GAS OR PNEUMATICALLY ACTUATED DEEP WELL PUMP

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Albert E. Duby

Wayland E. Keesey
HIS AGENT.
This invention relates to improvements in pneumatically actuuated deep well pumps and more particularly to pumps that may be set to operate over long periods of time without attention.

Various deep well pumps have been proposed heretofore, but these for the most part, were complex in construction, and required frequent or continuous attendance to keep them in operating condition.

The present invention is adapted to intermittently create a suction within a valve cylinder and then, through a switching valve mechanism, switch to create a positive pressure within the cylinder to dispel the liquid within the cylinder into a conduit or tubing that leads to the top of the well.

An object of this invention is to provide a well pumping system that will dispense with pistons and plungers within the bore hole of the well, but at the same time will effectively pump the liquid, such as oil or water, from the well at a predetermined rate.

Another object of the invention is to provide a well pump wherein the formation is protected against pressure, while pumping the liquid from the well.

A still another object of the invention is to provide a pneumatically actuated well pumping device which may be set to pump a gauged amount of liquid.

A still further object of the invention is to provide a pump having a metered valve inlet to minimize the seating impact of the float that controls the inlet valve.

Yet another object of the invention is to provide a pump that may be pressurized so as to maintain a set differential of pressure between the interior of the float and the exterior thereof to prevent crushing under extreme pressure.

A further object of the invention is to provide a liquid drainage valve and a relief valve to expel liquid from the float upon release of pressure therefrom.

Yet another object of the invention is to provide a valve member whereby a well washing fluid, such as a solvent or a heated liquid, may be selectively introduced to inject the solvent or hot liquid into the formation that is fluid bearing.

Still another object of the invention is to provide a pump, which, when used in oil wells, will pump the water out first.

A further object of the invention is to provide a multiport valve timing mechanism that will alternately permit suction and pressure on the pump cylinder.

Another object of the invention is to provide a measuring device that may be set to empty at a predetermined rate so as to control the operational cycle of the pump.

With these objects in mind and others that will manifest themselves as the description proceeds, reference is to be had to the accompanying drawings, in which like reference characters designate like parts in the several views thereof, in which:

Fig. 1 is a diagrammatic view of the vacuum-compressor mechanism together with the vacuum and pressure tanks, and showing a longitudinal cross-sectional view through the timing valve positioned for the suction stroke of the pump, and also showing the liquid measuring system and the tankage connected thereto;

Fig. 2 is an enlarged longitudinal sectional view through the pump cylinders at the bottom of the well, showing parts broken away and in section, and showing the ball valve within the pump in full outline for the suction cycle, and showing the ball valve in dashed outline for the pressure cycle;

Fig. 3 is a sectional view taken on line 3—3 of Fig. 1, looking in the direction indicated by the arrows;

Fig. 4 is an enlarged, longitudinal view of the pressure relief valve, with parts shown in section;

Fig. 5 is a diagrammatic view similar to Fig. 1, but showing the timing valve in position to inject air or gas under pressure into the well to discharge the oil or other liquid therefrom into a measuring device to affect a predetermined rate of pumping;

Fig. 6 is an enlarged longitudinal sectional view through a semi-balanced valve which is not responsive to closing on vacuum, but is responsive to closing by pressure in excess of a predetermined pressure;

Fig. 7 is an elevational view of a float removed from the well, showing a quarter thereof removed, and showing relief valves therein so as to enable a differential pressure to be maintained on the inside of the float with respect to the outside;

Fig. 8 is a cross sectional view taken on the line 8—8 of Fig. 7, looking in the direction indicated by the arrows;

Fig. 9 is an elevational view showing the vacuum-pressure generating system and tanks, and showing an enlarged longitudinal view of the cylinder mechanism connected thereto, with parts broken away, shortened, and shown in section to illustrate the details of construction;

Fig. 10 is a cross-sectional view taken on the line 10—10 of Fig. 9, looking in the direction indicated by the arrows; and

Fig. 11 is a fragmentary sectional view of a metering inlet valve of the lower float.

With more detailed reference to the drawings, the numeral 21 designates generally a well casing having perforations 22 in the lower portion thereof, which lower end portion extends into the fluid producing strata of the bore hole of a well. A tubing 24 is positioned axially of the well and has a pair of cylinders 26 and 28 secured to the lower end thereof. The cylinder 26 has a head 30 that is screw threaded onto the lower end of tubing 24 and into the upper end of cylinder 26, so as to form a fluid tight joint.

