at the reflux temperature of the solvent if <100°C, but conveniently room temperature.

Processes used for hydrolyzing carboxylic esters to carboxylic acids may be carried out using known procedures, or analogously, e.g. as hereinafter described in the Examples. It may be carried out in a solvent, e.g. MeCN or H2O or 2O in the presence of an appropriate base, e.g. TEA or DIPEA, or a suitably acid, e.g. HCl, and optionally a suitable reagent, e.g. LiBr. The reaction temperature may be from 0°C to 100°C, or at the reflux temperature of the solvent if <100°C, but conveniently room temperature.

Compounds of formula (II) and formula (XV) are either commercially available or may be prepared by known methods (e.g. Tetrahedron Letters 1997, 38, 4935-4938 (N-NE-C4H2), J. Am. Chem. Soc. 1997, 119, 8379-8380 (N-NE-C4H2), Helv. Chim. Acta 1983, 66, 1241 (N-O-C2)).

Compounds of formula (III) are either commercially available or may be prepared by known methods (e.g. J. Med. Chem. 2004, 47, 2995).

Compounds of formula (V), (VI), (VII), (XII) and (XIV) are either commercially available or may be prepared by known methods.

A further embodiment of the invention encompasses pharmaceutically acceptable salts of the compounds of formula (I). Where the compound is sufficiently basic, pharmaceutically acceptable salts include, but are not limited to, an alkali metal salt for example sodium or potassium, an alkaline earth metal salt for example calcium or magnesium, an organic amine salt for example triethylamine, morpholine, N-methylpyperidine, N-ethylpyperidine, procaine, dibenzyllamine, NN-dibenzylethylamine or amino acids for example lysine. Where the compound is sufficiently basic, pharmaceutically acceptable salts include, but are not limited to, an alkali metal salt for example sodium or potassium, an alkaline earth metal salt for example calcium or magnesium, an organic amine salt for example triethylamine, morpholine, N-methylpyperidine, N-ethylpyperidine, procaine, dibenzyllamine, NN-dibenzylethylamine or amino acids for example lysine.
tically acceptable salts include, but are not limited to, acid addition salts such as a hydrochloride, hydrobromide, phosphate, acetate, fumarate, maleate, tartrate, citrate, oxalate, methanesulfonate or p-toluensulfonate salt.

[0285] There may be more than one cation or anion depending on the number of charged functions and the valency of the cations or anions.

[0287] The compounds of formula (I) may be administered in the form of a prodrug which is broken down in the human or animal body to give a compound of the formula (I). Certain compounds of formula (I) may themselves act as prodrugs of other compounds of formula (I). Prodrugs of formula (I) may display improved physicochemical, biopharmaceutical or pharmacokinetic properties. Examples of prodrugs include in vivo hydrolysable esters of a compound of the formula (I).

[0288] An in vivo hydrolysable (or cleavable) ester of a compound of the formula (I) that contains a carboxy or a hydroxy group is, for example, a pharmaceutically acceptable ester which is hydrolysed in the human or animal body to produce the parent acid or alcohol. For examples of ester prodrugs derivatives, see: *Curr. Drug. Metab.* 2003, 4, 461.

[0290] Medical and Pharmaceutical Use

[0291] The compounds of the invention are thus expected to be useful in those conditions where inhibition of thrombin is beneficial (as determined by reference to a clinically relevant end-point, e.g. conditions, such as thrombo-embolisms, where inhibition of thrombin is required or desired, and/or conditions where anticoagulant therapy is indicated), including the following:

[0292] The treatment and/or prophylaxis of thrombosis and hypercoagulability in blood and/or tissues of animals including man. It is known that hypercoagulability may lead to thrombo-embolic diseases. Conditions associated with hypercoagulability and thrombo-embolic diseases are usually designated as thrombophilia conditions. These conditions include, but are not limited to, inherited or acquired activated protein C resistance, such as the factor V-mutation (factor V Leiden), inherited or acquired deficiencies in antithrombin III, protein C, protein S, protein Z, heparin cofactor II, and conditions with increased plasma levels of the coagulation factors such as caused by the prothrombin G20210A mutation. Other conditions known to be associated with hypercoagulability and thrombo-embolic disease include circulating antithrombin lipoprotein antibodies (Lupus anticoagulant), homocysteinemia, heparin induced thrombocytopenia and defects in fibrinolysis, as well as coagulation syndromes (e.g. disseminated intravascular coagulation (DIC)) and vascular injury in general (e.g. due to trauma or surgery). Furthermore, low physical activity, low cardiac output or high age are known to increase the risk of thrombosis and hypercoagulability may be just one of several factors underlying the increased risk. These conditions include, but are not limited to, prolonged bed rest, prolonged air travelling, hospitalisation for an acute medical disorder such as cardiac insufficiency or respiratory insufficiency. Further conditions with increased risk of thrombosis with hypercoagulability as one component are pregnancy and hormone treatment (e.g. oestrogen).

[0293] The treatment of conditions where there is an undesirable excess of thrombin without signs of hypercoagulability, for example in neurodegenerative diseases such as Alzheimer’s disease, in the progression and/or prevention of atherosclerosis and in growth and spreading of cancer.

[0294] Particular disease states which may be mentioned include the therapeutic and/or prophylactic treatment of venous thrombosis (e.g. deep venous thrombosis, DVT) and pulmonary embolism, arterial thrombosis (e.g. in myocardial infarction, unstable angina and acute coronary syndrome, thrombosis-based stroke and peripheral arterial thrombosis), and systemic embolism (which may lead to stroke) usually from the atrium during atrial fibrillation (e.g. non-valvular or valvular atrial fibrillation) or from the left ventricle after transmural myocardial infarction, or caused by congestive heart failure; prophylaxis of re-occlusion (i.e. thrombosis) after thrombolysis, percutaneous trans-luminal interventions (PTI) and coronary bypass operations; the prevention of thrombosis after microsurgery and vascular surgery in general, organ transplantation and plastic surgery.

[0295] Further indications include the therapeutic and/or prophylactic treatment of disseminated intravascular coagulation caused by bacteria, multiple trauma, intoxication or any other mechanism; anticoagulant treatment when blood is in contact with foreign surfaces in the body such as vascular grafts, vascular stents, vascular catheters, mechanical and biological prosthetic valves or any other medical device; and anticoagulant treatment when blood is in contact with medical devices outside the body such as during cardiovascular surgery using a heart-lung machine or in haemodialysis; the therapeutic and/or prophylactic treatment of idiopathic and adult respiratory distress syndrome, pulmonary fibrosis following treatment with radiation or chemotherapy, chronic obstructive pulmonary disease, septic shock, septicaemia, inflammatory responses, which include, but are not limited to, edema, acute or chronic atherosclerosis such as coronary arterial disease and the formation of atherosclerotic plaques, cardiac insufficiency, cerebral arterial disease, cerebral infarction, cerebral thrombosis, cerebral embolism, peripheral arterial disease, ischemia, angina (including unstable angina), reperfusion damage, restenosis after percutaneous trans-luminal interventions (PTI) and coronary artery bypass surgery.

[0296] Compounds of the invention that inhibit trypsin and/or thrombin may also be useful in the treatment of pancreatitis.

[0297] The compounds of the invention are thus indicated both in the therapeutic and/or prophylactic treatment of these conditions.

[0298] According to one aspect of the invention there is thus provided the use of a compound of formula (I) in therapy.

[0299] According to a further aspect of the invention there is thus provided the use of a compound of formula (I) in anticoagulant therapy.

[0300] According to still a further aspect of the invention there is thus provided the use of a compound of formula (I) in the treatment of a condition where inhibition of thrombin is beneficial.

[0301] According to still a further aspect of the invention there is thus provided the use of a compound of formula (I) in the treatment and prevention of thromboembolic disorders.

[0302] According to still a further aspect of the invention there is thus provided the use of a compound of formula (I) for
the manufacture of a medicament for the treatment of a condition where inhibition of thrombin is beneficial.

According to still a further aspect of the invention there is thus provided the use of a compound of formula (I) for the manufacture of a medicament for the treatment and prevention of thromboembolic disorders.

According to still a further aspect of the invention there is thus provided a method of treatment of a condition where inhibition of thrombin is beneficial, which method comprises administration of a therapeutically effective amount of a compound of formula (I) to a person suffering from, or susceptible to, such a condition.

According to still a further aspect of the invention there is thus provided a method of treatment and prevention of thromboembolic disorders, which method comprises administration of a therapeutically effective amount of a compound of formula (I) to a person suffering from, or susceptible to, thrombophilia conditions.

The compounds of the invention have the advantage that they may be more efficacious, be less toxic, be more selective (e.g. for inhibiting thrombin over other serine proteases, in particular trypsin and those involved in haemostasis), be more potent, produce fewer side effects, be more easily absorbed, and/or have a better pharmacokinetic profile (e.g. higher oral bioavailability and/or lower clearance), than compounds known in the prior art.

Pharmaceutical Formulation

According to a further aspect of the present invention, there is provided a method of treatment of a condition where inhibition of thrombin is required which method comprises administration of a therapeutically effective amount of a compound of the invention to a person suffering from, or susceptible to, such a condition.

The compounds of the invention will normally be administered orally, intravenously, subcutaneously, buccally, rectally, dermally, nasally, tracheally, bronchially, by any other parenteral route or via inhalation, in the form of pharmaceutical preparations comprising a compound of the invention either as a free base, or a pharmaceutically acceptable non-toxic organic or inorganic acid addition salt, in a pharmaceutically acceptable dosage form.

Preferred route of administration of compounds of the invention is oral.

Depending upon the disorder and patient to be treated and the route of administration, the compositions may be administered at varying doses.

The compounds of the invention may also be combined and/or co-administered with any antithrombotic agent(s) with a different mechanism of action, such as one or more of the following: the anticoagulants unfractionated heparin, low molecular weight heparin, other heparin derivatives, synthetic heparin derivatives (e.g. fondaparinux), vitamin K antagonists, synthetic or biotechnological inhibitors of other coagulation factors than thrombin (e.g. synthetic FXa, FVila, FIXa and FXIa inhibitors, and rNAPc2), the antiplatelet agents acetylsalicylic acid and dipyridamole, thromboxane receptor and/or synthetase inhibitors, fibrinogen receptor antagonists, prostacyclin mimetics, phosphodiesterase inhibitors, ADP receptor (P2X1, P2Y1, P2Y12) e.g. ticlopidine, clopidogrel, eptiqlor, and AZD6140) antagonists, inhibitors of phosphoinositide 3-kinase beta or gamma, inhibitors of carboxypeptidase U (CPU or TAFIa) and inhibitors of plasminogen activator inhibitor-1 (PAI-1, e.g. SCH530348 and E-5555).

