wo 2013/058910 A1 I} J1] A1 00 0 R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/058910 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

25 April 2013 (25.04.2013) WIPO I PCT
International Patent Classification:
HO04N 7/26 (2006.01)
International Application Number:
PCT/US2012/055462
International Filing Date:
14 September 2012 (14.09.2012) (74)
Filing Language: English
Publication Language: English
81
Priority Data: ®1)
61/548,630 18 October 2011 (18.10.2011) US
13/418,107 12 March 2012 (12.03.2012) US
Applicant (for all designated States except US): QUAL-
COMM INCORPORATED [US/US]; 5775 Morehouse
Drive, ATTN: International IP Administration, San Diego,
California 92121-1714 (US).
Inventors; and
Inventors/Applicants (for US only): ZHOU, Bo [CN/US];
5775 Morehouse Drive, San Diego, California 92121 (US).
RAMASWAMY, Gurunath [IN/US]; 5775 Morehouse 84)

Drive, San Diego, California 92121 (US). VEERA,
Karthic [IN/US]; 5775 Morehouse Drive, San Diego,
California 92121 (US). CHEN, Peisong [CN/US]; 17241

Ralph's Ranch Road, San Diego, California 92127 (US).
COBAN, Muhammed Zeyd [US/US]; 5775 Morehouse
Drive, San Diego, California 92121 (US). DU, Junchen
[US/US]; 5775 Morehouse Drive, San Diego, California
92121 (US). JALIL, Suhail [US/US]; 5775 Morehouse
Drive, San Diego, California 92121 (US).

Agent: VREDEVELD, Albert , W.; Shumaker and Sief-
fert, P.A., 1625 Radio Drive, Suite 300, Woodbury, MN
55125 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

[Continued on next page]

(54) Title: DETECTING AVAILABILITIES OF NEIGHBORING VIDEO UNITS FOR VIDEO CODING

: : Above :
Above-Left : Above : Right :
i i i
| | |
| | |
Left @
i i
| |
| |
| |
| |
Below-Left : :
| |
| |
| |
| |
((
((
________ J I

(57) Abstract: As part ot a video encoding or decoding oper-
ation on video data, a video coder performs a coding opera-
tion for a current video unit of the video data. As part of per-
forming the coding operation for the current video unit, the
video coder determines the availabilities of one or more
video units that neighbor the current video unit. In order to
determine the availability of a video unit that neighbors the
current video unit, the video coder identifies, based on avail-
abilities of video units that neighbor a parent video unit of
the current video unit, an entry in a lookup table. The identi-
fied entry indicates the availability of the video umit that
neighbors the current video unit. The video coder then per-
forms a coding operation on the current video unit based on
whether the video unit that neighbors the current video unit is
available.

WO 2013/058910 A1 WK 00TV AV TN K A0 AR

}fjl\(/}[, Zé\/[- ZW), EXIElSi? (gg[,BAGZ, CBI}{ > CKYG, CKZZ,DREU,D]% — as to the applicant's entitlement to claim the priority of
), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, the earlier application (Rule 4.17(iii))

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Published:

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, P .

GW, ML, MR, NE, SN, TD, TG). with international search report (Art. 21(3))

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

WO 2013/058910 PCT/US2012/055462

DETECTING AVAILABILITIES OF
NEIGHBORING VIDEO UNITS FOR VIDEO CODING

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 61/548,630,
filed October 18, 2011, the entire content of which is hereby incorporated by reference.

TECHNICAL FIELD
[0002] The present application relates to the field of video coding, e.g., video encoding and
decoding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast systems,
personal digital assistants (PDAs), laptop or desktop computers, digital cameras, digital
recording devices, digital media players, video gaming devices, video game consoles,
cellular or satellite radio telephones, video teleconferencing devices, and the like. Digital
video devices implement video compression techniques, such as those described in the
standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10,
Advanced Video Coding (AVC), and extensions of such standards, to transmit and receive
digital video information more efficiently. New video coding standards, such as the High
Efficiency Video Coding (HEVC) standard being developed by the “Joint Collaborative
Team — Video Coding” (JCT-VC), which is a collaboration between MPEG and ITU-T, are
being developed. The emerging HEVC standard is sometimes referred to as H.265,

although such a designation has not formally been made.

SUMMARY

[0004] The techniques of this disclosure generally relate to determining the availabilities of
neighboring video units during video coding. More specifically, a video coder performs a
video coding operation on a current video unit. As part of performing the video coding

operation, in some examples, the video coder may identify an entry in a lookup table based

WO 2013/058910 PCT/US2012/055462

on the availabilities of a parent video unit of a current video unit. The identified entry
indicates the availability of a video unit that neighbors the current video unit. In this
manner, the lookup table permits the video coder to detect the availability of the video unit
that neighbors the current video unit. The video coder performs a coding operation on the
current video unit based on the availability of the video unit that neighbors the current
video unit.

[0005] In one example, this disclosure describes a method for coding video data. The
method comprises identifying, based on availabilities of video units that neighbor a parent
video unit of a current video unit, an entry in a lookup table. The current video unit is
within a picture of the video data. The identified entry indicates an availability of a video
unit that neighbors the current video unit. Furthermore, the method comprises performing a
coding operation on the current video unit based on whether the video unit that neighbors

the current video unit is available.

WO 2013/058910 PCT/US2012/055462

[0006] In another example, this disclosure describes a video coding apparatus comprising
one or more processors configured to identify, based on availabilities of video units that
neighbor a parent video unit of a current video unit, an entry in a lookup table. The current
video unit is within a picture. The identified entry indicates an availability of a video unit
that neighbors the current video unit. The one or more processors are further configured to
perform a coding operation on the current video unit based on whether the video unit that
neighbors the current video unit is available.

[0007] In another example, this disclosure describes a video coding apparatus for coding
video data. The video coding apparatus comprises means for identifying, based on
availabilities of video units that neighbor a parent video unit of a current video unit, an
entry in a lookup table. The current video unit is within a picture of the video data. The
identified entry indicates an availability of a video unit that neighbors the current video
unit. The video coding apparatus further comprises means for performing a coding
operation on the current video unit based on whether the video unit that neighbors the
current video unit is available.

[0008] In another example, this disclosure describes a computer program product
comprising a computer-readable medium having stored thereon instructions that, when
executed, cause one or more processors to identify, based on availabilities of video units
that neighbor a parent video unit of a current video unit, an entry in a lookup table. The
current video unit is within a picture. The identified entry indicates an availability of a
video unit that neighbors the current video unit. In addition, the instructions, when
executed, cause the one or more processor to perform a coding operation on the current
video unit based on whether the video unit that neighbors the current video unit is available.
[0009] The details of one or more aspects of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and advantages
of the techniques described in this disclosure will be apparent from the description and

drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0010] FIG. 1 is a block diagram that illustrates an example video coding system that may

utilize techniques of this disclosure.

WO 2013/058910 PCT/US2012/055462

[0011] FIG. 2 is a conceptual diagram that illustrates an example partitioning of a picture
into treeblocks and slices.

[0012] FIG. 3 is a conceptual diagram that illustrates an example raster scan order of
treeblocks of a picture.

[0013] FIG. 4 is a conceptual diagram that illustrates an example treeblock partitioned into
progressively smaller video coding units.

[0014] FIG. 5 is a conceptual diagram that illustrates an example quadtree data structure for
partitioning a treeblock.

[0015] FIG. 6 is a conceptual diagram that illustrates an example sequencing of non-
partitioned coding units of a treeblock according to a z-scan order.

[0016] FIG. 7 is a block diagram that illustrates an example of a video encoder that encodes
a video sequence.

[0017] FIG. 8 is a block diagram that illustrates an example of a video decoder that decodes
an encoded video sequence.

[0018] FIG. 9 is a flowchart that illustrates an example recursive operation to determine the
availabilities of neighbors of a current video unit.

[0019] FIG. 10 is a conceptual diagram that illustrates example neighbors of a video unit.
[0020] FIG. 11 is a conceptual diagram that illustrates example relationship between a
subdivided non-leaf video unit and neighboring video units.

[0021] FIG. 12 is a conceptual diagram that illustrates example availabilities of neighbors
of an upper-left sub-unit of a non-leaf video unit.

[0022] FIG. 13 is a conceptual diagram that illustrates example availabilities of neighbors
of an upper-right sub-unit of a non-leaf video unit.

[0023] FIG. 14 is a conceptual diagram that illustrates example availabilities of neighbors
of a lower-left sub-unit of a non-leaf video unit.

[0024] FIG. 15 is a conceptual diagram that illustrates example availabilities of neighbors
of a lower-right sub-unit of a non-leaf video unit.

[0025] FIG. 16 is a flowchart that illustrates another example operation to determine the
availabilities of neighbors of a current video unit.

[0026] FIG. 17 is a conceptual diagram of an LCU that has been partitioned into sixty-four

base video units.

WO 2013/058910 PCT/US2012/055462

[0027] FIG. 18 is a conceptual diagram that illustrates an example lookup table (LUT) for
below-left neighbors.

[0028] FIG. 19 is a conceptual diagram that illustrates an example LUT for left neighbors.
[0029] FIG. 20 is a conceptual diagram that illustrates an example LUT for above-left
neighbors.

[0030] FIG. 21 is a conceptual diagram that illustrates an example LUT for above
neighbors.

[0031] FIG. 22 is a conceptual diagram that illustrates an example LUT for above-right
neighbors.

[0032] FIG. 23 is a flowchart that illustrates another example operation to determine the

availabilities of neighbors of a current video unit.

DETAILED DESCRIPTION

[0033] The attached drawings illustrate examples. Elements indicated by reference
numbers in the attached drawings correspond to elements indicated by like reference
numbers in the following description. In this disclosure, elements having names that start
with ordinal words (e.g., “first,” “second,” “third,” and so on) do not necessarily imply that
the elements have a particular order. Rather, such ordinal words are merely used to refer to
different elements of a same or similar type.

[0034] The techniques of this disclosure may increase the efficiency with which a video
coder may determine the availability of a neighbor of a video unit of a picture. As used
described herein, the term “video coder” refers generically to both video encoders and
video decoders. In this disclosure, the terms “video coding” or “coding” may refer
generically to video encoding and video decoding. A “video unit” may correspond to a
contiguous group of pixel values. A first video unit may be a neighbor of a second video
unit (i.e., the first video unit neighbors the second video unit), if one or more pixel values
of the first video unit are adjacent in a picture to one or more pixel values of the second
video unit.

[0035] When performing a video coding process on a video unit, a neighboring video unit

may be “available” if a video coder is able to use data associated with the neighboring

WO 2013/058910 PCT/US2012/055462

video unit to code the video unit. The neighboring video unit may be “unavailable” if the
video coder is unable to use data associated with the neighboring video unit to code the
video unit. For example, when a video encoder performs a video encoding process on a
video unit, a neighboring video unit may be unavailable if the video encoder has not yet
encoded the neighboring video unit, if the neighboring video unit does not exist, if the
neighboring video unit is in a different slice than the video unit, or if the video encoder is
otherwise unable to use data associated with the neighboring video unit to encode the video
unit. When a video decoder performs a video decoding process on a video block, a
neighboring video unit may be unavailable if the video decoder has not yet decoded the
neighboring video unit, if the neighboring video unit does not exist, if the neighboring
video unit is in a different slice than the video unit, or if the video decoder is otherwise
unable to use data associated with the neighboring video unit to decode the video unit.
[0036] There may be a variety of reasons why a video coder may need to determine
whether a neighboring video unit is available, such as for intra-prediction or motion vector
prediction. For example, a video encoder or video decoder may need to have access to the
pixel values of a neighboring video unit in order to intra predict pixel values of a current
video unit. In this example, the video decoder may not be able to access the pixel values of
the neighboring video unit if the video decoder has not yet decoded the neighboring video
unit. In another example, for motion vector prediction, a video encoder or video decoder
may need to have access to motion data for a neighboring video unit in order to generate
motion data for a current video unit, ¢.g., for use in merge or skip modes, or advanced
motion vector prediction (AMVP) modes. In other examples, the availability of a
neighboring video unit may be needed to determine contexts for entropy coding of various
syntax elements. In these examples, the video encoder may not be able to access the
motion data for the neighboring video unit if the video encoder has not yet encoded the
neighboring video unit.

[0037] In accordance with the techniques of this disclosure, a video coder may store a
lookup table (LUT) that contains a plurality of entries. The video coder may access a
particular entry in the LUT based on the availabilities of video units that neighbor a parent
video unit of a current video unit. The entry in the LUT may specify the availabilities of

the video units that neighbor the current video unit. In this way, the video coder may use

WO 2013/058910 PCT/US2012/055462

an LUT to determine, based on the availabilities of the video units that neighbor a parent
video unit of a current video unit, the availability of a video unit that neighbors the current
video unit. Determining the availabilities of neighboring video units in this way may
require fewer memory accesses than previously proposed techniques for determining the
availabilities of neighboring video units, and may promote relatively quick detection of
availability.

[0038] FIG. 1 is a block diagram that illustrates an example video coding system 10 that
may utilize the techniques described in this disclosure. As shown in the example of FIG. 1,
video coding system 10 includes a source device 12 and a destination device 14. Source
device 12 generates encoded video data. Destination device 14 may decode the encoded
video data at a later time. Source device 12 and destination device 14 may comprise any of
a wide range of devices, including desktop computers, notebook (i.c., laptop) computers,
tablet computers, set-top boxes, mobile telephones, telephone handsets, “smart” pads,
televisions, cameras, display devices, digital media players, video gaming consoles, video
streaming devices, in-vehicle computers, or other types of computing devices capable of
encoding and decoding video data.

[0039] Destination device 14 may receive the encoded video data via a communication
channel 16. Communication channel 16 may comprise a medium or device capable of
moving the encoded video data from source device 12 to destination device 14. In one
example, communication channel 16 may comprise a communication medium that enables
source device 12 to transmit encoded video data directly to destination device 14 in real-
time. Source device 12 or another device may modulate the encoded video data according
to a communication standard, such as a wireless communication protocol. The
communication medium may comprise any wireless or wired communication medium, such
as a radio frequency (RF) spectrum or one or more physical transmission lines.
Communication channel 16 may form part of a packet-based network, such as a local area
network, a wide-area network, or a global network such as the Internet. Communication
channel 16 may include routers, switches, base stations, or any other equipment that may be
useful to facilitate communication of the encoded video data from source device 12 to

destination device 14.

WO 2013/058910 PCT/US2012/055462

[0040] In some examples, source device 12 and destination device 14 may be equipped for
wireless communication. However, the techniques of this disclosure are not necessarily
limited to wireless applications or settings. Rather, the techniques may be applied to video
coding in support of any of a variety of multimedia applications, such as over-the-air
television broadcasts, cable television transmissions, satellite television transmissions,
streaming video transmissions, ¢.g., via the Internet, encoding of digital video for storage
on a data storage medium, decoding of digital video stored on a data storage medium, or
other applications. In some examples, source device 12 and destination device 14 may be
configured to support one-way or two-way video transmission to support applications such
as video streaming, video playback, video broadcasting, and/or video telephony.

[0041] Furthermore, in some examples, source device 12 may output the encoded video
data to a storage system 34. Similarly, destination device 14 may access encoded video
data stored on storage system 34. In various examples, storage system 34 may include
various distributed or locally accessed data storage media. Example types of data storage
media include, but are not limited, to hard drives, Blu-ray discs, DVDs, CD-ROMs, solid
state memory units, volatile or non-volatile memory, or other digital storage media suitable
for storing encoded video data.

