Title: REGULATION OF HUMAN AMINOPEPTIDASE N

Abstract: Reagents that regulate human aminopeptidase N and reagents which bind to human aminopeptidase N gene products can play a role in preventing, ameliorating, or correcting dysfunctions or diseases including, but not limited to, cancer, a CNS disorder or COPD.
REGULATION OF HUMAN AMINOPEPTIDASE N

This application incorporates by reference and claims the benefit of co-pending provisional applications Serial No. 60/303,693 filed July 10, 2001.

TECHNICAL FIELD OF THE INVENTION

The invention relates to the regulation of human aminopeptidase N.

BACKGROUND OF THE INVENTION

Aminopeptidase N (membrane alanyl aminopeptidase) is a peptidase that functions in general peptide degradation. This enzyme is located in the small-intestinal membrane and functions in the final digestion of peptides generated from hydrolysis of proteins by gastric and pancreatic proteases (Kruse et al., 1988, FEBS Lett. 239:305-308). There is a need in the art to identify related enzymes, which can be regulated to provide therapeutic effects.

SUMMARY OF THE INVENTION

It is an object of the invention to provide reagents and methods of regulating a human aminopeptidase N. This and other objects of the invention are provided by one or more of the embodiments described below.

One embodiment of the invention is a aminopeptidase N polypeptide comprising an amino acid sequence selected from the group consisting of:

- amino acid sequences which are at least about 37% identical to
- the amino acid sequence shown in SEQ ID NO: 2; and
- the amino acid sequence shown in SEQ ID NO: 2.
Yet another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation. A test compound is contacted with an aminopeptidase N polypeptide comprising an amino acid sequence selected from the group consisting of:

amino acid sequences which are at least about 37% identical to the amino acid sequence shown in SEQ ID NO: 2; and the amino acid sequence shown in SEQ ID NO: 2.

Binding between the test compound and the aminopeptidase N polypeptide is detected. A test compound which binds to the aminopeptidase N polypeptide is thereby identified as a potential agent for decreasing extracellular matrix degradation. The agent can work by decreasing the activity of the aminopeptidase N.

Another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation. A test compound is contacted with a polynucleotide encoding a aminopeptidase N polypeptide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:

nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1; and the nucleotide sequence shown in SEQ ID NO: 1.

Binding of the test compound to the polynucleotide is detected. A test compound which binds to the polynucleotide is identified as a potential agent for decreasing extracellular matrix degradation. The agent can work by decreasing the amount of the aminopeptidase N through interacting with the aminopeptidase N mRNA.

Another embodiment of the invention is a method of screening for agents which regulate extracellular matrix degradation. A test compound is contacted with a
aminopeptidase N polypeptide comprising an amino acid sequence selected from the group consisting of:

- amino acid sequences which are at least about 37% identical to the amino acid sequence shown in SEQ ID NO: 2; and
- the amino acid sequence shown in SEQ ID NO: 2.

A aminopeptidase N activity of the polypeptide is detected. A test compound which increases aminopeptidase N activity of the polypeptide relative to aminopeptidase N activity in the absence of the test compound is thereby identified as a potential agent for increasing extracellular matrix degradation. A test compound which decreases aminopeptidase N activity of the polypeptide relative to aminopeptidase N activity in the absence of the test compound is thereby identified as a potential agent for decreasing extracellular matrix degradation.

Even another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation. A test compound is contacted with a aminopeptidase N product of a polynucleotide which comprises a nucleotide sequence selected from the group consisting of:

- nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1; and
- the nucleotide sequence shown in SEQ ID NO: 1.

Binding of the test compound to the aminopeptidase N product is detected. A test compound which binds to the aminopeptidase N product is thereby identified as a potential agent for decreasing extracellular matrix degradation.

Still another embodiment of the invention is a method of reducing extracellular matrix degradation. A cell is contacted with a reagent which specifically binds to a polynucleotide encoding a aminopeptidase N polypeptide or the product encoded by
the polynucleotide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:

nucleotide sequences which are at least about 50% identical to
the nucleotide sequence shown in SEQ ID NO: 1; and
the nucleotide sequence shown in SEQ ID NO: 1.

Aminopeptidase N activity in the cell is thereby decreased.

The invention thus provides a human aminopeptidase N that can be used to identify test compounds that may act, for example, as activators or inhibitors at the enzyme’s active site. Human aminopeptidase N and fragments thereof also are useful in raising specific antibodies that can block the enzyme and effectively reduce its activity.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the DNA-sequence encoding a aminopeptidase N Polypeptide (SEQ ID NO: 1).

Fig. 2 shows the amino acid sequence deduced from the DNA-sequence of Fig.1 (SEQ ID NO: 2).

Fig. 3 shows the amino acid sequence of the protein identified by swiss|P15144|AMPN_HUMAN aminopeptidase N (SEQ ID NO: 3).

Fig. 4 shows the BLASTP - alignment of 340 (SEQ ID NO: 2) against swiss|P15144|AMPN_HUMAN aminopeptidase N (SEQ ID NO: 3).

Fig. 5 shows the HMMPFAM - alignment of 340 (SEQ ID NO: 2) against pfam|hmm|Peptidase_M1.
Fig. 6 shows the Prosite search results.

Fig. 7 shows the TMHMM result.

5 DETAILED DESCRIPTION OF THE INVENTION

The invention relates to an isolated polynucleotide from the group consisting of:

a) a polynucleotide encoding a aminopeptidase N polypeptide comprising an amino acid sequence selected from the group consisting of:

amino acid sequences which are at least about 37% identical to the amino acid sequence shown in SEQ ID NO: 2; and the amino acid sequence shown in SEQ ID NO: 2.

10 b) a polynucleotide comprising the sequence of SEQ ID NO: 1;

c) a polynucleotide which hybridizes under stringent conditions to a polynucleotide specified in (a) and (b) and encodes a aminopeptidase N polypeptide;

15 d) a polynucleotide the sequence of which deviates from the polynucleotide sequences specified in (a) to (c) due to the degeneration of the genetic code and encodes a aminopeptidase N polypeptide; and

e) a polynucleotide which represents a fragment, derivative or allelic variation of a polynucleotide sequence specified in (a) to (d) and encodes a aminopeptidase N polypeptide.

Furthermore, it has been discovered by the present applicant that a novel aminopeptidase N, particularly a human aminopeptidase N, can be used in therapeutic methods to treat cancer, a CNS disorder or COPD. Human aminopeptidase N
comprises the amino acid sequence shown in SEQ ID NO: 2. A coding sequence for human aminopeptidase N is shown in SEQ ID NO: 1. This sequence is located on chromosome 5q23.1. Related ESTs (BG720834; BG719375; BG208666; BG11371; AI222989; BG623101) are expressed in placenta and testis.

Human aminopeptidase N is 36% identical over 942 amino acids to swiss/P15144|AMPN_HUMAN aminopeptidase N (SEQ ID NO: 3) (FIG. 1). A search against the pfam database identified a peptidase family M1. The protein of the invention’s function as a zinc metalloprotease is supported by the identification of a Zinc_protease region by prosite analysis. The transmembrane region and prosite signature are underlined in FIG. 1. Metal binding and active site residues are shown in bold.

Human aminopeptidase N of the invention is expected to be useful for the same purposes as previously identified aminopeptidase N enzymes. Human aminopeptidase N is believed to be useful in therapeutic methods to treat disorders such as cancer, CNS disorders, and COPD. Human aminopeptidase N also can be used to screen for human aminopeptidase N activators and inhibitors.

Polypeptides

Human aminopeptidase N polypeptides according to the invention comprise at least 6, 10, 15, 20, 25, 50, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, or 933 contiguous amino acids selected from the amino acid sequence shown in SEQ ID NO: 2 or a biologically active variant thereof, as defined below. An aminopeptidase N polypeptide of the invention therefore can be a portion of an aminopeptidase N protein, a full-length aminopeptidase N protein, or a fusion protein comprising all or a portion of an aminopeptidase N protein.
Biologically Active Variants

Aminopeptidase N polypeptide variants that are biologically active, *i.e.*, retain the ability to bind a ligand to produce a biological effect, such as cyclic AMP formation, mobilization of intracellular calcium, or phosphoinositide metabolism, also are aminopeptidase N polypeptides. Preferably, naturally or non-naturally occurring aminopeptidase N polypeptide variants have amino acid sequences which are at least about 37, 40, 45, 50, preferably at least about 55, 65, 70, 75, 90, 96, or 98% identical to the amino acid sequence shown in SEQ ID NO: 2 or a fragment thereof. Percent identity between a putative aminopeptidase N polypeptide variant and an amino acid sequence of SEQ ID NO: 2 is determined by conventional methods. See, for example, Altschul et al., Bull. Math. Bio. 48:603 (1986), and Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1992). Briefly, two amino acid sequences are aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of 1, and the "BLOSUM62" scoring matrix of Henikoff and Henikoff (ibid.). Those skilled in the art appreciate that there are many established algorithms available to align two amino acid sequences. The "FASTA" similarity search algorithm of Pearson and Lipman is a suitable protein alignment method for examining the level of identity shared by an amino acid sequence disclosed herein and the amino acid sequence of a putative variant. The FASTA algorithm is described by Pearson and Lipman, Proc. Nat'l Acad. Sci. USA 85:2444(1988), and by Pearson, Meth. Enzymol. 183:63 (1990). Briefly, FASTA first characterizes sequence similarity by identifying regions shared by the query sequence and a test sequence that have either the highest density of identities (if the ktup variable is 1) or pairs of identities (if ktup=2), without considering conservative amino acid substitutions, insertions, or deletions. The ten regions with the highest density of identities are then rescored by comparing the similarity of all paired amino acids using an amino acid substitution matrix, and the ends of the regions are "trimmed" to include only those residues that contribute to the highest score. If there are several regions with scores greater than the "cutoff" value (calculated by a predetermined formula based upon the length of the sequence and the ktup value), then the trimmed initial regions are
examined to determine whether the regions can be joined to for man approximate alignment with gaps. Finally, the highest scoring regions of the two amino acid sequences are aligned using a modification of the Needleman-Wunsch-Sellers algorithm (Needleman and Wunsch, J. Mol. Biol. 48:444 (1970); Sellers, SIAM J. Appl. Math. 26:787 (1974)), which allows for amino acid insertions and deletions. Preferred parameters for FASTA analysis are: k Tup = 1, gap opening penalty = 10, gap extension penalty = 1, and substitution matrix = BLOSUM62. These parameters can be introduced into a FASTA program by modifying the scoring matrix file ("SMATRIX"), as explained in Appendix 2 of Pearson, Meth. Enzymol. 183:63 (1990). FASTA can also be used to determine the sequence identity of nucleic acid molecules using a ratio as disclosed above. For nucleotide sequence comparisons, the k Tup value can range between one to six, preferably from three to six, most preferably three, with other parameters set as default.

Variations in percent identity can be due, for example, to amino acid substitutions, insertions, or deletions. Amino acid substitutions are defined as one for one amino acid replacements. They are conservative in nature when the substituted amino acid has similar structural and/or chemical properties. Examples of conservative replacements are substitution of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine.

Amino acid insertions or deletions are changes to or within an amino acid sequence. They typically fall in the range of about 1 to 5 amino acids. Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immunological activity of an aminopeptidase N polypeptide can be found using computer programs well known in the art, such as DNASTAR software.

The invention additionally, encompasses aminopeptidase N polypeptides that are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc.
Any of numerous chemical modifications can be carried out by known techniques including, but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH₄, acetylation, formylation, oxidation, reduction, metabolic synthesis in the presence of tunicamycin, etc.

Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends, attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of prokaryotic host cell expression. The aminopeptidase N polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the protein.

The invention also provides chemically modified derivatives of aminopeptidase N polypeptides that may provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (see U.S. Patent No. 4,179,337). The chemical moieties for derivitization can be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol, and the like. The polypeptides can be modified at random or predetermined positions within the molecule and can include one, two, three, or more attached chemical moieties.

Whether an amino acid change or a polypeptide modification results in a biologically active aminopeptidase N polypeptide can readily be determined by assaying for enzymatic activity, as described for example, in Ishii et al. (Int. J. Cancer 92(1):49-54, 2001).
Fusion Proteins

Fusion proteins are useful for generating antibodies against aminopeptidase N polypeptide amino acid sequences and for use in various assay systems. For example, fusion proteins can be used to identify proteins that interact with portions of an aminopeptidase N polypeptide. Protein affinity chromatography or library-based assays for protein-protein interactions, such as the yeast two-hybrid or phage display systems, can be used for this purpose. Such methods are well known in the art and also can be used as drug screens.

An aminopeptidase N polypeptide fusion protein comprises two polypeptide segments fused together by means of a peptide bond. The first polypeptide segment comprises at least 6, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, or 933 contiguous amino acids of SEQ ID NO: 2 or of a biologically active variant, such as those described above. The first polypeptide segment also can comprise full-length aminopeptidase N protein.

The second polypeptide segment can be a full-length protein or a protein fragment. Proteins commonly used in fusion protein construction include β-galactosidase, β-glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horseradish peroxidase (HRP), and chloramphenicol acetyltransferase (CAT). Additionally, epitope tags are used in fusion protein constructions, including histidine (His) tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags. Other fusion constructions can include maltose binding protein (MBP), S-tag, Lex a DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP16 protein fusions. A fusion protein also can be engineered to contain a cleavage site located between the aminopeptidase N polypeptide-encoding sequence and the heterologous protein.
sequence, so that the aminopeptidase N polypeptide can be cleaved and purified away from the heterologous moiety.

A fusion protein can be synthesized chemically, as is known in the art. Preferably, a fusion protein is produced by covalently linking two polypeptide segments or by standard procedures in the art of molecular biology. Recombinant DNA methods can be used to prepare fusion proteins, for example, by making a DNA construct which comprises coding sequences selected from SEQ ID NO: 1 in proper reading frame with nucleotides encoding the second polypeptide segment and expressing the DNA construct in a host cell, as is known in the art. Many kits for constructing fusion proteins are available from companies such as Promega Corporation (Madison, WI), Stratagene (La Jolla, CA), CLONTECH (Mountain View, CA), Santa Cruz Biotechnology (Santa Cruz, CA), MBL International Corporation (MIC; Watertown, MA), and Quantum Biotechnologies (Montreal, Canada; 1-888-DNA-KITS).

Identification of Species Homologs

Species homologs of human aminopeptidase N polypeptide can be obtained using aminopeptidase N polypeptide polynucleotides (described below) to make suitable probes or primers for screening cDNA expression libraries from other species, such as mice, monkeys, or yeast, identifying cDNAs which encode homologs of aminopeptidase N polypeptide, and expressing the cDNAs as is known in the art.

Polynucleotides

An aminopeptidase N polynucleotide can be single- or double-stranded and comprises a coding sequence or the complement of a coding sequence for an aminopeptidase N polypeptide. A coding sequence for human aminopeptidase N is shown in SEQ ID NO: 1.
Degenerate nucleotide sequences encoding human aminopeptidase N polypeptides, as well as homologous nucleotide sequences which are at least about 50, 55, 60, 65, 70, preferably about 75, 90, 96, 98, or 99% identical to the nucleotide sequence shown in SEQ ID NO: 1 or its complement also are aminopeptidase N polynucleotides. Percent sequence identity between the sequences of two polynucleotides is determined using computer programs such as ALIGN which employ the FASTA algorithm, using an affine gap search with a gap open penalty of -12 and a gap extension penalty of -2. Complementary DNA (cDNA) molecules, species homologs, and variants of aminopeptidase N polynucleotides that encode biologically active aminopeptidase N polypeptides also are aminopeptidase N polynucleotides. Polynucleotide fragments comprising at least 8, 9, 10, 11, 12, 15, 20, or 25 contiguous nucleotides of SEQ ID NO: 1 or its complement also are aminopeptidase N polynucleotides. These fragments can be used, for example, as hybridization probes or as antisense oligonucleotides.

Identification of Polynucleotide Variants and Homologs

Variants and homologs of the aminopeptidase N polynucleotides described above also are aminopeptidase N polynucleotides. Typically, homologous aminopeptidase N polynucleotide sequences can be identified by hybridization of candidate polynucleotides to known aminopeptidase N polynucleotides under stringent conditions, as is known in the art. For example, using the following wash conditions--2X SSC (0.3 M NaCl, 0.03 M sodium citrate, pH 7.0), 0.1% SDS, room temperature twice, 30 minutes each; then 2X SSC, 0.1% SDS, 50°C once, 30 minutes; then 2X SSC, room temperature twice, 10 minutes each--homologous sequences can be identified which contain at most about 25-30% basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.

Species homologs of the aminopeptidase N polynucleotides disclosed herein also can be identified by making suitable probes or primers and screening cDNA expression
libraries from other species, such as mice, monkeys, or yeast. Human variants of aminopeptidase N polynucleotides can be identified, for example, by screening human cDNA expression libraries. It is well known that the T_m of a double-stranded DNA decreases by 1-1.5°C with every 1% decrease in homology (Bonner et al., J. Mol. Biol. 81, 123 (1973). Variants of human aminopeptidase N polynucleotides or aminopeptidase N polynucleotides of other species can therefore be identified by hybridizing a putative homologous aminopeptidase N polynucleotide with a polynucleotide having a nucleotide sequence of SEQ ID NO: 1 or the complement thereof to form a test hybrid. The melting temperature of the test hybrid is compared with the melting temperature of a hybrid comprising polynucleotides having perfectly complementary nucleotide sequences, and the number or percent of basepair mismatches within the test hybrid is calculated.

Nucleotide sequences which hybridize to aminopeptidase N polynucleotides or their complements following stringent hybridization and/or wash conditions also are aminopeptidase N polynucleotides. Stringent wash conditions are well known and understood in the art and are disclosed, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed., 1989, at pages 9.50-9.51.