The compounds of the invention may further be combined and/or co-administered with thrombolytics such as one or more of tissue plasminogen activator (natural, recombinant or modified), streptokinase, urokinase, prourokinase, anisoylated plasminogen-streptokinase activator complex (APSAC), animal salivary gland plasminogen activators, and the like, in the treatment of thrombotic diseases, in particular myocardial infarction.

According to a further aspect of the invention there is thus provided a pharmaceutical formulation comprising a compound of formula (I), in admixture with at least one pharmaceutically acceptable adjuvant, diluent or carrier.

Suitable daily doses of the compounds of the invention in therapeutic treatment of humans are about 0.001-100 mg/kg body weight at peroral administration and 0.001-50 mg/kg body weight at parenteral administration.

For the avoidance of doubt, as used herein, the term “treatment” includes therapeutic and/or prophylactic treatment.

EXAMPLES

The invention will now be further explained by reference to the following examples. In the examples, high resolution mass spectra were recorded on a Micromass LCT mass spectrometer equipped with an electrospray interface (LC-HRMS). 1H NMR measurements were performed on a Varian UNITY plus 400, 500 and 600 spectrometers, operating at 1H frequencies of 400, 500 and 600 MHz respectively. Chemical shifts are given in ppm with the solvent as internal standard. (CH3)2SO of some reported NMR spectra refer to solutions that are taken from a concentrated sample dissolved in (CH3)2SO and diluted with (CD3)2SO. Since a substantial amount of (CH3)2SO is present in the sample, first a pre-scan is run and analysed to automatically suppress the (CH3)2SO (2.54 ppm) and H2O (3.3 ppm) peaks. Thus the intensity of peaks that reside in these areas around 3.3 ppm and 2.54 ppm are altered. Because of this some signals from the compound around these frequencies may have been omitted and the omitted area is indicated in the specific Examples. Flash chromatography separations were performed using Merck silica gel 60 (0.063-0.200 mm) The compounds named below were named using ACDC/Name 9.04 from ACDC/Labs.

The following abbreviations are used:

DMF Dimethylformamide

HATU O-(7-Azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

PyBOP Benzoctriozol-1-yloxytripyrrolidinophosphonium hexafluorophosphate

T3P Propylphosphonic anhydride

TBTU O-Benzoctriozolyl tetramethyluronium tetrafluoroborate

EDC 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide

DMAP 4-(Dimethylamino)pyridine

NMM N-Methylmorpholine

TEA Triethylamine

DCM Dichloromethane

DCC Dicyclohexylcarbodiimide

BOP Benzoctriozol-1-yloxytris(dimethylamino) phosphonium hexafluorophosphate

HBTU O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate

HATU O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
Example 1

(5S)—N-[5-Chloro-2-[(1H-tetrazol-1-yl)benzyl]-1-
[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

(i) (2R)-(4-Fluorophenyl)(hydroxy)acetic acid

The reaction was performed in a 1 L reactor under an atmosphere of nitrogen with 200 rpm stirring. 2-(4-Fluorophenyl)-2-hydroxyacetic acid (139 g, 816.98 mmol) was charged into the reactor. Ethanol (800 mL) was added which resulted in a turbid mixture. The mixture was heated to reflux with a ramp of 1°C/min. (R)-(+)-1-phenylethylamine (68.5 mL, 531.04 mmol) was then added within 5 minutes. The clear homogenous solution was then allowed to slowly cool to 60°C with a ramp of 1°C/min. When that temperature was reached, seeds of 95.5% diastereomeric purity was added (~100 mg). Crystallisation now slowly initiated. The temperature was ramped down to 20°C with 0.5°C/min. When that temperature was reached the mixture was allowed to stir for another 2 hours. The mixture was then filtered. This furnished crystals of the ammonium salt (95 g). This salt was then re-crystallised from EtOH (99.5%, 800 mL) using the following procedure: in a 1 L reactor and under an atmosphere of nitrogen, the salt obtained above was charged into the reactor. EtOH (800 mL) was added (a suspension was obtained) and the temperature was then increased to reflux with a ramp of 1°C/min. When all salt was dissolved, the temperature was ramped down with 1°C/min→65°C. When that temperature was reached (clear homogenous solution), seeding crystals were added (approximately 0.5 g was added). Crystallization initiated immediately but very slowly. The temperature was then ramped down to 20°C with 0.5°C/min. The mixture was then stirred (200 rpm) over night. After filtration and drying in vacuo, 67.9 g of the salt was obtained. Chiral HPLC analysis of the free acid of the salt showed an enantiomeric excess of 95.2% (97.6:2.4 er). The salt was recrystallized one more time from EtOH (99.5%, 500 mL) using the same procedure as described above but the mixture was only allowed to stir for 2 hours at room temperature instead of stirring over night. After filtration and drying, 56.3 g of crystals of the ammonium salt were obtained. Chiral HPLC analysis of the free acid showed an enantiomeric excess of 99.1%.

The ammonium salt above was then partitioned between methyl t-butyl ether (400 mL) and 1M HCl (aq., 300 mL). The aqueous phase was extracted with TBME (2×100
(ii) (2R)-4-Fluorophenyl) [(trimethylsilyl)oxy]acetoxy chloride

[0343] To a 0°C solution of (2R)-(4-fluorophenyl)[hydroxy]acetic acid (20 g, 117.55 mmol), DMAP (0.718 g, 5.88 mmol), and pyridine (19.93 mL, 246.86 mmol) in dichloromethane (250 mL) was slowly (10 min) added chlorotrimethylsilane (30.6 mL, 240.98 mmol). The mixture was stirred under ice-cooling for 15 minutes and then at room temperature overnight. The mixture was then cooled in an ice-bath and DMAP (0.211 mL, 2.74 mmol) was added, followed by the slow (15 min) addition of oxalyl chloride (10.25 mL, 121.08 mmol). The suspension was stirred at 0°C for 1 hour and for 30 minutes at room temperature. The mixture was then used as such in the next step. The yield of (2R)-(4-fluorophenyl) [(trimethylsilyl)oxy]acetoxy chloride is assumed to be 100%.

(iii) (Alternative 1) Ethyl((S)-1-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxylate

[0344] Under an atmosphere of nitrogen and on ice-cooling, ethyl acrylate (13.00 mL, 120 mmol) was dissolved in heptane (60 mL) and toluene (60 mL). Trifluoromethylsilyldiazomethane (2M in hexanes, 60.0 mL, 120.00 mmol) was added. The solution was then allowed to reach room temperature and was stirred for 2.5 hours. The mixture was then concentrated under reduced pressure at 30°C. This furnished the crude intermediate cycloaduct which was used without further purification. Under an atmosphere of nitrogen under ice-cooling, to a solution of (2R)-(4-fluorophenyl) [(trimethylsilyl)oxy]acetoxy chloride (30.7 g, 177.7 mmol), see (ii) in dichloromethane (250 mL) was slowly (5 minutes) added the crude cycloaduct from above. The mixture was then allowed to reach room temperature and was stirred for 2 hours. LC/MS analysis of the crude mixture showed the correct product and one byproduct where the trimethylsilyl-group still remained intact. Water (300 mL) was added. The aqueous phase was extracted with CHCl3 (100 mL). The combined organic layers were concentrated to give a viscous oil (45 g). To this was then added Me-TFA (100 mL) and TFA (44.6 mL, 600.00 mmol). The mixture was heated to 78°C and was stirred overnight. Water (200 mL) was added and the mixture was then allowed to stir vigorously for 15 minutes. EtOAc (300 mL) was added, the phases separated and the organic phase was concentrated. The crude diastereomeric mixture was then purified through silica gel chromatography using an eluent of 20-60% EtOAc in heptane as eluent. Pure fractions containing the desired diastereomers were collected and concentrated. Recrystallization from hot EtOAc/heptane (30:70, 200 mL) furnished the desired compound as a solid (8.9 g, 25% yield). H NMR (600 MHz, CDCl3) δ 8.19 (s, 3H), 2.91 (dd, 1H), 3.16 (dd, 1H), 4.12 (d, 1H), 4.21-4.27 (m, 2H), 4.70 (dd, 1H), 5.72 (d, 1H), 6.88-6.90 (m, 1H), 6.97-7.01 (2H), 7.37-7.43 (m, 2H).

(iii) (Alternative 2) Ethyl((S)-1-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxylate

[0345] Under an atmosphere of nitrogen, ethyl acrylate (288 g, 2877 mmol) was dissolved in dichloromethane (4000 mL) at 20°C with a stirring rate of 150 rpm.

[0346] Trifluoromethylsilyldiazomethane (2M in hexanes, 1150 mL, 2301 mmol) was added over a period of 30 minutes after which the mixture was stirred at 20°C for 19.5 h. After cooling to -30°C, trifluoroacetic acid (443 mL, 5752 mmol) was slowly added over a period of 35 minutes. A crude mixture of (2R)-2-(4-fluorophenyl)-2-(trimethylsilyloxy)acetic acid (600 g, 2301 mmol) in dichloromethane (4000 mL) was slowly added during 110 minutes, during which time the temperature was allowed to raise to 20°C. The mixture was stirred at 20°C for 45 minutes after which EtOH (500 mL) and water (500 mL) were added in one portion. The mixture was stirred at 200 rpm for 50 minutes, water (2500 mL) was added and stirred for 5 minutes at 200 rpm, then the layers were allowed to separate for 10 minutes. The aqueous layer (4L) was separated from the organic one (10.5 L), and to the organic layer was added a NaHCO3 solution (aq, 8%, 2.5 L). The mixture was stirred for 10 minutes at 200 rpm after which the organic layer (V=9.75 L) was separated from the aqueous one (3000 mL). The crude product in the CH2Cl2 solution was concentrated in vacuo at 40°C for 15 h. EtOAc (2000 mL) and heptane (1000 mL) were added to the solid and the resulting mixture was heated to reflux. Another 1000 mL of heptane was added after which seeding crystals (200 mg) of (S)—N-[5-chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide was added, resulting in immediate crystallization. The stirring rate was set at 100 rpm and the temperature was ramped down to 20°C with 1°C/min and the mixture was then stirred overnight. The mixture was filtered through a P3 filter and the filter cake was washed with EtOAc/heptane (50/50, 3×300 mL). The solid was then dried in vacuo to give the title compound (345 g, 51% yield).