A second tubing 32 is also screw threaded into head 30 adjacent tubing 24 and is in communication with the interior of cylinder 26. An axial tube 34 is screw threaded into the lower side of head 36, which tube projects downward into cylinder 26 to a point near the lower end thereof and has a casing 38 which is closed at its sides and lower end, screw threaded on the tube 34. Upwardly protruding nipples 38 are circumferentially spaced around casing 36 to form inlet openings thereinto. Each nipple has the upper face thereof faced in such manner as to form a valve seat, as will be brought out more fully hereinafter.

A valve seat 40 is fitted in the lower end of tube 34. A pin 44 is positioned through tube 34 so as to form a cage in which ball valve 46 is positioned. An annular float 48, which float has closed ends, surrounds tube 34 and is adapted to work between the position as shown in Fig. 2 and that shown in Fig. 9. An outwardly seating, spring loaded check valve 50 is positioned in the upper end of float 48 and an inwardly seating, spring
loaded check valve 52 is positioned in the lower end of float 48, as will best be seen in Figs. 7, 8, and 9. These springs are preferably of a predetermined resistance, which is slightly greater than the resistance that will be acted on by a complete vacuum, therefore, if springs of this character will yield at approximately 25 pounds per square inch, the springs will yield before the pressure crushes the float, thereby giving a maximum variation of 25 pounds between the outside and the inside pressure, thus alleviating the crushing pressure on the float. When air or gas pressure is exerted on the upper end of the cylinder, the fluid level will be moved downward on the float and when the fluid is expelled from the chamber within the cylinder 26, the float will seat upon the face of the nipples 38 so as to form a valve with the lower end of the float, thereby preventing further escape of fluid through the openings of nipples 38. With the float seated in this manner, and with the gas or air being admitted into the upper end of cylinder 26, the valve 50 will yield when the pressure exceeds the pressure exerted by the springs thereunder, and gas or air will be admitted into the float 48, thereby preventing any undue pressure thereon. Upon release of pressure from the exterior of the float the valve 50 will seat and any excess gas within the float 48 will exert pressure thereon, and if by chance, liquid remains in the lower portion of the float, it will be forced out through check valve 52, and such air or gas as is entrapped therein is also forced out until the air or gas within the float 48 escapes through spring pressure check valve 52 until the pressure within the float 48 falls to 25 p. s. i. In this manner the float is maintained loaded with approximately 25 pounds of air or gas pressure in event the springs of this particular character are used. In this manner the float is always maintained free of any appreciable amount of liquid or condensate, and is always in a lower maintained above a pressure predetermined by springs 51 and 53.

The lower end of the cylinder 26 is screw threaded into the partition or head 54, as is the upper end of the cylinder 28. The partition 54 has an axial opening 56 therein in which a screw threaded axial pipe 58 is fitted. The pipe 58 is similar to pipe 34 and has casing 60 screw threaded on the lower end thereof, which casing 60 is similar to the casing 36. The casing 60 has nipples 62 circumferentially spaced around the upper face thereof, which nipples are faced to form a valve seat and is the lower face of float 63. The float 63 has tapered pins 64 circumferentially spaced around the side thereof, which pins complementarily engage nipples 62 and tapered openings 66 in the upper face of casing 60. The upper end of cylinder 28 has a vent hole 69 therein a spaced distance from the upper end thereof so as to permit the escape of the greater portion of gas or air entrapped within the cylinder 28 to permit the float 63 to function properly, however, sufficient gas or air is entrapped above the vent 69 so as to maintain the valve 59 above the liquid level. The float 63 is of sufficient length that the pins are maintained within the respective holes in the nipples 62 when in the uppermost position and which serve as metering valves in accordance with the rise and fall of the float so as to admit fluid into casing 60 evenly and without causing the float 63 to seat abruptly upon application of suction. The cylinder 28 has perforations 68 therein substantially at the same level as the inlet openings 66 of nipples 62 in the casing 60 and the casing 28 also has perforations 70 below the inlet perforations 68. The water is removed from the well at a level below the interface of oil and water, therefore, when the water is lowest to a point below openings 68 oil will be drawn into the inlet openings 68, thereby enabling a greater recovery of oil than if the oil was removed and permitted the water to force its way into the oil producing strata.

The lower end of pipe 58 has a seat 72 fitted there-into and has a pin 74 passing through the tube so as to form a cage. A bell valve 76 is positioned within the cage so as to admit oil and water into the lower end of the pipe 58. The lower end of cylinder 28 has a bottom plate or head member 78 screw threaded thereto and into which a head pipe 80 is fitted. This pipe 80 leads to the head pipe 80 and the pipe will serve as a "mud anchor" on which cylinders 26-28 and tubing 24 rest when seated within the well.