[0042] In some examples, storage system 34 may comprise a file server or another
intermediate storage device that may store the encoded video generated by source device
12. Destination device 14 may access stored video data from storage system 34 via
streaming or download. The file server may be any type of server capable of storing
encoded video data and transmitting that encoded video data to destination device 14.
Example file servers include a web server (e.g., for a website), a File Transfer Protocol
(FTP) server, a network attached storage (NAS) device, or a local disk drive. Destination
device 14 may access the encoded video data through a data connection, such as an Internet
connection. The data connection may include a wireless channel (e.g., a Wi-Fi connection),
a wired connection (e.g., DSL, cable modem, etc.), or a combination of both that is suitable
for accessing encoded video data stored on a file server. The transmission of encoded
video data from storage system 34 may be a streaming transmission, a download

transmission, or a combination of both.

WO 2013/058910 PCT/US2012/055462

[0043] In the example of FIG. 1, source device 12 includes a video source 18, a video
encoder 20 and an output interface 22. In some examples, output interface 22 may also
include a modulator/demodulator (modem) and/or a transmitter. Video source 18 may
provide video data to video encoder 20. In various examples, video source 18 may
comprise various types of devices and/or systems for providing video data. For example,
video source 18 may comprise a video capture device, such as a video camera. In another
example, video source 18 may comprise a video archive that contains previously captured
video. In yet another example, video source 18 may comprise a video feed interface that
receives video from a video content provider. In yet another example, video source 18 may
comprise a computer graphics system for generating computer graphics data.

[0044] As described in detail below, video encoder 20 may encode the video data provided
by video source 18. In some examples, source device 12 may transmit the encoded video
data directly to destination device 14 via output interface 22. Moreover, in some examples,
storage system 34 may store the encoded video data for later access by destination device
14 or other devices.

[0045] This disclosure may generally refer to video encoder 20 as “signaling” certain
information to another device, such as video decoder 30. It should be understood, however,
that video encoder 20 may signal information by associating certain syntax elements with
various encoded portions of video data. That is, video encoder 20 may “signal” data by
storing certain syntax elements to headers of various encoded portions of video data. In
some cases, such syntax elements may be encoded and stored (e.g., stored to storage system
34) prior to being received and decoded by video decoder 30. Thus, the term “signaling”
may generally refer to the communication of syntax or other data used to decode the
compressed video data. Such communication may occur in real- or near-real-time.
Alternately, such communication may occur over a span of time, such as might occur when
storing syntax elements to a medium at the time of encoding, which a decoding device may
then retrieve at any time after being stored to this medium.

[0046] In the example of FIG. 1, destination device 14 includes an input interface 28, a
video decoder 30, and a display device 32. In some examples, input interface 28 may
include a receiver and/or a modem. Input interface 28 of destination device 14 receives

encoded video data from communication channel 16 and/or storage system 34. Video

WO 2013/058910 PCT/US2012/055462
10

decoder 30 decodes the encoded video data received by input interface 28. Destination
device 14 may render the decoded video data for display on display device 32.

[0047] Display device 32 may be integrated with or may be external to destination device
14. In some examples, destination device 14 may include an integrated display device and
may also be configured to interface with an external display device. In various examples,
display device 32 may comprise various types of display devices. For example, display
device 32 may comprise a liquid crystal display (LCD), a plasma display, an organic light
emitting diode (OLED) display, or another type of display device.

[0048] Although not shown in FIG. 1, video encoder 20 and video decoder 30 may each be
integrated with an audio encoder and decoder, and may include appropriate MUX-DEMUX
units, or other hardware and software, to handle encoding of both audio and video in a
common data stream or separate data streams. If applicable, MUX-DEMUX units may
conform to the ITU H.223 multiplexer protocol, or other protocols such as the user
datagram protocol (UDP).

[0049] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable circuitry, such as one or more microprocessors, digital signal processors
(DSPs), application specific integrated circuits (ASICs), field programmable gate arrays
(FPGAs), discrete logic, software, hardware, firmware or any combinations thereof. When
the techniques are implemented partially in software, a device may store instructions for the
software in a suitable, non-transitory computer-readable medium and use one or more
processors to execute the instructions in hardware in order to perform the techniques of this
disclosure. Each of video encoder 20 and video decoder 30 may be included in one or more
encoders or decoders, either of which may be integrated as part of a combined
encoder/decoder (CODEC) in a respective device.

[0050] Video encoder 20 and video decoder 30 may operate according to a video
compression standard, such as the High Efficiency Video Coding (HEVC) standard
presently under development and may conform to the HEVC Test Model (HM).
Alternatively, video encoder 20 and video decoder 30 may operate according to other
proprictary or industry standards, such as the ITU-T H.264 standard, alternatively referred
to as MPEG-4, Part 10, Advanced Video Coding (AVC), or extensions of such standards.

Example extensions to standards include the scalable video coding (SVC) and Multiview

WO 2013/058910 PCT/US2012/055462

11

Video Coding (MVC) extensions to the H.264/AVC standard. The techniques of this
disclosure are not limited to any particular coding standard. Other examples of video
compression standards include MPEG-2 and ITU-T H.263.

[0051] As mentioned briefly above, video encoder 20 encodes video data. The video data
may comprise one or more sequences of pictures. Each of the pictures is a still image. In
some instances, a picture may be referred to as a “frame.” When video encoder 20 encodes
the video data, video encoder 20 may generate a bitstream. The bitstream includes a
sequence of bits that form a representation of coded pictures and associated data. A coded
picture is a coded representation of a picture.

[0052] To generate the bitstream, video encoder 20 may perform an encoding operation for
sequences of pictures in the video data. When video encoder 20 performs the encoding
operation for a sequence of pictures, video encoder 20 may generate a series of coded
pictures and associated data. In addition, video encoder 20 may generate a sequence
parameter set (SPS) that contains parameters applicable to the sequence of pictures.
Furthermore, video encoder 20 may generate picture parameter sets (PPSs) that contain
parameters applicable to the pictures as a whole.

[0053] To generate a coded picture, video encoder 20 may partition a picture into one or
more treeblocks. A treeblock is a 2D block of video data. In some instances, a trecblock
may also be referred to as a largest coding unit (LCU). The treeblocks of HEVC may be
broadly analogous to the macroblocks of previous standards, such as H.264/AVC.
However, a treeblock is not necessarily limited to a particular size and may include one or
more coding units (CUs).

[0054] In some examples, video encoder 20 may partition a picture into a plurality of
slices. Each of the slices may include an integer number of CUs. In some instances, a slice
comprises an integer number of treeblocks. In other instances, a boundary of a slice may be
within a treeblock. If the boundary of a slice is within a treeblock, the slice may be referred
to as a fine granular slice. FIG. 2 illustrates a picture 50 partitioned into LCUs. The darker
line 52 near the horizontal midpoint of picture 50 indicates a boundary between a slice 54
and a slice 56 of picture 50. In the example of FIG. 2, cells 58 within picture 50 may

correspond to treeblocks.

WO 2013/058910 PCT/US2012/055462

12

[0055] As part of performing an encoding operation for a picture, video encoder 20 may
perform encoding operations for each slice of the picture. The encoding operation for a
slice may generate encoded data associated with the slice. The encoded data associated
with the slice may be referred to as a “coded slice.” The coded slice may include a slice
header and slice data. The slice data may include a series of successive coding units in
coding order. The slice header may contain data elements pertaining to the first or all
treeblocks of the slice.

[0056] To generate the coded slice data for a slice, video encoder 20 may perform encoding
operations on each treeblock in the slice. Video encoder 20 may perform the encoding
operations on the treeblocks in the slice according to a raster scan order. FIG.3 is a
conceptual diagram that shows an example raster scan order of the treeblocks of picture 50,
where the number in each treeblock indicates an example order of the raster scanning of the
treeblock (e.g., 1 to 56 in the example of FIG. 3). When video encoder 20 performs the
encoding operation on a treeblock, video encoder 20 may generate a coded treeblock. The
coded treeblock may comprise data representing an encoded version of the treeblock.
[0057] To generate the coded treeblock, video encoder 20 may recursively perform
quadtree partitioning on the treeblock to divide the treeblock into progressively smaller
CUs. For example, video encoder 20 may partition a treeblock into four equally-sized sub-
CUs, partition one or more of the sub-CUs into four equally-sized sub-sub-CUs, and so on.
One or more syntax elements in the bitstream may indicate a maximum number of times
video encoder 20 may partition a treeblock. The syntax elements may also indicate a
smallest coding unit (SCU). In some examples, a CU may be square in shape. In other
examples, a CU may be rectangular or have another shape. The parent video unit of a
given current video unit may correspond to the quadtree node immediately above the
quadtree node that corresponds to the current video unit. When video encoder 20 uses
quadtree partitioning to partition a given video unit into four equally-sized video units, the
given video unit is said, in this disclosure, to be the parent video unit of the four equally-
sized video units.

[0058] FIG. 4 is a conceptual diagram that illustrates a treeblock 60 partitioned into
progressively smaller CUs. In the example of FIG. 4, treeblock 60 is partitioned into

WO 2013/058910 PCT/US2012/055462
13

thirteen non-partitioned CUs 62. In other examples, video encoder 20 may partition
treeblocks in other ways.

[0059] As part of performing the encoding operation for a treeblock, video encoder 20 may
generate a hierarchical quadtree data structure for the treeblock. For example, a treeblock
may correspond to a root node of the quadtree data structure. If video encoder 20 partitions
the treeblock into four sub-CUs, the root node has four child nodes in the quadtree data
structure. Each of the child nodes corresponds to one of the sub-CUSs. If video encoder 20
partitions one of the sub-CUs into four sub-sub-CUs, the node corresponding to the sub-CU
may have four child nodes, each of which corresponds to one of the sub-sub-CUs. Each
node of the quadtree data structure may provide syntax data for the corresponding CU. For
example, a node in the quadtree may include a split flag, that indicates whether the CU
corresponding to the node is partitioned (i.e., split) into four sub-CUs. Syntax elements for
a CU may be defined recursively, and may depend on whether the CU is split into sub-CUS.
A CU that is not partitioned may correspond to a leaf node in the quadtree data structure. A
leaf node in the quadtree data structure may be referred to as a “coding node.” The data
representing the encoded version of the treeblock may include data based on the quadtree
data structure for the treeblock.

[0060] FIG. 5 is a conceptual diagram that illustrates an example quadtree data structure 70
for partitioning a treeblock. Quadtree data structure 70 in the example of FIG. 5 does not
correspond to the partitions of treeblock 60 in FIG. 4. In the example of FIG. 5, quadtree
data structure 70 includes a root node 72 that corresponds to a treeblock. Video encoder 20
partitions the treeblock into four sub-CUs. These sub-CUs correspond to nodes 74 in a
child level of quadtree data structure 70. Furthermore, in the example of FIG. 5, video
encoder 20 has partitioned the second sub-CU into four sub-sub-CUs. These sub-sub-CUSs
correspond to nodes 76 in the grandchild level of quadtree data structure 70. In FIG. 5,
video encoder 20 has partitioned the fourth sub-sub-CU into four sub-sub-sub-CUs. These
sub-sub-sub-CUs correspond to nodes 78 in the great-grandchild level of quadtree data
structure 70.

[0061] When video encoder 20 performs an encoding operation on a treeblock, video
encoder 20 may determine a sequence of the CUs of the treeblock at each level within the

quadtree of the treeblock according to a z-scan order. For example, video encoder 20 may

WO 2013/058910 PCT/US2012/055462
14

sequence sub-CUs at the child level according to the z-scan order, sequence sub-sub-CUs
of a first sub-CU according to the z-scan order, sequence sub-sub-CUs of a second sub-CU
according to the z-scan order, sequence sub-sub-sub-CUs of a sub-sub-CU according to the
z-scan order, and so on. Video encoder 20 may then perform encoding operations on each
CU of the treeblock based on the determined sequence of CUs. FIG. 6 is a conceptual
diagram that illustrates an example sequencing of the non-partitioned CUSs of treeblock 60
according to the z-scan order. In particular, the number within each CU indicates the order
in which the CU is scanned relative to the other CU’s (e.g., from 0 to 12 in the example of
FIG. 6).

[0062] As part of performing an encoding operation on a non-partitioned CU, video
encoder 20 may generate prediction data for the CU. Video encoder 20 may use intra
prediction or inter prediction to generate the prediction data for the CU. When video
encoder 20 uses intra prediction to generate the prediction data for the CU, video encoder
20 may derive the prediction data for the CU from decoded pixel values of the picture that
contains the CU. For instance, video encoder 20 may generate prediction data for a current
video unit based on one or more pixel values of a video unit that neighbors the current
video unit. When video encoder 20 uses inter prediction to generate the prediction data for
the CU, video encoder 20 derives the prediction data for the CU from decoded values of
reference pictures other than the picture that contains the CU.

[0063] After video encoder 20 generates prediction data for a CU, video encoder 20 may
generate residual data for the CU. For instance, video encoder 20 may generate, based on
the prediction data for the CU, residual data for the CU. The residual data for the CU may
indicate differences between pixel values in the prediction data for the CU and the original
pixel values of the CU.

[0064] Furthermore, as part of performing an encoding operation on a non-partitioned CU,
video encoder 20 may perform recursive quadtree partitioning on the CU to partition the
CU into one or more transform units (TUs). This disclosure may refer generically to CUs
and TUs as “video units.” Each TU of a CU may be associated with a different portion of
the residual data of the CU. In a similar fashion as video encoder 20 sequences CUs within
a treeblock, video encoder 20 may sequence the TUs of a CU according to a z-scan order.

Video encoder 20 may perform transform operations for each TU of the CU according to

WO 2013/058910 PCT/US2012/055462
15

the z-scan order. When video encoder 20 performs the transform operation for a TU, video
encoder 20 may generate a transform coefficient block (i.e., a block of transform
coefficients) at least in part by applying a transform to residual data associated with the TU.
For instance, video encoder 20 may apply one or more transforms to the residual data to
generate one or more transform coefficient blocks. The transform coefficient block may be
a 2D matrix of coefficients.

[0065] After generating a transform coefficient block, video encoder 20 may generate an
encoded version of the transform coefficient block by performing quantization and entropy
encoding operations on the transform coefficient block. Video encoder 20 may output the
encoded version of the transform coefficient block in the bitstream for the video data. In
other words, video encoder 20 may output a bitstream that contains encoded data that
represent the transform coefficient blocks.

[0066] The video decoding process performed by video decoder 30 may be generally
reciprocal to the encoding process performed by video encoder 20. For instance, when
video decoder 30 receives a bitstream, video decoder 30 may perform decoding operations
on cach sequence of pictures in the bitstream. As part of performing a decoding operation
on a sequence of pictures, video decoder 30 may perform a decoding operation on each
picture in the sequence of pictures. As part of performing a decoding operation on a
picture, video decoder 30 may perform a decoding operation on each slice of the picture.
As part of performing a decoding operation on a slice, video decoder 30 may perform
decoding operations on each treeblock in the slice according to a raster scan order. As part
of performing a decoding operation on a treeblock, video decoder 30 may perform
decoding operations on each CU of the treeblock according to a z-scan order.