(iv) (S)-1-[(2R)-2-(4-Fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxylic acid

[0347] To a solution of acetonitrile (70 mL), water (1.5 mL) and LiBr (12.69 g, 146.12 mmol) was added ethyl (S)-1-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxylate (8.6 g, 29.22 mmol) followed by triethylamine (10.13 mL, 73.06 mmol). The homogenous clear solution was then stirred at room temperature overnight. EtOAc (200 mL) and 1M HCl (aq., 150 mL) were added. The aqueous phase was extracted with EtOAc (100 mL). The pooled organic layers were then concentrated. This furnished 7.2 g of the desired acid as a solid. The pooled aqueous layers was extracted with EtOAc (2×50 mL), followed by washing of the combined organic layers with water (50 mL). An additional 0.42 g product was isolated. Total yield 98%. H NMR [400 MHz, (CD3)2SO] δ 2.86 (dd, 1H), 3.23 (dd, 1H), 4.53 (dd, 1H), 5.71-5.77 (m, 2H), 7.07-7.15 (m, 3H), 7.36-7.42 (m, 2H), 12.97 (s, br. 1H).

(v) (S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

[0348] In an open vessel, tert-butyl 5-chloro-2-(1H-tetrazol-1-yl)benzylcarbamate (14 g, 45.20 mmol, prepared as described in J. Med. Chem. 2004, 47, 2965, was suspended in acetonitrile (80 mL) HCl (6 M aqueous solution, 37.7 mL, 225.99 mmol) was added and the mixture was then stirred at room temperature for 4 hours. Water (200 mL) and TBME (100 mL) were added. To the aqueous phase and under ice-cooling was added EtOAc (200 mL) followed by slow addition of 2 M NaOH (aq., 130 mL). The organic phase was then washed with water (100 mL) to the EtOAc solution (220 mL) containing the crude (5-chloro-2-(1H-tetrazol-1-yl)phenyl)
methanamine was then added (5S)-1-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxylic acid (7.53 g, 28.28 mmol) followed by the addition of N-methylmorpholine (4.66 mL, 42.43 mmol). To this clear homogeneous solution was then added TBTU (10.90 g, 33.94 mmol) in one portion. The mixture was then stirred at room temperature over night. The precipitate formed was filtered and then washed with TBME (100 mL). After drying in vacuo, the desired compound was obtained as a solid (7.65 g, 59%). The mother liquor was diluted with EtOAc and washed with Na2CO3 (aq., sat), water and 1 M HCl (aq.). Crystallization from CH3CN/water gave 4.59 g of the title compound. Total yield 88%. 1H NMR (600 MHz, CD3CN) δ 2.93 (dd, 1H), 3.10 (dd, 1H), 4.15–4.19 (m, 2H), 4.25 (dd, 1H), 4.60 (dd, 1H), 5.73-5.76 (m, 1H), 6.97-6.99 (m, 1H), 7.07-7.10 (m, 2H), 7.28-7.30 (m, 1H), 7.42-7.46 (m, 3H), 7.54-7.56 (m, 1H), 7.71 (d, 1H), 9.20 (s, 1H).

[0349] Examples 2-22 were prepared in a manner analogous to Example 1 described above using the appropriate starting materials.

Example 2

(5S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[(2,3-difluorophenyl)(hydroxyacetyl)]-4,5-dihydro-1H-pyrazole-5-carboxamide

[0351] 1H NMR (400 MHz, CD3OD) for the most potent isomer: 8.955 (s, 1H), 7.75 (d, 1H), 7.56 (dd, 1H), 7.40 (d, 1H), 7.22-7.17 (m, 2H), 7.13-7.06 (m, 1H), 6.95 (br. t, 1H), 6.60 (s, 1H), 4.64 (dd, 1H), 4.30 (d, 1H), 4.24 (d, 1H), 3.21-3.08 (m, 1H), 2.90-2.82 (m, 1H), HRMS (ESI) calculated for C25H15ClF2N4O3 476.1049 (M+H)+, found 476.1050.

Example 3

(5S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[(2R)-2-cyclopropyl-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

[0357] 1H NMR (600 MHz, CD3CN) δ: 8 ppm 8.99 (s, 1H), 7.88 (br. s., 1H), 7.59 (d, 1H), 7.46 (dd, 1H), 7.30-7.25 (m, 1H), 7.06 (s, 1H), 4.86 (dd, 1H), 4.73 (dd, 1H), 4.27 (d, 2H),
Example 6

(5S)—N-[5-Chloro-2-[(1H-tetrazol-1-yl)benzyl]-1-[(2,4-difluorophenyl)(hydroxy)acetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

Example 7

Example 8

(5S)—N-[5-Chloro-2-[(1H-tetrazol-1-yl)benzyl]-1-[(2R)-2-hydroxy-5-methylhexanoyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

Example 9

Example 10

(5S)—N-[5-Chloro-2-[(1H-tetrazol-1-yl)benzyl]-1-[(2R)-2-hydroxy-3-methylphenylacetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

Example 11

(5S)—N-[5-Chloro-2-[(1H-tetrazol-1-yl)benzyl]-1-[(2-amino-5-methylphenyl)acetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

Example 12

Example 13

Example 14

Example 15

Example 16

Example 17

Example 18

Example 19

Example 20

Example 21

Example 22

Example 23

Example 24

Example 25

Example 26

Example 27

Example 28

Example 29

Example 30

Example 31

Example 32

Example 33

Example 34

Example 35

Example 36

Example 37

Example 38

Example 39

Example 40

Example 41

Example 42

Example 43

Example 44

Example 45

Example 46

Example 47

Example 48

Example 49

Example 50

Example 51

Example 52

Example 53

Example 54

Example 55

Example 56

Example 57

Example 58

Example 59

Example 60

Example 61

Example 62

Example 63

Example 64

Example 65

Example 66

Example 67

Example 68

Example 69

Example 70

Example 71

Example 72

Example 73

Example 74

Example 75

Example 76

Example 77

Example 78

Example 79

Example 80

Example 81

Example 82

Example 83

Example 84

Example 85

Example 86

Example 87

Example 88

Example 89

Example 90

Example 91

Example 92

Example 93

Example 94

Example 95

Example 96

Example 97

Example 98

Example 99

Example 100

Example 101

Example 102

Example 103

Example 104

Example 105

Example 106

Example 107

Example 108

Example 109

Example 110

Example 111

Example 112

Example 113

Example 114

Example 115

Example 116

Example 117

Example 118

Example 119

Example 120

Example 121

Example 122

Example 123

Example 124

Example 125

Example 126

Example 127

Example 128

Example 129

Example 130

Example 131

Example 132

Example 133

Example 134

Example 135

Example 136

Example 137

Example 138

Example 139

Example 140

Example 141

Example 142

Example 143

Example 144

Example 145

Example 146

Example 147

Example 148

Example 149

Example 150

Example 151

Example 152

Example 153

Example 154

Example 155

Example 156

Example 157

Example 158

Example 159

Example 160

Example 161

Example 162

Example 163

Example 164

Example 165

Example 166

Example 167

Example 168

Example 169

Example 170

Example 171

Example 172

Example 173

Example 174

Example 175

Example 176

Example 177

Example 178

Example 179

Example 180

Example 181

Example 182

Example 183

Example 184

Example 185

Example 186
Example 10

(5S)—N-[[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[[2R]-2-hydroxyhexanoyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

1H NMR (600 MHz, CD3CN): δ 9.19 (s, 1H), 7.69 (d, 1H), 7.54 (dd, 1H), 7.44 (d, 1H), 7.30 (brt, 1H), 7.04 (brt, 1H), 4.68-4.63 (m, 2H), 4.25-4.13 (m, 2H), 3.29 (d, 1H), 3.20-3.14 (dd, 1H), 2.99-2.94 (dd, 1H), 1.76-1.69 (m, 1H), 1.55-1.48 (m, 2H), 1.42-1.28 (m, 4H), 0.91 (t, 3H), HRMS (ESI) calculated for C19H22ClN2O4, 420.1551 (M+H)+, found 420.1556.

Example 11

(5S)—N-[[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[[2R]-2-hydroxy-3-(1-methylecyclopropyl)propanoyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

1H NMR (500 MHz, CDCl3): δ 9.03 (s, 1H), 7.90 (brt, 1H), 7.61 (d, 1H), 7.47 (dd, 1H), 7.29 (d, 1H), 7.06 (s, 1H), 4.97 (dd, 1H), 4.84 (dd, 1H), 4.28 (d, 2H), 3.61 (dd, 1H), 3.17 (d, 1H), 3.04 (dd, 1H), 1.70 (dd, 1H), 1.47 (dd, 1H), 1.16 (s, 3H), 0.20-0.42 (m, 4H), HRMS (ESI) calculated for C19H23ClN2O4, 432.1551 (M+H)+, found 432.1541.

Example 12

(5S)—N-[[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[[2R]-2-hydroxy-2H-chromen-4-yl]carbonyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

1H NMR (500 MHz, CDCl3) for the most potent isomer: δ 8.95 (s, 1H), 7.64 (brt, 1H), 7.57 (d, 1H), 7.45 (dd, 1H), 7.26 (d, 1H), 7.13 (ddd, 1H), 6.82-6.88 (m, 2H), 6.74-6.78 (m, 2H), 4.96 (bs, 1H), 4.86 (dd, 1H), 4.18-4.38 (m, 4H), 3.36 (ddd, 1H), 2.78-2.93 (m, 2H), 1.99 (dt, 1H).

