日野市さくら町1番地コニカ5ノルタ1J株式会社内 (Tokyo, JP).

(21) 国際出願番号: PCT/JP2009/062873
(22) 国際出願日: 2009年7月16日 (16.07.2009)
(25) 国際出願の言語: 日本語
(26) 国際公開の言語: 日本語
(31) 申请日: 2008年1月28日 (28.01.2008)
(72) 国際出願人 (米国を除く全ての指定国について): コニカミノルタホールディングス株式会社 (Konica Minolta Holdings, Inc.) [JP/JP], 〒1000005 東京都千代田区丸の内一丁目6番1号 Tokyo (JP).
(73) 国際出願人 (米国を含む全ての指定国について): 伊原一仁 (IHARA Kazuhiro) [JP/JP], 〒191851 東京都日野市さくら町1番地コニカミノルタテクノロジーセンター株式会社内 (Tokyo, JP).
(74) 国際出願人 (米国を含む全ての指定国について): 藤野泰光 (FUYUNO Yasumitsu) [JP/JP], 〒191851 東京都日野市さくら町1番地コニカミノルタテクノロジーセンター株式会社内 (Tokyo, JP).
(75) 国際出願人 (米国を含む全ての指定国について): 坂口幸司 (MIYAZAKI Koji) [JP/JP], 〒191851 東京都日野市さくら町1番地コニカミノルタテクノロジーセンター株式会社内 (Tokyo, JP).
(76) 国際出願人 (米国を含む全ての指定国について): 大久保賢一 (OHIKubo Kenichi) [JP/JP], 〒191851 東京都日野市さくら町1番地コニカ5ノルタ1J株式会社内 (Tokyo, JP).

(54) Title: CELL CULTURE SUPPORT AND CELL CULTURE METHOD
(55) 標題: 細胞培養支持体および細胞培養方法
(56) Abstract: The object aims to achieve the culture of multiple types of cells in a single layer and detach only cells from a base material evenly without disrupting the cells. Disclosed is a cell culture support which is characterized by comprising a base material and two or more temperature-responsive polymers applied on different areas on the surface of the base material, wherein at least one of the temperature-responsive polymers comprises an acrylic resin. Also disclosed is a cell culture method.

(57) 要旨: 本発明は、多種類の細胞を同一層内で培養を可能にし、かつ細胞を破壊することなく、基材から細胞のみを均等に剥離することにある。本発明の細胞培養支持体または細胞培養方法は、基材上に2以上の温度応答性高分子により異なる領域に表面被覆を行った細胞培養支持体であって、該温度応答性高分子の少なくとも一つがアクリル系樹脂を含有することを特徴とする。
発明の名称 : 細胞培養支持体および細胞培養方法

技術分野

本発明は、人や細胞培養、組織培養等の分野において利用される細胞の培養を生体外で行うための細胞培養支持体、この細胞培養支持体を用いた細胞培養方法に関する。

背景技術

従来、動物細胞の一般的な培養法として広く用いられる単層細胞培養法は、生体内で有していた複雑系の細胞本来の培養環境下におかれないため、生存を継続する分化機能を維持することが困難であり、細胞は生存または増殖するものの、生体の複雑系を精密に再現していないため、分化機能の停止や制御困難を招くことがよく知られている。

例えば、初代培養細胞の中でも高密度に生体の代謝機能が分化した初代肝細胞では、単層培養期間内にその機能が消失してしまう易い。例えば、マウス初代培養肝細胞は、シャレー内で単層培養を行っても、肝細胞の重要な機能の一つであるアンモニア代謝能が、通常、培養開始から10代程度で失われてしまうことが知られている。

肝細胞の長期培養化には、（生体の肝臓の構造を考えて）血管由来の細胞との共培養が有効であると考えられているが、通常の培養皿を用いる方法では、ただ単に肝細胞と線維芽細胞あるいは肝細胞と内皮細胞との混合等では安定に共培養することはできない。

肝実質細胞とラット血管内皮細胞との共培養の例が知られているが（例えば、特許文献「）、基材にパターン化されている温度応答性高分子が、N-モノメタクリルアミドモノマー重合体とNイソプロピルアクリルアミドモノマー重合体とそれぞれの単独ポリマーで構成されている。2つの単独ポリマーは、温度応答性の性能に差があるため、細胞培養後の、低温にして剥離する際に均等に剥がれず、一部細胞が破損する。
また、細胞培養基材への細胞接着層のパターンニングには、例えば、特許文献2のようにインクジェット法により細胞接着材料で細胞接着層を基材にパターンニングする方法があるが、「つのポリマーで基材に塗布し、一定の線幅を描いているだけであり、複数のポリマーを塗り分ける技術については言及されていない。

また、細胞接着材料としてポリエチレングリコール（P＝G）を用いているため、細胞の剥離ができない。また、基材へP＝Gを固定する手段として超臨界二酸化炭素を使っており、プロセスが複雑な上に、装置が大型化してしまう。

先行技術文献
特許文献
特許文献1：国際公開第068799号パンフレット
特許文献2：特開2006－32579号公報

発明の概要
発明が解決しようとする課題

多種類の細胞を同一層内で培養を可能にし、かつ細胞を破壊することなく、基材から細胞のみを均等に剥離することにある。

課題を解決するための手段

本発明の上記目的は、以下の構成により達成することができる。

「 基材上に2種類以上の温度応答性高分子により異なる領域に表面被覆を行った細胞培養支持体であって、該温度応答性高分子の少なくとも一つがアクリル系樹脂を含有することを特徴とする細胞培養支持体。

前記アクリル系樹脂を含有する温度応答性高分子の少なくとも一つが下記一般式（†）で表されることを特徴とする前記「に記載の細胞培養支持体。
[0014] 一般式（1）において、R₃、R₄は水素原子、炭素原子数2～8のアルキル基、アリール基を表す。R₅、R₆、R₇は水素原子またはメチル基を表し、R₈は水素原子、炭素原子数2～8のアルキル基、シクロアルキル基、または、(C₃H₇COCH₂OH)m・(C₃H₇COCH₂O)ₙ-R₀を表されるポリオキシアルキレン基を表す。ここにおいてmは2～8、nは0～6の整数を表す。また、R₈は、水素原子、炭素原子数2～8のアルキル基を表す。R₉は炭素原子数3以上22以下のアルキル基を表す。また、x、y、zは各成分の質量%を表し、0≤x≤80、0≤y≤80、0≤x+y+z≤00である。

3. 前記温度応答性高分子の少なくとも一つがN-イソプロピルアクリルアミドのホモポリマーもしくは他のモノマー成分との共重合ポリマーであることを特徴とする前記「または2に記載の細胞培養支持体」。

[0015] 4. 前記温度応答性高分子がインクジェット法によって基材上にパターンニングされていることを特徴とする前記「〜3のいずれか・項に記載の細胞培養支持体」。