An auxiliary poppet type valve 88 is mounted within an opening 84 formed in partition 54 which valve is fitted within a guide 86. The stem of valve 88 is screw threaded to receive the valve to retain springs 92 under compression the desired regulated amount, so as to hold valve 82 closed against normal operating pressure within the chamber of cylinder 26. However, valve 82 may be opened by a predetermined pressure in excess of the operating pressure so as to clean the formation, as will be more fully explained hereinafter.

The tubing 32 extends upward within the well casing 21 and is connected by a T 94 to a valve 96 that is interposed between T 94 and a vacuum tank 97, which valve is shown in detail in Fig. 6. The valve designated generally by the numeral 96 is of the check valve type and has a stem which is screwed thereon, and if by chance, liquid remains in the lower portion of the float, it will be forced out through check valve 52, and such air or gas as is entrapped therein is also forced out until the air or gas within the float 48 escapes through spring pressure check valve 52 until the pressure within the float 48 falls to 25 p. s. i. In this manner the float is maintained loaded with approximately 25 pounds of air or gas pressure in event the springs of this particular character are used. In this manner the float is always maintained free of any appreciable amount of liquid or condensate and is always in a lower maintained above a pressure predetermined by springs 51 and 53.

The lower end of the cylinder 26 is screw threaded into the partition or head 54, as is the upper end of the cylinder 28. The partition 54 has an axial opening 56 therein in which a screw threaded axial pipe 58 is fitted. The pipe 58 is similar to pipe 34 and has casing 60 screw threaded on the lower end thereof, which casing 60 is similar to the casing 36. The casing 60 has nipples 62 circumferentially spaced around the upper face thereof, which nipples are faced to form a valve seat and is the lower face of float 63. The float 63 has tapered pins 64 circumferentially spaced around the side thereof, which pins complementarily engage nipples 62 and tapered openings 66 in the upper face of casing 60. The upper end of cylinder 28 has a vent hole 69 therein a spaced distance from the upper end thereof so as to permit the escape of the greater portion of gas or air entrapped within the cylinder 28 to permit the float 63 to function properly, however, sufficient gas or air is entrapped above the vent 69 so as to maintain the valve 59 above the liquid level. The float 63 is of sufficient length that the pins are maintained within the respective holes in the nipples 62 when in the uppermost position and which serve as metering valves in accordance with the rise and fall of the float so as to admit fluid into casing 60 evenly and without causing the float 63 to seat abruptly upon application of suction. The cylinder 28 has perforations 68 therein substantially at the same level as the inlet openings 66 of nipples 62 in the casing 60 and the casing 28 also has perforations 70 below the inlet perforations 68. The water is removed from the well at a level below the interface of oil and water, therefore, when the water is lowest to a point below openings 68 oil will be drawn into the inlet openings 68, thereby enabling a greater recovery of oil than if the oil was removed and permitted the water to force its way into the oil producing strata.

A vacuum relief valve 124 is provided for the tank 112 and a pressure relief valve 126 is mounted on tank 112 to relieve the tank of excess pressure above a predetermined setting. With this arrangement suction is maintained on tank 97 thereby maintaining a partial vacuum therein and pressure is maintained in tank 112 sufficient to force oil upward at the desired velocity. The compressor may be operated by a motor, as indicated at 128 to which a crank 130 of the compressor connects.

A measuring or weighing tank 132 is suspended by means of a cable 134, which cable passes over a pulley 136 and a weight 138 is attached to the other end of cable 134, which weight 138 will lift the tank 132 when the tank is empty, but which tank will over-balance the weight when the tank is filled.

The valve 104 has a plug 40 therein to which is secured an arm 142 that has an elongated loop 144 therein near the outer end thereof. The cable 134 passes through the loop 144 and cable clamps 146 and 148 are mounted above and below the arm 142 and the respective clamps are adapted to travel a distance slightly below and slightly above respectively of the center point of travel of arm 142. A spring 150 is secured to arm 142 and to an anchor point 152 at a spaced distance outward from the arm on a medial line passing through the center point of travel of the arm and the valve, so as to give a toggle action to hold the valve in alternate positions when moved by cable clamps 146 and 148.

The measuring or weighing tank 132 has a valve 154
in the lower end thereof so as to "bleed" or pass a given amount of oil out into a conduit 156 which may have a hopper 158 thereon. The conduit 156 leads to a storage tank 158c.