Example 13
Example 14

\[\text{(5S)}-N\{5\text{-Chloro-2-(1H-tetrazol-1-yl)benzyl}\}-1-[(2R)-2-hydroxy-4,4\text{-dimethylpentanoyl}]4,5\text{-dihydro-1H-pyrazole-5-carboxamide} \]

[0374]

\[{ }^{1}H \text{ NMR (500 MHz, CDCl}_{3}\text{); } \delta 9.08 \text{ (s, 1H), 7.92 (t, 1H), 7.61 (d, 1H), 7.44 (dd, 1H), 7.28 (d, 1H), 7.05 (s, 1H), 4.85 (dd, 1H), 4.58 (d, 1H), 4.26 (d, 2H), 3.50 (dd, 1H), 3.09 (dd, 1H), 2.80 (bs, 1H), 1.43-1.76 (m, 6H), 1.06-1.36 (m, 5H). HRMS (ESI) calculated for C_{29}H_{25}ClN_{7}O_{3} 446.1707 (M+H)^{+}, found 446.1739. \]

Example 15

[0376]

Example 16

\[\text{(5S)}-N\{5\text{-Chloro-2-(1H-tetrazol-1-yl)benzyl}\}-1-[(2R)-2-hydroxy-3-methoxy-3-methylbutanoyl]4,5\text{-dihydro-1H-pyrazole-5-carboxamide} \]

[0378]

\[{ }^{1}H \text{ NMR (600 MHz, CDCl}_{3}\text{); } \text{ca 3:2 mixture of diastereomers, data for major isomer; } \delta 9.02 \text{ (s, 1H), 7.91 (t, 1H), 7.53 (d, 1H), 7.40 (dd, 1H), 7.25 (d, 1H), 7.01 (s, 1H), 4.75-4.93 (m, 2H), 4.10-4.25 (m, 2H), 3.17 (s, 3H), 2.95-3.60 (m, 3H), 1.19 (s, 3H), 1.17 (s, 3H). HRMS (ESI) calculated for C_{29}H_{25}ClN_{7}O_{3} 454.1394 (M+H)^{+}, found 454.1381. \]

Example 17

[0380]
Example 18

(5S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-(4-methyl-1-D-leucyl)-4,5-dihydro-1H-pyrazole-5-carboxamide

[0382]

\[\text{[H NMR (500 MHz, CD}_2\text{OD):} \delta 9.54 (s, 1H), 8.90 (bs, 1H), 7.76 (s, 1H), 7.58 (d, 1H), 7.51 (d, 1H), 7.23 (s, 1H), 4.75 (bt, 1H), 4.67 (dd, 1H), 4.35 (d, 1H), 4.22 (d, 1H), 3.35 (dd, 1H), 2.96 (dd, 1H), 2.02 (dd, 1H), 1.66 (dd, 1H), 0.99 (s, 9H). HRMS (ESI) calculated for C\text{18}H\text{22}Cl\text{N}_\text{6}O\text{2}, 433.1867 (M\text{+H})^+, found 433.1877.} \]

Example 19

(5S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[[2R]-3-cyclopropyl-2-hydroxypropanoyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

[0384]

\[\text{[H NMR (500 MHz, CD}_2\text{OD):} \delta 9.55 (s, 1H), 7.74 (s, 1H), 7.56 (d, 1H), 7.49 (d, 1H), 7.05 (s, 1H), 4.90 (bs, 1H), 4.65 (dd, 1H), 4.25 (q, 2H), 3.23 (dd, 1H), 2.90 (dd, 1H), 1.68-1.75 (m, 1H), 1.40-1.48 (m, 1H), 0.85-0.94 (m, 1H), 0.55-0.50 (m, 2H), 0.00-0.10 (m, 2H). HRMS (ESI) calculated for C\text{18}H\text{21}Cl\text{N}_\text{6}O\text{3}, 418.1394 (M\text{+H})^+, found 418.1386.} \]

Example 20

(5S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[[2R]-2-hydroxy-3,3-dimethylbutanoyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

[0386]

\[\text{[H NMR (500 MHz, CDCl}_3):} \delta 9.01 (s, 1H), 7.95 (bt, 1H), 7.58 (d, 1H), 7.43 (dd, 1H), 7.27 (d, 1H), 7.03 (s, 1H), 4.87 (dd, 1H), 4.63 (s, 1H), 4.20-4.30 (m, 2H), 3.56 (dd, 1H), 3.15 (bs, 1H), 2.99 (dd, 1H), 0.93 (s, 9H). HRMS (ESI) calculated for C\text{18}H\text{23}Cl\text{N}_\text{6}O\text{3}, 420.1551 (M\text{+H})^+, found 420.1534.} \]

Example 21

(5S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[[3R]-2-hydroxy-3-(3-cyanophenyl)propionoyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

[0388]

\[\text{[H NMR (400 MHz, CD}_2\text{CN) for the most potent isomer:} \delta 9.19 (s, 1H), 7.64-7.78 (m, 4H), 7.43-7.57 (m, 3H), 7.27 (bt, 1H), 7.00 (s, 1H), 5.89 (d, 1H), 4.60 (dd, 1H), 4.30 (d, 1H), 4.25 (dd, 1H), 4.16 (dd, 1H), 3.10 (ddd, 1H), 2.92 (ddd, 1H). HRMS (ESI) calculated for C\text{21}H\text{14}Cl\text{N}_\text{6}O\text{3}, 465.1190 (M\text{+H})^+, found 465.1185.} \]
buffer containing 5% MeCN, C8 column: 50 x 300 mm) The relevant fractions were collected, combined and freeze dried to give the title compound (476 mg, 90%) as a solid material.

Example 22

![Chemical structure](image)

(5S)—N-[5-Chloro-2-[(1H-tetrazol-1-yl)benzyl]-1-[(2S)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide

[0391] H NMR (500 MHz, CDCl3): δ 9.97 (s, 1H), 7.60 (d, 1H), 7.53 (m, 2H), 7.46 (dd, 1H), 7.43 (bt, 1H), 7.28 (d, 1H), 7.06 (m, 2H), 7.02 (bt, 1H), 6.53 (s, 1H), 4.81 (dd, 1H), 4.27 (dd, 1H), 4.18 (dd, 1H), 3.30 (ddd, 1H), 3.11 (ddd, 1H), 2.13 (s, 3H), HRMS (ESI) calculated for C22H21ClF5N4O4 500.1249 (M+H)+, found 500.1267.

[0395] Examples 24-27 were prepared in a manner analogous to Example 23 described above using the appropriate starting materials.

Example 24

![Chemical structure](image)

(1R)-2-[(5S)-5-[5-Chloro-2-[(1H-tetrazol-1-yl)benzyl]carbamoyl]-4,5-dihydro-1H-pyrazol-1-yl]-1-(4-fluorophenyl)-2-oxoethyl 3-methylbutanoate

[0397] H NMR (500 MHz, (CH3)2SO): δ 9.79 (s, 1H), 8.76 (t, 1H), 7.66 (1H), 7.60 (m, 2H), 7.45 (m, 2H), 7.19 (t, 2H), 7.15 (s, 1H), 6.59 (s, 1H), 4.54 (dd, 1H), 4.20 (dd, 1H), 4.04 (dd, 1H), 3.13 (dd, 1H), 2.73 (dd, 1H), 2.20 (m, 1H), 1.92 (m, 1H), 1.92 (m, 1H), 0.84 (dd, 6H), HRMS (ESI) calculated for C23H25ClF5N4O4 (M+H)+, 542.1715 found 542.1715.

Example 25

![Chemical structure](image)

[(1R)-2-[(5S)-5-[5-Chloro-2-[(tetrazol-1-yl) phenyl] methylcarbamoyl]-4,5-dihydro pyrazol-1-yl]-1-(4-fluorophenyl)-2-oxoethylacetate]

[0393] To (5S)—N-[5-chloro-2-[(1H-tetrazol-1-yl)benzyl]-1-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide (Example 1) (483 mg, 1.05 mmol) in dichloromethane (10 mL) was added pyridine (2 mL) and acetic anhydride (100 µL, 1.06 mmol). The mixture was stirred for 4 h. Another portion of acetic anhydride (600 µL, 6.34 mmol) and DMAP (23 mg, 0.19 mmol) was added and the mixture was stirred for another 15 h. The solvents were removed by evaporation and the residue was purified by HPLC (MeCN gradient 0 to 100% in aqueous 0.1 M NH4OAc.
Example 26

(1R)-2-[(S)-5-[[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]carbamoyl]-4,5-dihydro-1H-pyrazol-1-yl]-1-(4-fluorophenyl)-2-oxoethyl butanoate

[0399] 1H NMR (500 MHz, (CD$_3$)$_2$SO): δ 9.80 (s, 1H), 8.49 (t, 1H), 7.67 (1H), 7.60 (m, 2H), 7.45 (m, 2H), 7.18 (t, 2H), 7.15 (s, 1H), 6.59 (s, 1H), 4.54 (dd, 1H), 4.20 (dd, 1H), 4.05 (dd, 1H), 3.14 (dd, 1H), 2.31 (m, 2H), 1.50 (m, 2H), 0.83 (t, 3H), HRMS (ESI) calculated for C$_{24}$H$_{25}$ClF$_{2}$N$_{4}$O$_{4}$ (M+H)$^+$, 528.1563 found 528.1573.

Example 27

(1R)-2-[(S)-5-[[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]carbamoyl]-4,5-dihydro-1H-pyrazol-1-yl]-1-(4-fluorophenyl)-2-oxoethyl 2-methylpropanoate

[0401] 1H NMR (500 MHz, (CD$_3$)$_2$SO): δ 9.79 (s, 1H), 8.47 (t, 1H), 7.67 (1H), 7.60 (m, 2H), 7.45 (m, 2H), 7.19 (t, 2H), 7.15 (s, 1H), 6.58 (s, 1H), 4.54 (dd, 1H), 4.21 (dd, 1H), 4.05 (dd, 1H), 3.15 (dd, 1H), 2.57 (m, 1H), 1.07 (d, 3H), 1.03 (d, 3H), HRMS (ESI) calculated for C$_{24}$H$_{25}$ClF$_{2}$N$_{4}$O$_{4}$ (M+H)$^+$, 528.1563 found 528.1569.

Example 28

(1R)-2-[(S)-5-[[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]carbamoyl]-4,5-dihydro-1H-pyrazol-1-yl]-1-(4-fluorophenyl)-2-oxoethyl pентаноат

[0403] 1H NMR (500 MHz, (CD$_3$)$_2$SO): δ 9.80 (s, 1H), 8.49 (t, 1H), 7.67 (1H), 7.60 (m, 2H), 7.45 (m, 2H), 7.19 (t, 2H), 7.15 (s, 1H), 6.58 (s, 1H), 4.54 (dd, 1H), 4.20 (dd, 1H), 4.05 (dd, 1H), 3.14 (dd, 1H), 2.73 (d, 1H), 2.33 (m, 2H), 1.45 (m, 2H), 1.24 (m, 2H), 0.80 (t, 3H), HRMS (ESI) calculated for C$_{24}$H$_{25}$ClF$_{2}$N$_{4}$O$_{4}$ (M+H)$^+$, 542.1719 found 542.1719.