[0016] 5. 前記「〜4のいずれか・項に記載の細胞培養支持体上で2種類以上の異なる細胞を培養することを特徴とする細胞培養方法。」

[0017] 6. 前記5に記載の細胞培養方法であって、2種類以上の異なる細胞を温度応答性高分子の応答温度以下にして剥離することを特徴とする細胞培養方法。

[0018] 7. 前記6に記載の細胞培養方法で培養した細胞を重ね合わせることを特
徴とする細胞培養方法。

発明の効果

【0019】本発明の細胞培養支持体により、多種類の細胞を同一層内で培養を可能にし、かつ細胞を破壊することなく、基材から細胞のみを剥離する技術が達成できた。

発明を実施するための形態

【0020】以下本発明を実施するための最良の形態について詳しく説明する。

【0021】（温度応答性高分子）

本発明においては、温度応答性高分子を一般的な細胞培養基材の上に塗布することができる。温度応答性高分子は、親水性と疎水性とが温度変化により可逆的に変化する高分子材料のことであ る。また、好ましい温度応答性高分子としては、アクリル系樹脂のモノマー及びアクリルアミドモノマーが共重合したポリマーがあげられる。更に好ましい温度応答性高分子としては前記一般式（1）で表される高分子があげられる。温度応答性高分子を表面に備えた細胞培養基材は、疎水性条件下では細胞と優れた接着性を示すため、細胞を好適に培養、増殖させることができ、また親水性条件下では、細胞との接着性を低下させることができるため、タンパク質分解酵素や化学薬品を使用せずに細胞を剥離できるため、細胞の破損や、基材の剥離混入を生じることなく、容易に細胞の回収が可能である。

【0022】さらに、疎水性から親水性あるいは親水性から疎水性への変化が迅速であるため、温度をはじめとする外部環境を変化させる際に細胞に与える影響が少ないので好ましい。温度応答性高分子の親水性と疎水性とが変化する温度を臨界温度といい、特に高温で疎水性、低温で親水性になる時の温度を下限臨界温度という。細胞培養に使用される細胞は、多くは恒温動物由来であるため、人間の体温付近の37度近辺で培養されることが多く、該温度で細胞が細胞培養支持体に接着しやすい方が良く、つまり、37度近辺で細胞培養支持体表面は疎水性の性質であることが好ましい。細胞の剥離時には、熱によるたんぱく質の変性を起こさないために低温で細胞培養支持体から剥離し
た方が好ましい。つまり低温で細胞培養支持体表面は親水性の性質であることが好ましい。

[0023] さらには、細胞を好適に培養・剝離できることから、該下限臨界温度が200c以40c以下程度の温度範囲にあることが好ましい。

[0024] 本発明においては、温度応答性高分子の少なくとも一つがアクリル系樹脂を含有することを特徴とする。

[0025] 本発明におけるアクリル系樹脂としては、アクリル酸、メタクリル酸、メチルアクリレート、メチルメタクリレート等の一般的なアクリル樹脂でもよく、その誘導体でかもまわない。また脂環式炭化水素骨格からなる多環式炭化水素系化合物であるアクリル樹脂でもよく、多環式炭化水素系化合物としては、脂肪族の多環構造を有し、3次元的な架橋構造を含むものでもよい。例えば、トリシクロデカンジメタノールジメタクリレート、トリシクロデカンジメタノールジアクリレートや、アダマンチルメタクリレート、アダマンチルアクリレート等や、イソポルニルメタクリレート、イソポルニルアクリレート、ビニルノルボルネン等が挙げられる。

[0026] アクリル系樹脂モノマーおよびアクリルアミドモノマーが共重合したポリマーを用いると細胞の剝離性がよくなる。その理由として、アミドは生体内たんぱく質のペプチド結合と化学的に同じ構造であるため、細胞とポリマーの親和性が強くなり、これが剝離時の細胞破損の原因になっていると考えられる。アクリルアミドモノマーとアクリル系樹脂モノマーを共重合したポリマーを細胞培養の支持体とすることで細胞剝離性と温度応答性の両方が満足できる素材が得られた。

[0027] 温度応答性高分子としては、アクリルアミドポリマーがよく知られており、これはアクリルアミドモノマーを重合することにより得られる。

[0028] このような重合体を与えるアクリルアミドモノマーの例としては、N-置換アクリルアミド誘導体、N- N-置換アクリルアミド誘導体、N-置換メタクリルアミド誘導体、N- N-置換メタクリルアミド誘導体などを好ましく使用することができ、具体的にはN-イソプロピルアクリルアミド、
N-イソプロピルメタクリルアミド、N-プロピルアクリルアミド、N-シクロプロピルアクリルアミド、N-エトキシエチルアクリルアミド、N-エトキシメタクリルアミド、N-メチルアクリルアミド、N-ジメチルアクリルアミド、アクリルアミドモノマーとしては、具体的にはN-アルキルアクリルアミド、N,N-ジアルキルアクリルアミド、アクリルアミド、水溶性アクリルアミドモノマーの重合体としては、例えば、ポリ（N-イソプロピルアクリルアミド)、ポリ（N-プロピルアクリルアミド)、ポリ（N-シクロプロピルメタクリルアミド)、ポリ（N-エトキシメタクリルアミド)、ポリ（N-メチルアクリルアミド)、ポリ（N-ジメチルアクリルアミド)、ポリ（N-エトキシエチルメタクリルアミド)、ポリ（N-メチルアクリルアミド)、ポリ（N-ジメチルアクリルアミド)、ポリ（N-アルキルアクリルアミド)、ポリ（N-ジアルキルアクリルアミド)、ポリ（N-アクリロイルビペリディン)、ポリ（N-アクリロイルビリジン)が挙げられる。

また水溶性アクリルアミドモノマーの重合体としては、以上のような单一水溶性アクリルアミドモノマーからの重合体の他、これらから選ばれる複数の異なる水溶性アクリルアミドモノマーを重合して得られる共重合体を用いることも有効である。

また上記水溶性アクリルアミドモノマーからなる重合体が好ましいが、上記水溶性アクリルアミドモノマーとそれ以外の水溶性アクリルアミドモノマーまたは有機溶媒可溶性アクリルアミドモノマーとの共重合体も、得られた重合体が親水性および疎水性の両方を示すものであれば使用することができる。共重合に用いられるアクリルアミドモノマーとしては、具体的にはN-アルキルアクリルアミド、N,N-ジアルキルアクリルアミド、アクリルア
ミド等のアクリルアミド類、または、N-アルキルメタクリルアミド、N-ジアルキルメタクリルアミド等のメタクリルアミド類が挙げられる。なお、より好ましくは、N-アルキルアクリルアミドまたはN-ジアルキルアクリルアミドが用いられる。アルキル基としては、炭素数が「〜4のものを好ましく選択される。その他には、アクリロイルモルフォリン、N-ジメチルアミノプロピルアクリルアミド、N-アクリロイルメチルホモビフェラディン、N-アクリロイルメチルビフェラディン等も用いることができる。