Typically, for stringent hybridization conditions a combination of temperature and salt concentration should be chosen that is approximately 12-20°C below the calculated T_m of the hybrid under study. The T_m of a hybrid between an aminopeptidase N polynucleotide having a nucleotide sequence shown in SEQ ID NO: 1 or the complement thereof and a polynucleotide sequence which is at least about 50, preferably about 75, 90, 96, or 98% identical to one of those nucleotide sequences can be calculated, for example, using the equation of Bolton and McCarthy, Proc. Natl. Acad. Sci. U.S.A. 48, 1390 (1962):

\[T_m = 81.5^\circ C - 16.6(\log_{10}[\text{Na}^+]) + 0.41(\%G + C) - 0.63(\%\text{formamide}) - 600/l, \]

where \(l \) = the length of the hybrid in basepairs.
Stringent wash conditions include, for example, 4X SSC at 65°C, or 50% formamide, 4X SSC at 42°C, or 0.5X SSC, 0.1% SDS at 65°C. Highly stringent wash conditions include, for example, 0.2X SSC at 65°C.

Preparation of Polynucleotides

An aminopeptidase N polynucleotide can be isolated free of other cellular components such as membrane components, proteins, and lipids. Polynucleotides can be made by a cell and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated aminopeptidase N polynucleotides. For example, restriction enzymes and probes can be used to isolate polynucleotide fragments, which comprise aminopeptidase N nucleotide sequences. Isolated polynucleotides are in preparations that are free or at least 70, 80, or 90% free of other molecules.

Human aminopeptidase N cDNA molecules can be made with standard molecular biology techniques, using aminopeptidase N mRNA as a template. Human aminopeptidase N cDNA molecules can thereafter be replicated using molecular biology techniques known in the art and disclosed in manuals such as Sambrook et al. (1989). An amplification technique, such as PCR, can be used to obtain additional copies of polynucleotides of the invention, using either human genomic DNA or cDNA as a template.

Alternatively, synthetic chemistry techniques can be used to synthesize aminopeptidase N polynucleotides. The degeneracy of the genetic code allows alternate nucleotide sequences to be synthesized which will encode an aminopeptidase N polypeptide having, for example, an amino acid sequence shown in SEQ ID NO: 2 or a biologically active variant thereof.
Extending Polynucleotides

Various PCR-based methods can be used to extend the nucleic acid sequences disclosed herein to detect upstream sequences such as promoters and regulatory elements. For example, restriction-site PCR uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, PCR Methods Appl. 2, 318-322, 1993). Genomic DNA is first amplified in the presence of a primer to a linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.

Inverse PCR also can be used to amplify or extend sequences using divergent primers based on a known region (Triglia et al., Nucleic Acids Res. 16, 8186, 1988). Primers can be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, Minn.), to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68-72°C. The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.

Another method which can be used is capture PCR, which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom et al., PCR Methods Appl. 1, 111-119, 1991). In this method, multiple restriction enzyme digestions and ligations also can be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR.
Another method which can be used to retrieve unknown sequences is that of Parker et al., *Nucleic Acids Res.* 19, 3055-3060, 1991). Additionally, PCR, nested primers, and PROMOTERFINDER libraries (CLONTECH, Palo Alto, Calif.) can be used to walk genomic DNA (CLONTECH, Palo Alto, Calif.). This process avoids the need to screen libraries and is useful in finding intron/exon junctions.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. Randomly-primed libraries are preferable, in that they will contain more sequences which contain the 5’ regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries can be useful for extension of sequence into 5’ non-transcribed regulatory regions.

Commercially available capillary electrophoresis systems can be used to analyze the size or confirm the nucleotide sequence of PCR or sequencing products. For example, capillary sequencing can employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) that are laser activated, and detection of the emitted wavelengths by a charge coupled device camera. Output/light intensity can be converted to electrical signal using appropriate software (e.g. GENOTyper and Sequence NAVIGATOR, Perkin Elmer), and the entire process from loading of samples to computer analysis and electronic data display can be computer controlled. Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA that might be present in limited amounts in a particular sample.

Obtaining Polypeptides

Human aminopeptidase N polypeptides can be obtained, for example, by purification from human cells, by expression of aminopeptidase N polynucleotides, or by direct chemical synthesis.
Protein Purification

Human aminopeptidase N polypeptides can be purified from any cell that expresses the polypeptide, including host cells that have been transfected with aminopeptidase N expression constructs. A purified aminopeptidase N polypeptide is separated from other compounds that normally associate with the aminopeptidase N polypeptide in the cell, such as certain proteins, carbohydrates, or lipids, using methods well-known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis. A preparation of purified aminopeptidase N polypeptides is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS-polyacrylamide gel electrophoresis.

Expression of Polynucleotides

To express an aminopeptidase N polynucleotide, the polynucleotide can be inserted into an expression vector that contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods that are well known to those skilled in the art can be used to construct expression vectors containing sequences encoding aminopeptidase N polypeptides and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook et al. (1989) and in Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1989.

A variety of expression vector/host systems can be utilized to contain and express sequences encoding an aminopeptidase N polypeptide. These include, but are not limited to, microorganisms, such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast
expression vectors, insect cell systems infected with virus expression vectors (e.g., baculovirus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids), or animal cell systems.

The control elements or regulatory sequences are those non-translated regions of the vector -- enhancers, promoters, 5' and 3' untranslated regions -- which interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, can be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORT1 plasmid (Life Technologies) and the like can be used. The baculovirus polyhedrin promoter can be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO, and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) can be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a nucleotide sequence encoding an aminopeptidase N polypeptide, vectors based on SV40 or EBV can be used with an appropriate selectable marker.

Bacterial and Yeast Expression Systems

In bacterial systems, a number of expression vectors can be selected depending upon the use intended for the aminopeptidase N polypeptide. For example, when a large quantity of an aminopeptidase N polypeptide is needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified can be used. Such vectors include, but are not limited to, multifunctional *E. coli* cloning and expression vectors such as BLUESCRIPT (Stratagene). In a BLUESCRIPT vector, a sequence encoding the aminopeptidase N polypeptide
can be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of ß-galactosidase so that a hybrid protein is produced. pIN vectors (Van Hecke & Schuster, J. Biol. Chem. 264, 5503-5509, 1989) or pGEX vectors (Promega, Madison, Wis.) also can be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems can be designed to include heparin, thrombin, or factor Xa protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.

In the yeast Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH can be used. For reviews, see Ausubel et al. (1989) and Grant et al., Methods Enzymol. 153, 516-544, 1987.

Plant and Insect Expression Systems

If plant expression vectors are used, the expression of sequences encoding aminopeptidase N polypeptides can be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV can be used alone or in combination with the omega leader sequence from TMV (Takamatsu, EMBO J. 6, 307-311, 1987). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters can be used (Coruzzi et al., EMBO J. 3, 1671-1680, 1984; Broglie et al., Science 224, 838-843, 1984; Winter et al., Results Probl. Cell Differ. 17, 85-105, 1991). These constructs can be introduced into plant cells by direct DNA transformation or by pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (e.g., Hobbs or Murray, in McGRAW HILL YEARBOOK OF SCIENCE AND TECHNOLOGY, McGraw Hill, New York, N.Y., pp. 191-196, 1992).
An insect system also can be used to express an aminopeptidase N polypeptide. For example, in one such system Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. Sequences encoding aminopeptidase N polypeptides can be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of aminopeptidase N polypeptides will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses can then be used to infect S. frugiperda cells or Trichoplusia larvae in which aminopeptidase N polypeptides can be expressed (Engelhard et al., Proc. Natl. Acad. Sci. 91, 3224-3227, 1994).

Mammalian Expression Systems

A number of viral-based expression systems can be used to express aminopeptidase N polypeptides in mammalian host cells. For example, if an adenovirus is used as an expression vector, sequences encoding aminopeptidase N polypeptides can be ligated into an adenovirus transcription/translation complex comprising the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome can be used to obtain a viable virus that is capable of expressing an aminopeptidase N polypeptide in infected host cells (Logan & Shenk, Proc. Natl. Acad. Sci. 81, 3655-3659, 1984). If desired, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, can be used to increase expression in mammalian host cells.

Human artificial chromosomes (HACs) also can be used to deliver larger fragments of DNA than can be contained and expressed in a plasmid. HACs of 6M to 10M are constructed and delivered to cells via conventional delivery methods (e.g., liposomes, polycationic amino polymers, or vesicles).
Specific initiation signals also can be used to achieve more efficient translation of sequences encoding aminopeptidase N polypeptides. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding an aminopeptidase N polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals (including the ATG initiation codon) should be provided. The initiation codon should be in the correct reading frame to ensure translation of the entire insert.

Exogenous translational elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used (see Scharf et al., Results Probl. Cell Differ. 20, 125-162, 1994).

Host Cells

A host cell strain can be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed aminopeptidase N polypeptide in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the polypeptide also can be used to facilitate correct insertion, folding and/or function. Different host cells that have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC; 10801 University Boulevard, Manassas, VA 20110-2209) and can be chosen to ensure the correct modification and processing of the foreign protein.

Stable expression is preferred for long-term, high-yield production of recombinant proteins. For example, cell lines which stably express aminopeptidase N polypeptides can be transformed using expression vectors which can contain viral origins
of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells can be allowed to grow for 1-2 days in an enriched medium before they are switched to a selective medium. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced aminopeptidase N sequences. Resistant clones of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type. See, for example, Animal Cell Culture, R.I. Freshney, ed., 1986.

Any number of selection systems can be used to recover transformed cell lines.

These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler et al., Cell 11, 223-32, 1977) and adenine phosphoribosyltransferase (Lowy et al., Cell 22, 817-23, 1980) genes which can be employed in tk' or aprt' cells, respectively. Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate (Wigler et al., Proc. Natl. Acad. Sci. 77, 3567-70, 1980), npt confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin et al., J. Mol. Biol. 150, 1-14, 1981), and als and pat confer resistance to chlorosulfuron and phosphinotricin acetyltransferase, respectively (Murray, 1992, supra). Additional selectable genes have been described. For example, trpB allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Natl. Acad. Sci. 85, 8047-51, 1988). Visible markers such as anthocyanins, β-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, can be used to identify transformants and to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes et al., Methods Mol. Biol. 55, 121-131, 1995).
Detecting Expression

Although the presence of marker gene expression suggests that the aminopeptidase N polynucleotide is also present, its presence and expression may need to be confirmed. For example, if a sequence encoding an aminopeptidase N polypeptide is inserted within a marker gene sequence, transformed cells containing sequences that encode an aminopeptidase N polypeptide can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding an aminopeptidase N polypeptide under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the aminopeptidase N polynucleotide.

Alternatively, host cells which contain an aminopeptidase N polynucleotide and which express an aminopeptidase N polypeptide can be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques that include membrane, solution, or chip-based technologies for the detection and/or quantification of nucleic acid or protein. For example, the presence of a polynucleotide sequence encoding an aminopeptidase N polypeptide can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments of polynucleotides encoding an aminopeptidase N polypeptide. Nucleic acid amplification-based assays involve the use of oligonucleotides selected from sequences encoding an aminopeptidase N polypeptide to detect transformants that contain an aminopeptidase N polynucleotide.

A variety of protocols for detecting and measuring the expression of an aminopeptidase N polypeptide, using either polyclonal or monoclonal antibodies specific for the polypeptide, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay using monoclonal antibodies reactive to two non-interfering epitopes on an aminopeptidase N
polypeptide can be used, or a competitive binding assay can be employed. These and
other assays are described in Hampton et al., **SEROLOGICAL METHODS: A
LABORATORY MANUAL, APS Press, St. Paul, Minn., 1990** and Maddox et al., *J. Exp.
Med. 158, 1211-1216, 1983*).

A wide variety of labels and conjugation techniques are known by those skilled in the
art and can be used in various nucleic acid and amino acid assays. Means for
producing labeled hybridization or PCR probes for detecting sequences related to
documented polypeptide encoding aminopeptidase N polypeptides include oligolabeling, nick
translation, end-labeling, or PCR amplification using a labeled nucleotide.

Alternatively, sequences encoding an aminopeptidase N polypeptide can be cloned
into a vector for the production of an mRNA probe. Such vectors are known in the
art, are commercially available, and can be used to synthesize RNA probes *in vitro* by
addition of labeled nucleotides and an appropriate RNA polymerase such as T7, T3,
or SP6. These procedures can be conducted using a variety of commercially
available kits (Amersham Pharmacia Biotech, Promega, and US Biochemical).
Suitable reporter molecules or labels which can be used for ease of detection include
radionuclides, enzymes, and fluorescent, chemiluminescent, or chromogenic agents,
as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Expression and Purification of Polypeptides

Host cells transformed with nucleotide sequences encoding an aminopeptidase N
polypeptide can be cultured under conditions suitable for the expression and recovery
of the protein from cell culture. The polypeptide produced by a transformed cell can
be secreted or contained intracellularly depending on the sequence and/or the vector
used. As will be understood by those of skill in the art, expression vectors containing
polynucleotides which encode aminopeptidase N polypeptides can be designed to
contain signal sequences which direct secretion of soluble aminopeptidase N
polypeptides through a prokaryotic or eukaryotic cell membrane or which direct the
membrane insertion of membrane-bound aminopeptidase N polypeptide.
As discussed above, other constructions can be used to join a sequence encoding an aminopeptidase N polypeptide to a nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.). Inclusion of cleavable linker sequences such as those specific for Factor Xa or enterokinase (Invitrogen, San Diego, CA) between the purification domain and the aminopeptidase N polypeptide also can be used to facilitate purification. One such expression vector provides for expression of a fusion protein containing an aminopeptidase N polypeptide and 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification by IMAC (immobilized metal ion affinity chromatography, as described in Porath et al., Prot. Exp. Purif. 3, 263-281, 1992), while the enterokinase cleavage site provides a means for purifying the aminopeptidase N polypeptide from the fusion protein. Vectors that contain fusion proteins are disclosed in Kroll et al., DNA Cell Biol. 12, 441-453, 1993.

Chemical Synthesis

Sequences encoding an aminopeptidase N polypeptide can be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers et al., *Nucl. Acids Res. Symp. Ser.* 215-223, 1980; Horn et al. *Nucl. Acids Res. Symp. Ser.* 225-232, 1980). Alternatively, an aminopeptidase N polypeptide itself can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques (Merrifield, *J. Am. Chem. Soc.* 85, 2149-2154, 1963; Roberge et al., *Science* 269, 202-204, 1995). Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer
(Perkin Elmer). Optionally, fragments of aminopeptidase N polypeptides can be separately synthesized and combined using chemical methods to produce a full-length molecule.

The newly synthesized peptide can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, PROTEINS: STRUCTURES AND MOLECULAR PRINCIPLES, WH Freeman and Co., New York, N.Y., 1983). The composition of a synthetic aminopeptidase N polypeptide can be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; see Creighton, supra). Additionally, any portion of the amino acid sequence of the aminopeptidase N polypeptide can be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins to produce a variant polypeptide or a fusion protein.

Production of Altered Polypeptides

As will be understood by those of skill in the art, it may be advantageous to produce aminopeptidase N polypeptide-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce an RNA transcript having desirable properties, such as a half-life that is longer than that of a transcript generated from the naturally occurring sequence.

The nucleotide sequences disclosed herein can be engineered using methods generally known in the art to alter aminopeptidase N polypeptide-encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the polypeptide or mRNA product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides can be used to engineer the nucleotide sequences. For example, site-directed mutagenesis can be used to insert new restriction sites, alter
glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth.

Antibodies

Any type of antibody known in the art can be generated to bind specifically to an epitope of an aminopeptidase N polypeptide. "Antibody" as used herein includes intact immunoglobulin molecules, as well as fragments thereof, such as Fab, F(ab')₂, and Fv, which are capable of binding an epitope of an aminopeptidase N polypeptide. Typically, at least 6, 8, 10, or 12 contiguous amino acids are required to form an epitope. However, epitopes which involve non-contiguous amino acids may require more, e.g., at least 15, 25, or 50 amino acids.

An antibody which specifically binds to an epitope of an aminopeptidase N polypeptide can be used therapeutically, as well as in immunochemical assays, such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art. Various immunoassays can be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays are well known in the art. Such immunoassays typically involve the measurement of complex formation between an immunogen and an antibody that specifically binds to the immunogen.

Typically, an antibody which specifically binds to an aminopeptidase N polypeptide provides a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay. Preferably, antibodies which specifically bind to aminopeptidase N polypeptides do not detect other proteins in immunochemical assays and can immunoprecipitate an aminopeptidase N polypeptide from solution.
Human aminopeptidase N polypeptides can be used to immunize a mammal, such as a mouse, rat, rabbit, guinea pig, monkey, or human, to produce polyclonal antibodies. If desired, an aminopeptidase N polypeptide can be conjugated to a carrier protein, such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin. Depending on the host species, various adjuvants can be used to increase the immunological response. Such adjuvants include, but are not limited to, Freund’s adjuvant, mineral gels (e.g., aluminum hydroxide), and surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol). Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially useful.

Monoclonal antibodies that specifically bind to an aminopeptidase N polypeptide can be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These techniques include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler et al., Nature 256, 495-497, 1985; Kozbor et al., J. Immunol. Methods 81, 31-42, 1985; Cote et al., Proc. Natl. Acad. Sci. 80, 2026-2030, 1983; Cole et al., Mol. Cell Biol. 62, 109-120, 1984).