[0404] To a suspension of (5S)---N-[[5-chloro-2-(1H-tetrazol-1-yl)benzyl]-1-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide (Example 1) (276 g, 603 mmol) in 2-methyl THF (46 L) was added pyridine (62 mL) followed by N,N-dimethylpyridine-4-amine (7.36 g, 723 mmol) and propionic anhydride (93 mL, 723 mmol). After 2 h the suspension became a little bit thicker and after 3 h the suspension was very thick. Another portion of 2-methyl THF (2 L) was added and an extra impeller was assembled to the stirring bar. The suspension was stirred at 30°C (jacket temp) over night. The temperature was then lowered to 15°C and after 30 minutes the reaction mixture was filtered through a P3 sintered glass funnel and the filter cake was washed with ethylacetate (2x250 mL). The white product was dried at 40°C in vacuo to give the title compound (238 g, 77%) as a solid material. The mother liquor (7.6 L water (2 L) was added and the phases were separated. The organic phase was evaporated gently until a thick precipitation was observed. The slurry was filtered off to get, after drying, a second crop of the title compound (37 g, 12%).

[0405] 1H NMR (500 MHz, CDCl$_3$): δ 9.05 (s, 1H), 7.55 (m, 3H), 7.43 (m, 2H), 7.25 (s, 1H), 7.04 (m, 3H), 6.52 (s, 1H), 4.79 (dd, 1H), 4.22 (dd, 1H), 3.25 (ddl, 1H), 3.00 (ddl, 1H), 2.41 (m, 2H), 1.03 (t, 3H), HRMS (ESI) calculated for C$_{24}$H$_{23}$ClF$_{2}$N$_{4}$O$_{4}$ (M+H)$^+$, 514.1406 found 514.1405.
Example 29

[(1R)-2-[(S)-5-(5-Chloro-2-(1H-tetrazol-1-yl)benzyl)carbamoyl]-4,5-dihydro-1H-pyrazol-1-yl]-1-(4-fluorophenyl)-2-oxoethyl benzoate]

To a mixture of (3S)—N-[[5-chloro-2-(tetrazol-1-yl)phenyl)methyl]-2-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-3,4-dihydropyrazole-3-carboxamidine (0.48 g, 1.05 mmol), pyridine (6 mL, 74 mmol), and DMAP (0.023 g, 0.188 mmol) in CH₂Cl₂ (8 mL) at -10°C was added benzoyl chloride (135 µL, 1.15 mmol). The reaction mixture was allowed to attain rt and was stirred for 5 h. Another portion of benzoyl chloride (400 µL, 3.4 mmol) was added. The mixture was stirred for 60 h. LCMS analysis indicated only a trace amount of product. The solvents were removed by evaporation and pyridine (5 mL, 62 mmol) was added followed by another portion of benzoyl chloride (400 µL, 3.4 mmol). The reaction mixture was heated to 70°C overnight. LCMS analysis indicated approximately 20% conversion of starting material. The solvent was evaporated and the residue was purified by HPLC (MeCN gradient 0 to 100% in 0.1 M NH₄OAc buffer containing 5% MeCN). The relevant fractions were combined and lyophilized to give the title compound (77 mg, 13%) together with 289 mg of unreacted starting material.

Example 30

[(R)-2-[[S]-5-(5-Chloro-2-(1H-tetrazol-1-yl)benzyl)carbamoyl]-4,5-dihydro-1H-pyrazol-1-yl]-1-(4-fluorophenyl)-2-oxoethyl 3-(2,4-dimethyl-6-(propionyloxy)phenyl)-3-methylbutanoate]

To a solution of 3-(2,4-dimethyl-6-(propionyloxy)phenyl)-3-methylbutanoic acid (160 mg, 0.57 mmol) and (S)—N-(5-chloro-2-(1H-tetrazol-1-yl)benzyl)-1-[(R)-2-(4-fluorophenyl)-2-hydroxyacetyl]-4,5-dihydro-1H-pyrazole-5-carboxamide (263 mg, 0.57 mmol) in DCM (3 mL) and DMF (3 mL) was added EDC (165 mg, 0.86 mmol) and DMAP (7 mg, 0.06 mmol). The clear colorless solution was stirred at rt for 48 h. The mixture was diluted with DCM and washed with water, 1M HCl and sat NaHCO₃. The organic phase was dried, filtered, evaporated and purified by flash chromatography (DCM/EtOAc gradient from 4:1 to 2:1) to give (R)-2-[[S]-5-(5-Chloro-2-(1H-tetrazol-1-yl)benzylcarbamoyl]-4,5-dihydro-1H-pyrazol-1-yl]-1-(4-fluorophenyl)-2-oxoethyl 3-(2,4-dimethyl-6-(propionyloxy)phenyl)-3-methylbutanoate (380 mg, 92%) as a semisolid.

Example 31

1H NMR (500 MHz, CDCl₃): δ 9.08 (s, 1H), 7.33-7.48 (m, 5H), 7.22-7.26 (m, 1H), 6.95-7.03 (m, 3H), 6.70 (s, 1H), 6.48 (s, 1H), 6.40 (s, 1H), 4.77 (dd, 1H), 4.03 (dd, 1H), 3.96 (dd, 1H), 3.21 (ddd, 1H), 2.90-3.10 (m, 3H), 2.52 (q, 2H), 2.48 (s, 3H), 2.11 (s, 3H), 1.54 (s, 3H), 1.46 (s, 3H), 1.19 (t, 3H). HRMS (ESI) calculated for C₂₇H₂₅ClF₃N₃O₈: 718.17 (M+H)+, found 718.2556 (M+H)+, found 718.2578.

Example 32

O

(i) Br

[0413]
(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]isonicotinamide-3-carboxamide

(i) Ethyl(2S)-4-bromo-2-[[tert-butyldimethylsilyl]oxy]amino]butanoate

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl]isonicotinamide-3-carboxamide

(ii) Ethyl(3S)-isonicotinamide-3-carboxylate

To a solution of ethyl(2S)-4-bromo-2-[[tert-butyldimethylsilyl]oxy]amino]butanoate (870 mg, 2.556 mmol) in THF (25 mL) was added tetrabutylammonium tetrafluoroborate (1.287 g, 4.639 mmol) and the mixture was stirred at rt for 1 h. The solvents were evaporated and the residue was purified by flash chromatography (DCM/EtOAc 9:1, then 4:1) to give ethyl(3S)-isonicotinamide-3-carboxylate (340 mg, 91%) as an oil.

(iii) 2-tert-Butyl-3-ethyl(3S)-isonicotinamide-2,3-dicarboxylate

To a solution of ethyl(3S)-isonicotinamide-3-carboxylate (1.452 g, 10.00 mmol) in DCM (20 mL) was added boc-anhydride (2.62 g, 12.00 mmol), triethylamine (2.02 g, 20.00 mmol) and dimethylaminothiocarboxylate (61 mg, 0.500 mmol). The reaction mixture was stirred at rt for 1 h and was then diluted with TBME and washed with 1 M HCl followed by saturated NaHCO₃(aq). The organic phase was dried, filtered, evaporated and the residue was purified by flash chromatography (heptane/EtOAc 4:1, then 2:1) to give 2-tert-butyl-3-ethyl(3S)-isonicotinamide-2,3-dicarboxylate (2.20 g, 90%) as an oil.

(iv) tert-Butyl(3S)-3-[[5-chloro-2-(1H-tetrazol-1-yl)benzyl]carbamoyl]isonicotinamide-2-carboxylate

To a solution of 2-tert-butyl 3-ethyl(3S)-isonicotinamide-2,3-dicarboxylate (245 mg, 1.00 mmol) in acetonitrile (2.5 mL) and water (1 mL) was added lithium hydroxide (1 M in water, 1.00 mL, 1.00 mmol) and the mixture was stirred at rt for 30 min. To this solution was added 5-chloro-2-tetrazol-1-ylbenzylamine hydrochloride (295 mg, 1.20 mmol, prepared as described in J. Med. Chem. 2004, 47, 2995), hydroxybenzotriazole (135 mg, 1.00 mmol, as a 20% solution in water, ca 0.65 mL), EDC (288 mg, 1.50 mmol) and NMM (202 mg, 2.00 mmol). The resulting mixture was stirred at rt overnight, then diluted with DCM and washed with 1 M HCl and saturated sodium hydrogen carbonate. The organic phase was dried, filtered, evaporated and purified by flash chromatography (DCM/EtOAc gradient from 4:1 to 1:1) to give tert-butyl(3S)-3-[[5-chloro-2-(1H-tetrazol-1-yl)benzyl]carbamoyl]isonicotinamide-2-carboxylate (357 mg, 87%) as an oil.

(v) (3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]isonicotinamide-3-carboxamide hydrochloride

To a solution of tert-butyl(3S)-3-[[5-chloro-2-(1H-tetrazol-1-yl)benzyl]carbamoyl]isonicotinamide-2-carboxylate (357 mg, 0.873 mmol) in MeOH (5 mL) was added conc. HCl (aq., 5 mL) and the mixture was stirred at rt for 1 h and then evaporated to dryness to give crude (3S)—N-[5-chloro-
(3S)-2-(O-tert-Butyl-D-seryl)-N-[5-chloro-2-(1H-tetrazol-1-yl)benzyl]isoxazolidine-3-carboxamide

[0423]

1H NMR (500 MHz, CDCl$_3$): δ 8.89 (s, 1H), 8.00 (br. s, 1H), 7.64 (d, 1H), 7.44 (dd, 1H), 7.26 (m, 1H), 6.99 (br. s, 1H), 5.41 (br. s, 1H), 4.44 (m, 1H), 4.27-4.02 (m, 4H), 3.89 (dd, 1H), 3.63 (dd, 1H), 3.43 (dd, 1H), 2.70 (m, 1H), 2.50 (m, 1H), 1.17 (s, 9H), HRMS (ESI) calculated for C$_{15}$H$_{29}$ClN$_5$O$_4$ 452.1813 (M+H)$^+$, found 452.1821.

Example 33

[0424]

(3S)-N-5-Chloro-2-(1H-tetrazol-1-yl)benzyl-2-[(2,4-difluorophenyl)(hydroxy)acetyl]isoxazolidine-3-carboxamide

[0425] 1H NMR (500 MHz, CDCl$_3$) for the most potent isomer: δ 2.32-2.41 (1H), 2.62-2.72 (1H), 2.85-2.93 (1H), 3.89-3.96 (1H), 4.20 (1H), 4.26-4.37 (2H), 4.66-4.73 (1H), 5.74 (1H), 6.81-6.95 (2H), 7.26-7.34 (2H), 7.37-7.44 (1H), 7.46-7.52 (1H), 7.61-7.66 (1H), 9.01 (1H), HRMS (ESI$^+$) calculated for C$_{20}$H$_{17}$ClF$_2$N$_5$O$_4$ 479.1046 (M+H), found 479.1059.