またアクリル系樹脂としては、アクリル樹脂モノマーを基本として他のモノマーと共重合してよく、本発明において、温度応答性高分子としては、好ましくは、下記一般式（1）で表される化合物である。

\[H_{w2} \]

一般式

\[
\begin{align*}
\text{H} & \quad \text{R}_1 \quad \text{R}_2 \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{C}=\text{O} \\
\text{R}_3 & \quad \text{OR}_4
\end{align*}
\]

ここにおいて\(R_1, R_2 \)は水素原子、炭素原子数「〜8のアルキル基、アリール基を表す。\(R_3, R_4 \)は水素原子またはメチル基を表し、\(R \)は水素原子、炭素原子数「〜30のアルキル基、シクロアルキル基、または、\(-(\text{CH}_2\text{CH}_2\text{O})_n-(\text{CH}_2\text{CH(CH}_3)\text{O})_m\)-で表されるポリオキシアルキレン基を表す。ここにおいて\(n \)は「〜30、\(m \)は0〜60の整数を表す。また、\(R_3 \)は、水素原子、炭素原子数「〜30のアルキル基を表す。\(R_4 \)は炭素原子数3以\(\geq 22 \)以下のアルキル基を表す。また、\(x, y, z \)は各成分の質量％を表し、\(0 \leq x \leq 8.0, 0 \leq y \leq 8.0, 0 \leq x \leq 4.0, \)ここで\(x+y+z=0.0 \)である。

\[R_{w1}, R_{w2} \]で表される炭素原子数「〜8のアルキル基としては直鎖でもよく
分岐してもよい。例えば、メチル基、エチル基、イソプロピル基、イソプロチル基、デシル基等の基を表し、また、置換されていてもよい。置換基とし
ては、ハロゲン原子、ヒドロキシ基、カルボキシ基、また、アシル基等の基を含み、例えば、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられ
る。シクロアルキル基としてはシクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。

[R₁, R₂]で表されるアリール基としてはフェニル基、またトリル基等の置
換フェニル基が挙げられる。また、R₁, R₂ の少なくとも一つは水素原子で
あることが好ましい。

[0037] R で表される炭素原子数 C3 のアルキル基は、直鎖でもよく分岐して
もよい、分岐してもよいアルキル基としては、例えば、メチル基、エチル基、イソプロピル基、イソプロチル基、デシル基等の基を表す。無置換のアル
キル基、置換アルキル基を含み、無置換のアルキル基としては、例えば、メ
チル基、エチル基、イソプロピル基、デシル基等の基を表す。また、置換
アルキル基における置換基としてはハロゲン原子、ヒドロキシ基、カルボキ
ン基等の基を含み、例えば、ヒドロキシエチル基、ヒドロキシプロピル基等
が挙げられる。シクロアルキル基としてはシクロプロピル基、シクロペンチ
ル基、ジクロヘキシル基等が挙げられるが、置換シクロアルキル基でもよい
、また、シクロアルキル基の骨格炭素がヘテロ原子で置換された例えばオキ
ソラニル基、オキサニル基、ピラジニル基等のヘテロ原子を含む飽和炭化水
素基でもよい。

[R₃]に含まれてもよい——(CH₂CH₂O)ₙ—(CH₂CH(CH₃)O)m—R。で表されるポリオキシアルキレン基としては、オキシエチレン基の繰り
返し単位 (n) としては「〜3 0」が好ましく、より好ましいのは 6 〜「0
0 の範囲が好ましく、さらに好ましいのは 8 〜50 の範囲である。また、ま
た R に含まれてもよいオキシプロピレン基の繰り返し単位 (m) としては 0
〜6 0 が好ましく、より好ましいのは 0 〜3 0 の範囲が好ましく、さらに好
ましいのは 0 〜「5 の範囲である。これらオキシエチレン基とオキシプロピ
レン基は混在してもよい。R0で表される炭素原子数「〜30」のアルキル基としては、メチル、エチル、プロピル、ブチル、オクチル、デシル、ドデシル、ステアリル等の基が挙げられる。

[0039]
R0で表される炭素原子数3以下のアルキル基としては、直鎖あるいは分岐アルキル基でもよく、プロピル基、イソプロピル基、ブチル基、t−ブチル基、ヘキシル基、ドデシル基、ステアリル基等を表す。

[0040]
一般式（'）の共重合体の製造は、各成分モノマーの共重合により得ることができる。

[0041]
下記に各成分モノマーの例を挙げるが、一般式（'）の条件を満たしていると、これに限定されることはない。

[0042]
一般式（'）において、R1、R2、R3で表される基を含むモノマーとしては、代表的にはダイアセトンアクリルアミド、アクリルアミド、N−イソプロピロピルアクリルアミド (NIPAM)、N−エチルアクリルアミド、N−ビロリジニアルクリルアミド、N−シクロプロピルアクリルアミド、N−ジエチルアクリルアミド、N−メチル、N−イソプロピルアクリルアミド、N−プロピルアクリルアミド、N−メチル、N−イソプロピルアクリルアミド、N−ビロリジニアルクリルアミド、N−プロピルアクリルアミド、N−シクロプロピルメタクリルアミド、N−エチルメタクリルアミド、N−イソプロピルメタクリルアミド等のモノマーが挙げられる。