In addition, techniques developed for the production of “chimeric antibodies,” the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison et al., Proc. Natl. Acad. Sci. 81, 6851-6855, 1984; Neuberger et al., Nature 312, 604-608, 1984; Takeda et al., Nature 314, 452-454, 1985). Monoclonal and other antibodies also can be “humanized” to prevent a patient from mounting an immune response against the antibody when it is used therapeutically. Such antibodies may be sufficiently similar in sequence to human antibodies to be used directly in therapy or may require alteration of a few key residues. Sequence differences between rodent antibodies and human sequences can be minimized by replacing residues which differ from those in the human sequences by site directed mutagenesis of individual residues or by grating of entire complementarity determining regions. Alternatively,
humanized antibodies can be produced using recombinant methods, as described in GB2188638B. Antibodies that specifically bind to an aminopeptidase N polypeptide can contain antigen binding sites which are either partially or fully humanized, as disclosed in U.S. 5,565,332.

Alternatively, techniques described for the production of single chain antibodies can be adapted using methods known in the art to produce single chain antibodies that specifically bind to aminopeptidase N polypeptides. Antibodies with related specificity, but of distinct idiotypic composition, can be generated by chain shuffling from random combinatorial immunoglobulin libraries (Burton, Proc. Natl. Acad. Sci. 88, 11120-23, 1991).

Single-chain antibodies also can be constructed using a DNA amplification method, such as PCR, using hybridoma cDNA as a template (Thirion et al., 1996, Eur. J. Cancer Prev. 5, 507-11). Single-chain antibodies can be mono- or bispecific, and can be bivalent or tetravalent. Construction of tetravalent, bispecific single-chain antibodies is taught, for example, in Coloma & Morrison, 1997, Nat. Biotechnol. 15, 159-63. Construction of bivalent, bispecific single-chain antibodies is taught in Mallender & Voss, 1994, J. Biol. Chem. 269, 199-206.

A nucleotide sequence encoding a single-chain antibody can be constructed using manual or automated nucleotide synthesis, cloned into an expression construct using standard recombinant DNA methods, and introduced into a cell to express the coding sequence, as described below. Alternatively, single-chain antibodies can be produced directly using, for example, filamentous phage technology (Verhaar et al., 1995, Int. J. Cancer 61, 497-501; Nicholls et al., 1993, J. Immunol. Meth. 165, 81-91).

Antibodies which specifically bind to aminopeptidase N polypeptides also can be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as

Other types of antibodies can be constructed and used therapeutically in methods of the invention. For example, chimeric antibodies can be constructed as disclosed in WO 93/03151. Binding proteins which are derived from immunoglobulins and which are multivalent and multispecific, such as the “diabodies” described in WO 94/13804, also can be prepared.

Antibodies according to the invention can be purified by methods well known in the art. For example, antibodies can be affinity purified by passage over a column to which an aminopeptidase N polypeptide is bound. The bound antibodies can then be eluted from the column using a buffer with a high salt concentration.

Antisense Oligonucleotides

Antisense oligonucleotides are nucleotide sequences that are complementary to a specific DNA or RNA sequence. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form complexes and block either transcription or translation. Preferably, an antisense oligonucleotide is at least 11 nucleotides in length, but can be at least 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. Antisense oligonucleotide molecules can be provided in a DNA construct and introduced into a cell as described above to decrease the level of aminopeptidase N gene products in the cell.

Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides can be synthesized manually or by an automated synthesizer, by covalently linking the 5’ end of one nucleotide with the 3’ end of another nucleotide with non-phosphodiester internucleotide linkages such as alkylphosphonates, phosphorothioates, phosphorodithioates, alkylphosphonothioates,

Modifications of aminopeptidase N gene expression can be obtained by designing antisense oligonucleotides that will form duplexes to the control, 5', or regulatory regions of the aminopeptidase N gene. Oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using "triple helix" base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or chaperons. Therapeutic advances using triplex DNA have been described in the literature (e.g., Gee et al., in Huber & Carr, Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco, N.Y., 1994). An antisense oligonucleotide also can be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Precise complementarity is not required for successful complex formation between an antisense oligonucleotide and the complementary sequence of an aminopeptidase N polynucleotide. Antisense oligonucleotides which comprise, for example, 2, 3, 4, or 5 or more stretches of contiguous nucleotides which are precisely complementary to an aminopeptidase N polynucleotide, each separated by a stretch of contiguous nucleotides which are not complementary to adjacent aminopeptidase N nucleotides, can provide sufficient targeting specificity for aminopeptidase N mRNA. Preferably, each stretch of complementary contiguous nucleotides is at least 4, 5, 6, 7, or 8 or more nucleotides in length. Non-complementary intervening sequences are preferably 1, 2, 3, or 4 nucleotides in length. One skilled in the art can easily use the calculated melting point of an antisense-sense pair to determine the degree of mismatching which will be tolerated between a particular antisense oligonucleotide and a particular aminopeptidase N polynucleotide sequence.
Antisense oligonucleotides can be modified without affecting their ability to hybridize to an aminopeptidase N polynucleotide. These modifications can be internal or at one or both ends of the antisense molecule. For example, internucleoside phosphate linkages can be modified by adding cholesteryl or diamine moieties with varying numbers of carbon residues between the amino groups and terminal ribose. Modified bases and/or sugars, such as arabinose instead of ribose, or a 3', 5'-substituted oligonucleotide in which the 3' hydroxyl group or the 5' phosphate group are substituted, also can be employed in a modified antisense oligonucleotide. These modified oligonucleotides can be prepared by methods well known in the art. See, e.g., Agrawal et al., Trends Biotechnol. 10, 152-158, 1992; Uhlmann et al., Chem. Rev. 90, 543-584, 1990; Uhlmann et al., Tetrahedron Lett. 215, 3539-3542, 1987.

Ribozymes

The coding sequence of an aminopeptidase N polynucleotide can be used to generate ribozymes that will specifically bind to mRNA transcribed from the aminopeptidase N polynucleotide. Methods of designing and constructing ribozymes which can cleave other RNA molecules in trans in a highly sequence specific manner have been
developed and described in the art (see Haseloff et al. Nature 334, 585-591, 1988).
For example, the cleavage activity of ribozymes can be targeted to specific RNAs by
engineering a discrete “hybridization” region into the ribozyme. The hybridization
region contains a sequence complementary to the target RNA and thus specifically
hybridizes with the target (see, for example, Gerlach et al., EP 321,201).

Specific ribozyme cleavage sites within an aminopeptidase N RNA target can be
identified by scanning the target molecule for ribozyme cleavage sites which include
the following sequences: GUA, GUU, and GUC. Once identified, short RNA
sequences of between 15 and 20 ribonucleotides corresponding to the region of the
target RNA containing the cleavage site can be evaluated for secondary structural
features which may render the target inoperable. Suitability of candidate
aminopeptidase N RNA targets also can be evaluated by testing accessibility to
hybridization with complementary oligonucleotides using ribonuclease protection
assays. Longer complementary sequences can be used to increase the affinity of the
hybridization sequence for the target. The hybridizing and cleavage regions of the
ribozyme can be integrally related such that upon hybridizing to the target RNA
through the complementary regions, the catalytic region of the ribozyme can cleave
the target.

Ribozymes can be introduced into cells as part of a DNA construct. Mechanical
methods, such as microinjection, liposome-mediated transfection, electroporation, or
calcium phosphate precipitation, can be used to introduce a ribozyme-containing
DNA construct into cells in which it is desired to decrease aminopeptidase N
expression. Alternatively, if it is desired that the cells stably retain the DNA
construct, the construct can be supplied on a plasmid and maintained as a separate
element or integrated into the genome of the cells, as is known in the art. A
ribozyme-encoding DNA construct can include transcriptional regulatory elements,
such as a promoter element, an enhancer or UAS element, and a transcriptional
terminator signal, for controlling transcription of ribozymes in the cells.
As taught in Haseloff et al., U.S. Patent 5,641,673, ribozymes can be engineered so that ribozyme expression will occur in response to factors that induce expression of a target gene. Ribozymes also can be engineered to provide an additional level of regulation, so that destruction of mRNA occurs only when both a ribozyme and a target gene are induced in the cells.

Differentially Expressed Genes

Described herein are methods for the identification of genes whose products interact with human aminopeptidase N. Such genes may represent genes that are differentially expressed in disorders including, but not limited to, cancer, CNS disorders, and COPD. Further, such genes may represent genes that are differentially regulated in response to manipulations relevant to the progression or treatment of such diseases. Additionally, such genes may have a temporally modulated expression, increased or decreased at different stages of tissue or organism development. A differentially expressed gene may also have its expression modulated under control versus experimental conditions. In addition, the human aminopeptidase N gene or gene product may itself be tested for differential expression.

The degree to which expression differs in a normal versus a diseased state need only be large enough to be visualized via standard characterization techniques such as differential display techniques. Other such standard characterization techniques by which expression differences may be visualized include but are not limited to, quantitative RT (reverse transcriptase), PCR, and Northern analysis.

Identification of Differentially Expressed Genes

To identify differentially expressed genes total RNA or, preferably, mRNA is isolated from tissues of interest. For example, RNA samples are obtained from tissues of experimental subjects and from corresponding tissues of control subjects.
Any RNA isolation technique that does not select against the isolation of mRNA may be utilized for the purification of such RNA samples. See, for example, Ausubel et al., ed., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, Inc. New York, 1987-1993. Large numbers of tissue samples may readily be processed using techniques well known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomczynski, U.S. Patent 4,843,155.

The differential expression information may itself suggest relevant methods for the treatment of disorders involving the human aminopeptidase N. For example, treatment may include a modulation of expression of the differentially expressed genes and/or the gene encoding the human aminopeptidase N. The differential expression information may indicate whether the expression or activity of the differentially expressed gene or gene product or the human aminopeptidase N gene or gene product are up-regulated or down-regulated.

Screening Methods

The invention provides assays for screening test compounds that bind to or modulate the activity of an aminopeptidase N polypeptide or an aminopeptidase N polynucleotide. A test compound preferably binds to an aminopeptidase N polypeptide or polynucleotide. More preferably, a test compound decreases or increases enzymatic activity by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the test compound.
Test Compounds

Test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity. The compounds can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, and can be produced recombinantly, or synthesized by chemical methods known in the art. If desired, test compounds can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the “one-bead one-compound” library method, and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer, or small molecule libraries of compounds. See Lam, *Anticancer Drug Des.* 12, 145, 1997.

High Throughput Screening

Test compounds can be screened for the ability to bind to aminopeptidase N polypeptides or polynucleotides or to affect aminopeptidase N activity or aminopeptidase N gene expression using high throughput screening. Using high throughput screening, many discrete compounds can be tested in parallel so that large numbers of test compounds can be quickly screened. The most widely established techniques utilize 96-well microtiter plates. The wells of the microtiter plates typically require assay volumes that range from 50 to 500 µl. In addition to the plates, many instruments, materials, pipettors, robotics, plate washers, and plate readers are commercially available to fit the 96-well format.

Alternatively, “free format assays,” or assays that have no physical barrier between samples, can be used. For example, an assay using pigment cells (melanocytes) in a simple homogeneous assay for combinatorial peptide libraries is described by Jayawickreme et al., Proc. Natl. Acad. Sci. U.S.A. 19, 1614-18 (1994). The cells are placed under agarose in petri dishes, then beads that carry combinatorial compounds are placed on the surface of the agarose. The combinatorial compounds are partially released the compounds from the beads. Active compounds can be visualized as dark pigment areas because, as the compounds diffuse locally into the gel matrix, the active compounds cause the cells to change colors.

Another example of a free format assay is described by Chelsky, “Strategies for Screening Combinatorial Libraries: Novel and Traditional Approaches,” reported at the First Annual Conference of The Society for Biomolecular Screening in Philadelphia, Pa. (Nov. 7-10, 1995). Chelsky placed a simple homogenous enzyme assay for carbonic anhydrase inside an agarose gel such that the enzyme in the gel would cause a color change throughout the gel. Thereafter, beads carrying combinatorial compounds via a photolinker were placed inside the gel and the compounds were partially released by UV-light. Compounds that inhibited the enzyme were observed as local zones of inhibition having less color change.
Yet another example is described by Salmon et al., *Molecular Diversity* 2, 57-63 (1996). In this example, combinatorial libraries were screened for compounds that had cytotoxic effects on cancer cells growing in agar.

Another high throughput screening method is described in Beutel et al., U.S. Patent 5,976,813. In this method, test samples are placed in a porous matrix. One or more assay components are then placed within, on top of, or at the bottom of a matrix such as a gel, a plastic sheet, a filter, or other form of easily manipulated solid support. When samples are introduced to the porous matrix they diffuse sufficiently slowly, such that the assays can be performed without the test samples running together.

Binding Assays

For binding assays, the test compound is preferably a small molecule that binds to and occupies, for example, the active site of the aminopeptidase N polypeptide, such that normal biological activity is prevented. Examples of such small molecules include, but are not limited to, small peptides or peptide-like molecules.

In binding assays, either the test compound or the aminopeptidase N polypeptide can comprise a detectable label, such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase. Detection of a test compound that is bound to the aminopeptidase N polypeptide can then be accomplished, for example, by direct counting of radioemmission, by scintillation counting, or by determining conversion of an appropriate substrate to a detectable product.

Alternatively, binding of a test compound to an aminopeptidase N polypeptide can be determined without labeling either of the interactants. For example, a microphysiometer can be used to detect binding of a test compound with an aminopeptidase N polypeptide. A microphysiometer (*e.g.*, Cytosensor™) is an analytical
instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between a test compound and an aminopeptidase N polypeptide (McConnell et al., Science 257, 1906-1912, 1992).

Determining the ability of a test compound to bind to an aminopeptidase N polypeptide also can be accomplished using a technology such as real-time Bimolecular Interaction Analysis (BIA) (Sjolander & Urbaniczky, Anal. Chem. 63, 2338-2345, 1991, and Szabo et al., Curr. Opin. Struct. Biol. 5, 699-705, 1995). BIA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIACore™). Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.

In yet another aspect of the invention, an aminopeptidase N polypeptide can be used as a “bait protein” in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent 5,283,317; Zervos et al., Cell 72, 223-232, 1993; Madura et al., J. Biol. Chem. 268, 12046-12054, 1993; Bartel et al., BioTechniques 14, 920-924, 1993; Iwabuchi et al., Oncogene 8, 1693-1696, 1993; and Brent W094/10300), to identify other proteins which bind to or interact with the aminopeptidase N polypeptide and modulate its activity.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. For example, in one construct, polynucleotide encoding an aminopeptidase N polypeptide can be fused to a polynucleotide encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct a DNA sequence that encodes an unidentified protein (“prey” or “sample”) can be fused to a polynucleotide that codes for the activation domain of the known transcription factor. If the “bait” and the “prey” proteins are able to interact in vivo to form an protein-dependent complex, the DNA-binding and
activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ), which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected, and cell colonies containing the functional transcription factor can be isolated and used to obtain the DNA sequence encoding the protein that interacts with the aminopeptidase N polypeptide.

It may be desirable to immobilize either the aminopeptidase N polypeptide (or polynucleotide) or the test compound to facilitate separation of bound from unbound forms of one or both of the interactants, as well as to accommodate automation of the assay. Thus, either the aminopeptidase N polypeptide (or polynucleotide) or the test compound can be bound to a solid support. Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads (including, but not limited to, latex, polystyrene, or glass beads). Any method known in the art can be used to attach the enzyme polypeptide (or polynucleotide) or test compound to a solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached respectively to the polypeptide (or polynucleotide) or test compound and the solid support. Test compounds are preferably bound to the solid support in an array, so that the location of individual test compounds can be tracked. Binding of a test compound to an aminopeptidase N polypeptide (or polynucleotide) can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.

In one embodiment, the aminopeptidase N polypeptide is a fusion protein comprising a domain that allows the aminopeptidase N polypeptide to be bound to a solid support. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and the non-adsorbed aminopeptidase N polypeptide; the mixture is then incubated under conditions conducive to complex formation (e.g., at
physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components. Binding of the interactants can be determined either directly or indirectly, as described above. Alternatively, the complexes can be dissociated from the solid support before binding is determined.

Other techniques for immobilizing proteins or polynucleotides on a solid support also can be used in the screening assays of the invention. For example, either an aminopeptidase N polypeptide (or polynucleotide) or a test compound can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated aminopeptidase N polypeptides (or polynucleotides) or test compounds can be prepared from biotin-NHS (N-hydroxysuccinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.) and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies which specifically bind to an aminopeptidase N polypeptide, polynucleotide, or a test compound, but which do not interfere with a desired binding site, such as the active site of the aminopeptidase N polypeptide, can be derivatized to the wells of the plate. Unbound target or protein can be trapped in the wells by antibody conjugation.

Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies which specifically bind to the aminopeptidase N polypeptide or test compound, enzyme-linked assays which rely on detecting an activity of the aminopeptidase N polypeptide, and SDS gel electrophoresis under non-reducing conditions.

Screening for test compounds which bind to an aminopeptidase N polypeptide or polynucleotide also can be carried out in an intact cell. Any cell which comprises an aminopeptidase N polypeptide or polynucleotide can be used in a cell-based assay system. An aminopeptidase N polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Binding of the
test compound to an aminopeptidase N polypeptide or polynucleotide is determined as described above.

Enzyme Assays

Test compounds can be tested for the ability to increase or decrease the enzymatic activity of a human aminopeptidase N polypeptide. Enzymatic activity can be measured, for example, as described in Ishii et al. (Int. J. Cancer 92(1):49-54, 2001).

Enzyme assays can be carried out after contacting either a purified aminopeptidase N polypeptide, a cell membrane preparation, or an intact cell with a test compound. A test compound that decreases enzymatic activity of an aminopeptidase N polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for decreasing aminopeptidase N activity. A test compound which increases enzymatic activity of a human aminopeptidase N polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for increasing human aminopeptidase N activity.