Example 34

[0426]

(3S)-N-5-Chloro-2-(1H-tetrazol-1-yl)benzyl-2-[(2,3-difluorophenyl)(hydroxy)acetyl]isoxazolidine-3-carboxamide

[0427] 1H NMR (400 MHz, CDCl$_3$): δ 8.89 (s, 1H), 7.62 (d, 1H), 7.47 (dd, 1H), 7.33 (br. s, 1H), 7.29 (d, 1H), 7.18-7.05 (m, 3H), 5.78 (s, 1H), 4.67 (dd, 1H), 4.36-4.24 (m, 2H), 4.16

Example 35

[0428]
Example 37

![Chemical Structure](image)

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(3,5-difluorophenyl)(hydroxy)acetyl]isoxazolidine-3-carboxamide

Example 38

![Chemical Structure](image)

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(hydroxy(3-methylphenyl)acetyl]isoxazolidine-3-carboxamide

[0434]

Example 39

![Chemical Structure](image)

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2-fluorophenyl)(hydroxy)acetyl]isoxazolidine-3-carboxamide

Example 30

![Chemical Structure](image)

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2-fluorophenyl)(hydroxy)acetyl]isoxazolidine-3-carboxamide
Example 39

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-5-methylhexanoyl]isoxazolidine-3-carboxamide

[0437] 1H NMR (600 MHz, CDCl₃): δ 0.84-0.92 (6H), 1.24-1.40 (2H), 1.47-1.69 (3H), 2.46-2.55 (1H), 2.81-2.89 (1H), 3.11 (1H), 3.86-3.93 (1H), 4.17-4.33 (3H), 4.48-4.53 (1H), 4.69-4.75 (1H), 7.26-7.28 (1H), 7.42-7.48 (2H), 7.57-7.60 (1H), 8.96 (1H). HRMS (ESI+ calculated for C₁₆H₂₃ClN₂O₄ 437.1704 (M+H)⁺, found 437.1715.

Example 40

Example 41

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-cyclopentyl-2-hydroxyacetyl]isoxazolidine-3-carboxamide

[0441] 1H NMR (600 MHz, CDCl₃): δ 1.40-1.72 (8H), 2.12-2.20 (1H), 2.46-2.55 (1H), 2.80-2.90 (1H), 3.87-3.94 (1H), 4.16-4.31 (3H), 4.49-4.52 (1H), 4.70-4.75 (1H), 7.26-7.28 (1H), 7.43-7.47 (1H), 7.52-7.60 (2H), 8.99 (1H). HRMS (ESI) calculated for C₁₆H₂₃ClN₂O₄ 435.1548 (M+H)⁺, found 435.1559.

Example 42

Example 43

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-cyclohexyl-2-hydroxyacetamid]isoxazolidine-3-carboxamide

[0443] 1H NMR (500 MHz, CDCl₃): δ 8.99 (s, 1H), 7.59 (d, 1H), 7.57 (br, t, 1H), 7.45 (dd, 1H), 7.27 (m, 1H), 4.73 (d, 1H), 4.37 (d, 1H), 4.27 (m, 2H), 4.20 (m, 1H), 3.89 (q, 1H), 2.85 (m, 1H), 2.51 (m, 1H), 1.82-1.70 (m, 2H), 1.69-1.53 (m, 3H), 1.52-1.42 (m, 1H), 1.41-1.30 (m, 1H), 1.29-1.07 (m, 4H). HRMS (ESI) calculated for C₂₀H₂₅ClN₆O₄ 449.1704 (M+H)⁺, found 449.1725.
Example 43

![Chemical Structure](image1)

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-3-(1-methylecyclopropyl)propanoyl]isoaxozidine-3-carboxamide

[0445] 1H NMR (500 MHz, CDCl$_3$): δ 9.02 (s, 1H), 7.60 (d, 1H), 7.57 (bt, 1H), 7.44 (dd, 1H), 7.26 (d, 1H), 4.66-4.72 (m, 2H), 4.23-4.33 (m, 2H), 4.18 (dd, 1H), 3.92 (q, 1H), 3.17 (d, 1H), 2.77-2.85 (m, 1H), 2.46-2.54 (m, 1H), 1.60 (ddd, 1H), 1.38 (dd, 1H), 1.13 (s, 3H), 0.21-0.45 (m, 4H). HRMS (ESI) calculated for C$_{19}$H$_{24}$ClN$_3$O$_4$ 435.1548 (M+H)$^+$, found 435.1535.

Example 44

![Chemical Structure](image2)

Example 45

![Chemical Structure](image3)

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-3,3-dimethylbutanoyl]isoaxozidine-3-carboxamide

[0449] 1H NMR (500 MHz, CDCl$_3$): δ 9.04 (s, 1H), 7.73 (bt, 1H), 7.58 (d, 1H), 7.42 (dd, 1H), 7.25 (d, 1H), 4.75 (dd, 1H), 4.22-4.30 (m, 3H), 4.11-4.17 (ddd, 1H), 3.97 (q, 1H), 3.12 (bs, 1H), 2.77-2.88 (m, 1H), 2.40-2.50 (m, 1H), 0.94 (s, 9H). HRMS (ESI) calculated for C$_{18}$H$_{24}$ClN$_3$O$_4$ 423.1552 (M+H)$^+$, found 423.1552.

Example 46

![Chemical Structure](image4)

Example 47

![Chemical Structure](image5)

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-2-phenylacetyl]isoaxozidine-3-carboxamide

[0447] 1H NMR (400 MHz, CDCl$_3$): δ 9.01 (s, 1H), 7.61 (d, 1H), 7.47 (bt, 1H), 7.44 (dd, 1H), 7.12-7.30 (m, 6H), 5.49 (d, 1H), 4.64 (ddd, 1H), 4.22-4.33 (m, 2H), 4.20 (d, 1H), 3.81 (ddd, 1H), 2.64-2.72 (m, 1H), 2.52-2.62 (m, 1H), 2.22-2.31 (m, 1H). HRMS (ESI) calculated for C$_{25}$H$_{26}$ClN$_3$O$_4$ 443.1234 (M+H)$^+$, found 443.1234.

Example 48

![Chemical Structure](image6)

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-2,4,4-dimethylpentanoyl]isoaxozidine-3-carboxamide

[0451] 1H NMR (500 MHz, CDCl$_3$): δ 8.97 (s, 1H), 7.59 (d, 1H), 7.44-7.50 (m, 2H), 7.27 (d, 1H), 4.69 (dd, 1H), 4.63 (ddd, 1H), 4.27 (d, 2H), 4.18 (ddd, 1H), 3.93 (q, 1H), 2.80-2.88 (m, 1H), 2.47-2.55 (m, 1H), 1.40 (d, 2H), 1.01 (s, 9H). HRMS (ESI) calculated for C$_{19}$H$_{24}$ClN$_3$O$_4$ 437.1704 (M+H)$^+$, found 437.1700.
Example 47

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-
[(2R)-2-hydroxy-3-phenylpropionyl]isoxazolidine-
3-carboxamide

[0453]

1H NMR (500 MHz, CDCl$_3$): 8 8.97 (s, 1H), 7.59 (d, 1H), 7.48 (dd, 1H), 7.45 (dt, 1H), 7.20-7.35 (m, 6H), 4.85 (ddd, 1H), 4.66 (dd, 1H), 4.24-4.34 (m, 2H), 4.06 (ddd, 1H), 3.04 (q, 1H), 2.32 (d, 1H), 3.02 (dd, 1H), 2.97 (dd, 1H), 2.86-2.84 (m, 1H), 2.32-2.40 (m, 1H). HRMS (ESI) calculated for $C_{23}H_{25}ClN_4O_4$ 457.1391 (M+H)$^+$, found 457.1394.

Example 48

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-
[(3-cyanophenyl)(hydroxy)acetyl]isoxazolidine-3-
carboxamide

[0454]

1H NMR (400 MHz, CDCl$_3$) for the most potent isomer; 8 8.95 (s, 1H), 7.60-7.70 (m, 4H), 7.45-7.52 (m, 2H), 7.25-7.31 (m, 2H), 5.54 (s, 1H), 4.63 (dd, 1H), 4.31 (d, 2H), 3.97 (ddd, 1H), 2.38 (dd, 1H), 2.70 (dddd, 1H), 2.34 (ddddd, 1H). HRMS (ESI) calculated for $C_{21}H_{19}ClN_4O_4$ 468.1187 (M+H)$^+$, found 468.1223.

Example 49

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-
[(2R)-2-hydroxy-2-phenylacetamidopyrazolidine-3-
carboxamide

[0456]

(i) tert-Butyl 2-[(1S)-3-bromo-1-(ethoxycarbonyl)
propyl]hydrazinecarboxylate

[0457]

To a solution of ethyl(2R)-4-bromo-2-hydroxybutanoate (1.1 g, 5.2 mmol, prepared as described in *J. Med.*
Chem. 2003, 46, 2057 or J. Am. Chem. Soc., 2004, 126, 12432 and Tetrahedron Letters 1997, 38, 4935-4938, in dry DCM (20 mL) at 0°C. After 5 min, the mixture was stirred for one more hour and then evaporated. The residue was then stirred for 2 h. The reaction was quenched by addition of saturated NH₄Cl (aq) and further stirred for 2 h. The reaction was quenched by addition of saturated NH₄Cl (aq) and diluted with TBME. The phases were separated, and the organic phase was dried, filtered, and evaporated. The residue was purified using flash chromatography (DCM/MeCN 1:1) to give the pure tert-butyl 3-ethyl(3S)-pyrazolidine-1,3-dicarboxylate (580 mg, 52%) as an oil.

Example 51

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2fluorophenyl)(hydroxy)acetyl]pyrazolidine-3-carboxamide

1H NMR (500 MHz, CDCl₃): δ 9.0 (s, 1H), 7.45 (d, 1H), 7.37 (m, 1H), 7.25 (m, 1H), 6.61 (d, 1H), 4.51 (t, 1H), 4.25 (d, 1H), 4.85-4.98 (m, 2H), 3.01-3.08 (m, 1H), 2.50-2.70 (m, 1H), 2.14-2.17 (m, 2H). HRMS (ESI) calculated for C₂₀H₁₅ClN₅O₄ 442.1394 (M+H)+, found 442.1418.