[0043]
一般式（'）において、R0、R0を含むモノマー、また、R0、R0で表される基を含むモノマーとしては、下記の中から選択して用いることができる。

[0044]
例えば、アクリル酸、メタクリル酸、メチルメタクリレート、ブチルメタクリレート等が挙げられる。

[0045]
また、例えば（ポリオキシアルキレン）アクリレートおよびメタクリレートは、市販のヒドロキシポリ（オキシアルキレン）材料、例えば商品名 “プルロニック” [Pluronic（旭電化工業（株）製）] 、アデカボリエーテル（旭電化工業（株）製）、カルボワックス [Carbowax（グリ
コ・プロダクス）、トリトン[Toriton（ローム・アンド・ハース（Rohm and Haas製））およびP・ミ・G（第一工業製薬（株）製）とともに販売されているものを公知の方法でアクリル酸、メタクリル酸、アクリルクロリド、メタクリルクロリドまたは無水アクリル酸等と反応させることによって製造できる。[0046]また、上市されているものとして、日本油脂株式会社製のポリアクリルケレングリコールモノ（メタ）アクリレートとしてブレンマーPミー90、ブレンマーPミー200、ブレンマーPミー350、ブレンマーAミー90、ブレンマーAミー200、ブレンマーAミー400、ブレンマーPPー「000、ブレンマーPPー500、ブレンマーPPー800、ブレンマーAPー「50、ブレンマーAPー400、ブレンマーAPー550、ブレンマーAPー800、ブレンマー50Pミー300、ブレンマー70Pミー350B、ブレンマーAミーPシリーズ、ブレンマー55PミーTー400、ブレンマー30PミーTー800、ブレンマー55PミーTー800、ブレンマーAミーTシリーズ、ブレンマー30PPTー800、ブレンマー50PPTー800、ブレンマー70PPTー800、ブレンマーAPTシリーズ、ブレンマー「000B、ブレンマー「0APBー500Bなどがあげられる。同様に日本油脂株式会社製のアルキル末端ポリアクリルケレングリコールモノ（メタ）アクリレートとしてブレンマーPMミー「00、ブレンマーPMミー200、ブレンマーPMミー400、ブレンマーPMミー「000、ブレンマーPMミー4000、ブレンマーAMミー400、ブレンマー50P0ミー800B、ブレンマー50AOミー800B、ブレンマーPミー200、ブレンマーAミー200、ブレンマーAミー800、ブレンマーPSミー400、ブレンマーPSミー「300、ブレンマーミーAミー5Pシリーズ、ブレンマーPミーKミーPシリーズ、ブレンマーAミーKミーPシリーズ、ブレンマーANミー300、ブレンマーANミー「300、ブレンマーPNミーPシリーズ、ブレンマーNPミーPシリーズ、ブレンマーANミー500、ブレンマー70ANミーPー550など、また共栄社化学株式会社製ライトエ
ステルMC、ライトエステル「3OMA、ライトエステル04「MA、ライトアクリレートBO-A、ライトアクリレートC-A、ライトアクリレートMG-A、ライトアクリレート「30A、ライトアクリレートDPM-A、ライトアクリレートP-200A、ライトアクリレートNP-4A、ライトアクリレートNP-8Aなどが挙げられ、これらの中から選択し用いることができる。

【0047】これらの共重合体からなるポリマーは親水性と親油性を併せもち下限臨界温度によりその性質が可逆的に変化する。下限臨界温度を変化させるには、一般式（「）のx、y、zの共重合比を変えることで任意に決めることができる。

【0048】例えば、オキシエチレン基の繰り返し単位を多くすることで下限臨界温度をあげることができる。またR、、Rの置換基を疎水的にすることで下限臨界温度を下げることができる。

【0049】目的の下限臨界温度に応じた混合比率で、モノマーを混合し、例えば溶媒として各モノマー、また共重合体に対し溶解性のよい溶媒、例えばメチルエチルケトン等に溶解し、重合開始剤を加えて、室温あるいは加温、またはUV光で溶液重合させればよい。

【0050】共重合の形態としては、ランダム共重合でもよく、ブロック共重合でもよい。下限臨界温度の親水、疎水変化をシャープにするためには、ランダム共重合が好ましい。

【0051】これらの、また本発明に係るアクリル系樹脂を含有する温度応答性高分子においては、重合開始剤としては、アクリル系樹脂モノマーとアクリルアミドモノマーの重合であるため、ラジカルを発生する開始剤であることが好ましく、アゾ系開始剤、過酸化物系開始剤を用いることができる。

【0052】油溶性の過酸化物系あるいはアゾ系開始剤が好ましく、一例を挙げると、例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、メチルエチルケトンオキサイド、ジイソプロピルバーオキシジカーボネート、キュ
メンハイドロパーオキサイド、シクロヘキサノープーキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等の過酸化物系開始剤、2,2'-アゾビシソブチロニトリル、2,2'-アゾビス (2,3-ジメチルブチロニトリル)、2,2'-アゾビス (2-メキシルブチロニトリル)、2,2'-アゾビス (2,3,3-トリメチルブチロニトリル) 、2,2'-アゾビス (2-イソプロピルブチロニトリル)、2,2'-アゾビス (シクロヘキサン-2-カルボニトリル)、2,2'-アゾビス (4-メチキシ-2,4-ジメチルパレロニトリル)、2-（カルバモイリアルアゾ）イソプロピロニトリル、4,4'-アゾビス (4-シアノパレリン酸)、ジメチル-2,2'-アゾビスイソブチレート等がある。

特に、ターシャリソブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、バラメンタンハイドロパーオキサイドなどの有機過酸化物類、過酸化水素等が好ましい。

またUV硬化性開始剤も同様に重合開始剤として好ましく、例えば、アセトフェノン、アセトフェノンベンジルケタール、2-ヒドロキシシクロヘキサンフェニルケトン、2,2'-ジメチルキシ-2-フェニルアセトフェノン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4'-ジメトキシベンゾフェノン、4,4'-ジアミノベンゾフェノン、ミヒラーケトン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルメチルケタール、1-(4-イソプロピロニフェニル) -2-ヒドロキシ-2-メチプロパン=「-オニ、2-ヒドロキシ-2-メチル「-フェニルプロパン=「-オニ等の光ラジカル開始剤等が挙げられる。

これら重合開始剤は、モノマーに対して、0.0～2.0質量%、特に、0.1～1.0質量%使用されるのが好ましい。

本発明に係る共重合体の製造において反応の場としては、有機溶媒または
水を使ってもよく、または使わなくてもよい。後工程で溶媒を除く必要があるため、好ましくは、溶媒を使用しない方がよい。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール類、酢酸エチル、酢酸メチル等のエステル類、メチルエチルケトン、アセトン等のケトン類、エーテル、イソプロピルエーテル等エーテル類、またテトラヒドロフラン、ジオキサン等の環状エーテル類、あるいは芳香族炭化水素であるトルエン等特に制限はないが、原料となるモノマーに対しました生成する共重合体に対し、溶解性の高い溶媒を選択して用いることが好ましい。

[0057] 重合温度が余り低くならない様に、溶媒の沸点としては50°C以上が好ましく、70°C以上がさらに好ましい。しかしながら、150°C以上と高くなると、その後の取り扱いが工数を要するので、150°C以下であることが好ましい。

[0058] 前記共重合反応において、重合後、最終的には、固形分濃度が「0質量%以40質量%以下であることが好ましく、また、最終的な共重合体を含む溶液の粘度が固形分30質量%換算で「0mPa·s以上500mPa·s以下となる重合度であることが好ましい。

[0059] 本発明に係る共重合反応においては、残モノマー量を「質量%以下とし、反応を終了させる。この測定は、ガスクロマトグラフにて行う。

[0060] 共重合ポリマーを含有する反応液は、溶媒と混合し、析出させ、さらに、溶解、析出を繰り返し、固形分として、単離することができる。

[0061] 本発明に用いられる温度応答性高分子の具体例としては実施例中、N。N′-メチレンビスアクリルアミド、N。N′-プロピレンビスアクリルアミド、ジ（アクリルアミドメチル）エーテル、1。2−ジアクリルアミドエチレングリコール、1。3−
ジアクリロイルエチレンウレア、エチレンジアクリレート、N, N’-ジアクリルタールジアミド、N, N’-ビスアクリルシスタンミンなどの二官能性化合物や、トリアクリルシアヌレート、トリアクリルイソシアヌレートなどの三官能性化合物が例示できる。