[0067] In some instances, video decoder 30 may be unable to perform some decoding
operations for a video unit (e.g., a CU or a TU) within a treeblock until video decoder 30
has completed the decoding operations for one or more neighboring video units. For
instance, video decoder 30 may be unable to perform some decoding operations for the
video unit until video decoder 30 has decoded a below-left neighbor video unit, a left
neighbor video unit, an above-left neighbor video unit, an above neighbor video unit,
and/or an above-right neighbor video unit. A below-left neighbor video unit of a given

video unit occurs to the below and left of the given video unit. A left neighbor video unit

WO 2013/058910 PCT/US2012/055462
16

of a given video unit occurs to the left of the given video unit. An above-left neighbor
video unit of a given video unit occurs to the above-left of the given video unit. An above
neighbor video unit of a given video unit occurs above the given video unit. An above-
right neighbor video unit occurs to the above-right of the given video unit. Because video
decoder 30 performs the decoding operations on treeblocks according to a raster scan order
and performs decoding operations on CUs and TUs of a treeblock according to a z-scan
order, video decoder 30 may not need to determine the availabilities of the right, below-
right, or below neighbors of a video unit to perform decoding operations on a video unit.
[0068] There may be a variety of reasons why video decoder 30 is unable to perform a
decoding operation on a given video unit until one or more neighboring video units are
decoded. For example, video encoder 20 may have performed intra prediction to encode
the pixel values of a CU. As part of performing intra prediction, video encoder 20 may use
pixel values from a neighboring CU to generate the prediction data for the CU. When
video decoder 30 performs the decoding operation on the CU, video decoder 30 may
determine whether the neighboring CU has been already been decoded. In other words,
video decoder 30 may determine whether the neighboring CU is available. If the particular
neighboring CU is available, video decoder 30 may use the pixel values from the
neighboring CU to generate the prediction data of the CU. However, if the neighboring CU
is not available, video decoder 30 does not have access to the pixel values from the
neighboring CU. Accordingly, video decoder 30 may use default pixel values instead of
using pixel values from the neighboring CU.

[0069] In some instances, video encoder 20 may also need to determine whether the
neighboring CUs of a CU have been encoded. For example, video encoder 20 may need to
determine whether a neighboring CU of a CU has been encoded in order to generate motion
vector candidates that indicate the motion vectors for the CU. Video encoder 20 and video
decoder 30 may use various algorithms to determine whether the neighboring video units of
a given video unit have been encoded or decoded (i.e., whether the neighboring video units
are available). These algorithms may be complicated because video units, such as CUs and
TUs, can be associated with different levels (or depths) of quadtree data structures. In other
words, the neighbor of the video unit may be associated with a different level of a quadtree

than the video unit. Thus, there may actually be two video units directly above the given

WO 2013/058910 PCT/US2012/055462
17

video unit. Some previously-proposed algorithms are complex and may require large
numbers of memory accesses. Because processing complex algorithms and performing
memory accesses consumes time and electrical energy, it may be undesirable for video
encoder 20 or video decoder 30 to perform such complex algorithms.

[0070] In some examples, the techniques of this disclosure may reduce the complexity of
determining whether the neighboring video units of a video unit have already been encoded
or decoded. For ease of explanation, the term “video coder” can be used to refer to either a
video encoder or a video decoder. In accordance with the techniques of this disclosure, a
video coder uses a lookup table (LUT) to accelerate the detection of the availabilities of a
video unit’s neighbors. In various examples, the video coder uses different LUTSs in
different ways to accelerate the detection of the availabilities of a video unit’s neighbors.
For example, the video coder may use the availabilities of neighbors of a video unit’s
parent video unit as an index into a LUT that specifies the availabilities of the video unit’s
neighbors. Otherwise stated, the video coder may determine the availabilities of neighbors
of a video unit’s sub-units based on the availabilities of the video unit’s neighbors.

[0071] In this way, a video coder may perform a method for coding video data. In this
method, the video coder may identify, based on availabilities of video units that neighbor a
parent video unit of a current video unit, an entry in a lookup table. In this method, the
current video unit is within a picture of the video data. The identified entry may indicate an
availability of a video unit that neighbors the current video unit. The method may also
include performing a coding operation on the current video unit based on whether the video
unit that neighbors the current video unit is available. The coding operation may be a video
encoding operation or a video decoding operation. In some instances, performing the
coding operation on the current video unit comprises performing the coding operation on
the current video unit based on data associated with the video unit that neighbors the
current video unit. A video coder may perform this method during a video encoding or
video decoding operation to perform intra prediction, to obtain motion information in
merge/skip or AMVP modes, to obtain context information in entropy coding, or to
perform other portions of the video encoding or video decoding operation.

[0072] In other examples, a video coder determines an index of a video unit within a

treeblock according to a raster or z-scan order. The video coder may then use this index to

WO 2013/058910 PCT/US2012/055462
18

identify an entry in an LUT. The video coder may use the identified entry to determine the
availabilities of the video unit’s neighbors. FIGS. 16 and 23, described in detail below,
illustrate example operations to determine the availability of a neighbor in accordance with
such examples.

[0073] FIG. 7 is a block diagram that illustrates an example of configuration of video
encoder 20 that encodes a video sequence. FIG. 7 is provided for purposes of explanation
and should not be considered limiting of the techniques as broadly exemplified and
described in this disclosure. For purposes of explanation, this disclosure describes video
encoder 20 in the context of HEVC coding. However, the techniques of this disclosure
may be applicable to other coding standards or methods.

[0074] In the example of FIG. 7, video encoder 20 includes a plurality of functional
components. The functional components of video encoder 20 include a mode select
module 100, a motion estimation module 102, a motion compensation module 104, an intra
prediction module 106, a residual generation module 110, a transform module 112, a
quantization module 114, an entropy encoding module 116, an inverse quantization module
118, an inverse transform module 120, a reconstruction module 122, and a decoded picture
buffer 124. In other examples, video encoder 20 may include more, fewer, or different
functional components. For example, video encoder 20 may include a deblocking filter to
filter the output of reconstruction module 122 to remove blockiness artifacts from
reconstructed video. Furthermore, motion estimation module 102 and motion
compensation module 104 may be highly integrated, but are represented in the example of
FIG. 7 separately for purposes of explanation.

[0075] Video encoder 20 may receive video data. In various examples, video encoder 20
may receive the video data from various sources. For example, video encoder 20 may
receive the video data from video source 18 (FIG. 1) or another source. The video data
may represent sequences of pictures. To encode the video data, video encoder 20 may
perform an encoding operation on each sequence of pictures. As part of performing the
encoding operation on a sequence of pictures, video encoder 20 may perform encoding
operations on each picture within the sequence of pictures. As part of performing the

encoding operation on a picture, video encoder 20 may perform encoding operations on

WO 2013/058910 PCT/US2012/055462
19

cach slice in the picture. As part of performing the encoding operation on a slice, video
encoder 20 may perform an encoding operation on each treeblock in the slice.

[0076] As part of performing an encoding operation on a treeblock, video encoder 20 may
partition the treeblock into one or more CUs. In some examples, the sizes of the CUs may
range from 8x8 pixels up to the size of the treeblock with a maximum of 64x64 pixels or
greater. In this disclosure, “NxN”’ and “N by N’ may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions, ¢.g.,
16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a vertical
direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an NxN block
generally has N pixels in a vertical direction and N pixels in a horizontal direction, where N
represents a nonnegative integer value. Similar notation may be used to indicate
dimensions of transform coefficient blocks.

[0077] Video encoder 20 may perform encoding operations on each non-partitioned CU of
the treeblock. When video encoder 20 performs the encoding operation on a non-
partitioned CU, video encoder 20 generates data representing an encoded version of the
non-partitioned CU.

[0078] As part of performing the encoding operation for a CU, motion estimation module
102 and motion compensation module 104 perform inter prediction on the CU. In other
words, motion estimation module 102 and motion compensation module 104 may generate
prediction data for the CU based on decoded pixel values of reference pictures other than
the picture that contains the CU. Inter prediction may provide temporal compression.
[0079] To perform inter prediction on a CU, video encoder 20 may partition the CU into
one or more prediction units (PUs). Video encoder 20 and video decoder 30 may support
various PU sizes. Assuming that the size of a particular CU is 2Nx2N, video encoder 20
and video decoder 30 may support PU sizes of 2Nx2N, NxN, 2NxN, or Nx2N. Video
encoder 20 and video decoder 30 may also support asymmetric partitioning for PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In some examples, video encoder 20 may partition a
CU into PUs along a boundary that does not meet the sides of the CU at right angles.
[0080] Motion estimation module 102 may perform a motion estimation operation with
regard to each PU of the CU. When motion estimation module 102 performs a motion

estimation operation with regard to a PU, motion estimation module 102 generates one or

WO 2013/058910 PCT/US2012/055462
20

more motion vectors for the PU. For instance, slices may be I slices, P slices, or B slices.
Motion estimation module 102 and motion compensation module 104 may perform
different operations for a PU of a CU depending on whether the CU is in an I slice, a P
slice, or a B slice. In an I slice, all CUs are intra predicted. Hence, if the CU is in an |
slice, motion estimation module 102 and motion compensation module 104 do not perform
inter prediction on the CU.

[0081] If the CU is in a P slice, the picture containing the CU is associated with a list of
reference pictures referred to as “list 0.” Each of the reference pictures in list 0 contains
pixel values that may be used for inter prediction of subsequent pictures in decoding order.
When motion estimation module 102 performs the motion estimation operation with regard
to a PU in a P slice, motion estimation module 102 searches the reference pictures in list 0
for a reference sample for the PU. The reference sample of the PU may be a set of pixel
values that most closely corresponds to the pixels values of the PU. Motion estimation
module 102 may use a variety of metrics to determine how closely a set of pixel values in a
reference picture corresponds to the pixel values of a PU. For example, motion estimation
module 102 may determine how closely a set of pixel values in a reference picture
corresponds to the pixel values of a PU by sum of absolute difference (SAD), sum of
square difference (SSD), or other difference metrics.

[0082] After identifying a reference sample of a PU of a CU in a P slice, motion estimation
module 102 may generate a reference index that indicates the reference picture in list 0
containing the reference sample and a motion vector that indicates a spatial displacement
between the PU and the reference sample. In various examples, motion estimation module
102 may generate motion vectors to varying degrees of precision. For example, motion
estimation module 102 may generate motion vectors at one-quarter pixel precision, one-
eighth pixel precision, or other fractional pixel precision. Motion estimation module 102
may output the reference index and motion vector to entropy encoding module 116 and
motion compensation module 104. Motion compensation module 104 may use the
reference indexes and motion vectors of PUs of the CU to identify and retrieve the
reference samples of the PUs. Motion compensation module 104 may then use pixel values

of reference samples of PUs to generate the prediction data for the CU.

WO 2013/058910 PCT/US2012/055462
21

[0083] If the CU is in a B slice, the picture containing the CU may be associated with two
lists of reference pictures, referred to as “list 0” and “list 1.” Each of the reference pictures
in list 0 contains pixel values that may be used for inter prediction of subsequent pictures in
decoding order. The reference pictures in list 1 occur before the picture in decoding order
but after the picture in presentation order. In some examples, a picture containing a B slice
may be associated with a list combination that is a combination of list 0 and list 1.

[0084] Furthermore, if the CU is in a B slice, motion estimation module 102 may perform
uni-directional prediction or bi-directional prediction for PUs of the CU. When motion
estimation module 102 performs uni-directional prediction for a PU, motion estimation
module 102 may search the reference pictures of list 1 for a reference sample for the PU.
Motion estimation module 102 may then generate a reference index that indicates the
reference picture in list 1 that contains the reference sample and a motion vector that
indicates a spatial displacement between the PU and the reference sample. Motion
estimation module 102 may output the reference indexes and motion vectors for PUs of a
CU to entropy encoding module 116 and motion compensation module 104. Motion
compensation module 104 may use the reference indexes and motion vectors of PUs of the
CU to identify and retrieve the reference samples of the PUs. Motion compensation
module 104 may then use pixel values of reference samples of PUs to generate the
prediction data for the CU.

[0085] When motion estimation module 102 performs bi-directional prediction for a PU,
motion estimation module 102 may search the reference pictures in list O for a reference
sample for the PU and may also search the reference pictures in list 1 for another reference
sample for the PU. Motion estimation module 102 may then generate reference indexes
that indicate the reference samples and motion vectors that indicate spatial displacements
between the reference samples and the PU. Motion estimation module 102 may output the
reference indexes and motion vectors to entropy encoding module 116 and motion
compensation module 104. Motion compensation module 104 may use the reference
indexes and motion vectors to identify and retrieve the reference samples of the PUs.
Motion compensation module 104 may then interpolate pixel values of the prediction data

of the CU from pixel values in the reference samples of the PUs of the CU.

WO 2013/058910 PCT/US2012/055462
22

[0086] In some examples, motion estimation module 102 may generate data from which
motion compensation module 104 or video decoder 30 may predict the motion vectors of
PUs of a CU. In such examples, motion compensation module 104 or video decoder 30
may use the data and motion data from neighboring CUs to predict the motion vectors of
the PUs of the CU. However, if a neighboring CU is not available, motion estimation
module 102 may not use motion vectors of the neighboring CU to generate such data.
Accordingly, motion estimation module 102 may use the techniques of this disclosure to
determine the availabilities of neighboring CUs. The neighboring CU may be unavailable
for various reasons. For example, the neighboring CU may be unavailable if video encoder
20 has not yet encoded the neighboring CU, if the neighboring CU does not exist, if the
neighboring CU is in a different slice than the CU, or if video encoder 20 is otherwise
unable to use data associated with the neighboring CU to predict the motion vectors of the
PUs of the CU.

[0087] As part of performing an encoding operation on a CU, intra prediction module 106
may perform intra prediction on the CU. In other words, intra prediction module 106 may
generate prediction data for the CU based on decoded pixel values in the same slice as the
CU. Intra prediction may provide spatial compression.

[0088] To perform intra prediction on a CU, intra prediction module 106 may use multiple
intra prediction modes to generate multiple sets of prediction data for the CU. When intra
prediction module 106 uses an intra prediction mode to generate a set of prediction data for
a CU, intra prediction module 106 may extend pixel values from neighboring CUs across
the CU in a direction and/or gradient associated with the intra prediction mode. The
neighboring CUs may be above, above and to the right, above and to the left, or to the left
of the current CU, assuming a left-to-right, top-to-bottom (i.c., z-scan) encoding order for
CUs and treeblocks. Intra prediction module 106 may use various numbers of intra
prediction modes, e.g., 33 directional intra prediction modes, depending on the size of the
CU.

[0089] If a neighboring CU is unavailable, intra prediction module 106 may be unable to
use the pixel values of the neighboring CU to generate the prediction data for a CU. The
neighboring CU may be unavailable for various reasons. For example, the neighboring CU

may be unavailable if video encoder 20 has not yet encoded the neighboring CU, if the

WO 2013/058910 PCT/US2012/055462
23

neighboring CU does not exist, if the neighboring CU is in a different slice than the CU, or
if intra prediction module 106 is otherwise unable to use the pixel values of the neighboring
CU to generate the prediction data of the CU. Accordingly, intra prediction module 106
may need to determine whether the neighboring CU is available. In some examples, intra
prediction module 106 may use the techniques of this disclosure to determine the
availabilities of neighboring CUs.

[0090] In some examples, if intra prediction module 106 determines that the neighboring
CU does not exist, intra prediction module 106 may generate the prediction data of the CU
using default pixel values instead of the actual pixel values of the neighboring CU.
Furthermore, in some examples, if intra prediction module 106 determines that the
neighboring CU does not exist, intra prediction module 106 may generate the prediction
data of the CU using synthesized pixel values instead of the actual pixel values of the
neighboring CU. Intra prediction module 106 may generate the synthesized pixel values
based on pixel values of neighboring CUSs that are available.

[0091] Intra prediction module 106 may select one of the sets of prediction data for the CU.
In various examples, intra prediction module 106 may select the set of prediction data for
the CU in various ways. For example, intra prediction module 106 may select the set of
prediction data for the CU by calculating distortion rates for the sets of prediction data and
selecting the set of prediction data that has the lowest distortion rate.