Gene Expression

In another embodiment, test compounds that increase or decrease aminopeptidase N gene expression are identified. An aminopeptidase N polynucleotid is contacted with a test compound, and the expression of an RNA or polypeptide product of the aminopeptidase N polynucleotide is determined. The level of expression of appropriate mRNA or polypeptide in the presence of the test compound is compared to the level of expression of mRNA or polypeptide in the absence of the test compound. The test compound can then be identified as a modulator of expression based on this comparison. For example, when expression of mRNA or polypeptide is greater in the presence of the test compound than in its absence, the test compound is identified as a stimulator or enhancer of the mRNA or polypeptide expression.
Alternatively, when expression of the mRNA or polypeptide is less in the presence of the test compound than in its absence, the test compound is identified as an inhibitor of the mRNA or polypeptide expression.

The level of aminopeptidase N mRNA or polypeptide expression in the cells can be determined by methods well known in the art for detecting mRNA or polypeptide. Either qualitative or quantitative methods can be used. The presence of polypeptide products of an aminopeptidase N polynucleotide can be determined, for example, using a variety of techniques known in the art, including immunochemical methods such as radioimmunoassay, Western blotting, and immunohistochemistry. Alternatively, polypeptide synthesis can be determined in vivo, in a cell culture, or in an in vitro translation system by detecting incorporation of labeled amino acids into an aminopeptidase N polypeptide.

Such screening can be carried out either in a cell-free assay system or in an intact cell. Any cell that expresses an aminopeptidase N polynucleotide can be used in a cell-based assay system. The aminopeptidase N polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Either a primary culture or an established cell line, such as CHO or human embryonic kidney 293 cells, can be used.

Pharmaceutical Compositions

The invention also provides pharmaceutical compositions that can be administered to a patient to achieve a therapeutic effect. Pharmaceutical compositions of the invention can comprise, for example, an aminopeptidase N polypeptide, aminopeptidase N polynucleotide, ribozymes or antisense oligonucleotides, antibodies which specifically bind to an aminopeptidase N polypeptide, or mimetics, activators, or inhibitors of an aminopeptidase N polypeptide activity. The compositions can be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical
carrier, including, but not limited to, saline, buffered saline, dextrose, and water. The compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones.

In addition to the active ingredients, these pharmaceutical compositions can contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations which can be used pharmaceutically. Pharmaceutical compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means. Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.

Dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and
suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks’ solution, Ringer’s solution, or physiologically buffered saline. Aqueous injection suspensions can contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds can be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Non-lipid polycationic amino polymers also can be used for delivery. Optionally, the suspension also can contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention can be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. The pharmaceutical composition can be provided as a salt
and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation can be a lyophilized powder which can contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

Further details on techniques for formulation and administration can be found in the latest edition of Remington’s Pharmaceutical Sciences (Maack Publishing Co., Easton, Pa.). After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.

Therapeutic Indications and Methods

Human aminopeptidase N can be regulated to treat cancer, CNS disorders, and COPD.

Cancer. Cancer is a disease fundamentally caused by oncogenic cellular transformation. There are several hallmarks of transformed cells that distinguish them from their normal counterparts and underlie the pathophysiology of cancer. These include uncontrolled cellular proliferation, unresponsiveness to normal death-inducing signals (immortalization), increased cellular motility and invasiveness, increased ability to recruit blood supply through induction of new blood vessel formation (angiogenesis), genetic instability, and dysregulated gene expression. Various combinations of these aberrant physiologies, along with the acquisition of drug-resistance frequently lead to an intractable disease state in which organ failure and patient death ultimately ensue.

Most standard cancer therapies target cellular proliferation and rely on the differential proliferative capacities between transformed and normal cells for their efficacy. This
approach is hindered by the facts that several important normal cell types are also highly proliferative and that cancer cells frequently become resistant to these agents. Thus, the therapeutic indices for traditional anti-cancer therapies rarely exceed 2.0.

The advent of genomics-driven molecular target identification has opened up the possibility of identifying new cancer-specific targets for therapeutic intervention that will provide safer, more effective treatments for cancer patients. Thus, newly discovered tumor-associated genes and their products can be tested for their role(s) in disease and used as tools to discover and develop innovative therapies. Genes playing important roles in any of the physiological processes outlined above can be characterized as cancer targets.

Genes or gene fragments identified through genomics can readily be expressed in one or more heterologous expression systems to produce functional recombinant proteins. These proteins are characterized in vitro for their biochemical properties and then used as tools in high-throughput molecular screening programs to identify chemical modulators of their biochemical activities. Activators and/or inhibitors of target protein activity can be identified in this manner and subsequently tested in cellular and in vivo disease models for anti-cancer activity. Optimization of lead compounds with iterative testing in biological models and detailed pharmacokinetic and toxicological analyses form the basis for drug development and subsequent testing in humans.

CNS disorders. Central and peripheral nervous system disorders also can be treated, such as primary and secondary disorders after brain injury, disorders of mood, anxiety disorders, disorders of thought and volition, disorders of sleep and wakefulness, diseases of the motor unit, such as neurogenic and myopathic disorders, neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, and processes of peripheral and chronic pain.
Pain that is associated with CNS disorders also can be treated by regulating the activity of human aminopeptidase N. Pain which can be treated includes that associated with central nervous system disorders, such as multiple sclerosis, spinal cord injury, sciatica, failed back surgery syndrome, traumatic brain injury, epilepsy, Parkinson’s disease, post-stroke, and vascular lesions in the brain and spinal cord (e.g., infarct, hemorrhage, vascular malformation). Non-central neuropathic pain includes that associated with post mastectomy pain, reflex sympathetic dystrophy (RSD), trigeminal neuralgia, radioulnopathy, post-surgical pain, HIV/AIDS related pain, cancer pain, metabolic neuropathies (e.g., diabetic neuropathy, vasculitic neuropathy secondary to connective tissue disease), paraneoplastic polyneuropathy associated, for example, with carcinoma of lung, or leukemia, or lymphoma, or carcinoma of prostate, colon or stomach, trigeminal neuralgia, cranial neuralgias, and post-herpetic neuralgia. Pain associated with cancer and cancer treatment also can be treated, as can headache pain (for example, migraine with aura, migraine without aura, and other migraine disorders), episodic and chronic tension-type headache, tension-type like headache, cluster headache, and chronic paroxysmal hemicrania.

COPD. Chronic obstructive pulmonary (or airways) disease (COPD) is a condition defined physiologically as airflow obstruction that generally results from a mixture of emphysema and peripheral airway obstruction due to chronic bronchitis (Senior & Shapiro, *Pulmonary Diseases and Disorders*, 3d ed., New York, McGraw-Hill, 1998, pp. 659-681, 1998; Barnes, *Chest* 117, 10S-14S, 2000). Emphysema is characterized by destruction of alveolar walls leading to abnormal enlargement of the air spaces of the lung. Chronic bronchitis is defined clinically as the presence of chronic productive cough for three months in each of two successive years. In COPD, airflow obstruction is usually progressive and is only partially reversible. By far the most important risk factor for development of COPD is cigarette smoking, although the disease does occur in non-smokers.

Chronic inflammation of the airways is a key pathological feature of COPD (Senior & Shapiro, 1998). The inflammatory cell population comprises increased numbers of
macrophages, neutrophils, and CD8⁺ lymphocytes. Inhaled irritants, such as cigarette smoke, activate macrophages which are resident in the respiratory tract, as well as epithelial cells leading to release of chemokines (e.g., interleukin-8) and other chemotactic factors. These chemotactic factors act to increase the neutrophil-/monocyte trafficking from the blood into the lung tissue and airways. Neutrophils and monocytes recruited into the airways can release a variety of potentially damaging mediators such as proteolytic enzymes and reactive oxygen species. Matrix degradation and emphysema, along with airway wall thickening, surfactant dysfunction, and mucus hypersecretion, all are potential sequelae of this inflammatory response that lead to impaired airflow and gas exchange.

This invention further pertains to the use of novel agents identified by the screening assays described above. Accordingly, it is within the scope of this invention to use a test compound identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a modulating agent, an antisense nucleic acid molecule, a specific antibody, ribozyme, or an aminopeptidase N polypeptide binding molecule) can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

A reagent which affects aminopeptidase N activity can be administered to a human cell, either in vitro or in vivo, to reduce aminopeptidase N activity. The reagent preferably binds to an expression product of a human aminopeptidase N gene. If the expression product is a protein, the reagent is preferably an antibody. For treatment of human cells ex vivo, an antibody can be added to a preparation of stem cells that have been removed from the body. The cells can then be replaced in the same or another human body, with or without clonal propagation, as is known in the art.
In one embodiment, the reagent is delivered using a liposome. Preferably, the liposome is stable in the animal into which it has been administered for at least about 30 minutes, more preferably for at least about 1 hour, and even more preferably for at least about 24 hours. A liposome comprises a lipid composition that is capable of targeting a reagent, particularly a polynucleotide, to a particular site in an animal, such as a human. Preferably, the lipid composition of the liposome is capable of targeting to a specific organ of an animal, such as the lung, liver, spleen, heart, brain, lymph nodes, and skin.

A liposome useful in the present invention comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to deliver its contents to the cell. Preferably, the transfection efficiency of a liposome is about 0.5 μg of DNA per 16 nmole of liposome delivered to about 10⁶ cells, more preferably about 1.0 μg of DNA per 16 nmole of liposome delivered to about 10⁶ cells, and even more preferably about 2.0 μg of DNA per 16 nmol of liposome delivered to about 10⁶ cells. Preferably, a liposome is between about 100 and 500 nm, more preferably between about 150 and 450 nm, and even more preferably between about 200 and 400 nm in diameter.

Suitable liposomes for use in the present invention include those liposomes standardly used in, for example, gene delivery methods known to those of skill in the art. More preferred liposomes include liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to polyethylene glycol. Optionally, a liposome comprises a compound capable of targeting the liposome to a particular cell type, such as a cell-specific ligand exposed on the outer surface of the liposome.

Complexing a liposome with a reagent such as an antisense oligonucleotide or ribozyme can be achieved using methods that are standard in the art (see, for example, U.S. Patent 5,705,151). Preferably, from about 0.1 μg to about 10 μg of polynucleotide is combined with about 8 nmol of liposomes, more preferably from
about 0.5 μg to about 5 μg of polynucleotides are combined with about 8 nmol liposomes, and even more preferably about 1.0 μg of polynucleotides is combined with about 8 nmol liposomes.

Determination of a Therapeutically Effective Dose

The determination of a therapeutically effective dose is well within the capability of those skilled in the art. A therapeutically effective dose refers to that amount of active ingredient which increases or decreases aminopeptidase N activity relative to the aminopeptidase N activity which occurs in the absence of the therapeutically effective dose.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs. The animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

Therapeutic efficacy and toxicity, e.g., ED₅₀ (the dose therapeutically effective in 50% of the population) and LD₅₀ (the dose lethal to 50% of the population), can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD₅₀/ED₅₀.
Pharmaceutical compositions that exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED$_{50}$ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and administration are adjusted to provide sufficient levels of the active ingredient or to maintain the desired effect. Factors that can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts can vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

If the reagent is a single-chain antibody, polynucleotides encoding the antibody can be constructed and introduced into a cell either ex vivo or in vivo using well-established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads,
protoplast fusion, viral infection, electroporation, “gene gun,” and DEAE- or calcium phosphate-mediated transfection.

Effective in vivo dosages of an antibody are in the range of about 5 µg to about 50 µg/kg, about 50 µg to about 5 mg/kg, about 100 µg to about 500 µg/kg of patient body weight, and about 200 to about 250 µg/kg of patient body weight. For administration of polynucleotides encoding single-chain antibodies, effective in vivo dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 µg to about 2 mg, about 5 µg to about 500 µg, and about 20 µg to about 100 µg of DNA.

If the expression product is mRNA, the reagent is preferably an antisense oligonucleotide or a ribozyme. Polynucleotides that express antisense oligonucleotides or ribozymes can be introduced into cells by a variety of methods, as described above.

Preferably, a reagent reduces expression of an aminopeptidase N gene or the activity of an aminopeptidase N polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent. The effectiveness of the mechanism chosen to decrease the level of expression of an aminopeptidase N gene or the activity of an aminopeptidase N polypeptide can be assessed using methods well known in the art, such as hybridization of nucleotide probes to aminopeptidase N-specific mRNA, quantitative RT-PCR, immunologic detection of an aminopeptidase N polypeptide, or measurement of aminopeptidase N activity.

In any of the embodiments described above, any of the pharmaceutical compositions of the invention can be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy can be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents can act
synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

Any of the therapeutic methods described above can be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

Diagnostic Methods

Human aminopeptidase N also can be used in diagnostic assays for detecting diseases and abnormalities or susceptibility to diseases and abnormalities related to the presence of mutations in the nucleic acid sequences that encode the enzyme. For example, differences can be determined between the cDNA or genomic sequence encoding aminopeptidase N in individuals afflicted with a disease and in normal individuals. If a mutation is observed in some or all of the afflicted individuals but not in normal individuals, then the mutation is likely to be the causative agent of the disease.

Sequence differences between a reference gene and a gene having mutations can be revealed by the direct DNA sequencing method. In addition, cloned DNA segments can be employed as probes to detect specific DNA segments. The sensitivity of this method is greatly enhanced when combined with PCR. For example, a sequencing primer can be used with a double-stranded PCR product or a single-stranded template molecule generated by a modified PCR. The sequence determination is performed by conventional procedures using radiolabeled nucleotides or by automatic sequencing procedures using fluorescent tags.

Genetic testing based on DNA sequence differences can be carried out by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized, for
example, by high resolution gel electrophoresis. DNA fragments of different sequences can be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al., Science 230, 1242, 1985). Sequence changes at specific locations can also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (e.g., Cotton et al., Proc. Natl. Acad. Sci. USA 85, 4397-4401, 1985). Thus, the detection of a specific DNA sequence can be performed by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes and Southern blotting of genomic DNA. In addition to direct methods such as gel-electrophoresis and DNA sequencing, mutations can also be detected by in situ analysis.

Altered levels of aminopeptidase N also can be detected in various tissues. Assays used to detect levels of the receptor polypeptides in a body sample, such as blood or a tissue biopsy, derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive binding assays, Western blot analysis, and ELISA assays.

All patents and patent applications cited in this disclosure are expressly incorporated herein by reference. The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples, which are provided for purposes of illustration only and are not intended to limit the scope of the invention.
EXAMPLE 1

Detection of aminopeptidase N activity

The polynucleotide of SEQ ID NO: 1 is inserted into the expression vector pCEV4 and the expression vector pCEV4-aminopeptidase N polypeptide obtained is transfected into human embryonic kidney 293 cells. From these cells extracts are obtained and after incubation with 15 U of RNase A (EC 3.1.27.5; Sigma) per ml for 30 min at 37°C and 1.7 U of DNase I (EC 3.1.21.1; Sigma) per ml for 30 min at 20°C, the cell extract is collected by centrifugation at 20,000 x g for 20 min. Protein concentration is estimated according to the method of Bradford with bovine serum albinum as a standard. The standard enzyme assay for the determination of aminopeptidase N activity is performed in 0.1 M sodium phosphate (pH 7.0) at 37°C on 118 µM Lys-7-amino-4-methylcoumarin (AMC) (Bachem) by a fluorimetric method. The sample volume is 2 to 100 µl, and the activity is expressed in micromoles of substrate hydrolyzed per minute per milligram of protein. It is shown that the polypeptide of SEQ ID NO: 2 has a aminopeptidase N activity.

EXAMPLE 2

Expression of recombinant human aminopeptidase N

The Pichia pastoris expression vector pPICZB (Invitrogen, San Diego, CA) is used to produce large quantities of recombinant human aminopeptidase N polypeptides in yeast. The aminopeptidase N-encoding DNA sequence is derived from SEQ ID NO: 1. Before insertion into vector pPICZB, the DNA sequence is modified by well known methods in such a way that it contains at its 5'-end an initiation codon and at its 3'-end an enterokinase cleavage site, a His6 reporter tag and a termination codon. Moreover, at both termini recognition sequences for restriction endonucleases are added and after digestion of the multiple cloning site of pPICZ B with the corresponding restriction enzymes the modified DNA sequence is ligated into
pPICZB. This expression vector is designed for inducible expression in *Pichia pastoris*, driven by a yeast promoter. The resulting pPICZ/md-His6 vector is used to transform the yeast.

The yeast is cultivated under usual conditions in 5 liter shake flasks and the recombinantly produced protein isolated from the culture by affinity chromatography (Ni-NTA-Resin) in the presence of 8 M urea. The bound polypeptide is eluted with buffer, pH 3.5, and neutralized. Separation of the polypeptide from the His6 reporter tag is accomplished by site-specific proteolysis using enterokinase (Invitrogen, San Diego, CA) according to manufacturer’s instructions. Purified human aminopeptidase N polypeptide is obtained.

EXAMPLE 3

Identification of test compounds that bind to aminopeptidase N polypeptides

Purified aminopeptidase N polypeptides comprising a glutathione-S-transferase protein and absorbed onto glutathione-derivatized wells of 96-well microtiter plates are contacted with test compounds from a small molecule library at pH 7.0 in a physiological buffer solution. Human aminopeptidase N polypeptides comprise the amino acid sequence shown in SEQ ID NO: 2. The test compounds comprise a fluorescent tag. The samples are incubated for 5 minutes to one hour. Control samples are incubated in the absence of a test compound.

The buffer solution containing the test compounds is washed from the wells. Binding of a test compound to an aminopeptidase N polypeptide is detected by fluorescence measurements of the contents of the wells. A test compound that increases the fluorescence in a well by at least 15% relative to fluorescence of a well in which a test compound is not incubated is identified as a compound which binds to an aminopeptidase N polypeptide.
EXAMPLE 4

Identification of a test compound which decreases aminopeptidase N gene expression

A test compound is administered to a culture of human cells transfected with an aminopeptidase N expression construct and incubated at 37 °C for 10 to 45 minutes. A culture of the same type of cells that have not been transfected is incubated for the same time without the test compound to provide a negative control.