[0063]（細胞培養支持体について）

本発明にかんわる細胞培養支持体の基材としては各種高分子材料、ガラス、改質ガラス、ウール布、コットン布、紙、金属（例えばアルミニウム）等が挙げられる。取り扱い上の観点より発明の細胞培養支持体における基材としては、プラスチック材料（例えば、セルロースアセテート、ポリエス、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリイミド、セルローストリアセテートまたはポリカーポネート、ポリスチレン、ポリメチルメタクリレート等）が好ましく、発明においてはポリスチレンが特に好ましい。支持体の厚みとしては50〜200μm程度、好ましくは70〜1,000μmである。

[0064]細胞培養用の基材は、温度応答性高分子を付着し易くさせるため基材表面にグロー放電、コロナ放電、真空プラズマ処理、大気圧プラズマ処理またはラジカルカップリング処理などで表面処理を施されていてもよい。

[0065]（温度応答性高分子の被覆方法）

本発明の温度応答性高分子を基材の表面に被覆する方法としては、基材にモノマーで塗布して、重合する方法と、あらかじめモノマーを重合して温度応答性高分子にしてから塗布する方法がある。どちらの方法でもよいが、パッケージングの観点からモノマーで基材へ塗布後、重合する方が好ましい。

[0066]基材上に温度応答性高分子、またはそのモノマーを塗布する方法には特に制限はなく、例えばバーミーカー法、カーテンコート法、浸没法、エアーナイフ法、ホッパー塗布法、リバースロール塗布法、グラビア塗布法、エクスチューション塗布法、真空蒸着法（スパッタリング法）等の公知の方法を用いることができる。また2種類の温度応答性高分子を細胞培養基材の支持体上にパターンニングする際には、リソグラフィー法、インクジェット方法、
スーパーインクジェット方法で塗布することが好ましい。

【0067】温度応答性高分子を基材上へ固定化する技術としては、熱による硬化、またはUV照射による硬化のどちらを探用してもよい。

【0068】反応が早いという観点でUV照射による硬化が好ましく、UV光を用いる場合は、光源として、例えば、0.「kPa～10MPa」までの動作圧力を有する低圧、中圧、高圧水銀ランプ、メタルハライドランプや紫外線の発光波長を持つケセノンランプ、冷陰極管、熱陰極管、「ド」等従来公知のものが用いられる。

【0069】なお、本発明において、温度応答性高分子の塗布量は、細胞培養の目的に応じた適量を選ぶことが好ましいが、細胞を培養し、その後、細胞を基材から剥離するという目的の場合は、0.「μg/cm²」以上、5.「0μg/cm²」以下が好ましく、0.「5μg/cm²」以上、3.「0μg/cm²」以下がより好ましい。

【0070】（温度応答性高分子の細胞培養基材へのパターンニングについて）

本発明は、同一層内に異なる領域を被覆した2種類以上の温度応答性高分子上に2種類以上の細胞を異なる領域で培養できればよいが、細胞を積層する際には、各層間の細胞パターンが同じであった方が組織的な機能発現という点で好ましい。そのためには、温度応答性高分子が基材へパターンリングされた細胞培養支持体の方が好ましい。

【0071】本発明に係る温度応答性高分子を基材の表面に所定パターンで付加する際には、温度応答性高分子を構成する材料を液状化して付加することが好ましい。液状化した温度応答性高分子を構成する材料を所定のパターンで付加する方法としては、スクリーン印刷法やインクジェット法などの印刷方法を用いることが好ましい。このような印刷方法を用いると、より簡単に温度応答性高分子を構成する材料を細胞培養する基材の表面に任意のパターンで付加することができる。また、所定のパターンに穿孔したマスクを作製し、これを基材表面上に設置した後、温度応答性高分子を構成する材料を含有した溶液をスプレー塗布する方法を採用することもできる。
なお、本発明の細胞培養支持体を用いて血管や神経系などの複雑で個体差のあるパターンを形成する場合、特に、個別対応性の高いインクジェット法が好ましい。それ以外の方法としては、スクリーン印刷方法、スプレー塗布方法でも可能であるが、複雑なパターンを形成しようとした場合、隣接する異種の温度応答性高分子間でにじみによる混合、重なり合い、境界線ですきまが開いてしまうなどの問題を起こしやすい。この観点からも解像度の高いインクジェット方法がより好ましい。

また、温度応答性高分子を構成する材料を液状にする方法としては、温度応答性高分子を構成する材料を加熱して軟化させる方法や、温度応答性高分子を構成する材料を所定の溶媒に溶解する方法などが挙げられるが、温度調整を行う必要のない点から溶媒に溶解する方法が好適である。

またパッキングできる線幅としては、「μm以上「000μm以下が好ましく、さらに好ましくは、3μm以上「00μm以下が好ましい。

（細胞培養支持体上で培養される細胞とその積層化について）

本発明の細胞培養支持体上で培養される細胞は温度応答性高分子の下限臨界温度以下にし、支持体表面を観水化することで培養された細胞を剥離する。この剥離された細胞を重ね合わせることで、細胞が概ね2〜20層程度、特に5〜10層程度重なり合った積層体が得られることとはいうものの、細胞数を調整することが望ましい。積層体において細胞が多数重なりすぎている場合には細胞の中央層部の細胞が栄養不足、ガス交換不足になり、細胞の重なりが少なくなる場合は細胞数が少なく十分な機能を発揮する積層体が形成され難しい。上記範囲であればこのような問題は生じない。

本発明の細胞培養支持体は、2種類以上の下限臨界温度をもった温度応答性高分子で表面を加工しているため、それに合わせる形で2種類以上の異った細胞を同一層内に共培養できる。この細胞のうち少なくとも「つを血管内皮細胞等の血管再生能力を秘めた細胞にすることで、積層数を増やすことも細胞が栄養不足、ガス交換不足になりにくく、本発明の目的である多種類の細胞の分化機能を精密且つ厳密に発現、さらに組織としての機能を維持する
このできる細胞の培養方法が確立できることとなった。

[0077] 積層体の細胞数は、例えば積層体の載った透過性膜を切り出し、これをホルマリン固定後、パラフィン包埋切片を作製して顕微鏡観察することにより確認することができる。