[0092] Mode select module 100 may select the prediction data for a CU from among the
prediction data generated by motion compensation module 104 for the CU or the prediction
data generated by intra prediction module 106 for the CU. In some examples, mode select
module 100 selects the prediction data for the CU based on error (i.e., distortion) in the sets
of prediction data. In some examples, mode select module 100 selects the prediction data
for the CU based on a rate-distortion metric that balances the number of coding bits versus
the distortion in the resulting coded data.

[0093] After mode select module 100 selects the prediction data for a CU, residual
generation module 110 may perform a residual generation operation that generates residual
data for the CU based on the predicted data for the CU. The residual data for the CU may
indicate differences in pixel values between the original pixel values for the CU and the

prediction data for the CU. In some examples, performing the residual generation

WO 2013/058910 PCT/US2012/055462
24

operation may comprise subtracting the prediction data of the CU from the pixel values of
the CU. The residual data of a CU may include 2D residual blocks that correspond to
different pixel components of the pixels in the CU. For example, the residual data may
include a residual block that corresponds to differences between luminance components of
pixels in the prediction data of the CU and luminance components of pixels in the original
pixels of the CU. In addition, the residual data of the CU may include residual blocks that
correspond to the differences between chrominance components of pixels in the prediction
data of the CU and the chrominance components of the original pixels of the CU.

[0094] As described above, a CU may have one or more TUs. Each TU of a CU may
correspond to a different portion of the residual data of the CU. The sizes of the TUs of a
CU may or may not be based on the sizes of PUs of the CU. In some examples, video
encoder 20 may use recursive quadtree partitioning to subdivide a CU into TUs. The
resulting data structure may be referred to as a “residual quad tree” (RQT). Each node in
the RQT may correspond to a TU of the CU. When determining an availability of a
neighbor in accordance with the techniques of this disclosure, a video coder may use a RQT
as an extension of a quadtree of CUs of a treeblock.

[0095] Transform module 112 may generate transform coefficient blocks for each non-
partitioned TU of a CU by applying a transform to the residual data corresponding to the
TU. For instance, transform module 112 may apply a transform to a particular portion of
the residual data to generate a transform coefficient block. Each of the transform
coefficient blocks may be a 2D matrix of coefficients. In various examples, transform
module 112 may apply various transforms to the residual data corresponding to a TU. For
example, transform module 112 may apply a discrete cosine transform (DCT), a directional
transform, or a conceptually similar transform.

[0096] After transform module 112 generates a transform coefficient block for a TU,
quantization module 114 may quantize the coefficients in the transform coefficient block.
Quantization generally refers to a process in which coefficients in a transform coefficient
block are quantized to possibly reduce the amount of data used to represent the coefficients,
providing further compression. Quantization may reduce the bit depth associated with
some or all of the coefficients. For example, an n-bit value may be rounded down to an m-

bit value during quantization, where # is greater than m.

WO 2013/058910 PCT/US2012/055462
25

[0097] After quantization module 114 quantizes a transform coefficient block, entropy
encoding module 116 may perform an entropy encoding operation on the transform
coefficient block. In various examples, video encoder 20 may perform various types of
entropy encoding operations on the transform coefficient block. For example, video
encoder 20 may perform a context adaptive variable length coding (CAVLC) operation, a
context adaptive binary arithmetic coding (CABAC) operation, a syntax-based context-
adaptive binary arithmetic coding (SBAC) operation, a Probability Interval Partitioning
Entropy (PIPE) coding operation, or another type of entropy encoding operation on the
transform coefficient block. Video encoder 20 may also perform entropy encoding
operations on syntax elements associated with the video data.

[0098] To perform CABAC, entropy encoding module 116 may assign a context model to a
symbol to be transmitted. The context may relate to, for example, whether neighboring
values of the symbol are non-zero or not. To perform CAVLC, video encoder 20 may
select a variable length code for a symbol to be transmitted. Codewords in VLC may be
constructed such that relatively short codes correspond to more probable symbols, while
relatively long codes correspond to less probable symbols. In this way, the use of VLC
may achieve a bit savings over using equal-length codewords for each symbol to be
transmitted. The probability determination may be based on a context assigned to the
symbol.

[0099] In some examples, when entropy encoding module 116 performs an entropy
encoding operation on a transform coefficient block, entropy encoding module 116 may
select one or more context models for encoding the transform coefficient block based on
data associated with a TU that neighbors the TU associated with the transform coefficient
block. However, entropy encoding module 116 may be unable to select a context model for
encoding the transform coefficient block if the neighboring TU is unavailable. The
neighboring TU may be unavailable for various reasons. For example, the neighboring TU
may be unavailable if entropy encoding module 116 has not yet performed an entropy
encoding operation on the neighboring TU or if entropy encoding module 116 is otherwise
unable to access data generated by performing an entropy encoding operation on the
neighboring TU. Accordingly, entropy encoding module 116 may determine whether the

neighboring TU is available. In some such examples, entropy encoding module 116 may

WO 2013/058910 PCT/US2012/055462
26

use the techniques of this disclosure to determine the availabilities of the TUs that neighbor
the TU. Similar considerations may apply when performing entropy encoding operations
on other syntax elements of a CU.

[0100] Inverse quantization module 118 and inverse transform module 120 may apply
inverse quantization and inverse transformation to a transform coefficient block,
respectively, to decode residual data for a coding unit from the transform coefficient block.
Reconstruction module 122 may add the reconstructed residual data to prediction data
generated by motion compensation module 104 or intra prediction module 106 to produce a
reconstructed video block for storage in decoded picture buffer 124. In other words,
reconstruction module 122 may reconstruct pixel values for the video unit based on the
prediction data for the video unit and the residual data for the video unit. Motion
estimation module 102 and motion compensation module 104 may use a reference picture
that contains the reconstructed video block to perform inter prediction on CUs of
subsequent pictures. Video decoder 30 may output the picture, the picture including the
pixel values for the current video unit.

[0101] After video encoder 20 performs entropy encoding on a transform coefficient block,
video encoder 20 may include data representing the entropy encoded transform coefficient
block in the bitstream for the video data. The bitstream may be a sequence of bits that
forms a representation of coded pictures and associated data. The bitstream may comprise
a sequence of network abstraction layer (NAL) units. Each of the NAL units may be a
syntax structure containing an indication of a type of data in the NAL unit and bytes
containing the data. For example, a NAL unit may contain data representing a PPS, a
coded slice, supplemental enhancement information, an access unit delimiter, filler data, or
another type of data. The data of a NAL unit may be in the form of a raw byte sequence
payload (RBSP) interspersed with emulation prevention bits. A RBSP may be a syntax
structure containing an integer number of bytes that is encapsulated within a NAL unit.
[0102] FIG. 8 is a block diagram that illustrates an example configuration of video decoder
30 that is configured to implement the techniques of this disclosure. FIG. 8 is provided for
purposes of explanation and is not limiting on the techniques as broadly exemplified and

described in this disclosure. For purposes of explanation, this disclosure describes video

WO 2013/058910 PCT/US2012/055462
27

decoder 30 in the context of HEVC coding. However, the techniques of this disclosure
may be applicable to other coding standards or methods.

[0103] In the example of FIG. 8, video decoder 30 includes a plurality of functional
components. The functional components of video decoder 30 include an entropy decoding
module 150, a motion compensation module 152, an intra prediction module 154, an
inverse quantization module 156, an inverse transform module 158, a reconstruction
module 160, and a decoded picture buffer 162. In some examples, video decoder 30 may
perform a decoding pass generally reciprocal to the encoding pass described with respect to
video encoder 20 of FIG. 7. In other examples, video decoder 30 may include more, fewer,
or different functional components. For example, video decoder 30 may include a
deblocking filter to filter the output of reconstruction module 160 to remove blockiness
artifacts from reconstructed video.

[0104] Video decoder 30 may receive a bitstream that comprises encoded video data.
When video decoder 30 receives the bitstream, video decoder 30 performs a decoding
operation on the bitstream to reconstruct the pixels values in each picture of the video data.
As part of performing the decoding operation on the bitstream, video decoder 30 may
perform decoding operations on each treeblock of each picture in the video data. Video
decoder 30 may perform the decoding operations on the treeblocks within a picture in raster
scan order. As part of performing a decoding operation on a treeblock, video decoder 30
may, at each level of the quadtree of the treeblock, perform decoding operations on the CUs
of the treeblock at the level in z-scan order.

[0105] As part of performing a decoding operation on a non-partitioned CU, video decoder
30 may, at each level of the residual quadtree of the non-partitioned CU, perform a
decoding operation on each TU of the CU in z-scan order. By performing the decoding
operation for each TU of the CU, video decoder 30 may reconstruct the residual data of the
CU.

[0106] As part of performing a decoding operation for a non-partitioned TU, entropy
decoding module 150 may perform an entropy decoding operation on an encoded version
of a transform coefficient block associated with the TU. In some examples, entropy
decoding module 150 may use CABAC to decode the transform coefficient block. In such

examples, entropy decoding module 150 may select a context model based on data

WO 2013/058910 PCT/US2012/055462
28

generated by performing an entropy decoding operation on a transform coefficient block
associated with a neighboring TU. Entropy decoding module 150 may use the selected
context model to decode the transform coefficient block.

[0107] However, entropy decoding module 150 may be unable to select a context model
based on data generated by performing an entropy decoding operation on a transform
coefficient block associated with the neighboring TU if the neighboring TU is unavailable.
The neighboring TU may be unavailable for various reasons. For example, the neighboring
TU may be unavailable if entropy decoding module 150 has not yet performed an entropy
decoding operation for the neighboring TU or if entropy decoding module 150 is otherwise
unable to use data generated by performing an entropy decoding operation for the
neighboring TU. Accordingly, entropy decoding module 150 may determine whether the
neighboring TU is available. In such examples, entropy decoding module 150 may use the
techniques of this disclosure to determine whether the neighboring TU is available. In this
way, a video coder (e.g., video encoder 20 or video decoder 30) may select, based on data
associated with a video unit that neighbors a given video unit, a context model and perform,
based on the selected context model, an entropy coding operation on data associated with a
given video unit.

[0108] Furthermore, as part of performing a decoding operation on a non-partitioned TU,
inverse quantization module 156 may inverse quantize, i.e., de-quantize, the transform
coefficient block associated with the TU. Inverse quantization module 156 may inverse
quantize the transform coefficient block in a manner similar to the inverse quantization
processes proposed for HEVC or defined by the H.264 decoding standard. Inverse
quantization module 156 may use a quantization parameter QP calculated by video encoder
20 for a CU of the transform coefficient block to determine a degree of quantization and,
likewise, a degree of inverse quantization for inverse quantization module 156 to apply.
[0109] After inverse quantization module 156 inverse quantizes the transform coefficient
block, inverse transform module 158 may generate residual data for the TU associated with
the transform coefficient block. Inverse transform module 158 may generate the residual
data for the TU at least in part by applying an inverse transform to the transform coefficient
block. For example, inverse transform module 158 may apply an inverse DCT, an inverse

integer transform, an inverse Karhunen-Loeve transform (KLT), an inverse rotational

WO 2013/058910 PCT/US2012/055462
29

transform, an inverse directional transform, or another inverse transform to the transform
coefficient block. In some examples, inverse transform module 158 may determine an
inverse transform to apply to the transform coefficient block based on signaling from video
encoder 20. In such examples, inverse transform module 158 may determine the inverse
transform based on a signaled transform at the root node of a quadtree for a treeblock
associated with the transform coefficient block. In other examples, inverse transform
module 158 may infer the inverse transform from one or more coding characteristics, such
as block size, coding mode, or the like. In some examples, inverse transform module 158
may apply a cascaded inverse transform.

[0110] Motion compensation module 152 may perform motion compensation to generate
prediction data for a CU. To perform motion compensation, motion compensation module
152 may predict the motion information for PUs of the CU based on motion information of
PUs of CUs that neighbor the CU. In some examples, motion compensation module 152
may predict the motion information of the PUs using merge/skip mode or AMVP mode.
Motion compensation module 152 may use the motion information for the PUs of the CU
to identify reference samples for the PUs. Motion compensation module 152 may then use
the reference samples for the PUs to generate prediction data for the CU.

[0111] However, motion compensation module 152 may be unable to predict the motion
information for a PU of a CU based on motion information of PU of a neighboring CU if
the neighboring CU is unavailable. The neighboring CU may be unavailable for various
reasons. For example, the neighboring CU may be unavailable if video decoder 30 has not
yet decoded the neighboring CU, if the neighboring CU does not exist, if the neighboring
CU is in a different slice than the CU, or if motion compensation module 152 is otherwise
unable to use data associated with the neighboring CU to predict motion information for
PUs of the CU. Accordingly, motion compensation module 152 may determine whether
neighboring CUs are available. Motion compensation module 152 may use the techniques
of this disclosure to determine whether neighboring CUs are available.

[0112] In some examples, motion compensation module 152 may refine the prediction data
for a CU by performing interpolation based on interpolation filters. Identifiers for
interpolation filters to be used for motion compensation with sub-pixel precision may be

included in the syntax elements. Motion compensation module 152 may use the same

WO 2013/058910 PCT/US2012/055462
30

interpolation filters used by video encoder 20 during generation of the prediction data of the
CU to calculate interpolated values for sub-integer pixels of a reference block. Motion
compensation module 152 may determine the interpolation filters used by video encoder 20
according to received syntax information and use the interpolation filters to produce
prediction data.

[0113] Intra prediction module 154 may perform intra prediction to generate prediction
data for the CU. For example, intra prediction module 154 may determine an intra
prediction mode for the CU based on syntax elements in the bitstream. Intra prediction
module 154 may then use the intra prediction mode to generate prediction data (e.g.,
predicted pixel values) for the CU based on the pixel values of neighboring CUs.

[0114] However, intra prediction module 154 may be unable to use the pixel values of a
neighboring CU if the neighboring CU is unavailable. The neighboring CU may be
unavailable for various reasons. For example, the neighboring CU may be unavailable if
video decoder 30 has not yet decoded the neighboring CU, if the neighboring CU does not
exist, if the neighboring CU is in a different slice than the CU, or if intra prediction module
154 is otherwise unable to use the pixel values of the neighboring CU to generate the
prediction data of the CU. Accordingly, intra prediction module 154 may determine
whether the neighboring CU is available. Intra prediction module 154 may use the
techniques of this disclosure to determine whether neighboring CUSs are available. If an
intra prediction mode of the CU entails the use of pixel values of an unavailable
neighboring CU, intra prediction module 154 may generate the prediction data of the CU
using default or synthesized pixel values instead of using pixel values of the unavailable
neighboring CU.

[0115] Motion compensation module 152 and intra prediction module 154, in an HEVC
example, may use some of the syntax information (e.g., provided by a quadtree) to
determine sizes of treeblocks used to encode picture(s) of the encoded video sequence, split
information that describes how each CU of a picture of the encoded video sequence is split
(and likewise, how sub-CUs are split), modes indicating how each CU is encoded (e.g.,
intra- or inter-prediction, and for intra-prediction an intra-prediction encoding mode), one

or more reference frames (and/or reference picture lists containing identifiers for the

WO 2013/058910 PCT/US2012/055462
31

reference frames) for each inter-predicted CU, and other information to decode the encoded
video sequence.

[0116] Reconstruction module 160 may use the residual data of a CU and the prediction
data for the CU to reconstruct pixel values for the CU. In some examples, video decoder
30 may apply a deblocking filter to remove blockiness artifacts from the reconstructed pixel
values filter of a slice or picture. Decoded picture buffer 162 may store the decoded pixel
values for pictures of the video data. Decoded picture buffer 162 may provide reference
pictures for subsequent motion compensation, intra prediction, and presentation on a
display device, such as display device 32 of FIG. 1.