RNA is isolated from the two cultures as described in Chirgwin *et al.*, *Biochem. 18*, 5294-99, 1979). Northern blots are prepared using 20 to 30 μg total RNA and hybridized with a 32P-labeled aminopeptidase N-specific probe at 65°C in Expresshyb (CLONTECH). The probe comprises at least 11 contiguous nucleotides selected from the complement of SEQ ID NO: 1. A test compound that decreases the aminopeptidase N-specific signal relative to the signal obtained in the absence of the test compound is identified as an inhibitor of aminopeptidase N gene expression.

EXAMPLE 5

Identification of a test compound which decreases aminopeptidase N activity

A test compound is administered to a culture of human cells transfected with an aminopeptidase N expression construct and incubated at 37 °C for 10 to 45 minutes. A culture of the same type of cells that have not been transfected is incubated for the same time without the test compound to provide a negative control. Aminopeptidase N activity is measured using the method of Ishii et al. (Int. J. Cancer 92(1):49-54).

A test compound which decreases the aminopeptidase N activity of the aminopeptidase N relative to the aminopeptidase N activity in the absence of the test compound is identified as an inhibitor of aminopeptidase N activity.
EXAMPLE 6

Tissue-specific expression of aminopeptidase N

The qualitative expression pattern of aminopeptidase N in various tissues is determined by Reverse Transcription-Polymerase Chain Reaction (RT-PCR).

To demonstrate that aminopeptidase N is involved in the disease process of COPD, the initial expression panel consists of RNA samples from respiratory tissues and inflammatory cells relevant to COPD: lung (adult and fetal), trachea, freshly isolated alveolar type II cells, cultured human bronchial epithelial cells, cultured small airway epithelial cells, cultured bronchial sooth muscle cells, cultured H441 cells (Clara-like), freshly isolated neutrophils and monocytes, and cultured monocytes (macrophage-like). Body map profiling also is carried out, using total RNA panels purchased from Clontech. The tissues are adrenal gland, bone marrow, brain, colon, heart, kidney, liver, lung, mammary gland, pancreas, prostate, salivary gland, skeletal muscle, small intestine, spleen, stomach, testis, thymus, trachea, thyroid, and uterus.

To demonstrate that aminopeptidase N is involved in CNS disorders, the following tissues are screened: fetal and adult brain, muscle, heart, lung, kidney, liver, thymus, testis, colon, placenta, trachea, pancreas, kidney, gastric mucosa, colon, liver, cerebellum, skin, cortex (Alzheimer’s and normal), hypothalamus, cortex, amygdala, cerebellum, hippocampus, choroid, plexus, thalamus, and spinal cord.

To demonstrate that aminopeptidase N is involved in cancer, expression is determined in the following tissues: adrenal gland, bone marrow, brain, cerebellum, colon, fetal brain, fetal liver, heart, kidney, liver, lung, mammary gland, pancreas, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thymus, thyroid, trachea, uterus, and peripheral blood lymphocytes.

Expression in the following cancer cell lines also is determined: DU-145 (prostate), NCI-H125 (lung), HT-29 (colon), COLO-205 (colon), A-549 (lung), NCI-H460
(lung), HT-116 (colon), DLD-1 (colon), MDA-MD-231 (breast), LS174T (colon), ZF-75 (breast), MDA-MN-435 (breast), HT-1080, MCF-7 (breast), and U87. Matched pairs of malignant and normal tissue from the same patient also are tested.

Quantitative expression profiling. Quantitative expression profiling is performed by the form of quantitative PCR analysis called "kinetic analysis" firstly described in Higuchi et al., BioTechnology 10, 413-17, 1992, and Higuchi et al., BioTechnology 11, 1026-30, 1993. The principle is that at any given cycle within the exponential phase of PCR, the amount of product is proportional to the initial number of template copies.

If the amplification is performed in the presence of an internally quenched fluorescent oligonucleotide (TaqMan probe) complementary to the target sequence, the probe is cleaved by the 5'-3' endonuclease activity of Taq DNA polymerase and a fluorescent dye released in the medium (Holland et al., Proc. Natl. Acad. Sci. U.S.A. 88, 7276-80, 1991). Because the fluorescence emission will increase in direct proportion to the amount of the specific amplified product, the exponential growth phase of PCR product can be detected and used to determine the initial template concentration (Heid et al., Genome Res. 6, 986-94, 1996, and Gibson et al., Genome Res. 6, 995-1001, 1996).

The amplification of an endogenous control can be performed to standardize the amount of sample RNA added to a reaction. In this kind of experiment, the control of choice is the 18S ribosomal RNA. Because reporter dyes with differing emission spectra are available, the target and the endogenous control can be independently quantified in the same tube if probes labeled with different dyes are used.

All "real time PCR" measurements of fluorescence are made in the ABI Prism 7700.

RNA extraction and cDNA preparation. Total RNA from the tissues listed above are used for expression quantification. RNAs labeled "from autopsy" were extracted
from autopic tissues with the TRIzol reagent (Life Technologies, MD) according to the manufacturer's protocol.

Fifty µg of each RNA were treated with DNase I for 1 hour at 37°C in the following reaction mix: 0.2 U/µl RNase-free DNase I (Roche Diagnostics, Germany); 0.4 U/µl RNase inhibitor (PE Applied Biosystems, CA); 10 mM Tris-HCl pH 7.9; 10 mM MgCl2; 50 mM NaCl; and 1 mM DTT.

After incubation, RNA is extracted once with 1 volume of phenol:chloroform:-isoamyl alcohol (24:24:1) and once with chloroform, and precipitated with 1/10 volume of 3 M NaAcetate, pH5.2, and 2 volumes of ethanol.

Fifty µg of each RNA from the autopic tissues are DNase treated with the DNA-free kit purchased from Ambion (Ambion, TX). After resuspension and spectrophotometric quantification, each sample is reverse transcribed with the TaqMan Reverse Transcription Reagents (PE Applied Biosystems, CA) according to the manufacturer's protocol. The final concentration of RNA in the reaction mix is 200 ng/µL. Reverse transcription is carried out with 2.5 µM of random hexamer primers.

TaqMan quantitative analysis. Specific primers and probe are designed according to the recommendations of PE Applied Biosystems; the probe can be labeled at the 5' end FAM (6-carboxy-fluorescein) and at the 3' end with TAMRA (6-carboxytetramethyl-rhodamine). Quantification experiments are performed on 10 ng of reverse transcribed RNA from each sample. Each determination is done in triplicate.

Total cDNA content is normalized with the simultaneous quantification (multiplex PCR) of the 18S ribosomal RNA using the Pre-Developed TaqMan Assay Reagents (PDAR) Control Kit (PE Applied Biosystems, CA).

The assay reaction mix is as follows: 1X final TaqMan Universal PCR Master Mix
(from 2X stock) (PE Applied Biosystems, CA); 1X PDAR control – 18S RNA (from 20X stock); 300 nM forward primer; 900 nM reverse primer; 200 nM probe; 10 ng cDNA; and water to 25 µl.

Each of the following steps are carried out once: pre PCR, 2 minutes at 50°C, and 10 minutes at 95°C. The following steps are carried out 40 times: denaturation, 15 seconds at 95°C, annealing/extension, 1 minute at 60°C.

The experiment is performed on an ABI Prism 7700 Sequence Detector (PE Applied Biosystems, CA). At the end of the run, fluorescence data acquired during PCR are processed as described in the ABI Prism 7700 user’s manual in order to achieve better background subtraction as well as signal linearity with the starting target quantity.

EXAMPLE 7

Proliferation inhibition assay: Antisense oligonucleotides suppress the growth of cancer cell lines

The cell line used for testing is the human colon cancer cell line HCT116. Cells are cultured in RPMI-1640 with 10-15% fetal calf serum at a concentration of 10,000 cells per milliliter in a volume of 0.5 ml and kept at 37°C in a 95% air/5%CO₂ atmosphere.

Phosphorothioate oligoribonucleotides are synthesized on an Applied Biosystems Model 380B DNA synthesizer using phosphoroamidite chemistry. A sequence of 24 bases complementary to the nucleotides at position 1 to 24 of SEQ ID NO: 1 is used as the test oligonucleotide. As a control, another (random) sequence is used: 5’-TCA ACT GAC TAG ATG TAC ATG GAC-3’. Following assembly and deprotection, oligonucleotides are ethanol-precipitated twice, dried, and suspended in phosphate buffered saline at the desired concentration. Purity of the oligonucleotides is tested
by capillary gel electrophoresis and ion exchange HPLC. The purified oligonucleotides are added to the culture medium at a concentration of 10 μM once per day for seven days.

The addition of the test oligonucleotide for seven days results in significantly reduced expression of human aminopeptidase N as determined by Western blotting. This effect is not observed with the control oligonucleotide. After 3 to 7 days, the number of cells in the cultures is counted using an automatic cell counter. The number of cells in cultures treated with the test oligonucleotide (expressed as 100%) is compared with the number of cells in cultures treated with the control oligonucleotide. The number of cells in cultures treated with the test oligonucleotide is not more than 30% of control, indicating that the inhibition of human aminopeptidase N has an anti-proliferative effect on cancer cells.

EXAMPLE 8

In vivo testing of compounds/target validation

1. Acute Mechanistic Assays

1.1. Reduction in Mitogenic Plasma Hormone Levels

This non-tumor assay measures the ability of a compound to reduce either the endogenous level of a circulating hormone or the level of hormone produced in response to a biologic stimulus. Rodents are administered test compound (p.o., i.p., i.v., i.m., or s.c.). At a predetermined time after administration of test compound, blood plasma is collected. Plasma is assayed for levels of the hormone of interest. If the normal circulating levels of the hormone are too low and/or variable to provide consistent results, the level of the hormone may be elevated by a pre-treatment with a biologic stimulus (i.e., LHRH may be injected i.m. into mice at a dosage of 30 ng/mouse to induce a burst of testosterone synthesis). The timing of plasma
collection would be adjusted to coincide with the peak of the induced hormone response. Compound effects are compared to a vehicle-treated control group. An F-test is preformed to determine if the variance is equal or unequal followed by a Student’s t-test. Significance is p value ≤ 0.05 compared to the vehicle control group.

1.2. **Hollow Fiber Mechanism of Action Assay**

Hollow fibers are prepared with desired cell line(s) and implanted intraperitoneally and/or subcutaneously in rodents. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Fibers are harvested in accordance with specific readout assay protocol, these may include assays for gene expression (bDNA, PCR, or Taqman), or a specific biochemical activity (i.e., cAMP levels). Results are analyzed by Student’s t-test or Rank Sum test after the variance between groups is compared by an F-test, with significance at $p \leq 0.05$ as compared to the vehicle control group.

2. **Subacute Functional In Vivo Assays**

2.1. **Reduction in Mass of Hormone Dependent Tissues**

This is another non-tumor assay that measures the ability of a compound to reduce the mass of a hormone dependent tissue (i.e., seminal vesicles in males and uteri in females). Rodents are administered test compound (p.o., i.p., i.v., i.m., or s.c.) according to a predetermined schedule and for a predetermined duration (i.e., 1 week). At termination of the study, animals are weighed, the target organ is excised, any fluid is expressed, and the weight of the organ is recorded. Blood plasma may also be collected. Plasma may be assayed for levels of a hormone of interest or for levels of test agent. Organ weights may be directly compared or they may be normalized for the body weight of the animal. Compound effects are compared to a vehicle-treated control group. An F-test is preformed to determine if the variance is equal or unequal followed by a Student’s t-test. Significance is p value ≤ 0.05
compared to the vehicle control group.

2.2. **Hollow Fiber Proliferation Assay**

Hollow fibers are prepared with desired cell line(s) and implanted intraperitoneally and/or subcutaneously in rodents. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Fibers are harvested in accordance with specific readout assay protocol. Cell proliferation is determined by measuring a marker of cell number (i.e., MTT or LDH). The cell number and change in cell number from the starting inoculum are analyzed by Student’s t-test or Rank Sum test after the variance between groups is compared by an F-test, with significance at \(p \leq 0.05 \) as compared to the vehicle control group.

2.3. **Anti-angiogenesis Models**

2.3.1. **Corneal Angiogenesis**

Hydron pellets with or without growth factors or cells are implanted into a micropocket surgically created in the rodent cornea. Compound administration may be systemic or local (compound mixed with growth factors in the hydron pellet). Corneas are harvested at 7 days post implantation immediately following intracardiac infusion of colloidal carbon and are fixed in 10% formalin. Readout is qualitative scoring and/or image analysis. Qualitative scores are compared by Rank Sum test. Image analysis data is evaluated by measuring the area of neovascularization (in pixels) and group averages are compared by Student’s t-test (2 tail). Significance is \(p \leq 0.05 \) as compared to the growth factor or cells only group.

2.3.2. **Matrigel Angiogenesis**

Matrigel, containing cells or growth factors, is injected subcutaneously. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Matrigel plugs are harvested at
predetermined time point(s) and prepared for readout. Readout is an ELISA-based assay for hemoglobin concentration and/or histological examination (i.e. vessel count, special staining for endothelial surface markers: CD31, factor-8). Readouts are analyzed by Student's t-test, after the variance between groups is compared by an F-test, with significance determined at $p \leq 0.05$ as compared to the vehicle control group.

3. **Primary Antitumor Efficacy**

3.1. **Early Therapy Models**

3.1.1. **Subcutaneous Tumor**

Tumor cells or fragments are implanted subcutaneously on Day 0. Vehicle and/or compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule starting at a time, usually on Day 1, prior to the ability to measure the tumor burden. Body weights and tumor measurements are recorded 2-3 times weekly. Mean net body and tumor weights are calculated for each data collection day. Anti-tumor efficacy may be initially determined by comparing the size of treated (T) and control (C) tumors on a given day by a Student's t-test, after the variance between groups is compared by an F-test, with significance determined at $p \leq 0.05$. The experiment may also be continued past the end of dosing in which case tumor measurements would continue to be recorded to monitor tumor growth delay. Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan-Meier curves from the times for individual tumors to attain the evaluation size. Significance is $p \leq 0.05$.
3.1.2. *Intraperitoneal/Intracranial Tumor Models*

Tumor cells are injected intraperitoneally or intracranially on Day 0. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule starting on Day 1. Observations of morbidity and/or mortality are recorded twice daily. Body weights are measured and recorded twice weekly. Morbidity/mortality data is expressed in terms of the median time of survival and the number of long-term survivors is indicated separately. Survival times are used to generate Kaplan-Meier curves. Significance is $p \leq 0.05$ by a log-rank test compared to the control group in the experiment.

3.2. *Established Disease Model*

Tumor cells or fragments are implanted subcutaneously and grown to the desired size for treatment to begin. Once at the predetermined size range, mice are randomized into treatment groups. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Tumor and body weights are measured and recorded 2-3 times weekly. Mean tumor weights of all groups over days post inoculation are graphed for comparison. An F-test is preformed to determine if the variance is equal or unequal followed by a Student’s t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is $p \leq 0.05$ as compared to the control group. Tumor measurements may be recorded after dosing has stopped to monitor tumor growth delay. Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan-Meier curves from the times for individual tumors to attain the evaluation size. Significance is p value ≤ 0.05 compared to the vehicle control group.
3.3. Orthotopic Disease Models

3.3.1. Mammary Fat Pad Assay

Tumor cells or fragments, of mammary adenocarcinoma origin, are implanted directly into a surgically exposed and reflected mammary fat pad in rodents. The fat pad is placed back in its original position and the surgical site is closed. Hormones may also be administered to the rodents to support the growth of the tumors. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Tumor and body weights are measured and recorded 2-3 times weekly. Mean tumor weights of all groups over days post inoculation are graphed for comparison. An F-test is preformed to determine if the variance is equal or unequal followed by a Student’s t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is $p \leq 0.05$ as compared to the control group.

Tumor measurements may be recorded after dosing has stopped to monitor tumor growth delay. Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan-Meier curves from the times for individual tumors to attain the evaluation size. Significance is p value ≤ 0.05 compared to the vehicle control group. In addition, this model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ, or measuring the target organ weight. The means of these endpoints are compared by Student’s t-test after conducting an F-test, with significance determined at $p \leq 0.05$ compared to the control group in the experiment.
3.3.2. Intraprostatic Assay

Tumor cells or fragments, of prostatic adenocarcinoma origin, are implanted directly into a surgically exposed dorsal lobe of the prostate in rodents. The prostate is externalized through an abdominal incision so that the tumor can be implanted specifically in the dorsal lobe while verifying that the implant does not enter the seminal vesicles. The successfully inoculated prostate is replaced in the abdomen and the incisions through the abdomen and skin are closed. Hormones may also be administered to the rodents to support the growth of the tumors. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Body weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected. The size of the primary tumor is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope. An F-test is preformed to determine if the variance is equal or unequal followed by a Student’s t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is \(p \leq 0.05 \) as compared to the control group. This model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the lungs), or measuring the target organ weight (i.e., the regional lymph nodes). The means of these endpoints are compared by Student’s t-test after conducting an F-test, with significance determined at \(p \leq 0.05 \) compared to the control group in the experiment.

3.3.3. Intrabronchial Assay

Tumor cells of pulmonary origin may be implanted intrabronchially by making an incision through the skin and exposing the trachea. The trachea is pierced with the beveled end of a 25 gauge needle and the tumor cells are inoculated into the main bronchus using a flat-ended 27 gauge needle with a 90° bend. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Body
weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected. The size of the primary tumor is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope. An F-test is performed to determine if the variance is equal or unequal followed by a Student’s t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is $p \leq 0.05$ as compared to the control group. This model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the contralateral lung), or measuring the target organ weight. The means of these endpoints are compared by Student’s t-test after conducting an F-test, with significance determined at $p \leq 0.05$ compared to the control group in the experiment.