[0078] 本発明方法の対象となる細胞としては、特に限定されるものではないが、接着性の動物細胞が好適である。細胞の由来も特に限定されず、ヒト、マウス、ラット等のいずれの動物由来のものも使用できる。また、接着性の動物細胞は、初代培養細胞および株化細胞の双方を対象とすることができる。

[0079] 本発明方法は、特に、細胞の機能維持が困難な初代培養細胞の培養に適用する。初代培養細胞は、軟骨、骨、皮膚、神経、口腔、消化管、肝臓、脾臓、腎臓、腺組織、副腎、心臓、筋肉、腱、脂肪組織、生殖器、眼球、血管、骨髄または血液のいずれの組織に由来するものであってもよい。細胞培養支持体表面の温度応答性高分子の種類「つに対して「つの細胞を増殖することが適しており、細胞は、単一組織に由来する単一種類の細胞を用いることもできる。複数の温度応答性高分子が表面に存在している場合は、その数だけ異なる複数種の細胞を用いることもできる。

[0080] 具体的には、例えば、軟骨細胞、骨芽細胞、表皮角化細胞、メラニン細胞、神経細胞、神経幹細胞、グリア細胞、肝細胞、腸上皮細胞、肺単能細胞、肺外分泌細胞、腎系球体内皮細胞、尿細管上皮細胞、乳腺細胞、甲状腺細胞、唾液腺細胞、副腎皮質細胞、副腎髓質細胞、心筋細胞、骨格筋細胞、平滑筋細胞、脂肪細胞、脂肪前駆細胞、水晶体細胞、角膜細胞、血管内皮細胞、骨髄間質細胞またはリンパ球などを使用できる。細胞は、一種を単独でまたは二種以上を組み合わせて用いることもできる。

[0081] このようにして得られた細胞培養物は、例えば医用生体材料用の細胞として使用できる。本発明において、再生医用生体材料とは、ヒト等の動物の組織の代替物として使用される材料をいう。再生医用生体材料としては、培養された細胞の種類に応じて、人工膵臓、人工脾臓、人工腎臓、人工心臓のような人工臓器、人工消化管、人工血管、人工皮膚、人工神経、人工骨、人工
軟骨、人工内耳、人工水晶体、人工角膜など、またはこれらの一部が挙げられる。

また、ヒト等の動物の組織の代替物として、実験用動物代替細胞、抗癌剤感受性試験、創薬支援等に使用される場合も再生医療生体材料に含まれる。

実施例

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。なお、特に断りない限り、実施例中の「％」は「質量％」を示す。

（「」）試料の作製

「（「」）温度応答性高分子A～」の合成（比較例、本発明）

0. 5リットルの四つロセパララプルフラスコに滴下装置、温度計、窒素ガス導入管、攪拌装置および還流冷却管を付し、メチルエチルケトン（M=M）50g、および表1に記載の組成割合でNIPAM以外のモノマー（単位g）、を仕込み、80℃に加熱した。さらに表2に記載のNIPAMモノマー（単位g）をメチルエチルケトン43gに溶解しさらにラウリルバーオキサイド0.2gを溶解した液を、フラスコ中に2時間かけて滴下した。その後「時間かけて昇温し還流状態になった時点で、ラウリルバーオキサイド0. 7gをメチルエチルケトン33gに溶解した液をフラーク中に2時間かけて滴下し、同温度にてさらに3時間反応させた。その後メチルハイドロキシノン0.33gをメチルエチルケトン「07gに溶解した液を添加し冷却後、ポリマー含有量として30質量％のポリマー溶液A～」をそれぞれ得た。分子量は、GPCでポリスチレン換算の重量平均分子量として求めた。

以下において、

プレンマーPM=400：＝（＝O）m−C H 3 (m=9) を有するメタアクリレートプレンマーPS=400：＝（＝O）m−C H ，(m=9) を有するメタアクリレート

（＝O；エチレンオキシ基）

上記はすべて日本製で。
NA: N-イソプロピルアクリルアミド（興人製）
DAAM: N-ジエチルアクリルアミド（興人製）
DAAAM: ダイアセトンアクリルアミド（協和発酵製）
BMA: ブチルメタクリレート（東京化成品）

（「・2）温度応答性高分子A〜Jの下限臨界温度評価

附記（「・）で作製されたポリマーNAHMをK溶液の300gを室温で蒸留水000gに徐々に添加したのち（ポリマー溶液C及びD以外は均一溶液を構成している）、温度を45℃にあげると、析出するので、これを分離し、40℃の温水で充分に洗浄し、残モノマーを除いた。その後、単離したポリマーを25℃の純水に溶解させ「0質量％溶液のポリマー溶液を作製した。その後溶液の温度を上げてゆき、ポリマーが析出した温度を下限臨界温度とした。結果を表に記載した。ただし、ポリマー溶液C及びDは25℃の純水に溶解せず、既にポリマーが析出しているため、下限臨界温度はなしとした。

<table>
<thead>
<tr>
<th>No.</th>
<th>DAAM (g)</th>
<th>NIPAM (g)</th>
<th>PME400 (g)</th>
<th>PSE400 (g)</th>
<th>DEAA (g)</th>
<th>BMA (g)</th>
<th>下限臨界温度 (℃)</th>
<th>分子量</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>10万</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>8万</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>なし</td>
<td>12万</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>なし</td>
<td>7万</td>
</tr>
<tr>
<td>E</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>10万</td>
</tr>
<tr>
<td>F</td>
<td>70</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>9万</td>
</tr>
<tr>
<td>G</td>
<td>10</td>
<td>60</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>10万</td>
</tr>
<tr>
<td>H</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>9万</td>
</tr>
<tr>
<td>I</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>8万</td>
</tr>
<tr>
<td>J</td>
<td>60</td>
<td>30</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>7万</td>
</tr>
<tr>
<td>K</td>
<td>10</td>
<td>60</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>12万</td>
</tr>
<tr>
<td>L</td>
<td>10</td>
<td>60</td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
<td>38</td>
<td>11万</td>
</tr>
</tbody>
</table>

「0087」表より、アクリル樹脂の共重合組成比を変化させることで、細胞が培養しやすい体温付近で下限臨界温度を生じるポリマーの下限臨界温度を変化させることが達成できた。
（「・」モニマーのインクジェット塗布と重合方法）

記（「・」）で作製したポリマー／モノマーM＝K（30%質量%溶液）と同じ組成になるように、各モノマーを以下表2記載の組成比にして同じく固形分30%質量%になるようにM＝K溶液に溶解させた。また、（「・」）記載のラウリルバーオキサイドの代わりにUV重合開始剤としてIRGACUR84（チバ・ジャパン製）をモノマーに対して「質量%含有させた。