[0117] FIG. 9 is a flowchart that illustrates an example recursive operation 200 to
determine the availabilities of neighbors of a current video unit. As described elsewhere in
this disclosure, a video coder, such as video encoder 20 and video decoder 30, may
determine whether neighboring video units are available for various reasons. The video
coder may perform operation 200 for any of such reasons. For example, if the video coder
is a video encoder, the video coder may perform operation 200 when determining motion
information for a PU of a CU. In this example, the video coder may determine the
availabilities of neighboring CUSs and signal the motion information of the PU based on the
motion information of a PU of one of the available neighboring CUs. In another example,
if the video coder is a video decoder, the video coder may perform operation 200 when
performing an intra prediction operation for a CU. In this example, the video coder may
determine the availabilities of neighboring CUs and use default or synthesized pixel values
if an intra prediction mode of the CU entails the use of pixel values of an unavailable CU.
[0118] When a video coder (such as video encoder 20 or video decoder 30) determines the
availabilities of the neighboring video units of the current video unit, the video coder
determines whether the current video unit is a treeblock (202). If the current video unit is a
treeblock (“YES” of 202), the video coder may determine the availabilities of neighboring
video units based on the horizontal and vertical indexes of the current video unit and
information about the slice that contains the current video unit (204). For instance, after
determining that the current video unit is a treeblock, the video coder may determine the
availability of the neighbor of the current video unit based on a position of the current video

unit within a picture.

WO 2013/058910 PCT/US2012/055462
32

[0119] For example, if the current video unit is a treeblock, the current video unit may have
a horizontal index of 1 and a vertical index of 1, i.¢., the current video unit is at coordinates
(1, 1). In this example, treeblock may be coded according to a raster scan order. Hence, if
the treeblock to the above left of the current video unit (i.c., the above left neighbor), the
treeblock above the current video unit (i.e., the above neighbor), the treeblock to the above
right of the current video unit (i.e., the above right neighbor), the treeblock to the left of the
current video unit (i.e., the left neighbor) are in the same slice as the treeblock, the above
left neighbor, the above neighbor, the above right neighbor and the left neighbor are
available. However, the treeblock to the bottom left of the current video unit (i.e., the
below left neighbor) is not available. The below left neighbor is not available because, in
this example, the video coder codes the treeblocks according to a raster scan order and the
current video unit occurs prior to the below left neighbor in the raster scan order.

[0120] If the current video unit is not a treeblock (“NO” of 202), the current video unit is a
sub-unit of a treeblock. Thus, to determine whether a neighbor of the current video unit is
available, the video coder may determine the availabilities of the neighbors of the parent
video unit of the current video unit (206). The parent video unit of the current video unit
may correspond to the quadtree node immediately above the quadtree node that
corresponds to the current video unit. FIG. 5 shows an example quadtree partitioning
hierarchy with successive sub-CU levels.

[0121] To determine the availabilities of the neighbors of the parent video unit, the video
coder may recursively invoke operation 200. That is, the video coder may determine the
availabilities of neighbors of the parent video unit at least in part by recursively performing
operations to determine the availabilities of neighbors of ancestor video units of the current
video unit. Ancestor video units may be video units above the current video unit in a
quadtree data structure. When the video coder recursively invokes operation 200, the
parent video unit of the current node is the “current” node. Thus, if the parent video unit is
a treeblock, the video coder may determine the availabilities of the neighbors of the parent
video unit based on the horizontal and vertical indexes of the parent video unit as described
above. On the other hand, if the parent video unit is not a treeblock, the video coder may
determine the availabilities of the neighbors of the parent video unit’s parent video unit

(i.e., the grandparent video unit).

WO 2013/058910 PCT/US2012/055462
33

[0122] If the grandparent video unit is a treeblock, the video coder may determine the
availabilities of neighbors of the grandparent video unit using the horizontal and vertical
indexes of the grandparent video unit, as described above. If the grandparent video unit is
not a treeblock, the video coder may determine the availabilities of the parent video unit of
the grandparent video unit (i.e. the great-grandparent video unit). This process of
progressing up through the ancestor video units of the current video unit may continue in
this manner until a treeblock (i.e., an ancestral treeblock) is reached and the video coder is
able to determine the availabilities of the neighbors of the ancestral treeblock. Once the
video coder determines the availabilities of the ancestral treeblock of the current video unit,
the video coder may work back down through the ancestor video units of the current video
unit. For the video unit at each generation, the video coder uses the availabilities of the
video unit’s parent video unit to identify an entry in an LUT. The LUT may include entries
multiple combinations of availabilities of the neighbors of the parent video unit. The
identified entry indicates the availabilities of the video unit’s neighbors.

[0123] After the video coder has determined the availabilities of the neighbors of the
current video unit’s parent video unit, the video coder uses the availabilities of the
neighbors of the current video unit’s parent video unit to identify an entry in the LUT
(208). The identified entry may include a series of values, each of the values indicating an
availability of a different neighbor of the current video unit. The video coder may then
identify the availabilities of neighbors of the current video unit based on the identified entry
(210). The entry identified using the availabilities of the neighbors of the current video
unit’s parent video unit indicates the availabilities of the current video unit’s neighbors.

[0124] The following is an example LUT.

Availabilities Availabilities Availabilities Availabilities Availabilities
of parent video | of SubU0’s of SubU1’s of SubU2’s of SubU3’s
unit’s neighbors neighbors neighbors neighbors
neighbors

00000 00000 00010 11000 01110

00001 00000 00010 11001 01110

00010 00011 00010 11110 01110

00011 00011 00010 11111 01110

00100 00100 00010 11000 01110

00101 00100 00010 11001 01110

WO 2013/058910 PCT/US2012/055462

34
00110 00111 00010 11110 01110
00111 00111 00010 11111 01110
01000 11000 01110 11000 01110
01001 11000 01110 11001 01110
01010 11011 01110 11110 01110
01011 11011 01110 11111 01110
01100 11100 01110 11000 01110
01101 11100 01110 11001 01110
01110 11111 01110 11110 01110
01111 11111 01110 11111 01110
10000 00000 10010 11000 01110
10001 00000 10010 11001 01110
10010 00011 10010 11110 01110
10011 00011 10010 11111 01110
10100 00100 10010 11000 01110
10101 00100 10010 11001 01110
10110 00111 10010 11110 01110
10111 00111 10010 11111 01110
11000 11000 11110 11000 01110
11001 11000 11110 11001 01110
11010 11011 11110 11110 01110
11011 11011 11110 11111 01110
11100 11100 11110 11000 01110
11101 11100 11110 11001 01110
11110 11111 11110 11110 01110
11111 11111 11110 11111 01110
TABLE 1

[0125] The example LUT of Table 1 includes five columns and thirty-two rows. The first
column specifies possible availabilities of neighbors of the current video unit’s parent video
unit. The second column specifies the availabilities of the current video unit’s neighbors if
the current video unit is the top left sub-unit of the parent video unit. The third column
specifies the availabilities of the current video unit’s neighbors if the current video unit is
the top right sub-unit of the parent video unit. The fourth column specifies the
availabilities of the current video unit’s neighbors if the current video unit is the bottom left
sub-unit of the parent video unit. The fifth column specifies the availabilities of the current
video unit’s neighbors if the current video unit is the bottom right sub-unit of the parent

video unit. Thus, the LUT may include entries for other child video units of the current

WO 2013/058910 PCT/US2012/055462
35

video unit’s parent video unit, the entries for the other child video units indicating
availabilities of neighbors of the other child video units.

[0126] In the example LUT of Table 1, the availabilities of neighbors of video units are
represented as five-bit binary numbers. Each bit in the binary numbers corresponds to the
availability of a different neighbor. For instance, a first bit (i.c., the right-most bit) may
correspond to the below-left neighbor, the second bit may correspond to the left neighbor,
the third bit may correspond to the above-left neighbor, the fourth bit may correspond to the
above neighbor, and the fifth (i.e., left-most) bit may correspond to the above-right
neighbor. If a bit is 0, the corresponding neighbor is not available. If a bit is 1, the
corresponding neighbor is available.

[0127] To use the example LUT of Table 1 to determine the availabilities of the current
video unit’s neighbors, the video coder may first identify a row in the LUT that has a value
in the first column (i.e., parent’s neighbors) column that corresponds to the availabilities of
the neighbors of the current video unit’s parent video unit. Second, the video coder
identifies a column in the LUT based on whether the current video unit is the top-left, top-
right, bottom-left, or bottom-right sub-unit of the parent video unit. The video coder then
uses the value in the identified row and column of the LUT to determine the availabilities
of the current video unit’s neighbors.

[0128] In this way, given the neighbor availabilities of a video unit, the video coder may
immediately determine the sub-units of the video unit. As a result, based on the neighbor
availabilities of a treeblock, which can be derived by the treeblock’s horizontal and vertical
indices and the treeblock’s slice information, the neighbor availabilities of any video unit at
any depth within the quadtree of the treeblock can be determined recursively. That is, for
any individual video unit within a quadtree, the video unit’s neighbor availabilities can be
obtained recursively from the root. Thus, detection of a video unit’s neighbor availabilities
may only need two factors: the video unit’s position at the depth of a quadtree and the
neighbor availabilities of the parent video unit of the video unit. Also, the availabilities of
all five neighboring video units may be jointly determined by one single LUT operation.
This may be highly efficient.

[0129] After identifying availabilities of the current video unit’s neighbors in steps 204 or

210, the video coder returns the availabilities of the current video unit’s neighbors to a

WO 2013/058910 PCT/US2012/055462
36

caller of operation 200 (212). For example, if the current video unit is partitioned, the
caller of operation 200 may be another instance of operation 200. In this example, the
video coder may return the availabilities of the current video unit’s neighbors to the other
instance of operation 200. In another example, if the current video unit is a non-partitioned
video unit, the caller of operation 200 may be an intra prediction process. In this example,
the video coder may return the availabilities of the current video unit’s neighbors to the
intra prediction process.

[0130] The following pseudo C code shows an example recursive function for outputting
the availabilities of video units that neighbor a current video unit and each sub-unit within

the current video unit.

void HEVC NeighborAvail (nAvail)
{
if (TRUE == bSplitFlag) {
HEVC NeighborAvail (anAvailLut [nAvail
HEVC_ NeighborAvail ([
([
([

anAvailLut [nAvail ;

7

7

HEVC NeighborAvail (anAvailLut [nAvail
HEVC NeighborAvail (anAvailLut [nAvail

7

] [0])
1[11)
1[21)
] [3])
}

else {
//nAvail

}

In the pseudo-code above, the function “HEVC NeighborAvail” receives a parameter
“nAvail” that indicates the availabilities of video units that neighbor a current video unit.
The function “HEVC_NeighborAvail” then determines whether the current video unit is
split into sub-units. If so, the function “HEVC NeighborAvail” uses the availabilities of
the video units that neighbor the current video unit to look up in the LUT the availabilities
of video units that neighbor each sub-unit of the current video unit. The function
“HEVC_NeighborAvail” may recursively invoke itself using parameters that indicate the
availabilities of video units that neighbor the sub-units of the current video unit. If the
current video unit is not split into sub-units, the function “HEVC NeighborAvail” may
output the availabilities of the video units that neighbor the current video unit. In this way,
the function “HEVC NeighborAvail” may output the availabilities of video units that

neighbor the current video unit and each sub-unit within the current video unit.

WO 2013/058910 PCT/US2012/055462

37

[0131] Although operation 200 is presented as a recursive operation, the video coder may
perform a non-recursive operation that uses a LUT and the availabilities a current video
unit’s parent to determine the availabilities of the current video unit’s neighbors. In other
words, the video coder may determine the availabilities of neighbors of the parent video
unit at least in part by performing a non-recursive operation to determine the availabilities
of neighbors of ancestor video units of the current video unit. The non-recursive operation
may have similar efficiency to the recursive operation described above. The following is
example code implementing a non-recursive operation that identifies, based on
availabilities of video units that neighbor a parent video unit of the current video unit, an
entry in a LUT, the identified entry indicating an availability of a neighbor of the current

video unit.

#include <stdlib.h>
#include <stdio.h>

#ifndef FAILURE

#define FAILURE 0

#endif

#ifndef SUCCESS

#define SUCCESS 1

#endif

#define MAX DEPTH 16

typedef signed char Words8;
typedef unsigned char UWords8;
typedef signed short int Wordlé;
typedef unsigned short UWordlé;
typedef signed int Word32;
typedef unsigned int UWord32;
typedef long long Worde4;
typedef unsigned long long UWordé4;

UWord8 anNeighborAvailabilityLut [32] [4] =

//bit 0; sw; bit 1; w; bit 2: nw; bit 3: n; bit 4: ne

{ 0, 2, 24, 141,
0, 2, 25, 14},

{ 3, 2, 30, 14},
{ 3, 2, 31, 141,
4, 2, 24, 14},

{ 4, 2, 25, 14},
{ 7, 2, 30, 141,
7, 2, 31, 14},

{ 24, 14, 24, 14},
{ 24, 14, 25, 141,
27, 14, 30, 14},

WO 2013/058910 PCT/US2012/055462

}i

38

{ 27, 14, 31, 14},

{ 28, 14, 24, 14},

{ 28, 14, 25, 141,

31, 14, 30, 14},

{ 31, 14, 31, 14},

{ 0, 18, 24, 141,

0, 18, 25, 14},

{ 3, 18, 30, 14},

{ 3, 18, 31, 141,

4, 18, 24, 14},

{ 4, 18, 25, 14},

{ 7, 18, 30, 141,

7, 18, 31, 14},

{ 24, 30, 24, 14},

{ 24, 30, 25, 141,

27, 30, 30, 14},

{ 27, 30, 31, 14},

{ 28, 30, 24, 141,

28, 30, 25, 14},

{ 31, 30, 30, 141,
31, 30, 31, 14

UWord8 HEVC ProcessQuadTree (UWordlé nNumUnit, UWord8 *pUnitSizelInBlk,

UWord8 nNeighborAvailability,

UWord8 nMaxSizeInBlk)

{

UWord32 i;

UWord8 nDepth, nUnitSizeInBlk;

UWord8 anSubCu[MAX DEPTH] ;

UWord8 anNeighborAvailability[MAX DEPTH] ;

nUnitSizeInBlk = nMaxSizeInBlk;

nDepth = 0;

anSubCu [nDepth] = 0;

anNeighborAvailability [nDepth] = nNeighborAvailability;

for (i=0; i<nNumUnit; i++) {
while (nUnitSizeInBlk > pUnitSizeInBlk[i]) {
nUnitSizeInBlk >>= 1;
nDepth++;
anSubCu [nDepth] = 0;
anNeighborAvailability [nDepth] =
anNeighborAvailabilityLut [anNeighborAvailability [nDepth-

//derive neighbor availability for the current unit
printf ("Unit #%02d: Size = %02d, Neighbor Availability = %02d\n",
i, pUnitSizeInBlk[i], anNeighborAvailability [nDepth]) ;

anSubCu [nDepth] ++;

while (anSubCu[nDepth] >= 4) {
nUnitSizeInBlk <<= 1;
nDepth--;
anSubCu [nDepth] ++;

anNeighborAvailability [nDepth] =
anNeighborAvailabilityLut [anNeighborAvailability [nDepth-

111 [anSubCu [nDepthl] ;

}

WO 2013/058910 PCT/US2012/055462

39

main ()

{

UWord8 nMaxSizeInBlk;

Oordle nNnDRit;

UWord8 aUnitSizeInBlk([] = {2, 2, 2, 2, 4, 4, 2, 2, 2,1, 1, 1, 1};