3.3.4. Intracellular Assay

Tumor cells of gastrointestinal origin may be implanted intracellularly by making an abdominal incision through the skin and externalizing the intestine. Tumor cells are inoculated into the cecal wall without penetrating the lumen of the intestine using a 27 or 30 gauge needle. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Body weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected. The size of the primary tumor is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope. An F-test is performed to determine if the variance is equal or unequal followed by a Student’s t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is $p \leq 0.05$ as compared to the control group. This model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the liver), or measuring the target organ weight. The means of these endpoints are compared by Student’s t-test after conducting an F-test, with significance determined at $p \leq 0.05$ compared to the control group in the experiment.
experiment.

4. **Secondary (Metastatic) Antitumor Efficacy**

4.1. **Spontaneous Metastasis**

Tumor cells are inoculated s.c. and the tumors allowed to grow to a predetermined range for spontaneous metastasis studies to the lung or liver. These primary tumors are then excised. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule which may include the period leading up to the excision of the primary tumor to evaluate therapies directed at inhibiting the early stages of tumor metastasis. Observations of morbidity and/or mortality are recorded daily. Body weights are measured and recorded twice weekly. Potential endpoints include survival time, numbers of visible foci per target organ, or target organ weight. When survival time is used as the endpoint the other values are not determined. Survival data is used to generate Kaplan-Meier curves. Significance is $p \leq 0.05$ by a log-rank test compared to the control group in the experiment. The mean number of visible tumor foci, as determined under a dissecting microscope, and the mean target organ weights are compared by Student's t-test after conducting an F-test, with significance determined at $p \leq 0.05$ compared to the control group in the experiment for both of these endpoints.

4.2. **Forced Metastasis**

Tumor cells are injected into the tail vein, portal vein, or the left ventricle of the heart in experimental (forced) lung, liver, and bone metastasis studies, respectively. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Observations of morbidity and/or mortality are recorded daily. Body weights are measured and recorded twice weekly. Potential endpoints include survival time, numbers of visible foci per target organ, or target organ weight. When survival time is used as the endpoint the other values are not determined. Survival
data is used to generate Kaplan-Meier curves. Significance is \(p \leq 0.05 \) by a log-rank test compared to the control group in the experiment. The mean number of visible tumor foci, as determined under a dissecting microscope, and the mean target organ weights are compared by Student’s t-test after conducting an F-test, with significance at \(p \leq 0.05 \) compared to the vehicle control group in the experiment for both endpoints.

EXAMPLE 9

In vivo testing of compounds/target validation

1. **Pain**

 Acute Pain

 Acute pain is measured on a hot plate mainly in rats. Two variants of hot plate testing are used: In the classical variant animals are put on a hot surface (52 to 56°C) and the latency time is measured until the animals show nocifensive behavior, such as stepping or foot licking. The other variant is an increasing temperature hot plate where the experimental animals are put on a surface of neutral temperature. Subsequently this surface is slowly but constantly heated until the animals begin to lick a hind paw. The temperature which is reached when hind paw licking begins is a measure for pain threshold.

 Compounds are tested against a vehicle treated control group. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c., intradermal, transdermal) prior to pain testing.
Persistent Pain

Persistent pain is measured with the formalin or capsaicin test, mainly in rats. A solution of 1 to 5% formalin or 10 to 100 μg capsaicin is injected into one hind paw of the experimental animal. After formalin or capsaicin application the animals show nocifensive reactions like flinching, licking and biting of the affected paw. The number of nocifensive reactions within a time frame of up to 90 minutes is a measure for intensity of pain.

Compounds are tested against a vehicle treated control group. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c., intradermal, transdermal) prior to formalin or capsaicin administration.

Neuropathic Pain

Neuropathic pain is induced by different variants of unilateral sciatic nerve injury mainly in rats. The operation is performed under anesthesia. The first variant of sciatic nerve injury is produced by placing loosely constrictive ligatures around the common sciatic nerve. The second variant is the tight ligation of about half of the diameter of the common sciatic nerve. In the next variant, a group of models is used in which tight ligations or transections are made of either the L5 and L6 spinal nerves, or the L7 spinal nerve only. The fourth variant involves an axotomy of two of the three terminal branches of the sciatic nerve (tibial and common peroneal nerves) leaving the remaining sural nerve intact whereas the last variant comprises the axotomy of only the tibial branch leaving the sural and common nerves uninjured. Control animals are treated with a sham operation.

Postoperatively, the nerve injured animals develop a chronic mechanical
allodynia, cold allodynia, as well as a thermal hyperalgesia. Mechanical allostynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer, IITC Inc.-Life Science Instruments, Woodland Hills, SA, USA; Electronic von Frey System, Somedic Sales AB, Höby, Sweden). Thermal hyperalgesia is measured by means of a radiant heat source (Plantar Test, Ugo Basile, Comerio, Italy), or by means of a cold plate of 5 to 10°C where the nocifensive reactions of the affected hind paw are counted as a measure of pain intensity. A further test for cold induced pain is the counting of nocifensive reactions, or duration of nocifensive responses after plantar administration of acetone to the affected hind limb. Chronic pain in general is assessed by registering the circadian rhythms in activity (Surjo and Arndt, Universität zu Köln, Cologne, Germany), and by scoring differences in gait (foot print patterns; FOOTPRINTS program, Klapdor et al., 1997. A low cost method to analyze footprint patterns. J. Neurosci. Methods 75, 49-54).

Compounds are tested against sham operated and vehicle treated control groups. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c., intradermal, transdermal) prior to pain testing.

Inflammatory Pain

Inflammatory pain is induced mainly in rats by injection of 0.75 mg carrageenan or complete Freund's adjuvant into one hind paw. The animals develop an edema with mechanical allodynia as well as thermal hyperalgesia. Mechanical allodynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer, IITC Inc.-Life Science Instruments, Woodland Hills, SA, USA). Thermal hyperalgesia is measured by means of a radiant heat source (Plantar Test, Ugo Basile, Comerio, Italy, Paw thermal stimulator, G. Ozaki, University of California, USA). For edema measurement two methods are being used. In the first method, the animals are
sacrificed and the affected hindpaws sectioned and weighed. The second method comprises differences in paw volume by measuring water displacement in a plethysmometer (Ugo Basile, Comerio, Italy).

Compounds are tested against uninflamed as well as vehicle treated control groups. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c., intradermal, transdermal) prior to pain testing.

Diabetic Neuropathic Pain

Rats treated with a single intraperitoneal injection of 50 to 80 mg/kg streptozotocin develop a profound hyperglycemia and mechanical allodynia within 1 to 3 weeks. Mechanical allodynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer, IITC Inc.-Life Science Instruments, Woodland Hills, SA, USA).

Compounds are tested against diabetic and non-diabetic vehicle treated control groups. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c., intradermal, transdermal) prior to pain testing.

2. Parkinson’s disease

6-Hydroxydopamine (6-OH-DA) Lesion

Degeneration of the dopaminergic nigrostriatal and striatopallidal pathways is the central pathological event in Parkinson’s disease. This disorder has been mimicked experimentally in rats using single/sequential unilateral stereotaxic injections of 6-OH-DA into the medium forebrain bundle (MFB).
Male Wistar rats (Harlan Winkelmann, Germany), weighing 200±250 g at the beginning of the experiment, are used. The rats are maintained in a temperature- and humidity-controlled environment under a 12 h light/dark cycle with free access to food and water when not in experimental sessions. The following in vivo protocols are approved by the governmental authorities. All efforts are made to minimize animal suffering, to reduce the number of animals used, and to utilize alternatives to in vivo techniques.

Animals are administered pargyline on the day of surgery (Sigma, St. Louis, MO, USA; 50 mg/kg i.p.) in order to inhibit metabolism of 6-OHDA by monoamine oxidase and desmethylimipramine HCl (Sigma; 25 mg/kg i.p.) in order to prevent uptake of 6-OHDA by noradrenergic terminals. Thirty minutes later the rats are anesthetized with sodium pentobarbital (50 mg/kg) and placed in a stereotaxic frame. In order to lesion the DA nigrostriatal pathway 4 µl of 0.01% ascorbic acid-saline containing 8 µg of 6-OHDA HBr (Sigma) are injected into the left medial fore-brain bundle at a rate of 1 µl/min (2.4 mm anterior, 1.49 mm lateral, -2.7 mm ventral to Bregma and the skull surface). The needle is left in place an additional 5 min to allow diffusion to occur.

Stepping Test

Forelimb akinesia is assessed three weeks following lesion placement using a modified stepping test protocol. In brief, the animals are held by the experimenter with one hand fixing the hindlimbs and slightly raising the hind part above the surface. One paw is touching the table, and is then moved slowly sideways (5 s for 1 m), first in the forehand and then in the backhand direction. The number of adjusting steps is counted for both paws in the backhand and forehand direction of movement. The sequence of testing is right paw forehand and backhand adjusting stepping, followed by left paw forehand and backhand directions. The test is repeated three times on three
consecutive days, after an initial training period of three days prior to the first
testing. Forehand adjusted stepping reveals no consistent differences between
lesioned and healthy control animals. Analysis is therefore restricted to
backhand adjusted stepping.

Balance Test

Balance adjustments following postural challenge are also measured during
the stepping test sessions. The rats are held in the same position as described
in the stepping test and, instead of being moved sideways, tilted by the
experimenter towards the side of the paw touching the table. This maneuver
results in loss of balance and the ability of the rats to regain balance by
forelimb movements is scored on a scale ranging from 0 to 3. Score 0 is given
for a normal forelimb placement. When the forelimb movement is delayed but
recovery of postural balance detected, score 1 is given. Score 2 represents a
clear, yet insufficient, forelimb reaction, as evidenced by muscle contraction,
but lack of success in recovering balance, and score 3 is given for no reaction
of movement. The test is repeated three times a day on each side for three
consecutive days after an initial training period of three days prior to the first
testing.

Staircase Test (Paw Reaching)

A modified version of the staircase test is used for evaluation of paw reaching
behavior three weeks following primary and secondary lesion placement.
Plexiglass test boxes with a central platform and a removable staircase on
each side are used. The apparatus is designed such that only the paw on the
same side at each staircase can be used, thus providing a measure of
independent forelimb use. For each test the animals are left in the test boxes
for 15 min. The double staircase is filled with 7 x 3 chow pellets (Precision
food pellets, formula: P, purified rodent diet, size 45 mg; Sandown Scientific)
on each side. After each test the number of pellets eaten (successfully retrieved pellets) and the number of pellets taken (touched but dropped) for each paw and the success rate (pellets eaten/pellets taken) are counted separately. After three days of food deprivation (12 g per animal per day) the animals are tested for 11 days. Full analysis is conducted only for the last five days.

MPTP treatment

The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP) causes degeneration of mesencephalic dopaminergic (DAergic) neurons in rodents, non-human primates, and humans and, in so doing, reproduces many of the symptoms of Parkinson's disease. MPTP leads to a marked decrease in the levels of dopamine and its metabolites, and in the number of dopaminergic terminals in the striatum as well as severe loss of the tyrosine hydroxylase (TH)-immunoreactive cell bodies in the substantia nigra, pars compacta.

In order to obtain severe and long-lasting lesions, and to reduce mortality, animals receive single injections of MPTP, and are then tested for severity of lesion 7–10 days later. Successive MPTP injections are administered on days 1, 2 and 3. Animals receive application of 4 mg/kg MPTP hydrochloride (Sigma) in saline once daily. All injections are intraperitoneal (i.p.) and the MPTP stock solution is frozen between injections. Animals are decapitated on day 11.

Immunohistology

At the completion of behavioral experiments, all animals are anaesthetized with 3 ml thioental (1 g/40 ml i.p., Tyrol Pharma). The mice are perfused transcardially with 0.01 M PBS (pH 7.4) for 2 min, followed by 4%
paraformaldehyde (Merck) in PBS for 15 min. The brains are removed and placed in 4% paraformaldehyde for 24 h at 4°C. For dehydration they are then transferred to a 20% sucrose (Merck) solution in 0.1 M PBS at 4°C until they sink. The brains are frozen in methylbutan at -20°C for 2 min and stored at -70°C. Using a sledge microtome (mod. 3800-Frigocut, Leica), 25 μm sections are taken from the genu of the corpus callosum (AP 1.7 mm) to the hippocampus (AP 21.8 mm) and from AP 24.16 to AP 26.72. Forty-six sections are cut and stored in assorters in 0.25 M Tris buffer (pH 7.4) for immunohistochemistry.

A series of sections is processed for free-floating tyrosine hydroxylase (TH) immunohistochemistry. Following three rinses in 0.1 M PBS, endogenous peroxidase activity is quenched for 10 min in 0.3% H₂O₂ ±PBS. After rinsing in PBS, sections are preincubated in 10% normal bovine serum (Sigma) for 5 min as blocking agent and transferred to either primary anti-rat TH rabbit antiserum (dilution 1:2000).

Following overnight incubation at room temperature, sections for TH immunoreactivity are rinsed in PBS (2 x10 min) and incubated in biotinylated anti-rabbit immunoglobulin G raised in goat (dilution 1:200) (Vector) for 90 min, rinsed repeatedly and transferred to Vectastain ABC (Vector) solution for 1 h. 3,3’-Diaminobenzidine tetrahydrochloride (DAB; Sigma) in 0.1 M PBS, supplemented with 0.005% H₂O₂, serves as chromogen in the subsequent visualization reaction. Sections are mounted on to gelatin-coated slides, left to dry overnight, counter-stained with hematoxylin dehydrated in ascending alcohol concentrations and cleared in butylacetate. Coverslips are mounted on entellan.

Rotarod Test

We use a modification of the procedure described by Rozas and Labandeira-
Garcia (1997), with a CR-1 Rotamex system (Columbus Instruments, Columbus, OH) comprising an IBM-compatible personal computer, a CIO-24 data acquisition card, a control unit, and a four-lane rotarod unit. The rotarod unit consists of a rotating spindle (diameter 7.3 cm) and individual compartments for each mouse. The system software allows preprogramming of session protocols with varying rotational speeds (0–80 rpm). Infrared beams are used to detect when a mouse has fallen onto the base grid beneath the rotarod. The system logs the fall as the end of the experiment for that mouse, and the total time on the rotarod, as well as the time of the fall and all the set-up parameters, are recorded. The system also allows a weak current to be passed through the base grid, to aid training.

3. Dementia

The object recognition task

The object recognition task has been designed to assess the effects of experimental manipulations on the cognitive performance of rodents. A rat is placed in an open field, in which two identical objects are present. The rats inspects both objects during the first trial of the object recognition task. In a second trial, after a retention interval of for example 24 hours, one of the two objects used in the first trial, the ‘familiar’ object, and a novel object are placed in the open field. The inspection time at each of the objects is registered. The basic measures in the OR task is the time spent by a rat exploring the two object the second trial. Good retention is reflected by higher exploration times towards the novel than the ‘familiar’ object.

Administration of the putative cognition enhancer prior to the first trial predominantly allows assessment of the effects on acquisition, and eventually on consolidation processes. Administration of the testing compound after the first trial allows to assess the effects on consolidation processes, whereas administration before the second trial allows to measure effects on retrieval.
processes.

The passive avoidance task

The passive avoidance task assesses memory performance in rats and mice. The inhibitory avoidance apparatus consists of a two-compartment box with a light compartment and a dark compartment. The two compartments are separated by a guillotine door that can be operated by the experimenter. A threshold of 2 cm separates the two compartments when the guillotine door is raised. When the door is open, the illumination in the dark compartment is about 2 lux. The light intensity is about 500 lux at the center of the floor of the light compartment.

Two habituation sessions, one shock session, and a retention session are given, separated by inter-session intervals of 24 hours. In the habituation sessions and the retention session the rat is allowed to explore the apparatus for 300 sec. The rat is placed in the light compartment, facing the wall opposite to the guillotine door. After an accommodation period of 15 sec. the guillotine door is opened so that all parts of the apparatus can be visited freely. Rats normally avoid brightly lit areas and will enter the dark compartment within a few seconds.

In the shock session the guillotine door between the compartments is lowered as soon as the rat has entered the dark compartment with its four paws, and a scrambled 1 mA footshock is administered for 2 sec. The rat is removed from the apparatus and put back into its home cage. The procedure during the retention session is identical to that of the habituation sessions.

The step-through latency, that is the first latency of entering the dark compartment (in sec.) during the retention session is an index of the memory performance of the animal; the longer the latency to enter the dark
compartment, the better the retention is. A testing compound in given half an hour before the shock session, together with 1 mg\textdegreekg-1 scopolamine. Scopolamine impairs the memory performance during the retention session 24 hours later. If the test compound increases the enter latency compared with the scopolamine-treated controls, is likely to possess cognition enhancing potential.

The Morris water escape task

The Morris water escape task measures spatial orientation learning in rodents. It is a test system that has extensively been used to investigate the effects of putative therapeutic on the cognitive functions of rats and mice. The performance of an animal is assessed in a circular water tank with an escape platform that is submerged about 1 cm below the surface of the water. The escape platform is not visible for an animal swimming in the water tank. Abundant extra-maze cues are provided by the furniture in the room, including desks, computer equipment, a second water tank, the presence of the experimenter, and by a radio on a shelf that is playing softly.