[0088] 表2

<table>
<thead>
<tr>
<th>No.</th>
<th>DAAW (g)</th>
<th>NIPAM (g)</th>
<th>PME400 (g)</th>
<th>PSE400 (g)</th>
<th>DEAA (g)</th>
<th>BMA (g)</th>
<th>溶媒</th>
<th>溶媒量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>Q</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>R</td>
<td>70</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>S</td>
<td>10</td>
<td>60</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>T</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>U</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>V</td>
<td>60</td>
<td>30</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td>60</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
<tr>
<td>X</td>
<td>10</td>
<td>60</td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
<td>WEK</td>
<td>230</td>
</tr>
</tbody>
</table>

さらに表3記載の種類のモノマー／モノマーM＝K溶液（表2記載のM～X）をインクの代わりに表3記載のインクタンクー「、「インクタンクー2に充填し、ノズル口径2.5μm、駆動周波数2kHz、ノズル数28、ノズル密度「80dpi（本発明でいうdpiとは、2.54cm当たりのドット数を表す）であるピエゾ型記録ヘッドを用い、最大記録密度720x720dpiのオンデマンド型のインクジェットプリンタを使用し、市販のポリスチレン製細胞培養皿（ベクトン・ディッキンソン・ラブウェア（Becton Dickinson Labware）社製、ファルコン（Falcon）300「ペットディッシュ（直径3.5cm））に、表3記載のM～X溶液のうち片方が幅「00μmの細線になるようそれぞれプリントした。

[0090] 各インクを連続吐出し、着弾した後0.1秒後に、「2OW／cmメタル
ハライドランプ（日本電池社製 MA J 400N J、電源電力 3 kW・h）を照射し、モノマーを重合させた。

これにより温度応答性高分子をポリスチレン製細胞培養皿表面に吸着させた。

その後、残モノマーと溶媒である M・K を取り除くために、大量の水で洗浄し、細胞培養支持体とした。

（1.4）コントロールの重合

表3記載の N へは、コントロールとして、インクジェット塗布の代わりに、表2記載 M 溶液を 0.1 ml ディッシュに滴下し、塗布液が水平になるのをまって（1.3）同様の方法で重合させた。

（1.5）重合済みポリマーをインクジェットで塗布

表3記載の N において、表2記載のポリマー M・K 溶液（表3記載の種類）を用いて、（1.3）のモノマー M・K 溶液に置き換えて用いた以外は同様の方法で吸着させた。

（1.6）スクリーン印刷方法による塗布、重合

表3記載の N において、（1.3）記載のインクジェット塗布と同様のパターンになるように幅 100 μm の細線のマスクを用いて、表3記載の種類のモノマー M・K 溶液（表2記載の M・X も作成）を塗りわけ、（1.3）記載のインクジェット塗布と同様のパターンニングを行った。その後 0.1 秒後に、「20W／cm×0.1μΑのハライドランプ（日本電池社製 MA J 400N J、電源電力 3 kW・h）を照射し、モノマーを重合させた。

これにより温度応答性高分子をポリスチレン製細胞培養皿表面に吸着させた。

その後、残モノマーと溶媒である M・K を取り除くために、大量の水で洗浄し、細胞培養支持体とした。

（1.7）細胞の培養

上記作製した細胞培養支持体に培養細胞を播種して細胞の培養を行った。
培養する細胞は、パターンングされた温度応答性高分子表面の下限臨界温度違いを利用して、表3記載の細胞をパターンングさせた。培養は、ウシ胎児血清（ICN製）を「0％含有するミニマム・エッセンシャル・イーグル培地（SIGMA製）（ビルピン酸（ICN製）および非必須アミノ酸（ICN製）を添加剤として含有）使用し、5％炭酸ガス充填37℃恒温器内で行った。

[0100]播種してから3週間後、この細胞培養アレイを、2℃恒温槽内に5分間静置してから、表面を光学顕微鏡にて観察したところ、細胞が細胞培養アレイ上にパターンニングされて接着して、また十分に増殖していたことが確認された。この取り出した細胞についてはトリプシン－ミンタリア処理を行い、各細胞を個々の状態に分離した後、トリパンブルー染色を行うことによって、生細胞数を計測したところ、表3記載NO。「8」の培養開始時には8.2×10個であった細胞数が、培養後は5.3×10個に増加したことが確認された。この細胞培養後の値を「00％として、以下の結果を表3に記載した。本発明は、比較に対して培養効率が高いことが確認できた。

[010]（「8」）ブリート耐性

上記細胞を目視観察し、下記の基準に従って細胞のブリート耐性の評価を行った。

○：細線とベタの境界線がはっきりしている
〇：わずかに境界がにじんでいる箇所があるが、実用上問題のない品質である
△：境界部ににじみが認められるが、実用上許容限界内の品質である
△：境界部で明らかにじみの発生が認められ、線幅が「5倍ほどとなり、実用上問題となる品質である
△△：細線とベタ部の境界が不明瞭な品質であり、ブリート耐性が極めて乏しい

（1.9）細胞の積層

記（「7」）で作成した細胞で培養「4日後、培養した細胞の上に直径
3. 5 cmのポリビニルデンジフルオライド（PVD）膜をかぶせ、培地を静かに吸引し、細胞培養支持体材料ごと20℃で30分インキュベートし冷却することで、いずれの細胞培養支持体材料上の細胞もそのかぶせた膜と共に剥離させられた。かぶせた膜と細胞を同様に作製した細胞培養支持体材料上で正常に増殖した細胞の上にかぶせて、5％炭酸ガス充填37℃恒温器内で2枚を接着させた。2枚の細胞シートが接着した後、PVD膜を剥離した。同様の操作を繰り返すことで20層の細胞シートを作成した。

[0002] かぶせた膜はいずれの細胞シートからも容易に剥がすことができた。20枚の積層された細胞シートは、細胞、細胞間のデスモソーム構造、および細胞、基材間の基底膜様蛋白質が保持されていた。

[0003] （「0」）細胞の剥離性の評価

計（「9」）で細胞培養支持体上から細胞剥離した際の細胞の状態を目視で観察し、下記の基準に従って、評価を行った。表3記載の結果は、「枚目から20層目重ね合わせるまでの平均をとった。

◎：問題なく完全に剥離できた
〇：わずかに細胞が支持体に残るが、問題ないレベル
△：一部の細胞が支持体に残り、シートに穴が確認されるレベル
×：支持体から剥がれるが、シートがぼろぼろになる
××：支持体から細胞が剥がれない

（「0」「9」）積層された機能性の評価

肝臓細胞で重要な機能はアンモニア代謝である。よってアンモニア代謝速度の評価を行った。プラ生体内より採取した細胞を「00％として比率で計算し表3に結果を記載した。発明の方法は、比較例に対して、生体から直接採取したものを同等かそれ以上であった。