UWord8 nNeighborAvailability;

nMaxSizeInBlk = l<< (nMaxDepth-1);

nNumUnit = sizeof (aUnitSizeInBlk) ;

nNeighborAvailability = 5;//the availability of the current LCU

HEVC ProcessQuadTree (nNumUnit, aUnitSizeInBlk, nNeighborAvailability,
nMaxSizeInBlk) ;
[0132] In the code provided above, an LUT “anNeighborAvailabilityLut” is initialized. A
function “main ()” invokes a function “HEVC_ ProcessQuadTree ().” The code above
assumes that the availability for the current LCU is 5 (i.e., 00101). In other examples,
values can be used for availability of the current LCU.
[0133] The function “HEVC ProcessQuadTree ()” prints the availabilities of each CU
within the current LCU. The function “HEVC ProcessQuadTree () includes a “for” loop.
The “for” loop determines the availabilities of video units that neighbor each video unit in
the current LCU. The “for” loop determines the availabilities according to a depth-first
search pattern.
[0134] During each iteration of the “for” loop, the video coder may perform a first “while”
loop. The first “while” loop increases a current depth in order to move analysis to a current
video unit that is one level above a maximum depth of the quadtree for the current LCU.
As the first “while” loop moves analysis down the quadtree, the first “while” loop uses the
LUT to determine the availabilities of video units that neighbor the top-left sub-unit. The
“for” loop then iterates through each sub-unit of the current video unit, using the LUT to
determine the availabilities of video units that neighbor the sub-units of the current video
unit.
[0135] After determining that availabilities of the video units that neighbor each of the sub-
units of the current video unit, a second “while” loop in the “for” loop decreases the current
depth until a depth is reached at which not all CUs at the depth have been analyzed. The
“for” loop then determines the availabilities of video units that neighbor a next video unit at

the current level. The “for” loop may then repeat this operation with regard to the next

video unit to determine the availabilities of video units that neighbor sub-units of the next

WO 2013/058910 PCT/US2012/055462
40

video unit. The “for” loop may continue in this manner until the availabilities of video
units that neighbor each video unit in the current LCU have been determined. The code
provided above may be modified to only identify the availabilities of video units that
neighbor a particular video unit.
[0136] FIG. 10 is a conceptual diagram that illustrates the relationship between a given
video unit 250 and neighboring video units. FIG. 11 illustrates the relationship of four sub-
units 252A, 252B, 252C, and 252D (collectively, “sub-units 252”°) of video unit 250 to the
neighboring video units of video unit 250.
[0137] The availabilities of neighbors of sub-units 252 may be summarized as follows.
The neighbor availabilities of sub-unit 252A can be related to those of video unit 250 as
follows.
BelowLeft(SubUO0) = Left(U)

e Left(SubU0) = Left(U)

e AboveLeft(SubU0) = AboveLeft(U)

e Above(SubU0) = Above(U)

e AboveRight(SubU0) = Above(U)
In the notation above, “BelowLeft(SubUO0)” indicates the availability of the below-left

neighbor of sub-unit 252A. “Left(U)” indicates the availability of the left neighbor of
video unit 250. “Left(SubUO0)” indicates the availability of the left neighbor of sub-unit
252A. “AboveLeft(SubU0)” indicates the availability of the above-left neighbor of sub-
unit 252A. “AboveLeft(U)” indicates the availability of the above-left neighbor of video
unit 250. “Above(SubU0)” indicates the availability of the above neighbor of sub-unit
252A. “Above(U)” indicates the availability of the above neighbor of video unit 250.
“AboveRight(SubUO0)” indicates the availability of the above-right neighbor of sub-unit
252A. FIG. 12 is a conceptual diagram that illustrates the neighbors of sub-unit 252A.
[0138] The neighbor availabilities of 252B can be related to those of video unit 250 as
follows.

BelowLeft(SubUl) = FALSE

Left(SubU1) = TRUE

AboveLeft(SubU1) = Above(U)

Above(SubU1) = Above(U)

WO 2013/058910 PCT/US2012/055462
41

e AboveRight(SubU1) = AboveRight(U)

“FALSE” indicates that the neighboring video unit is not available. “TRUE” indicates that
the neighboring video unit is available. In the notation above, “BelowLeft(SubU1)”
indicates the availability of the below-left neighbor of sub-unit 252B. “Left(SubU1)”
indicates the availability of the left neighbor of sub-unit 252B. “AboveLeft(SubU1)”
indicates the availability of the above-left neighbor of sub-unit 252B. “Above(SubU1)”
indicates the availability of the above neighbor of sub-unit 252B. “Above(U)” indicates the
availability of the above neighbor of video unit 250. “AboveRight(SubU1)” indicates the
availability of the above-right neighbor of sub-unit 252B. “AboveRight(U)” indicates the
availability of the above-right neighbor of video unit 250. FIG. 13 is a conceptual diagram
that illustrates the neighbors of sub-unit 252B.

[0139] The neighbor availabilities of sub-unit 252C may be related to those of video unit
250 as follows.

e BelowLeft(SubU2) = BelowLeft(U)

o Left(SubU2) = Left(U)

e AboveLeft(SubU2) = Left(U)

e Above(SubU2)=TRUE

e AboveRight(SubU2) = TRUE
In the notation above, “BelowLeft(SubU2) indicates the availability of the below-left
neighbor of sub-unit 252C. “BelowLeft(U)” indicates the availability of the below-left
neighbor of video unit 250. “Left(SubU2)” indicates the availability of the left neighbor of
sub-unit 252C. “Left(U)” indicates the availability of the left neighbor of video unit 250.
“AboveLeft(SubU2)” indicates the availability of the above-left neighbor of sub-unit 252C.
“Above(SubU2)” indicates the availability of the above neighbor of sub-unit 252C.
“AboveRight(SubU2)” indicates the availability of the above-right neighbor of sub-unit
252C. FIG. 14 is a conceptual diagram that illustrates the neighbors of sub-unit 252C.

[0140] The neighbor availabilities of sub-unit 252D can be related to those of video unit
250 as follows.

e BelowLeft(SubU3) = FALSE
o Left(SubU3)=TRUE
e AboveLeft(SubU3) = TRUE

WO 2013/058910 PCT/US2012/055462
42

e Above(SubU3)=TRUE

e AboveRight(SubU3) = FALSE
“BelowLeft(SubU3) indicates the availability of the below-left neighbor of sub-unit 252D.
“Left(SubU3)” indicates the availability of the left neighbor of sub-unit 252D.
“AboveLeft(SubU3)” indicates the availability of the above-left neighbor of sub-unit 252D.
“Above(SubU3)” indicates the availability of the above neighbor of sub-unit 252D.
“AboveRight(SubU3)” indicates the availability of the above-right neighbor of sub-unit
252D. FIG. 15 is a conceptual diagram that illustrates the neighbors of sub-unit 252D.
[0141] FIG. 16 is a flowchart that illustrates another example operation 300 to determine
the availabilities of neighbors of a current video unit. The current video unit may be a
coding unit or a transform unit. The following description explains that a video coder
performs operation 300. As described above, a video coder may be a video encoder, such
as video encoder 20, or a video decoder, such as video decoder 30.
[0142] After operation 300 starts, a video coder may partition the current LCU into one or
more base video units (302). The current LCU is the LCU that contains the current video
unit. The base video units of the current LCU are equally sized. The base video units have
the smallest allowable coding unit or transform unit size. For example, if the current LCU
is 8x8 and the smallest allowed coding unit size is 4x4, the video coder may partition the
current LCU into four 4x4 base video units.
[0143] Next, the video coder identifies a target video unit of the current video unit (304).
The video coder may identify the target video unit based on which neighbor of the current
video unit is the neighbor of interest. The video coder is attempting to determine the
availability of the neighbor of interest. If the video coder is determining the availability of
an above neighbor of the current video unit, the video coder identifies a first (i.c., upper
left) base video unit of the current video unit as the target video unit. If the video coder is
determining the availability of a left neighbor of the current video unit, the video coder
identifies the first base video unit of the current video unit as the target video unit. If the
video coder is determining the availability of the above-left neighbor of the current video
unit, the video coder identifies the first base video unit as the target video unit. If the video
coder is determining the availability of the above-right neighbor of the current video unit,

the video coder identifies the top right base video unit of the current video unit as the target

WO 2013/058910 PCT/US2012/055462
43

video unit. If the video coder is determining the availability of the below-left neighbor of
the current video unit, the video coder identifies the bottom left base video unit of the
current video unit as the target video unit.
[0144] FIG. 17 is a conceptual diagram of an LCU 340 that has been partitioned into sixty-
four base video units. In the example of FIG. 17, LCU 340 may be 32x32 and the base
video units may be 4x4. The shaded base video units in the top left corner of LCU 340
indicate the base video units in the current video unit. In the example of FIG. 17, the
current video unit may be a 16x16 CU or TU. If the neighbor of interest is the above,
above-left, or left neighbor of the current video unit, the target video unit is the base video
unit labeled “1.” If the neighbor of interest is the above-right neighbor of the current video
unit, the target video unit is the base video unit labeled “2.” If the neighbor of interest is
the below-left neighbor of the current video unit, the target video unit is the base video unit
labeled “3.”
[0145] Continuing reference is now made to the example of FIG. 16. After identifying the
target video unit, the video coder may determine an index of the target video unit (306). In
some examples, the video coder may determine a sequence of the base video units of the
LCU according to a raster scan order. The video coder may then determine the index of the
target video unit based on the sequencing of the base video units according to the raster
scan order. If the target video unit is the first base video unit of the target video unit, the
video coder may determine the raster scan index of the target video unit based on the
position of the current video unit within the current LCU. For example, in some
circumstances, the video coder may determine the raster scan index of the target video unit
by multiplying the raster scan index of the current video unit by four. If the target video
unit is the top right base video unit of the current video unit, the video coder may determine
the raster scan index of the target video unit as follows:

Index of first base video unit of current video unit +

(width of current video unit in pixels — 1) / width of base video units

If the target video unit is the bottom left base video unit of the current video unit, the video
coder may determine the raster scan index of the target video unit as follows:

Index of first base video unit of current video unit +

(LCU width in pixels / base video unit width) *

WO 2013/058910 PCT/US2012/055462
44

(current video unit height in pixels — 1) / (base video unit width)
[0146] If the neighbor of interest is the below-left neighbor of the current video unit
(“YES” of 308), the video coder may identify, based on the index of the target video unit,
an entry in a LUT for below-left neighbors (310). FIG. 18 is a conceptual diagram that
illustrates an example LUT for below-left neighbors. If the neighbor of interest is not the
below-left neighbor of the current video unit (“NO” of 308) but the neighbor of interest is
the left neighbor of the current video unit (“YES” of 312), the video coder may identify,
based on the index of the target video unit, an entry in an LUT for left neighbors (314).
FIG. 19 is a conceptual diagram that illustrates an example LUT for left neighbors. If the
neighbor of interest is not the left neighbor of the current video unit (“NO” of 312) but the
neighbor of interest is the above-left neighbor of the current video unit (“YES” of 316), the
video coder may identify, based on the index of the target video unit, an entry in an LUT
for above-left neighbors (318). FIG. 20 is a conceptual diagram that illustrates an example
LUT for above-left neighbors.
[0147] If the neighbor of interest is not the above-left neighbor of the current video unit
(“NO” of 316) but the neighbor of interest is the above neighbor of the current video unit
(“YES” of 320), the video coder may identify, based on the index of the target video unit,
an entry in an LUT for above neighbors (322). FIG. 21 is a conceptual diagram that
illustrates an example LUT for above neighbors. If the neighbor of interest is not the above
neighbor of the current video unit (“NO” of 320) but the neighbor of interest is the above-
right neighbor of the current video unit (“YES” of 324), the video coder may identify,
based on the index of the target video unit, an entry in an LUT for above-right neighbors
(326). FIG. 22 is a conceptual diagram that illustrates an example LUT for above-right
neighbors. After identifying an entry in one of the LUTs, the video coder may use the
identified entry to determine the availability of the neighbor of interest (328).
[0148] The video coder may identify an entry in the LUTs of FIGS. 18-22 by identifying an
entry in the LUTs having a position that corresponds to the position of the target video unit.
For example, if the target video unit is at coordinates (4,3) of the current LCU, the video
coder may identify the entry at coordinates (4,3) of one of the LUTs.
[0149] In FIGS. 18-22, the LCU size is assumed to be 32x32 and the base video unit size is

assumed to be 4x4. In examples with differently sized LCUs and/or base video units, video

WO 2013/058910 PCT/US2012/055462
45

coder may use LUTs different than those shown in FIGS. 18-22. The LCU may only need
to be generated once per LCU size. In FIGS. 18-22, each cell corresponds to an entry of
the corresponding LUT. If an entry contains the number “1”” and the video coder identifies
the entry, the neighbor of interest is available. If an entry contains the number “0” and the
video coder identifies the entry, the neighbor of interest is not available. If an entry
contains the letter “A” and the video coder identifies the entry, the neighbor of interest is
available if the neighboring LCU above the current LCU is in the same slice as the current
LCU. The current LCU is the LCU that contains the current video unit. If an entry
contains the letter “L” and the video coder identifies the entry, the neighbor of interest is
available if the neighboring LCU to the left of the current LCU is in the same slice as the
current LCU. If an entry contains the letters “AL” and the video coder identifies the entry,
the neighbor of interest is available if the neighboring LCU to the above-left of the current
LCU is in the same slice as the current LCU. If an entry contains the letters “AR” and the
video coder identifies the entry, the neighbor of interest is available if the neighboring LCU
to the above-right of the current LCU is in the same slice as the current LCU.

[0150] FIG. 23 is a flowchart that illustrates another example operation 350 to determine
the availabilities of neighbors of a current video unit. The current video unit may be a
coding unit or a transform unit. The following description explains that a video coder
performs operation 350. As described above, a video coder may be a video encoder, such
as video encoder 20, or a video decoder, such as video decoder 30.

[0151] As described elsewhere in this disclosure, a video coder, such as video encoder 20
and video decoder 30, may determine whether neighboring video units are available for
various reasons. The video coder may perform operation 350 for any of such reasons. For
example, if the video coder is a video encoder, the video coder may perform operation 350
when determining motion information for a PU of a CU. In this example, the video coder
may determine the availabilities of neighboring CUs and signal the motion information of
the PU based on the motion information of a PU of one of the available neighboring CUs.
In another example, if the video coder is a video decoder, the video coder may perform
operation 350 when performing an intra prediction operation for a CU. In this example, the

video coder may determine the availabilities of neighboring CUs and use default or

WO 2013/058910 PCT/US2012/055462

46

synthesized pixel values if an intra prediction mode of the CU entails the use of pixel
values of an unavailable CU.

[0152] After a video coder starts operation 350, the video coder may partition the current
LCU into one or more base video units (352). The video coder may then identify a target
video unit of the current video unit (354). The video coder may partition the current LCU
and identify the target video unit in the manner described above with regard to FIG. 16.
[0153] After identifying the target video unit, the video coder may determine an index of
the target video unit (356). In some examples, the video coder may determine a raster scan
index of the target video unit as described above with regard to FIG. 16. In other examples,
the video coder may determine a z-scan index of the target video unit.

[0154] After identifying the index of the target video unit, the video coder identifies, based
on the index of the target video unit, an entry in an LUT (358). The LUT may include a
column for raster scan indexes of base video units, a column for z-scan indexes of base
video units, a column for the availability of base video units’ below-left neighbors, a
column for the availabilities of base video units’ left neighbors, a column for the
availabilities of base video units’ above-left neighbors, a column for the availabilities of
base video units’ above neighbors, and a column for the availabilities of base video units’
above-right neighbors.