Operation

Prior to the operation of the device, the valves 46 and 76 will be seated on the respective seats, as will best be seen in Fig. 9. Upon starting the compressor 114, air or gas will be evacuated out of vacuum tank 97, and if gas is used as an actuating fluid a gas line may be connected to the inlet side of vacuum relief valve 124, however, if air is used, no supply line need be connected to the valve 124. The air or gas that is evacuated from the vacuum tank 97 is directed through lines 116 and 118 into compressor 114 between the respective valves within in the compressor and out through the respective discharge check valves and through lines 120 and 122 into pressure storage tank 112 and with the valve 104 in the position as shown in Fig. 1, a suction will be exerted on line 32 to evacuate the air or gas from the chamber within cylinder 26, and with valve 46 seated the suction exerted on cylinder 26, will in turn, direct suction on pipe 68 to cause valve 76 to open wheerupon liquid will be drawn through open perforations 68 and 70 into cylinder 28 and with an ample supply of liquid in the subterranean formation, the fluid will occupy the position as shown in Fig. 2 and oil will be withdrawn upward through pipe 58 through opening 56 and into the chamber within the cylinder 26, causing the float 48 to move upward when the suction on pipe 32 has continued for a predetermined length of time and with the valve 104 in position as shown in Fig. 1 the tank 132 is relieved of the weight, as by the liquid passing out through valve 154 and the tank 132 rises under the influence of weight 138 until the cable clamp 148 contacts arm 142 to move it about toggle center line of valve 104, wheerupon, the spring 150 will cause the arm 142 to snap upward into the position as shown in Fig. 5, which will switch the valve, so that air or gas pressure will be directed through pipe 110 through valve 104 into line 32, wheerupon, the sudden surge of pressure directed against flapper valve 96 will close valve 96 and direct pressure downward into chamber of cylinder 26. The initial pressure will cause the fluid level to move downward. The upper end of the float 48 and the valve 50 are always above the liquid level and as the pressure increases gas will pass into the float 48. The oil level will move downward and the float will recede to seat upon the top of nipples 38, which will close off the flow of oil from the openings thereof into casing 36 and upward through valve seat 40 into tubing 34 to flow the oil, by positive displacement, to the top of the well, which oil will discharge into measuring or weighing tank 132, which is in position as shown in Fig. 5, until the liquid within the tank reaches a predetermined level, as determined by counter-balancing the weight 138, wheerupon, the tank 132 will move downward to trip the toggle action valve 104 into position as shown in Fig. 1.

The weighing tank 132 will remain in this position until sufficient liquid has passed through valve 154 or an orifice to permit the weight 138 to over-balance the tank and return to the position as shown in Fig. 5. However, when the tank 132 moves into position as shown in Fig. 1, after a normal pressure cycle, the pressure in line 32 will pass outward through tube 106 and relief valve 108. As this fluid is relieved, the valve flapper 98 will move into open position under the influence of tension springs 102, as shown in Fig. 6, wheerupon, the suction or vacuum within tank 97 will draw air or gas up through line 32 to fill the cylinder 26 with liquid, in the manner described in the fluid valve arrangement herein shown, a suction or vacuum may be placed upon the producing formation to withdraw the liquid from the producing strata into the chamber of cylinder 26. How-
cause the switching of said suction and said pressure upon one of said cylinders upon the pumping of liquid from said well for a predetermined period of time.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Inventor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,849,968</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,077,088</td>
<td>McCall</td>
<td>Oct. 28, 1913</td>
</tr>
<tr>
<td>1,741,059</td>
<td>Oliphant</td>
<td>Dec. 24, 1929</td>
</tr>
<tr>
<td>1,932,037</td>
<td>Gylstrom</td>
<td>Oct. 24, 1933</td>
</tr>
<tr>
<td>2,023,461</td>
<td>Butler</td>
<td>Dec. 10, 1935</td>
</tr>
<tr>
<td>2,089,477</td>
<td>Halbert</td>
<td>Aug. 10, 1937</td>
</tr>
<tr>
<td>2,154,760</td>
<td>Long</td>
<td>Apr. 18, 1939</td>
</tr>
<tr>
<td>2,170,549</td>
<td>Clark</td>
<td>Aug. 22, 1939</td>
</tr>
<tr>
<td>2,229,914</td>
<td>Boynton</td>
<td>Jan. 28, 1941</td>
</tr>
<tr>
<td>2,243,507</td>
<td>Neumann</td>
<td>May 27, 1941</td>
</tr>
<tr>
<td>2,300,348</td>
<td>Dana</td>
<td>Oct. 27, 1942</td>
</tr>
</tbody>
</table>

396,405 | Leedy | Jan. 22, 1889 |
480,765 | Jones | Aug. 9, 1892 |
516,713 | Waite | Mar. 20, 1894 |
690,058 | Howell | Dec. 31, 1901 |
899,921 | Stephenson | Sept. 29, 1908 |