The animals receive four trials during five daily acquisition sessions. A trial is started by placing an animal into the pool, facing the wall of the tank. Each of four starting positions in the quadrants north, east, south, and west is used once in a series of four trials; their order is randomized. The escape platform is always in the same position. A trial is terminated as soon as the animal had climbs onto the escape platform or when 90 seconds have elapsed, whichever event occurs first. The animal is allowed to stay on the platform for 30 seconds. Then it is taken from the platform and the next trial is started. If an animal did not find the platform within 90 seconds it is put on the platform by the experimenter and is allowed to stay there for 30 seconds. After the fourth trial of the fifth daily session, an additional trial is given as a probe trial: the platform is removed, and the time the animal spends in the four quadrants is
measured for 30 or 60 seconds. In the probe trial, all animals start from the same start position, opposite to the quadrant where the escape platform had been positioned during acquisition.

Four different measures are taken to evaluate the performance of an animal during acquisition training: escape latency, traveled distance, distance to platform, and swimming speed. The following measures are evaluated for the probe trial: time (s) in quadrants and traveled distance (cm) in the four quadrants. The probe trial provides additional information about how well an animal learned the position of the escape platform. If an animal spends more time and swims a longer distance in the quadrant where the platform had been positioned during the acquisition sessions than in any other quadrant, one concludes that the platform position has been learned well.

In order to assess the effects of putative cognition enhancing compounds, rats or mice with specific brain lesions which impair cognitive functions, or animals treated with compounds such as scopolamine or MK-801, which interfere with normal learning, or aged animals which suffer from cognitive deficits, are used.

The T-maze spontaneous alternation task

The T-maze spontaneous alternation task (TeMCAT) assesses the spatial memory performance in mice. The start arm and the two goal arms of the T-maze are provided with guillotine doors which can be operated manually by the experimenter. A mouse is put into the start arm at the beginning of training. The guillotine door is closed. In the first trial, the ‘forced trial’, either the left or right goal arm is blocked by lowering the guillotine door. After the mouse has been released from the start arm, it will negotiate the maze, eventually enter the open goal arm, and return to the start position, where it will be confined for 5 seconds, by lowering the guillotine door. Then,
the animal can choose freely between the left and right goal arm (all guillotine-doors opened) during 14 ‘free choice’ trials. As soon as the mouse has entered one goal arm, the other one is closed. The mouse eventually returns to the start arm and is free to visit whichever go alarm it wants after having been confined to the start arm for 5 seconds. After completion of 14 free choice trials in one session, the animal is removed from the maze. During training, the animal is never handled.

The percent alternations out of 14 trials is calculated. This percentage and the total time needed to complete the first forced trial and the subsequent 14 free choice trials (in s) is analyzed. Cognitive deficits are usually induced by an injection of scopolamine, 30 min before the start of the training session. Scopolamine reduced the per-cent alternations to chance level, or below. A cognition enhancer, which is always administered before the training session, will at least partially, antagonize the scopolamine-induced reduction in the spontaneous alternation rate.

EXAMPLE 10

Identification of test compound efficacy in a COPD animal model

Guinea pigs are exposed on a single occasion to tobacco smoke for 50 minutes. Animals are sacrificed between 10 minutes and 24 hour following the end of the exposure and their lungs placed in RNAlater™. The lung tissue is homogenised, and total RNA was extracted using a Qiagens RNeasy™ Maxi kit. Molecular Probes RiboGreen™ RNA quantitation method is used to quantify the amount of RNA in each sample.

Total RNA is reverse transcribed, and the resultant cDNA is used in a real-time polymerase chain reaction (PCR). The cDNA is added to a solution containing the sense and anti-sense primers and the 6-carboxy-tetramethyl-rhodamine labelled probe
of the aminopeptidase N gene. Cyclophilin is used as the housekeeping gene. The expression of the aminopeptidase N gene is measured using the TaqMan real-time PCR system that generates an amplification curve for each sample. From this curve a threshold cycle value is calculated: the fractional cycle number at which the amount of amplified target reaches a fixed threshold. A sample containing many copies of the aminopeptidase N gene will reach this threshold earlier than a sample containing fewer copies. The threshold is set at 0.2, and the threshold cycle \(C_T \) is calculated from the amplification curve. The \(C_T \) value for the aminopeptidase N gene is normalised using the \(C_T \) value for the housekeeping gene.

Expression of the aminopeptidase N gene is increased by at least 3-fold between 10 minutes and 3 hours post tobacco smoke exposure compared to air exposed control animals.

Test compounds are evaluated as follows. Animals are pre-treated with a test compound between 5 minutes and 1 hour prior to the tobacco smoke exposure and they are then sacrificed up to 3 hours after the tobacco smoke exposure has been completed. Control animals are pre-treated with the vehicle of the test compound via the route of administration chosen for the test compound. A test compound that reduces the tobacco smoke induced upregulation of aminopeptidase N gene relative to the expression seen in vehicle treated tobacco smoke exposed animals is identified as an inhibitor of aminopeptidase N gene expression.

REFERENCES

Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J Clin Invest 1989 Apr;83(4):1299-307.

CLAIMS

1. An isolated polynucleotide being selected from the group consisting of:
 a. a polynucleotide encoding a aminopeptidase N polypeptide comprising an amino acid sequence selected from the group consisting of:
 i. amino acid sequences which are at least about 37% identical to the amino acid sequence shown in SEQ ID NO: 2; and
 ii. the amino acid sequence shown in SEQ ID NO: 2.
 b. a polynucleotide comprising the sequence of SEQ ID NO: 1;
 c. a polynucleotide which hybridizes under stringent conditions to a polynucleotide specified in (a) and (b) and encodes a aminopeptidase N polypeptide;
 d. a polynucleotide the sequence of which deviates from the polynucleotide sequences specified in (a) to (c) due to the degeneration of the genetic code and encodes a aminopeptidase N polypeptide; and
 e. a polynucleotide which represents a fragment, derivative or allelic variation of a polynucleotide sequence specified in (a) to (d) and encodes a aminopeptidase N polypeptide.

2. An expression vector containing any polynucleotide of claim 1.

3. A host cell containing the expression vector of claim 2.

4. A substantially purified aminopeptidase N polypeptide encoded by a polynucleotide of claim 1.
5. A method for producing a aminopeptidase N polypeptide, wherein the method comprises the following steps:

 a. culturing the host cell of claim 3 under conditions suitable for the expression of the aminopeptidase N polypeptide; and

 b. recovering the aminopeptidase N polypeptide from the host cell culture.

6. A method for detection of a polynucleotide encoding a aminopeptidase N polypeptide in a biological sample comprising the following steps:

 a. hybridizing any polynucleotide of claim 1 to a nucleic acid material of a biological sample, thereby forming a hybridization complex; and

 b. detecting said hybridization complex.

7. The method of claim 6, wherein before hybridization, the nucleic acid material of the biological sample is amplified.

8. A method for the detection of a polynucleotide of claim 1 or a aminopeptidase N polypeptide of claim 4 comprising the steps of:

 a. contacting a biological sample with a reagent which specifically interacts with the polynucleotide or the aminopeptidase N polypeptide and

 b. detecting the interaction

9. A diagnostic kit for conducting the method of any one of claims 6 to 8.
10. A method of screening for agents which decrease the activity of a aminopeptidase N, comprising the steps of:

a. contacting a test compound with any aminopeptidase N polypeptide encoded by any polynucleotide of claim 1;

b. detecting binding of the test compound to the aminopeptidase N polypeptide, wherein a test compound which binds to the polypeptide is identified as a potential therapeutic agent for decreasing the activity of a aminopeptidase N.

11. A method of screening for agents which regulate the activity of a aminopeptidase N, comprising the steps of:

a. contacting a test compound with a aminopeptidase N polypeptide encoded by any polynucleotide of claim 1; and

b. detecting a aminopeptidase N activity of the polypeptide, wherein a test compound which increases the aminopeptidase N activity is identified as a potential therapeutic agent for increasing the activity of the aminopeptidase N, and wherein a test compound which decreases the aminopeptidase N activity of the polypeptide is identified as a potential therapeutic agent for decreasing the activity of the aminopeptidase N.

12. A method of screening for agents which decrease the activity of a aminopeptidase N, comprising the steps of:

a. contacting a test compound with any polynucleotide of claim 1 and detecting binding of the test compound to the polynucleotide, wherein
a test compound which binds to the polynucleotide is identified as a potential therapeutic agent for decreasing the activity of aminopeptidase N.

13. A method of reducing the activity of aminopeptidase N, comprising the steps of:

14. a. contacting a cell with a reagent which specifically binds to any polynucleotide of claim 1 or any aminopeptidase N polypeptide of claim 4, whereby the activity of aminopeptidase N is reduced.

15. A reagent that modulates the activity of a aminopeptidase N polypeptide or a polynucleotide wherein said reagent is identified by the method of any of the claim 10 to 12.

16. A pharmaceutical composition, comprising:

 a. the expression vector of claim 2 or the reagent of claim 14 and a pharmaceutically acceptable carrier.

17. Use of the expression vector of claim 2 or the reagent of claim 14 in the preparation of a medicament for modulating the activity of a aminopeptidase N in a disease.

18. Use of claim 16 wherein the disease is cancer, a CNS disorder or COPD.
ttatatgtca gtgcactcaa gtcataatgg aagacatttt cctactcaa a cgctgagcaa
agtgatcttt ggaqgacttt tcaaatgqcc ataqatgacc agaqtcagt tattttgcca
qgaaacaatatt aaacataaat ggacagttgg acacaccaga gttggtttcccc atgtgactcat
tttaaatgtgt ctacttggcgt catgaaacag qgacacatattt atctttgaaat catdadaaat
ccgacaccttc taaccagcaa tgapacatgg atttgcctta ttcttggat aaaaaatgga
actacacaaac cttttagcttg gctgacacca agccagtaatt tcggaccatga ctggtgtatt
ctgaaatttga atatgacagtg atatattagta gtaaattagtg taataattagg ttggaagaaa
cttaatacaac aacntagaaa ggactcttaag gcgacttcctg ttattcagcc actgaggttg
attgatgtgg ccctttggcctt gtcctaanac aattatatgg agattgaac agcacttggag
ttaaccaagt accttgtgta aagaagatgaa attatagatc ggcatacagct tttggtaaacc
cttgtaacc aaggtcctttg ttcttgaggtg aacatctagc atatatgtacc attatattag
agtagccctaa taaagagact taattaataa ttggaatattt attcaacttat aattcctgtgaa
aatgtgattg caattaacaag tggactactta gctcctaatt actcggaaa actttttgta
acgctgggttt ggggtggtgcct tgaagactgc tttcagcatgt ccaaaaaact tttggcaaaa
cttggtggtac atccagaaata tgaataactct tatcaaatata aagactgtggt tttatgtggtat
ggcatttgcct tgggaaggtga taaagagtgg gacactcctgt taaataactta cactaaataca
acaacaagag aggaagagat tcaacttgctc tactgaatgga gttgagcgcag agaccadctgg
atacttaaca gataatgtaa gatgactgtgc atctgacttc aagcactacgct cattcacttt aatgagaaaca
aatataattg agaattggtgc ttcattggaat gttggcgcgtt atgtgagcaca agactcctta
gttcaacaactt ggcagagctgt gagttaagag tttacagatt gttggagagg agagtttaxac
tttcaggata cagggagggc tgcacaccaga acctactcc
Fig. 2

MGPPSSSGFY VSRAVALLLA GLVAALLLAL AVLAALYGHC ERVPPSELPG LRDLEAESSP
PLRQKPTPTP KPSSARELAV TTTPSNWRPP GPWDLRLPP WLVPVLHYDL LWPQLRDPDEL
PAGSLPFTGR VNITVRCRTVA TSRLLHSLFL QDCEAERVRG PLSPGTGNAT VGRVPVDVW
FALDTEYMVL ELSEPLKPGS SYELQLSFSG LVKEDLREGL FLNYVTDQGE RRALLASQLE
PTFARYVFPC FDEPALKATF NITMIHHPST VALSENPKLQ QSEKEDVNGS KWYTPFSTTT
PHMPTYLVAVF VICDYHVNRT TERGKEIRW ARKDAIANGS ADFALNITGP IFPSLEDLFN
ISYSLPKTDI IALPSFDNHA MENWGLMIFD ESSLLEEFKD QLTEKKTLES YVVSHEYGHQ
WFGNLVTMNW WXNIWLNEGFI ASYFEPFEVIN YFNPLKPRNE IFFSNILHNI LREDHALVTR
AVAMKVENFK TSEIQELFDI FTYSKGAEMA RMLSCFLNEH LFVSALKSYL KTFSYSNBEQ
DDLWRHFQMA IDDQSTVILP ATIKNIMDSW THQSGFVPIT LNVSTGVMQK EFYLENKNN
RTLTSNDTW IVPILWIKNG TTQPLWVLQDQ SSNSDHWVI LNLNMTGYVR VNYDGLGWK
LNQQLEKDPK AIPVIHRLQL IDDAFLSLSK NYIEIETELE LTKYLADEDE IIVWHTVLVNL
LVTRDLVSEV NNIYDISSLK RYLLKRLNLI WNYIYSTIRE NVLALQDDYLY ALISLEKFV
TACWGLEDC LQLSKELFAK WVDHPENEIP YPIKDVLVLCY GIALGSDKWEW DILLNTYNT
TNKEEIQQLA YAMSCSKDPW IILRNYMEYAI STSPFTSNTE NIIEVAVSE VGRYVAKDF
VNNWQAQVSKR FTDCGEGIFS FQDITGRADTR TYS
AKGFYISKSL GILGILLGVA AVCTIIALSV VYSEQKKNKA NSSPVASTTP SASATTNPAS
ATTLIDQSKAW NRYLPNTLK PDSYQVTLRP YLTPNDRGLY VFKGSSTVRF TCKEATDVII
IHSKKLNYTL SQGHWRVLRG VEGSQPDPID KTELVEPTEY LUVHLKGLV KDSQYEMDSE
FEGELADDLA GFRYRSEYMEG NVRKVVTATQ MQAADARKSF PCFDEPAMKA EFNITLIHPK
DLTALSNMLP KGPSTPLPED PNWNVTEFHT TPKMSYLLA FIVSEFDYVE KQASNGVLIR
IWARPSAIAA GHGDYALNVF GPNLNNFAGH YDTPYLPKPS DQIGLPDFNA GAMENWGLVT
YRENSLLFDP LSLSSSNNKER VVTIVHELA HQWFGNLVTI EWWDLWNLNE GFASYVEYLG
ADYAEPTWNL KDLMVNLNVY RVMAVDALAS SHPLSTPASE INTPAQISEL FDAISYSKGA
SVLRMLSSFL SEDVFKQGLA SYLHTFAYQN TIYNLNWDHEL QEAIVNNSIQ LPTTERDIMN
RWTLQMFGFPV ITVDSTGTL SQEHFLLDPD SNVTRPSEFN YVWIVPITSI RDGRQQQDYW
LMDVRAQNDL FSTSGNEWVL LNANNVTGYYR VNYDEENVOK IQTQLQORDS AIPVINRAQI
INDAFNLSA HKVPVTALN NLTLFIEERQ YMPWEAALSS LSYFKLMFDR SEVYGPMKNY
LKKQVTPLFI HFRNNNNTWR EIPENMDQY SEVNAISTAC SNGVPECEEM VSGLFKQWME
NPNNNPNIHPN LRSTVYCNPI AQGGEEEDWF AWEQFRNATL VNEADKRLAA LACSKELWIL
NRYLSYTLNP DLIRKQDATS TIIISITNNVI GQGLVWDFVQ SNWKKPFNDY GGSFSSFSNL
IQAATRFST EYELQQLEQF KKDNEETGFG SGTRALEQAL EKTKANIKWV KENKEVVLQW
FTENSK
FIG. 4

BLASTP - alignment of 340 against swiss|P15144|AMPN_HUMANAMINOPEPTIDASE N (EC 3.4.11.2)
(MICROSOMAL AMINOPEPTIDASE) (GP150) (MYELOID PLASMA MEMBRANE GLYCOPROTEIN CD13).
This hit is scoring at : 5e-167 (expectation value)
Alignment length (overlap) : 942
Identities : 36 %
Scoring matrix : BLOSUM62 (used to infer consensus pattern)
Database searched : nrdb_1_

Transmembrane region

Q: 6 SSGFYVSRAVALLLAGLVAALLLALAVLAALYGHSERVPSELPGLRDLEAESSPPLRQK
 :GFY:S:::L : L :A:::L:::Y:: A.SSP
H: 1 AKGFYISKSLGILGILLGVAAVCTIIALS SVVYSQ----------EKNKNANSSPVA---
 PTPTPKPSARELAUVTTPTSNWRPQGPDQLRLPPWLVPLHYDELWLPQLRPDELPAGSL
 -STTPSASATTNLDDQSKA---WNRYRLPNKPSYQVTLPYLYPND--RGLY

PFTGRVNVITVRCVTASRLLLHSLFQDCERAENVGLSPGTVNATGVRVPVDVVFALDT
VFKGSSTVRFTCKEATDVIIHSHKKNYTLSDGHRVVLRLGGSQPP--DIDKTELVEPT

EYMVELESPLKPGSSYELQLSFSGLVKEIIRGLFLVNYTDQGERRALLASQLEPTFAR
EYLVVHLKASQEMDSEFEGELADDLA-GFYRSEYMEGNVRKVATTQMQAADDR
Fig 4 continued

YVFCFDEPALFATNFNITMIHHPYVALSNMPKLQGQSEK--EDVNGSKWTFTTSTTPHM
PCFDEPA:KA.FNIT:IH....ALSNM.GS.EDNW.VTF.TTP.M
KFSPCPDEPAMKAEFNITLIHPKDLTALSNMLPKGPSTLPLPEDPNN--WNVTEFHTTPKM

PTYLVAFVICDITYDHNVR-TERGKEIRIWARDAIANGSADFALNTGPIFSFLDLEIFNIS
.TYL:AF....:D.V....GIRIWAR..AIA.G..D:ALN:TGPI.:F....:::
STYLLAFIVSFEFDYVKEQASNGVLIRIWARPSIAAAGHDYALNVTGPILNFFAGHYDTP