[0155] Table 2 illustrates an example LUT.

Raster | Z Below- Left Above-Left Above Above-Right
scan | scan Left Neighbor Neighbor Neighbor Neighbor

Index | Index | Neighbor
0 0 bLeftLCU | bLeftLCU | bAboveLeftLCU | bAboveLCU bAboveLCU
1 1 False True bAboveLCU bAboveLCU bAboveLCU
2 4 True True bAboveLCU bAboveLCU bAboveLCU
3 5 False True bAboveLCU bAboveLCU bAboveLCU
4 16 True True bAboveLCU bAboveLCU bAboveLCU
5 17 False True bAboveLCU bAboveLCU bAboveLCU
6 20 True True bAboveLCU bAboveLCU bAboveLCU

WO 2013/058910 PCT/US2012/055462
47

7 21 False True bAboveLCU bAboveLCU bAboveRightLCU
8 2 bLeftLCU | bLeftLCU bLeftLCU True True
9 3 False True True True False
10 6 False True True True True
11 7 False True True True False
12 18 True True True True True
13 19 False True True True False
14 22 False True True True True
15 23 False True True True False
16 8 Left Leu | bLeftLCU bLeftLCU True True
17 9 False True True True True
18 12 True True True True True
19 13 False True True True False
20 24 True True True True True
21 25 False True True True True
22 28 True True True True True
23 29 False True True True False
24 10 bLeftLCU | bLeftLCU bLeftLCU True True
25 11 False True True True False
26 14 False True True True True
27 15 False True True True False
28 26 False True True True True
29 27 False True True True False
30 30 False True True True True
31 31 False True True True False
32 32 bLeftLCU | bLeftLCU bLeftLCU True True
33 33 False True True True True

WO 2013/058910 PCT/US2012/055462
48
34 36 True True True True True
35 37 False True True True True
36 48 True True True True True
37 49 False True True True True
38 52 True True True True True
39 53 False True True True False
40 34 bLeftLCU | bLeftLCU bLeftLCU True True
41 35 False True True True False
42 38 False True True True True
43 39 False True True True False
44 50 True True True True True
45 51 False True True True False
46 54 False True True True True
47 55 False True True True False
48 40 bLeftLCU | bLeftLCU bLeftLCU True True
49 41 False True True True True
50 44 True True True True True
51 45 False True True True False
52 56 True True True True True
53 57 False True True True True
54 60 True True True True True
55 61 False True True True False
56 42 False bLeftLCU bLeftLCU True True
57 43 False True True True False
58 46 False True True True True
59 47 False True True True False
60 58 False True True True True

WO 2013/058910 PCT/US2012/055462

49
61 59 False True True True False
62 62 False True True True True
63 63 False True True True False
TABLE 2

[0156] The video coder may store different LUTs for differently sized LCUs and base
video units. For example, the video coder may use the example LUT of Table 2 when the
LCUs are 32x32 and the base video units are 4x4. In other examples, the video coder may
use a different LUT when the LCUs are 64x64 and the base video units are 4x4. In yet
another example, the video coder may use yet another LUT when the LCUs are 32x32 and
the base video units are 8x8.

[0157] In the example LUT of Table 2, the value “bAboveLCU” evaluates to “true” if there
is an LCU above the current LCU in the same slice as the current LCU, and “false”
otherwise. The value “bAboveLeftLCU” evaluates to “true” if there is an LCU to the
above-left of the current LCU in the same slice as the current LCU, and “false” otherwise.
The value “bAboveRightLCU” evaluates to “true” if there is an LCU to the above-right of
the current LCU in the same slice as the current LCU, and “false” otherwise. The value
“bLeftLCU” evaluates to “true” if there is an LCU to the left of the current LCU in the
same slice as the current LCU, and “false” otherwise. The video coder may determine
whether a neighboring LCU is in the same slice as the current LCU based on the horizontal
and vertical indices of the neighboring LCU and the current LCU.

[0158] In the example of FIG. 23, if the identified entry indicates that the neighbor of
interest is available (“YES” of 360), the video coder may determine that the neighbor of
interest is available (362). If the identified entry does not indicate that the neighbor of
interest is available (“NO” of 360), the video coder may determine whether the identified
entry instructs the video coder to check the left LCU (364). For instance, the video coder
may determine whether the identified entry indicates “bLeftLCU” for the neighbor of
interest. If the identified entry instructs the video coder to check the left LCU (“YES” of
364), the video coder may determine whether the LCU that neighbors the current LCU to
the left is within the same slice as the current LCU (366). If the LCU that neighbors the
current LCU to the left is within the same slice as the current LCU (“YES” of 366), the

WO 2013/058910 PCT/US2012/055462
50

video coder determines that the neighbor of interest is available (368). Otherwise, if the
LCU that neighbors the current LCU to the left is not within the same slice as the current
LCU (“NO” of 366), the video coder may determine that the neighbor of interest is not
available (370).

[0159] If the identified entry does not instruct the video coder to check the left LCU (“NO”
of 364), the video coder may determine whether the identified entry instructs the video
coder to check the above-left LCU (372). For instance, the video coder may determine
whether the identified entry indicates “bAboveLeftLCU” for the neighbor of interest. If the
identified entry instructs the video coder to check the above-left LCU (“YES” of 372), the
video coder may determine whether the LCU to the above-left of the current LCU is within
the same slice as the current LCU (374). If the LCU to the above-left of the current LCU is
within the same slice as the current LCU (“YES” of 374), the video coder may determine
that the neighbor of interest is available (376). Otherwise, if the LCU to the above-left of
the current LCU is not within the same slice as the current LCU (“NO” of 374), the video
coder may determine that the neighbor of interest is not available (370).

[0160] If the identified entry does not instruct the video coder to check the above-left LCU
(“NO” of 372), the video coder may determine whether the identified entry instructs the
video coder to check the above-right LCU (378). For instance, the video coder may
determine whether the identified entry indicates “bAboveRightLCU” for the neighbor of
interest. If the identified entry instructs the video coder to check the above-right LCU
(“YES” of 378), the video coder may determine whether the LCU to the above-right of the
current LCU is within the same slice as the current LCU (380). If the LCU to the above-
right of the current LCU is within the same slice as the current LCU (“YES” of 380), the
video coder may determine that the neighbor of interest is available (382). Otherwise, if
the identified entry does not instruct the video coder to check the above-right LCU (“NO”
of 378) or the LCU to the above-right of the current LCU is not within the same slice as the
current LCU (“NO” of 380), the video coder may determine that the neighbor of interest is
not available (370).

[0161] In some instances, the example operations illustrated in FIGS. 16 and 23 may be
optimized implementations of the following logic. If the neighbor of interest is the above

neighbor of a target video unit and if the target video unit is on the top row of the current

WO 2013/058910 PCT/US2012/055462
51

LCU, the neighbor of interest is available if the neighboring LCU above the current LCU is
within the same slice as the current LCU. The neighbor of interest is not available if the
neighboring LCU above the current LCU is not within the same slice as the current LCU.
The neighbor of interest is available if the target video unit is not on top row of the current
LCU.

[0162] If the neighbor of interest is the left neighbor of the target video unit and the target
video unit is on the left column of the current LCU, the neighbor of interest is available if
the neighboring LCU to left of the current LCU is within the same slice as the current LCU.
The neighbor of interest is not available if the neighboring LCU to the left of the current
LCU is not within the same slice as the current LCU. The neighbor of interest is available
if the target video unit is not in the left column of the current LCU.

[0163] If the neighbor of interest is the above-left neighbor of the target video unit, the
target video unit includes the top left pixel of the current LCU, and the LCU to the above-
left of the current LCU is within the same slice as the current LCU, the neighbor of interest
is available. Otherwise, if the LCU to the above-left of the current LCU is not within the
same slice as the current LCU, the neighbor of interest is not available. If the target video
unit is on the top row of the current LCU (but not the top left video unit of the LCU), the
neighbor of interest is available if the LCU above the current LCU is within the same slice
as the current LCU. If the target video unit is on the top row of the current LCU, the
neighbor of interest is not available if the LCU above the current LCU is not within the
same slice as the current LCU. If the neighbor of interest is in the left column of the
current LCU (but not the top left), the neighbor of interest is available if the LCU to the left
of the current LCU is within the same slice as the current LCU. If the neighbor of interest
is in the left column of the current LCU (but not the top left), the neighbor of interest is not
available if the LCU to the left of the current LCU is not within the same slice as the
current LCU. Otherwise, the neighbor of interest is available.

[0164] If the neighbor of interest is the below-left neighbor of the target video unit and the
target video unit includes the bottom-left pixel of the current LCU, the neighbor of interest
is not available. If the target video unit is on the bottom row of the current LCU, but not
does not include the bottom-left pixel of the current LCU, the neighbor of interest is not

available. If the target video unit is on the left column of the current LCU (but not at the

WO 2013/058910 PCT/US2012/055462
52

bottom left), the neighbor of interest is available if the LCU to the left of the current LCU is
within the same slice as the current LCU. If the target video unit is on the left column of
the current LCU (but not at the bottom left), the neighbor of interest is not available if the
LCU to the left of the current LCU is not within the same slice as the current LCU. As
described above, the video coder may code the video units within the current LCU
according to a z-scan order. Thus, the video coder may code video units having higher z-
scan indexes after coding video units having lower z-scan indexes. Accordingly, if the
target video unit is not on the bottom row or the left column of the current LCU, the
neighbor of interest is available if the z-scan index of the neighbor of interest is less than
the z-scan index of the target video unit. The neighbor of interest is not available if the z-
scan index of the neighbor of interest is not less (i.e., greater) than the z-scan index of the
target video unit.

[0165] If the neighbor of interest is the above-right neighbor of the target video unit and the
target video unit is in the top right corner of the current LCU, the neighbor of interest is
available if the LCU to the above right of the current LCU is within the same slice as the
current LCU. The neighbor of interest is not available if the LCU to the above right of the
current LCU is not within the same slice as the current LCU. If the target video unit is in
the top row of the current LCU (but is not the top right base video unit of the current LCU),
the neighbor of interest is available if the LCU above the current LCU is within the same
slice as the current LCU. If the target video unit is in the top row of the current LCU (but is
not the top right base video unit of the current LCU), the neighbor of interest is not
available if the LCU above the current LCU is not within the same slice as the current
LCU. The neighbor of interest is not available if the target video unit is in the right column
of the current LCU (but not the top right base video unit of the current LCU). Otherwise, if
the target video unit is not in the top row or the right column, the neighbor of interest is
available if the z-scan index of the neighbor of interest is less than the z-scan index of the
target video unit. The neighbor of interest is not available if the z-scan index of the
neighbor of interest is not less than the z-scan index of the target video unit.

[0166] It is to be recognized that depending on the embodiment, certain acts or events of
any of the methods described herein can be performed in a different sequence, may be

added, merged, or left out altogether (e.g., not all described acts or events are necessary for

WO 2013/058910 PCT/US2012/055462
53

the practice of the method). Moreover, in certain embodiments, acts or events may be
performed concurrently, e.g., through multi-threaded processing, interrupt processing, or
multiple processors, rather than sequentially.

[0167] Those of skill will recognize that the various illustrative logical blocks, modules,
circuits, and algorithm steps described in connection with the methods, systems, and
apparatuses disclosed herein may be implemented as electronic hardware, computer
software executed by a processor, or combinations of both. To clearly illustrate this
interchangeability of hardware and software, various illustrative components, blocks,
modules, circuits, and steps have been described above generally in terms of their
functionality. Whether such functionality is implemented as hardware or software depends
upon the particular application and design constraints imposed on the overall system.
Skilled artisans may implement the described functionality in varying ways for each
particular application, but such implementation decisions should not be interpreted as
causing a departure from the scope of the present invention.

[0168] Moreover, embodiments disclosed herein may be implemented or performed with
an electronic device or circuit such as a general purpose processor, a digital signal
processor (DSP), an application specific integrated circuit (ASIC), a field programmable
gate array (FPGA) or other programmable logic device, discrete gate or transistor logic,
discrete hardware components, or any combination thereof designed to perform the
functions described herein. A general purpose processor may be a microprocessor, but in
the alternative, the processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be implemented as a combination
of computing devices, ¢.g., a combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more microprocessors in conjunction with a DSP core, or any other
such configuration.

[0169] The steps of a method or algorithm described in connection with the embodiments
disclosed herein may be embodied directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module may reside in RAM memory,
flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a
removable disk, a CD-ROM, or any other form of storage medium known in the art. An

exemplary storage medium is coupled to the processor such the processor can read

WO 2013/058910 PCT/US2012/055462

54

information from, and write information to, the storage medium. In the alternative, the
storage medium may be integral to the processor. The processor and the storage medium
may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the

processor and the storage medium may reside as discrete components in a user terminal.

WO 2013/058910 PCT/US2012/055462
55

WHAT IS CLAIMED IS:

1. A method for coding video data, the method comprising:

identifying, based on availabilities of video units that neighbor a parent video unit
of a current video unit, an entry in a lookup table, the current video unit being within a
picture of the video data, the identified entry indicating an availability of a video unit that
neighbors the current video unit; and

performing a coding operation on the current video unit based on whether the video

unit that neighbors the current video unit is available.

2. The method of claim 1, wherein performing the coding operation on the current
video unit comprises performing the coding operation on the current video unit based on

data associated with the video unit that neighbors the current video unit.

3. The method of claim 2, wherein using the data associated with the neighbor to
perform the coding operation on the current video unit comprises:

selecting, based on the data associated with the video unit that neighbors the current
video unit, a context model; and

performing, based on the selected context model, an entropy coding operation on

data associated with the current video unit.

4. The method of claim 1, wherein the video unit that neighbors the current video unit

is associated with a different level of a quadtree than the current video unit.

5. The method of claim 1, wherein the current video unit is a coding unit or a

transform unit.

6. The method of claim 1, further comprising:
determining whether the current video unit is a treeblock; and
after determining that the current video unit is not a treeblock, determining the

availabilities of the video units that neighbor the parent video unit.

WO 2013/058910 PCT/US2012/055462
56

7. The method of claim 6, further comprising, after determining that the current video
unit is a treeblock, determining the availability of the video unit that neighbors the current

video unit based on a position of the current video unit within the picture.

8. The method of claim 6, wherein determining the availabilities of the video units that
neighbor the parent video unit comprises recursively performing operations to determine
the availabilities of the video units that neighbor ancestor video units of the current video

unit.

9. The method of claim 6, wherein determining the availabilities of the video units that
neighbor the parent video unit comprises performing a non-recursive operation to
determine the availabilities of the video units that neighbor the ancestor video units of the

current video unit.

10. The method of claim 1, wherein the identified entry comprises a series of values, the

values indicating availabilities of different video units that neighbor the current video unit.

11. The method of claim 1, wherein the lookup table includes entries for multiple

combinations of availabilities of the video units that neighbor the parent video unit.

12. The method of claim 11, wherein the lookup table includes entries for other child
video units of the parent video unit, the entries for the other child video units indicating

availabilities of video units that neighbor the other child video units.

13. The method of claim 1, wherein the coding operation is part of an encoding

operation.

WO 2013/058910 PCT/US2012/055462

57

14, The method of claim 13,
wherein performing the coding operation on the current video unit comprises
generating prediction data for the current video unit based on one or more pixel values of
the video unit that neighbors the current video unit; and
wherein the method further comprises:
generating, based on the prediction data for the current video unit, residual
data for the current video unit;
applying one or more transforms to the residual data to generate one or more
transform coefficient blocks; and
outputting a bitstream that contains encoded data that represent the

transform coefficient blocks.

15. The method of claim 1, wherein the coding operation is part of a decoding

operation.