[0004]
表3

<table>
<thead>
<tr>
<th>No.</th>
<th>インタクタンク1</th>
<th>インタクタンク2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>15</td>
<td>Q</td>
<td>T</td>
</tr>
<tr>
<td>16</td>
<td>Q</td>
<td>T</td>
</tr>
<tr>
<td>17</td>
<td>Q</td>
<td>T</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>19</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>21</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>22</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>23</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>24</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>25</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>26</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>27</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>29</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>30</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>R</td>
</tr>
</tbody>
</table>

[0105] 本発明の細胞培養支持体を用いることによりブリード耐性が良好であり、細胞の支持体からの剥離が格段に向上し、かつ積層された細胞の組織機能化が発現できた。今後の複雑な組織の細胞培養方法の進展に大きく貢献できる。
技術であることがわかった。
請求の範囲

[請求項1] 基材上に2種類以上の温度応答性高分子により異なる領域に表面被覆を行った細胞培養支持体であって、該温度応答性高分子の少なくとも一つがアクリル系樹脂を含有することを特徴とする細胞培養支持体。

[請求項2] 前記アクリル系樹脂を含有する温度応答性高分子の少なくとも一つが下記一般式(1)で表されることを特徴とする請求項1に記載の細胞培養支持体。

[化1]

一般式(1)

(\begin{array}{c}
C & O\/x \\
H & R_1 \\
C & \end{array})
(\begin{array}{c}
C & O\/y \\
H & R_2 \\
C & \end{array})
(\begin{array}{c}
C & O\/z \\
H & R_3 \\
C & \end{array})
(\begin{array}{c}
C & O\/x \\
H & R_4 \\
C & \end{array})
(\begin{array}{c}
C & O\/y \\
H & R_5 \\
C & \end{array})
(\begin{array}{c}
C & O\/z \\
H & R_6 \\
C & \end{array})
(\begin{array}{c}
C & O\/x \\
H & R_7 \\
C & \end{array})

(一般式(1)において、R_1、R_2は水素原子、炭素原子数「〜8のアルキル基、アリール基を表す。R_3、R_4、R_5は水素原子またはメチル基を表し、R_6は水素原子、炭素原子数「〜30のアルキル基、シクロアルキル基、または、－(C_H_2 C_H_2 O)_m−(C_H_2 C_H(C_H_2 O)_m−R_nで表されるポリオキシアルキレン基を表す。ここにおいてnは「〜300、mは0〜60の整数を表す。また、R_5は水素原子、炭素原子数「〜30のアルキル基を表す。R_6は炭素原子数3以下22以下のもしくは他のアルキル基を表す。また、x、y、zは各成分の質量%を表し、0≦x≦80、0≦y≦80、0≦z≦40、ここでx+y+z＝「00である。)

[請求項3] 前記温度応答性高分子の少なくとも一つがN＝イソプロピルアクリルアミドのポリマーもしくは他のモノマー成分との共重合ポリマーであることを特徴とする請求項1または2に記載の細胞培養支持体。

[請求項4] 前記温度応答性高分子がインクジェット法によって基材上にパターン
特种の細胞培養支持体のことを特徴とする請求項「～3のいずれかに記載の細胞培養支持体。

[請求項5] 請求項「～4のいずれかに記載の細胞培養支持体上で2種類以上の異なる細胞を培養することを特徴とする細胞培養方法。

[請求項6] 請求項5に記載の細胞培養方法であって、2種類以上の異なる細胞を温度応答性高分子の臨界温度以下にして剥離することを特徴とする細胞培養方法。

[請求項7] 請求項6に記載の細胞培養方法で培養した細胞を重ね合わせることを特徴とする細胞培養方法。
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2009/062873

A. CLASSIFICATION OF SUBJECT MATTER
C12M3/00 (2006. 01)i, C12N5/06 (2006. 01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C12M3/00, C12N5/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
MEDLINE/CAPlus/BIOSIS/ WPIDS (STN), JSTPlus/ JMEDPlus/ JST758 0 (JDreamli

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2001/68799 A1 (Mitsuo OKANO), 20 September, 2001 (20.09.01), Full text (particularly, Claims 1, 2, 7, 8; page 6, line 26 to page 7, line 22) & US 2003/0036196 A1 & EP 1264877 A1</td>
<td>1-7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
08 September, 2009 (08.09.09)

Date of mailing of the international search report
29 September, 2009 (29.09.09)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 6103528 A (Battelle Memorial Institute), 15 August, 2000 (15.08.00), Full text (particularly, Claims 1, 5 to 7, 10, 18; 4th row, lines 13 to 22) (Family: none)</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2008-35834 A (Konica Minolta Medical & Graphic, Inc.), 21 February, 2008 (21.02.08), Full text (particularly, Par. No. [0033]) (Family: none)</td>
<td>4-7</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））

<table>
<thead>
<tr>
<th>分類</th>
<th>例</th>
<th>例</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int C</td>
<td>C12M3/00 (2006.01) i, C12N5/06 (2006.01) i</td>
<td></td>
</tr>
</tbody>
</table>

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

<table>
<thead>
<tr>
<th>分類</th>
<th>例</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int C</td>
<td>C12M3/00, C12N5/06</td>
</tr>
</tbody>
</table>

最小限資料以外の資料で調査を行った分野に含まれるもの

- 日本国実用新案公報 1922 - 1996年
- 日本国公開実用新案公報 1971 - 2009年
- 日本国実用新案登録公報 1996 - 2009年
- 日本国登録実用新案公報 1994 - 2009年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

- MEDLINE/CAPLus/BIOSIS/WPIDS (STN)
- TSTPlus/JMEDPlus/STST7580/J(Dreamll)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献の カテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求項の番号</th>
</tr>
</thead>
</table>

洋 C欄の続きにも文献が列挙されている。

※ 引用文献のカテゴリ

- 「A」特に関連のある文献ではなく、一般的の技術水準を示すもの
- 「TE」国際出願日前の出願または特許であるが、国際出願後に公表されたもの
- 「II」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「pj」国際出願日前でかつ優先権の主張の基礎となる出願

の日の役に公表された文献

IT 国際出願日又は優先日後に公表された文献であって出願/特許を阻害するものでなく、発明の原理又は理論の理解のために引用するもの

IX 特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性が立てられないもの

IY 特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性が立てられないもの

同一国際出願/発明文献
国際洞査報告
国際出悼番号 PCT/JP2009/062873

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 6103528 A (Battelle Memorial Institute) 2000.08.15.</td>
<td></td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>全文(特に請求の範囲第15-7,10,18項,第4列13-22行参照)</td>
<td>(ファミリーなし)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 2008-35834 A (コニカミノVタテムシー株式会社) 2008.02.21.</td>
<td></td>
<td>4-7</td>
</tr>
<tr>
<td></td>
<td>全文(特に段落[0033]参照)</td>
<td>(ファミリーなし)</td>
<td></td>
</tr>
</tbody>
</table>

様式PCTノISAノ210（第2ペーパーの続き）（2007年4月）