Example 52

N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2-fluorophenyl)(hydroxy)acetyl]pyrazolidine-3-carboxamide was prepared in a manner analogous to Example 49 described above using the appropriate starting materials.
Example 52

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2,4-difluorophenyl)(hydroxy)acetyl]pyrazolidine-3-carboxamide

[0467] 1H NMR (500 MHz, CDCl₃) for the most potent isomer: δ 9.05 (s, 1H), 7.62 (d, 1H), 7.55 (bt, 1H), 7.48 (dd, 1H), 7.30 (d, 1H), 7.22 (ddd, 1H), 6.76-6.86 (m, 2H), 5.75 (s, 1H), 4.48 (t, 1H), 4.39 (dd, 1H), 4.30 (bs, 1H), 4.23 (dd, 1H), 4.16 (dd, 1H), 3.82 (ddd, 1H), 2.32-2.40 (m, 1H), 2.13-2.20 (m, 1H), 1.87-1.97 (m, 1H). HRMS (ESI) calculated for C₃₂H₂₉Cl₂F₂N₇O₇ 478.1206 (M+H)⁺, found 478.1201.

Example 54

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(4-hydroxy-3,4-dihydro-2H-chromen-4-yl)carbonyl]pyrazolidine-3-carboxamide

[0471] 1H NMR (500 MHz, CDCl₃) for the most potent isomer: δ 9.05 (s, 1H), 7.69 (d, 1H), 7.45-7.55 (m, 2H), 7.30 (d, 1H), 7.10-7.17 (m, 1H), 6.67-6.85 (m, 3H), 5.12 (bs, 1H), 4.56 (dd, 1H), 4.15-4.45 (m, 4H), 3.35-3.42 (m, 1H), 3.12-3.22 (m, 1H), 2.60-2.80 (m, 2H), 2.20-2.40 (m, 2H), 1.94 (dt, 1H). HRMS (ESI) calculated for C₂₂H₂₃ClN₅O₄ 484.1500 (M+H)⁺, found 484.1503.

Example 53

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-(4-fluorophenyl)-2-hydroxyacetamido]pyrazolidine-3-carboxamide

[0469] 1H NMR (500 MHz, CDCl₃) for the most potent isomer: δ 9.00 (s, 1H), 7.62 (d, 1H), 7.55 (bt, 1H), 7.48 (dd, 1H), 7.35-7.40 (m, 2H), 7.30 (d, 1H), 6.96-7.03 (m, 2H), 5.62 (d, 1H), 4.37-4.45 (m, 2H), 4.21 (dd, 1H), 3.08 (dd, 1H), 2.30-2.44 (m, 1H), 2.05-2.20 (m, 2H). HRMS (ESI) calculated for C₃₁H₂₃ClF₂N₇O₇ 460.1300 (M+H)⁺, found 460.1302.

Example 55

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-4,4-dimethylpentanoyl]pyrazolidine-3-carboxamide

[0473] 1H NMR (500 MHz, CDCl₃): δ 9.02 (s, 1H), 7.64 (bt, 1H), 7.59 (d, 1H), 7.46 (dd, 1H), 7.28 (d, 1H), 4.69 (dd, 1H), 4.52 (t, 1H), 4.40 (dd, 1H), 4.18 (dd, 1H), 3.33 (dd, 1H), 2.75 (ddd, 1H), 2.46-2.56 (m, 1H), 2.27-2.37 (m, 1H), 1.46 (dd, 1H), 1.35 (dd, 1H), 1.01 (s, 9H). HRMS (ESI) calculated for C₁₉H₂₁ClN₅O₄ 436.1864 (M+H)⁺, found 436.1881.

Example 54

(3S)—N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-cyclohexyl-2-hydroxyacetamido]pyrazolidine-3-carboxamide

[0474] 1H NMR (500 MHz, CDCl₃): δ 9.54 (s, 1H), 7.72 (d, 1H), 7.55 (dd, 1H), 7.48 (d, 1H), 4.38-4.43 (m, 2H), 4.25
Example 56

\[
\begin{align*}
\text{1H NMR (500 MHz, CDCl}_3\text{):} & \quad 8.93 (s, 1H), 7.70 (d, 1H), 7.54 (dd, 1H), 7.47 (d, 1H), 7.05-7.28 (m, 5H), 4.93 (dd, 1H), 4.35 (t, 1H), 4.24 (s, 2H), 3.10-3.17 (m, 1H), 3.01 (dd, 1H), 2.79 (dd, 1H), 2.32-2.46 (m, 2H), 1.90-2.00 (m, 1H). \\
\text{HRMS (ESI) calculated for } & \text{C}_{21}\text{H}_{25}\text{ClN}_5\text{O}_3, 456.1551 (M+H)^+, \text{found 456.1531.}
\end{align*}
\]

Example 57

\[
\begin{align*}
\text{1H NMR (500 MHz, CDCl}_3\text{):} & \quad 8.90 (s, 1H), 7.68 (bt, 1H), 7.59 (d, 1H), 7.47 (dd, 1H), 7.28 (d, 1H), 4.62 (dd, 1H), 4.46 (dd, 1H), 4.37 (d, 1H), 4.28 (dd, 1H), 4.10-4.25 (m, 2H), 3.30-3.37 (m, 1H), 2.78-2.88 (m, 1H), 2.54-2.64 (m, 1H), 2.25-2.33 (m, 1H), 0.97 (s, 9H). \\
\text{HRMS (ESI) calculated for } & \text{C}_{16}\text{H}_{15}\text{ClN}_5\text{O}_3, 422.1707 (M+H)^+, \text{found 422.1708.}
\end{align*}
\]

Biological Tests

The following test procedures may be employed:

Test A

Determination of Thrombin Inhibition with a Chromogenic, Robotic Assay

The thrombin inhibitor potency is measured with a chromogenic substrate method, in a Plato 3300 robotic microplate processor (Rosys AG, CH-8634 Hombrechtikon, Switzerland), using 96-well, half volume microtitre plates (Costar, Cambridge, Mass., USA; Cat No 3690). Stock solutions of test substance in DMSO (72 µL), 0.1-1 mmol/L, are diluted serially 1:3 (24+48 µL) with DMSO to obtain ten different concentrations, which are analyzed as samples in the assay. 2 µL of test sample is diluted with 124 µL assay buffer, 12 µL of chromogenic substrate solution (S-2366, Chromogenix, Malmö, Sweden) in assay buffer and finally 12 µL of α-thrombin solution (Human α-thrombin, Sigma Chemical Co. or Hematologic Technologies) in assay buffer, are added, and the samples mixed. The final assay concentrations are: test substance 0.00068-133 µmol/L, S-2366 0.30 mmol/L, α-thrombin 0.020 NIHU/mL. The linear absorbance increment during 40 minutes incubation at 37°C is used for calculation of percentage inhibition for the test samples, as compared to blanks without inhibitor. The IC₅₀ value, corresponding to the inhibitor concentration which causes 50% inhibition of the thrombin activity, is calculated from a log concentration vs. % inhibition curve.

Test B

Determination of Activated Partial Thromboplastin Time (APTT)

APTT is determined in pooled normal human citrated plasma with the reagent PTT Automated 5 manufactured by Stago. The inhibitors are added to the plasma (10 µL, inhibitor solution to 90 µL, plasma) and incubated with the APTT reagent for 3 minutes followed by the addition of 100 µL of calcium chloride solution (0.025 M) and APTT is determined by use of the coagulation analyzer KC10 (Amelung) according to the instructions of the reagent producer.

The clotting time is expressed as absolute values (seconds) as well as the ratio of APTT without inhibitor (APTTo) to APTT with inhibitor (APTTI). The latter ratios (range 1-4) are plotted against the concentration of inhibitor (log transformed) and fitted to sigmoidal dose-response curves according to the equation

\[y = a/(1 + (x/K_{IC50})^b)\]

where: a=maximum range, i.e. 1; s=slope of the dose-response curve; and IC₅₀—the concentration of inhibitor that doubles the clotting time. The calculations are processed on a PC using the software program GraFit Version 3, setting equation equal to: Start at 0, define end=1 (Erithacus Software, Robin Leatherbarrow, Imperial College of Science, London, UK).

IC₅₀/IC₅₀ APTT is defined as the concentration of inhibitor in human plasma that doubled the Activated Partial Thromboplastin Time.

Results

Compounds of the Examples were tested in Test A as described above and were found to exhibit IC₅₀ values of
less than 1 µM. The following table shows the IC_{50} values for a representative selection of compounds:

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Test A IC_{50} (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>5.7</td>
</tr>
<tr>
<td>8</td>
<td>5.8</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>130</td>
</tr>
<tr>
<td>13</td>
<td>7.8</td>
</tr>
<tr>
<td>14</td>
<td>8.5</td>
</tr>
<tr>
<td>15</td>
<td>6.3</td>
</tr>
<tr>
<td>16</td>
<td>44</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>3.5</td>
</tr>
<tr>
<td>19</td>
<td>31</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>740</td>
</tr>
<tr>
<td>23</td>
<td>193</td>
</tr>
<tr>
<td>24</td>
<td>140</td>
</tr>
<tr>
<td>25</td>
<td>160</td>
</tr>
<tr>
<td>26</td>
<td>150</td>
</tr>
<tr>
<td>27</td>
<td>140</td>
</tr>
<tr>
<td>28</td>
<td>120</td>
</tr>
<tr>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>30</td>
<td>660</td>
</tr>
<tr>
<td>31</td>
<td>9.7</td>
</tr>
<tr>
<td>32</td>
<td>170</td>
</tr>
<tr>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td>34</td>
<td>160</td>
</tr>
<tr>
<td>35</td>
<td>70</td>
</tr>
<tr>
<td>36</td>
<td>94</td>
</tr>
<tr>
<td>37</td>
<td>16</td>
</tr>
<tr>
<td>38</td>
<td>43</td>
</tr>
<tr>
<td>39</td>
<td>13</td>
</tr>
<tr>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>42</td>
<td>21</td>
</tr>
<tr>
<td>43</td>
<td>68</td>
</tr>
<tr>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>46</td>
<td>40</td>
</tr>
<tr>
<td>47</td>
<td>80</td>
</tr>
<tr>
<td>48</td>
<td>92</td>
</tr>
<tr>
<td>49</td>
<td>16</td>
</tr>
<tr>
<td>50</td>
<td>79</td>
</tr>
<tr>
<td>51</td>
<td>63</td>
</tr>
<tr>
<td>52</td>
<td>8.4</td>
</tr>
<tr>
<td>53</td>
<td>240</td>
</tr>
<tr>
<td>54</td>
<td>24</td>
</tr>
<tr>
<td>55</td>
<td>8.4</td>
</tr>
<tr>
<td>56</td>
<td>79</td>
</tr>
<tr>
<td>57</td>
<td>27</td>
</tr>
</tbody>
</table>