16. The method of claim 15,
wherein performing the coding operation on the current video unit comprises
generating prediction data for the current video unit based on one or more pixel values of
the video unit that neighbors the current video unit; and
wherein the method further comprises:
decoding residual data for the current video unit;
reconstructing pixel values for the current video unit based on the prediction
data for the current video unit and the residual data for the current video unit; and
outputting the picture, the picture including the pixel values for the current

video unit.

WO 2013/058910 PCT/US2012/055462
58

17. A video coding apparatus comprising one or more processors configured to:
identify, based on availabilities of video units that neighbor a parent video unit of a
current video unit, an entry in a lookup table, the current video unit being within a picture,
the identified entry indicating an availability of a video unit that neighbors the current video
unit; and
perform a coding operation on the current video unit based on whether the video

unit that neighbors the current video unit is available.

18. The video coding apparatus of claim 17, wherein the one or more processors are
configured to perform the coding operation on the current video unit based on data

associated with the video unit that neighbors the current video unit.

19. The video coding apparatus of claim 18, wherein the one or more processors are
configured to:

select, based on the data associated with the video unit that neighbors the current
video unit, a context model; and

perform, based on the selected context model, an entropy coding operation on data

associated with the current video unit.

20. The video coding apparatus of claim 17, wherein the video unit that neighbors the
current video unit is associated with a different level of a quadtree than the current video

unit.

21. The video coding apparatus of claim 17, wherein the current video unit is a coding

video unit.

22. The video coding apparatus of claim 17, wherein the one or more processors are
configured to:

determine whether the current video unit is a treeblock; and

after determining that the current video unit is not a treeblock, determine the

availabilities of the video units that neighbor the parent video unit.

WO 2013/058910 PCT/US2012/055462

59

23. The video coding apparatus of claim 22, wherein the one or more processors are
configured to determine, after determining that the current video unit is a treeblock, the
availability of the video unit that neighbors the current video unit based on a position of the

current video unit within the picture.

24. The video coding apparatus of claim 22, wherein the one or more processors are
configured to recursively perform operations to determine the availabilities of video units

that neighbor ancestor video units of the current video unit.

25. The video coding apparatus of claim 22, wherein the one or more processors are
configured to perform a non-recursive operation to determine the availabilities of the video

units that neighbor the ancestor video units of the current video unit.

26. The video coding apparatus of claim 17, wherein the entry comprises a series of
values, the values indicating availabilities of different video units that neighbor the current

video unit.

27. The video coding apparatus of claim 17, wherein the lookup table includes entries
for multiple combinations of availabilities of the video units that neighbor the parent video

unit.

28. The video coding apparatus of claim 27, wherein the lookup table includes entries
for other child video units of the parent video unit, the entries for the other child video units

indicating availabilities of video units that neighbor the other child video units.

29. The video coding apparatus of claim 17, wherein the coding operation is part of an

encoding operation.

WO 2013/058910 PCT/US2012/055462
60

30. The video coding apparatus of claim 29, wherein the one or more processors are
configured to:

generate prediction data for the current video unit based on one or more pixel values
of the video unit that neighbors the current video unit;

generate residual data for the current video unit based on the prediction data for the
current video unit;

apply one or more transforms to the residual data to generate one or more transform
cocfficient blocks; and

output a bitstream that contains encoded data that represent the transform

coefficient blocks.

31. The video coding apparatus of claim 17, wherein the coding operation is part of a

decoding operation.

32. The video coding apparatus of claim 31, wherein the one or more processors are
configured to:

generate prediction data for the current video unit based on one or more pixel values
of the video unit that neighbors the current video unit;

decode residual data for the current video unit;

reconstruct pixel values for the current video unit based on the prediction data for
the current video unit and the residual data for the current video unit; and

output the picture, the picture including the pixel values for the current video unit.

33. A video coding apparatus for coding video data, the video coding apparatus
comprising:

means for identifying, based on availabilities of video units that neighbor a parent
video unit of a current video unit, an entry in a lookup table, the current video unit being
within a picture of the video data, the identified entry indicating an availability of a video
unit that neighbors the current video unit; and

means for performing a coding operation on the current video unit based on whether

the video unit that neighbors the current video unit is available.

WO 2013/058910 PCT/US2012/055462
61

34. The video coding apparatus of claim 33 comprising means for performing the
coding operation on the current video unit based on data associated with the neighbor to

perform the coding operation on the current video unit.

35. The video coding apparatus of claim 33 further comprising:

means for determining whether the current video unit is a treeblock;

means for determining the availabilities of the video units that neighbor the parent
video unit based on a position of the current video unit within the picture if the current
video unit is a treeblock; and

means for recursively performing operations to determine the availabilities of video
units that neighbor ancestor video units of the current video unit if the current video unit is

not a treeblock.

36. The video coding apparatus of claim 33, wherein the identified entry comprises a
series of values, the values indicating availabilities of different video units that neighbor the

current video unit.

37. The video coding apparatus of claim 33, wherein the coding operation is part of an

encoding operation.

38. The video coding apparatus of claim 33, wherein the coding operation is part of a

decoding operation.

39. A computer program product comprising a computer-readable medium having
stored thereon instructions that, when executed, cause one or more processors to:

identify, based on availabilities of video units that neighbor a parent video unit of a
current video unit, an entry in a lookup table, the current video unit being within a picture,
the identified entry indicating an availability of a video unit that neighbors the current video
unit; and

perform a coding operation on the current video unit based on whether the video

unit that neighbors the current video unit is available.

WO 2013/058910 PCT/US2012/055462
62

40. The computer program product of claim 39, wherein the instructions cause the one
or more processors perform the coding operation on the current video unit based on data

associated with the video unit that neighbors the current video unit.

41. The computer program product of claim 39, wherein the instructions cause the one
Or MOTe Processors to:

determine whether the current video unit is a treeblock;

determine the availabilities of the video units that neighbor the parent video unit
based on a position of the current video unit within the picture if the current video unit is a
treeblock; and

recursively perform operations to determine availabilities of video units that
neighbor ancestor video units of the current video unit if the current video unit is not a

treeblock.

42. The computer program product of claim 39, wherein the identified entry comprises
a series of values, the values indicating availabilities of different video units that neighbor

the current video unit.

43. The computer program product of claim 39, wherein the coding operation is part of

an encoding operation.

44. The computer program product of claim 39, wherein the coding operation is part of

a decoding operation.

WO 2013/058910

SOURCE DEVICE
12

VIDEO SOURCE
18

l

VIDEO
ENCODER
20

l

OUTPUT
INTERFACE
22

1/19

— e— e— — —

l

| STORAGE |
| SYSTEM L—

| 34

— —— — |

PCT/US2012/055462

Yy

FIG. 1

DESTINATION DEVICE
14

DISPLAY DEVICE
32

T

VIDEO
DECODER
30

T

INPUT INTERFACE
28

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462
2/19

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462
3/19

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462
4/19

FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/US2012/055462

WO 2013/058910

5/19

13A31
dTIHOANVYO
INED

13A31
dTIHOANVYO

13A31
aTiHD

T13A31 100

¢ 'Old
@ @ ® @

o

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462
6/19

FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/US2012/055462

WO 2013/058910

7/19

vl
d344n9
FdNLOId

a3aoo3a

Y

00}
I1NAON
10313S

3dON

viva
O3dIA

0C
Y3IAOON3 O3AIA
— — — 2z
9TT grT 0zt
37Naon 37Naon 37Ndon
> -+ >
ONIJOONS NOILVZILNVNO [~ | WO4SNVHL ")
AJOYINS ISHIANI ISHIANI
A 901
31NAon
“1 Nowolaaud [
VHLNI
01
31NAon
“—1 NolLvsSNadwos [
NOILOW
i
201
31NAOn
NOILVWILST [+
oLl NOILOW
[2m 4 Z
3naow e 3I1naow
NOILVZILNVNO | | WwHo4sSNvuL

SUBSTITUTE SHEET (RULE 26)

PCT/US2012/055462

WO 2013/058910

8/19

8 'Old

291 8S1 9%1
< 43d4ng | I71NAON ITNAON
O3aiA FdNLOId NYO4SNVYL NOILVZILNVNO
a3aodod3a a3iaoo3aa 091 JSYHIANI JSYUIANI
A
N
_ — _
| 141} _
| ITNAON _ oSt
> NOILOIa3dd < I1NAON
| VYLNI _ ONId023d
_ | AdO¥1NT
_ St _
_ 3I7NAON _
| | NOILVSN3dINoJ | |
_ NOILON _ 0€
_

d33d093d O3dIA

Nv3dislig

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462
9/19

/200

(START)

202

NO
CURRENT UNIT IS A TREEBLOCK?

YES 204

DETERMINE AVAILABILITIES OF
NEIGHBORS BASED ON HORIZONTAL AND
VERTICAL INDEXES

206

DETERMINE AVAILABILITIES OF
NEIGHBORS OF PARENT UNIT

208

IDENTIFY ENTRY IN LUT BASED ON
AVAILABILITIES OF NEIGHBORS OF
PARENT UNIT

210

IDENTIFY AVAILABILITIES OF NEIGHBORS
OF CURRENT UNIT BASED ON ENTRY

212

RETURN AVAILABILITIES OF NEIGHBORS
OF CURRENT UNIT

(END)
FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462

10/19
: : Above :
Above-Left : Above : Right :
	_:
Left 2 0
Below-Left

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462

11/19
: : Above :
Above-Left : Above : Right :
	_:
252A 252B
Left
252C 252D
Below-Left

FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462

12/19
i	
Above-	Above- I
Left	Above Right :
_——— o ——— — e ————————————————————————————— . —— — — — — — — — — — — — — — -l	
Left 252A	
Below- :	
Left	
________ 1 o o e	
________ J |

FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462

13/19
[[[
[[[
[[[
[| | [
I Above- I Above Above- I I
| Left | Right |
Left 252B

FIG. 13

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462

14/19
[[[
[[[
[[[
[[[
[[[
[[[
[
[
[
Above I Above
Left Above | Right
Left 252C
[
Below- I

,_
[
=

FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462

15/19
Above- Above- I
Left Above Right
Left 252D

Below-
Left |

FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910
16/19

(START)

302

PARTITION CURRENT LCU
INTO BASE UNITS

v 304
IDENTIFY TARGET UNIT IN
CURRENT UNIT

v 306
DETERMINE INDEX OF TARGET
UNIT
v 308

PCT/US2012/055462

/300

310

NEIGHBOR OF INTEREST IS \\ YES
BELOW-LEFT NEIGHBOR?

I

IDENTIFY ENTRY IN LUT FOR

BELOW-LEFT NEIGHBORS

v NO 312

_314

NEIGHBOR OF INTEREST IS \\ YES
LEFT NEIGHBOR?

I

IDENTIFY ENTRY IN LUT FOR

LEFT NEIGHBORS

v NO 316

318

NEIGHBOR OF INTEREST IS \\ YES
ABOVE-LEFT NEIGHBOR?

I

IDENTIFY ENTRY IN LUT FOR

ABOVE-LEFT NEIGHBORS

322

IDENTIFY ENTRY IN LUT FOR

ABOVE NEIGHBORS

+ NO 320
NEIGHBOR OF INTEREST IS\ _YES
ABOVE NEIGHBOR?
+ NO 324

326

NEIGHBOR OF INTEREST IS \\ YES
ABOVE-RIGHT NEIGHBOR?

AN N AN Y
I

IDENTIFY ENTRY IN LUT FOR
ABOVE-RIGHT NEIGHBORS

v 328

USE IDENTIFIED ENTRY TO

DETERMINE AVAILABILITY

v
(END)

FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462
17/19

_340

FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910 PCT/US2012/055462

18/19
L, 01 0 1 0|1 O L. 111, 1111
L, 00 O 1 0|0 O L. 111, 1111
L, 01 0 1 0|1 O L. 111, 1111
L, 0/ 0 O 0 O|O0 O L. 111, 1111
L, 01 0 1 0|1 O L. 111, 1111
L, 00 O 1 0|0 O L. 111, 1111
L, 01 0 1 0|1 O L. 111, 1111
L, 0/ 0 O 0 O|O0 O L. 111, 1111
FIG. 18 FIG. 19
ALLA A A A A A A AlA AA A A A A
L. 111, 1111 111,111 1 1
L. 111, 1111 111,111 1 1
L. 111, 1111 111,111 1 1
L. 111, 1111 111,111 1 1
L. 111, 1111 111,111 1 1
L. 111, 1111 111,111 1 1
L. 111, 1111 111,111 1 1
FIG. 20 FIG. 21
AlA A A A A A Q
1,01, 0|1 01 0
1/71/1,0/1 11 0
1,01, 0|1 01 0
111,11 110
1,01, 0|1 01 0
1/71/1,0/1 11 0
1,01, 0|1 01 0
FIG. 22

SUBSTITUTE SHEET (RULE 26)

WO 2013/058910

(START)

19/19

350
_352 ‘A(///

INTO BASE UNITS

PARTITION CURRENT LCU

v

354

CURRENT UNIT

IDENTIFY TARGET UNIT OF

PCT/US2012/055462

v 356
DETERMINE INDEX OF TARGET
UNIT
v 358
IDENTIFY ENTRY IN LUT
v _-360 362
ENTRY INDICATES FOR YES
NEIGHBOR AVAILABLE? NEIGHBOR AVAILABLE
y NO _-364 /366

CHECK LEFT LCU?

NO

YES LEFT LCU IN SAME
SLICE AS CURRENT LCU?

368

NEIGHBOR AVAILABLE

372

<CHECK ABOVE-LEFT LCU?

,/374

NO

YES ABOVE-LEFT LCU IN SAME
SLICE AS CURRENT LCU?

376

NEIGHBOR AVAILABLE

378

<IHECK ABOVE-RIGHT LCU?

,/380

NO

YES ABOVE-RIGHT LCU IN SAME
SLICE AS CURRENT LCU?

382

NEIGHBOR AVAILABLE

_370

» NEIGHBOR NOT AVAILABLE |[e—

FIG. 23

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/055462

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4N7/26
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4AN HO3M GO6T

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

figure 2
figures 13,14
figure 15
figures 16,17

1 April 2010 (2010-04-01)

figures 2,3
figures 6A-6L

X US 2009/003447 Al (CHRISTOFFERSEN ERIC S
[US] ET AL) 1 January 2009 (2009-01-01)

X US 2010/080285 Al (LEE YEN-CHI [US] ET AL)

1-44

1,2,4-7,
9,13-18,
20-23,
25,
29-34,
37-40,
43,44

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

15 November 2012

Date of mailing of the international search report

23/11/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Martiniére, Anthony

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/055462

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A MCCANN K ET AL: "HEVC Test Model 3 (HM 3)
Encoder Description",
20110329,

no. JCTVC-E602, 29 March 2011 (2011-03-29)
, XP030009013,

ISSN: 0000-0003

the whole document

A MARPE D ET AL: "Contetxt-Based Adaptive
Binary Arithmetic Coding in the H.264/AVC
Video Compression Standard",

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
FOR VIDEO TECHNOLOGY, IEEE SERVICE CENTER,
PISCATAWAY, NJ, US,

vol. 13, no. 7, 1 July 2003 (2003-07-01),
pages 620-636, XP002509017,

ISSN: 1051-8215, DOI:
10.1109/TCSVT.2003.815173

the whole document

1-44

1-44

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/055462
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2009003447 Al 01-01-2009 NONE
US 2010080285 Al 01-04-2010 TW 201028007 A 16-07-2010
US 2010080285 Al 01-04-2010
WO 2010036720 Al 01-04-2010

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - wo-search-report
	Page 85 - wo-search-report
	Page 86 - wo-search-report