1. A compound of formula (I)

![Chemical structure image]

wherein

- X is N, O or NH;
- Y is CH when X is O or NH, with X and Y connected via a single bond, or, alternatively, Y is CH when X is N, with X and Y connected via a double bond;
- R^1 is a 5-membered heteroaryl ring containing 2, 3 or 4 heteroatoms, selected from N, O and S, wherein at least 2 heteroatoms are N, and 0 or 1 heteroatoms are O or S, wherein said 5-membered heteroaryl ring is substituted, at any carbon ring atom, by 0, 1 or 2 substituents independently selected from C_{1-6} alkyl and a 6-membered heteroaryl ring containing 1 or 2 nitrogen atoms, wherein said 6-membered heteroaryl ring is substituted, at any carbon ring atom, by 0, 1, 2 or 3 substituents independently selected from C_{1-6} alkyl;
- R^2 is H, halogen, cyano, C_{1-6} alkyl and C_{1-6} alkoxy, wherein said C_{1-6} alkyl or C_{1-6} alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen;
- G represents

![Chemical structure images]

wherein

- R^3 is H, R^5, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-6} cycloalkyl, wherein each of said C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl and C_{3-6} cycloalkyl are independently substituted by 0, 1, 2, 3, 4 or 5 substituents selected from halogen and 0, 1 or 2 substituents selected from OH, oxo, cyano, NH, NH(C_{1-4} alkyl), N(C_{1-4} alkyl), C_{1-4} alkyl, C_{2-6} cycloalkyl, C_{3-6} cycloalkenyl, cycloheteroalkyl, R^4 and R^6;
R is phenyl, a 5 or 6-membered heteroaromatic ring containing 1, 2 or 3 heteroatoms independently selected from O, S and N, a 4-, 5- or 6-membered cyclohexenealkyl ring containing 1 or 2 heteroatoms independently selected from O, S and N or a phenyl-fused 5- or 6-membered cyclohexenealkyl ring containing 1 or 2 heteroatoms independently selected from O, S and N, wherein said phenyl, said heteroaromatic ring, said cyclohexenealkyl ring and said phenyl-fused cyclohexenealkyl ring are substituted, at any carbon ring atom, by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOH, OH, halogen, CF₃, CHF₂, CH₂F, cyano, C₁₋₄ alkyl, R⁵ and SO₂R⁶; R⁴ is C₁₋₄ alkoxy, wherein said C₁₋₄ alkoxy is substituted by 0, 1, 2, 3, 4 or 5 halogen; R⁵ is C₁₋₄ alkyl; R⁶ is OH, OC(O)R⁵, OC(O)R⁵ or NH₃R⁶; R⁷ is phenyl, wherein said phenyl is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, F, CF₃, CHF₂ and CH₂F or C₁₋₄ alkyl, wherein said C₁₋₄ alkyl is substituted by 0, 1, 2 or 3 substituents independently selected from methyl and ethyl and 0 or 1 substituents selected from phenyl, wherein said phenyl is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, F, CF₃, CHF₂, CH₂F and OC(O)R⁵; R⁸ is H, COOR⁶ or SO₂R⁶ wherein said R⁶ is substituted by 0, 1, 2 or 3 substituents independently selected from OH, halogen, cyano, R⁵ and C₃₋₅ cycloalkyl; Q is O, CH₂ or S(O)₂; W is C or N; n is independently 0, 1 or 2; each t is independently 0, 1 or 2; u is independently 0 or 1; R⁴ is 0, 1, 2, 3, 4 or 5 substituents selected from halogen, OH, oxo, cyano, C₁₋₄ alkyl, C₃₋₅ cycloalkyl, R⁶ and R⁷, wherein said C₁₋₄ alkyl is substituted by 0 or 1 substituent selected from R⁵, NH₂, NH(C₁₋₄ alkyl) or N(C₁₋₄ alkyl); and R⁵ is 0, 1, 2, 3, 4 or 5 substituents selected from halogen, OH, cyano, C₁₋₄ alkyl, C₃₋₅ cycloalkyl, R⁶ and R⁷, wherein said C₁₋₄ alkyl is substituted by 0 or 1 substituent selected from R⁵, NH₂, NH(C₁₋₄ alkyl) or N(C₁₋₄ alkyl); or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

2. A compound according to claim 1, wherein G is

or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

3. A compound according to claim 2, wherein R⁴ is a 5-membered heteroaromatic ring containing 1, 2 or 3 heteroatoms, selected from N, O and S, wherein at least 2 heteroatoms are N, and 0 or 1 heteroatoms are O or S; R⁵ is H or halogen;

or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

4. A compound according to claim 3, wherein R¹ is tetrazole;

R² is H, Cl or F;

R³ is C₃₋₅ cycloalkyl, R⁵ or C₁₋₄ alkyl, wherein said C₁₋₄ alkyl is substituted by 0 or 1 substituents selected from C₃ cycloalkyl, N(C₁₋₄ alkyl)² or R⁵; and

R⁶ is OH or OC(O)R⁵;

or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

5. A compound according to claim 3, wherein the stereocchemical configuration around the carbon in the pyrazoline, dihydropyrazole or isoxazolidine, i.e. the ring containing X and Y, which is covalently bound to the carbonyl is (S) and the stereocchemical configuration around the carbon substituted by R⁵ and R⁶ in G is (R); or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

6. A compound according to claim 1, wherein G is

or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

7. A compound according to claim 6, wherein R¹ is a 5-membered heteroaromatic ring containing 1, 2 or 3 heteroatoms, selected from N, O and S, wherein at least 2 heteroatoms are N, and 0 or 1 heteroatoms are O or S; R² is H or halogen;

Q is O or CH₂;

each t is independently 0 or 1;

R⁵ is 0, 1 or 2 substituents selected from oxo, C₁₋₄ alkyl, R⁵ and R⁶; and

R⁷ is phenyl, which is substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from COOH, OH, halogen, CF₃, cyano, C₁₋₄ alkyl, R⁵ and SO₂R⁶; or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

8. A compound according to claim 7, wherein

R¹ is tetrazole;

R² is H, Cl or F; and

R⁵ or is 0, 1 or 2 substituents selected from oxo and C₁₋₄ alkyl;

or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.
9. A compound according to claim 1, wherein G is

or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

10. A compound according to claim 9, wherein

R¹ is a 5-membered heterocyclic ring containing 2, 3 or 4 heteroatoms, selected from N, O and S, wherein at least 2 heteroatoms are N, and 0 or 1 heteroatoms are O or S;
R² is H or halogen;
R³ and R⁴ are OMe, OMe, OMe, or NH₂;
R⁵ is independently of 0 or 1; and
R⁶ is 0, 1 or 2 substituents selected from C₁–₄ alkyl, halogen and R⁵; and
R⁷ is 0, 1 or 2 substituents selected from C₁–₄ alkyl, halogen and R⁵;
or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

11. A compound according to claim 10, wherein

R¹ is tetrazole;
R² is Cl;
R³ is OH or OMe; R⁴;
R⁵ is 0, 1 or 2 substituents selected from C₁–₄ alkyl, F, Cl, OMe, OMe, OMe, and OMe; and
R⁶ is 0, 1 or 2 substituents selected from C₁–₄ alkyl, F, Cl, OMe, OMe, OMe, and OMe;
or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

12. A compound according to claim 7, wherein

the stereochemical configuration around the carbon in the pyrazolidine, dihydropyrazole or isoxazolidine, i.e. the ring containing X and Y, which is covalently bound to the carbonyl is (S);
or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

13. A compound according to claim 3, wherein

X is NH and Y is CH₂, with X and Y connected via a single bond;
or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

14. A compound according to claim 3, wherein

X is O and Y is CH₂, with X and Y connected via a single bond;
or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

15. A compound according to claim 3, wherein

X is N and Y is CH₁, with X and Y connected via a double bond;
or a pharmaceutically acceptable salt or an enantiomer or a pharmaceutically acceptable salt of said enantiomer.

16. A compound according to claim 1 which is selected from

(55)—N-[5-Chloro-2-([1H-tetrazol-1-yl]benzyl]-1-[{(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl}]-4,5-dihydro-1H-pyrazole-5-carboxamide,
(55)—N-{[2R]-2-(1H-tetrazol-1-yl)benzyl]-1-{[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl}]-4,5-dihydro-1H-pyrazole-5-carboxamide,
(55)—N-{[2R]-2-(1H-tetrazol-1-yl)benzyl]-1-[{(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl}]-4,5-dihydro-1H-pyrazole-5-carboxamide,
(55)—N-{[2R]-2-(1H-tetrazol-1-yl)benzyl]-1-{[(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl}]-4,5-dihydro-1H-pyrazole-5-carboxamide,
(55)—N-{[2R]-2-(1H-tetrazol-1-yl)benzyl]-1-[{(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl}]-4,5-dihydro-1H-pyrazole-5-carboxamide,
(55)—N-{[2R]-2-(1H-tetrazol-1-yl)benzyl]-1-[{(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl}]-4,5-dihydro-1H-pyrazole-5-carboxamide,
(55)—N-{[2R]-2-(1H-tetrazol-1-yl)benzyl]-1-[{(2R)-2-(4-fluorophenyl)-2-hydroxyacetyl}]-4,5-dihydro-1H-pyrazole-5-carboxamide,
(3S)-N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-2-phenylacetamido]isoxazolidine-3-carboxamide,
(3S)-N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-3,3-dimethylbutanoyl]isoxazolidine-3-carboxamide,
(3S)-N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-4,4-dimethylpentanoyl]isoxazolidine-3-carboxamide,
(3S)-N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-3-phenylpropanoyl]isoxazolidine-3-carboxamide,
(3S)-N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-3-cyano(phenyl)acetyl]isoxazolidine-3-carboxamide,
(3S)-N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-hydroxy-2-phenylacetamido]pyrazolidine-3-carboxamide,
(3S)-N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-fluorophenyl]hydroxyacetamido]pyrazolidine-3-carboxamide,
(3S)-N-[5-Chloro-2-(1H-tetrazol-1-yl)benzyl]-2-[(2R)-2-fluorophenyl]hydroxyacetamido]pyrazolidine-3-carboxamide.

17. A pharmaceutical formulation comprising a compound of formula (I) according to claim 1 in admixture with at least one pharmaceutically acceptable carrier, excipient or diluent.

18-23. (canceled)

24. A method of treatment of a condition where inhibition of thrombin is beneficial, which method comprises administration of a therapeutically effective amount of a compound as defined in claim 1 to a person suffering from, or susceptible to, such a condition.

25. A method of treatment and prevention of thromboembolic disorders, which method comprises administration of a therapeutically effective amount of a compound as defined in claim 1 to a person suffering from, or susceptible to, thrombophilic conditions.