Zinc protease region

YSLPKTDAIALPSFDNAMNENWGLMFDESGLLLLEPKDQLTEKKTLISYVVSHEIG HQWF
YPLPKSDQIGLPFDNAGAMENWGLVYRENSLFDPLSSSSSNKERVVTIAHRELHQWF

Zinc binding residue

GNLVTMMNWNWNLNEGFSYFEFEVINYFNPKLRNEIFFSNILHNILREDHALVTMAV
GNLVT:WWN:WLNEGFSY.E: ..Y.P: ..:: D::
GNLVTIEWWDLWNEGFASYVEYLGYATPWNKLKDMLNDVYRVMAVDALASHPL

active site residue

AMKVENFKT-SEIQELPFDITFYSKGASMARLSCFLNELHLFVSALSKYNTKTFSYSNAEQD
STPASEINTPAQISELFDAISYSKGASVLRLSSLSSFLSEDVFQKQGLASYLHTFAYQNTIYL

DLWHRPQMAIDDQSTVILPATIKNIMDSWTHQSGFPVITLNSTGVMKQEFYLENIKNR
:LOWHQA:::S:LP:T::IM:.WT.Q.GFPVIT:::STG:.QE:F.L:.N
NLWDLQEAQVNNRS-IQLPTTERDINMRWTQLMGFPVITVDTSTGTLSEQEHFLDPDSNV
Fig 4 continued

TLLTS-NDTWIVPILWIKNQTQPLVWL----------DQSSNSDHDVILNLNMTGYRNY
TRPSEFNYWIVPITSDGRQQQDYWLMVRAQNDLFSTSGNEWVLLNLNVTGYRNVY

DKLGWKKLNQQLEKDPKAIIPVIIHRQLDIDAFSLSKNNYIEIETAELTKYLAEBEDEIIV
DEENWRKIQTQLQRDHSAPIVNRQIINDAFNLASAHKVPTVLALNNLTFLIEREQYMP

WHTVLNVLVRTDLVSEVNYIDYSLKRYLLKRLNLIWNITYTIIRENVLALQDDYLAII
WEAALSSLKLFKLMFDRS--EVGYPMKNYLKQVTPLF-IHFRNNTNWREIPENLMDQY

SLEKLFVTACWLGLEDCLQLSKELFAKWVDHPENIEPYIP-IKDVVLYCIGIALGDSKEDWIDS
SEVNAIASTACNSGVPECCEEMVSGLFKQWNMPNNPIHPNLRSTVYCAIAQGGEEEWD

LLNTYTNNTNKEEKIQLAYAMSCDWPILNRYMEYAIYSTPFTSNE-TNIEVVASEV
AWEQFRANATLVNEADKLRAALACSKELWIRNLREAQWTRQRDSTTISITNNVI

GRYVAKDFLVTNNQAVSKRFTDCQEGSGSFQDTRGRADTRRTYS 933
GGQLVWDVFQSNWK---KPFNDRYGGSGFSFSNLIQAVTRRFS 909
FIG. 5

HMMFAM - alignment of 340 against pfam|hmm|Peptidase_M1
Peptidase family M1
This hit is scoring at : 431.5
Scoring matrix : BLOSUM62 (used to infer consensus pattern)

Q: 98 LPPWLVPLHYDLELWPQ---LRPDEL---PAGSLPFTGRVNVITV---RCTVA-TSRLLLHSL
 LP. : PLHYDL.L P: . P:. .. F:G.V.IT: :. T A T...:::LH:
H: 1 LPttvkPlhYdLtlkpqfglpekpyadeknftFsGsvTItltnqatkaatdeIVLhak

 FQDCERAevrgplspGTGNATVGRVPVDD------VWFALDT-------EYMVLEL
 G.G ... ::T E :::L
dltisst.........gegvrvtlvlnvgsqklpesveflslqdetdflavddnkekltinl

 SEPLKPGSS---YELQLSFSGLVKEDLREGLFLNVYTD-QGERRALLASQLE-PTFARYV
 pealsaggggspytLeIeyegkIndismlGfYrseYtdggetkymatTQfeepTdARra

 FPCFDEPAKATFNTIMHHPSYVALSNMPKLGqsEKEDVNGBKWTVTSTPTTPMPTYL
 FPCFDEP::KATF.IT:IH .. .ALSMP::: ..:D :G..:::TTF.TTP.M.TYL
 FPCfDEPsfKATFtiihpckttaLSnpeis..ttkdddgptrvittPetTpkMStYLT

 VAFVICDYNHVR-TERG----KEIRIWARKDAIANGSADFALNITGPIFSFLEDLFNI
 :AF: :..... T: G :.R::AR..A G...:AL::TF.E:.F.I
 lAfiVGeleyietkdgyarvpevrvyaprgaknagggqyalvttkllefyeeyfgi
FIG. 6

Prosite search results:

<table>
<thead>
<tr>
<th>Access#</th>
<th>From->To Name</th>
<th>Doc#</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
<td>_______</td>
<td>aminopeptidase Naminopeptidase N ________</td>
</tr>
<tr>
<td>PS00142</td>
<td>412->422</td>
<td>ZINC_PROTEASE</td>
</tr>
</tbody>
</table>

FIG. 7

TMHMM result# Sequence Length: 933
Sequence Number of predicted TMHs: 1

Sequence TMHMM2.0 TMhelix 13 35
SEQUENCE LISTING

Bayer AG

REGULATION OF HUMAN AMINOPEPTIDASE N

Lio 373

60/303,693

2001-07-10

3

PatentIn version 3.1

1

2799

DNA

Homo sapiens

atggggcccc cttccagctc aggttcttat gtgagcccg cgagtgacccct gtgcttgct 60
 gggcttggtag ccgccctctct gctggcgcctg ggcgtactctg ccgccttgta cggccactgc 120
 gagaagctggc gttgacctgaa ctcagggact cggagagcgg ga gtttccctct 180
 cccctcaggc agaagccgac gcgcacccccg aaccccagca gtgcacgcgta gctagcggtg 240
 aagccacacc cgagcacttg gcgacccccg gggccctggg accagctactg cctgacgcctc 300
 tggctctgtgc cgctgacacta cgatctggag ctgtgccggc agctgaggtc cgaagtagctt 360
 cgggcggtgt ctttgccctt cactgggcgc gttgaacctca cgggcgcctg cacggtggcc 420
 acctctgcac tgctgctgca tagccctcttt caggactcgc gcgacgcccga gttgcgggga 480
 cccctttcgc ccggcactgg gaagccacca gttggccgcgc tggccttgga cgaagtgcttg 540
ttgcgcgtgg acaaggaata catggtgctg agctcagttg aggcacccgtgaa acctggtagc
600
agctacgagc tgccagcttag ctccccggcg ctggtagaagg aagacccctag ggaggacgcc
660
ttcctcaacgg gccagggcag gccaaggggcc tggtaggtctg ccagctgagggcc
720
ccacactttgc ccaaggttag tttctcttgc gttgtagacgc cagctgtttag gacaaccttt
780
aatattacca ctcacattta gagcccttttc ccacacgtcgg aaagcgtagta
840
cagtctgaaa aacagagatgt gcacaggaagc aatggacgct ttacaaacctt ttcacactcg
900
cccacagtc gactttactt aatggacgat cgtgccttttacttgacttgc ccgaacacac
960
acagaaggg gcagagagat cacacgctgg gccgggttaag atgcattaact ccaattgagc
1020
gcagactttg cttggaacaat cacagggcctt atcttttctt ttcttgaggg ctgggttaat
1080
atcagttact ctttttccaa aacagagata taagctgggc ctagtttgga aacacagcct
1140
atggaactct cagcggtaat cgtattttaat gatcaggtag tttgtggtgga accggaaagt
1200
caacagcacg aaaaaagagct cttgtccttcc tagttgctc cccagcagat tggactccag
1260
tggtctggag actgtgctttc catggaattcg tggagaatct tctttgctca ccaggggttct
1320
cacctttatt ttaggttgaggt agatatataa tacataatctaat ccaccccttc aagaaatgac
1380
atccttttt ctaactatctt ctaaaaaact atcagggccat gttgaactcata
1440
gctgtgagca aaggtggcct aacatttctta aacaggggtaa cttgtgagcact tttgtgcata
1500
ctttactaca gcaaggggcc cgtctattgccc cggatgtgcttt ttctttttcttat gatgagcat
1560
cttttgtcag gctgcattcctt aagacagtttt ctacactccaa cagctgagca
1620
gatgatctat gcggcagat tcaactagttc atagtgacc agatgtcattt ttatatgcctat
1680
gcaacataaa aaaaactata gcagactggg aacaccaagtg gttggtttttct aaggtcact
1740
ttaaatggtt ctctttgcttg catgaaacag gcagccattt atcctgtgaaaa ctttacattat
1800
cgtggccttc taacacagttat aattgctttctt tcttttggtggtct aaaaaaggttga
1860
actacacact cttattcttt gcagagtttgg gcagacactaatt ttcgcagccat cgtgggttgatt
1920
tttgaattttg atatgactgg atatattata gttattattgta ataaagtgctgtgaaagagta
1980
tttaacactc ticksatagaa gcagcctttag ggctttcctg tttttttttc atagcagtttgg
2040
atcgtgtgttc tttttttttt gtttttttttt aattatattg agattggaaac acctgtagggct
2100
ctacttttactccttgg cagactgttaa attatattag gcacactgtttt tcgctttaacac
2160
ctgtaactcg cggattcttt cggattggttg aacatctagt gataattaact aatattacag
2220
aggtaccaat ctaacagttaa ttttaatttt tgagaattttt attaaactat aatcagtttgt
2280
aattggtttta ccacatcagtc gacactata gctttttttgct aacaatcattat ccgtgaaact
2340
actgcgttgtt ggttgggacct tgaagactgc tttcagctgt caaagaact tttcgcaaaa
2400
tgggtggatc atccagaaaa tgaataacct tatccaaatta aagatgttgt tttatgttat
2460
gcattgacct tgggaagtga taagaagtgg gacatcttggt taaataactta cactaatata
2520
acaaccaac aagaaagat tcaacttgct tatgcaatga gctgcagcaa agaccatgg
2580
atacttaaca gatatatgga gtatgccttc agcacatctc cattcaacctc taatgaaaca
2640
aatataattg aggttgtggc ttcatctgaa gttgggctggt atgtagcagaa agactctcta
2700
gtcaacaact ggcaagctgt gatgaaaaa gttacagatt gtggagaggg aagtttttagc
2760
ttccaggata cagggaggc tgacaccaga acttactcc
2799

<210> 2
<211> 933
<212> PRT
<213> Homo sapiens

<400> 2
Met Gly Pro Pro Ser Ser Ser Gly Phe Tyr Val Ser Arg Ala Val Ala
 1 5 10 15
Leu Leu Leu Ala Gly Leu Val Ala Ala Leu Leu Ala Leu Ala Leu
 20 25 30
Leu Ala Ala Leu Tyr Gly His Cys Glu Arg Val Pro Pro Ser Glu Leu
 35 40 45
Pro Gly Leu Arg Asp Leu Glu Ala Glu Ser Ser Pro Pro Leu Arg Gln
 50 55 60
Lys Pro Thr Pro Thr Pro Lys Pro Ser Ser Ala Arg Glu Leu Ala Val
 65 70 75 80
Thr Thr Thr Pro Ser Asn Trp Arg Pro Pro Gly Pro Trp Asp Gin Leu
 85 90 95
Arg Leu Pro Pro Trp Leu Val Pro Leu His Tyr Asp Leu Glu Leu Trp
100 105 110
Pro Gln Leu Arg Pro Asp Glu Leu Pro Ala Gly Ser Leu Pro Phe Thr
115 120 125
Gly Arg Val Asn Ile Thr Val Arg Cys Thr Val Ala Thr Ser Arg Leu
130 135 140

Leu Leu His Ser Leu Phe Gln Asp Cys Glu Arg Ala Glu Val Arg Gly
145 150 155 160

Pro Leu Ser Pro Gly Thr Gly Asn Ala Thr Val Gly Arg Val Pro Val
165 170 175

Asp Asp Val Trp Phe Ala Leu Asp Thr Glu Tyr Met Val Leu Glu Leu
180 185 190

Ser Glu Pro Leu Lys Pro Gly Ser Ser Tyr Glu Leu Gln Leu Ser Phe
195 200 205

Ser Gly Leu Val Lys Glu Asp Leu Arg Glu Gly Leu Phe Leu Asn Val
210 215 220

Tyr Thr Asp Gln Gly Glu Arg Arg Ala Leu Leu Ala Ser Gln Leu Glu
225 230 235 240

Pro Thr Phe Ala Arg Tyr Val Phe Pro Cys Phe Asp Glu Pro Ala Leu
245 250 255

Lys Ala Thr Phe Asn Ile Thr Met Ile His His Pro Ser Tyr Val Ala
260 265 270

Leu Ser Asn Met Pro Lys Leu Gly Gln Ser Glu Lys Glu Asp Val Asn
275 280 285

Gly Ser Lys Trp Thr Val Thr Thr Phe Ser Thr Thr Pro His Met Pro
290 295 300

Thr Tyr Leu Val Ala Phe Val Ile Cys Asp Tyr Asp His Val Asn Arg
305 310 315 320

Thr Glu Arg Gly Lys Glu Ile Arg Ile Thr Ala Arg Lys Asp Ala Ile
325 330 335

Ala Asn Gly Ser Ala Asp Phe Ala Leu Asn Ile Thr Gly Pro Ile Phe
340 345 350

Ser Phe Leu Glu Asp Leu Phe Asn Ile Ser Tyr Ser Leu Pro Lys Thr
355 360 365
Asp Ile Ile Ala Leu Pro Ser Phe Asp Asn His Ala Met Glu Asn Trp
370 375 380
Gly Leu Met Ile Phe Asp Glu Ser Gly Leu Leu Leu Glu Pro Lys Asp
385 390 395 400
Gln Leu Thr Glu Lys Lys Thr Leu Ile Ser Tyr Val Val Ser His Glu
405 410 415
Ile Gly His Gln Trp Phe Gly Asn Leu Val Thr Met Asn Trp Trp Asn
420 425 430
Asn Ile Trp Leu Asn Glu Gly Phe Ala Ser Tyr Phe Glu Phe Glu Val
435 440 445
Ile Asn Tyr Phe Asn Pro Lys Leu Pro Arg Asn Glu Ile Phe Phe Ser
450 455 460
Asn Ile Leu His Asn Ile Leu Arg Glu Asp His Ala Leu Val Thr Arg
465 470 475 480
Ala Val Ala Met Lys Val Glu Asn Phe Lys Thr Ser Glu Ile Gln Glu
485 490 495
Leu Phe Asp Ile Phe Thr Tyr Ser Lys Gly Ala Ser Met Ala Arg Met
500 505 510
Leu Ser Cys Phe Leu Asn Glu His Leu Phe Val Ser Ala Leu Lys Ser
515 520 525
Tyr Leu Lys Thr Phe Ser Tyr Ser Asn Ala Glu Gln Asp Asp Leu Trp
530 535 540
Arg His Phe Gln Met Ala Ile Asp Asp Gln Ser Thr Val Ile Leu Pro
545 550 555 560
Ala Thr Ile Lys Asn Ile Met Asp Ser Trp Thr His Gln Ser Gly Phe
565 570 575
Pro Val Ile Thr Leu Asn Val Ser Thr Gly Val Met Lys Gln Glu Pro
580 585 590
Phe Tyr Leu Glu Asn Ile Lys Asn Arg Thr Leu Leu Thr Ser Asn Asp
595 600 605
Thr Trp Ile Val Pro Ile Leu Trp Ile Lys Asn Gly Thr Thr Gln Pro 610 615 620
Leu Val Trp Leu Asp Gln Ser Ser Ser Asn Ser Asp His Asp Trp Val Ile 625 630 635 640 645
Leu Asn Leu Asn Met Thr Gly Tyr Tyr Arg Val Asn Tyr Asp Lys Leu 650 655
Gly Trp Lys Lys Leu Asn Gln Gln Leu Glu Lys Asp Pro Lys Ala Ile 660 665 670
Pro Val Ile His Arg Leu Gln Leu Ile Asp Asp Ala Phe Ser Leu Ser 675 680 685
Lys Asn Asn Tyr Ile Glu Ile Glu Thr Ala Leu Glu Leu Thr Lys Tyr 690 695 700
Leu Ala Glu Glu Asp Glu Ile Ile Val Trp His Thr Val Leu Val Asn 705 710 715 720
Leu Val Thr Arg Asp Leu Val Ser Glu Val Asn Ile Tyr Asp Ile Tyr 725 730 735
Ser Leu Leu Lys Arg Tyr Leu Leu Lys Arg Leu Asn Leu Ile Trp Asn 740 745 750
Ile Tyr Ser Thr Ile Ile Arg Glu Asn Val Leu Ala Leu Gln Asp Asp 755 760 765
Tyr Leu Ala Leu Ile Ser Leu Glu Lys Leu Phe Val Thr Ala Cys Trp 770 775 780
Leu Gly Leu Glu Asp Cys Leu Gln Leu Ser Lys Glu Leu Phe Ala Lys 785 790 795 800
Trp Val Asp His Pro Glu Asn Glu Ile Pro Tyr Pro Ile Lys Asp Val 805 810 815
Val Leu Cys Tyr Gly Ile Ala Leu Gly Ser Asp Lys Glu Trp Asp Ile 820 825 830 835
Leu Leu Asn Thr Tyr Thr Asn Thr Thr Asn Lys Glu Glu Lys Ile Gln 835 840 845
Leu Ala Tyr Ala Met Ser Cys Ser Lys Asp Pro Trp Ile Leu Asn Arg
 850 855 860

Tyr Met Glu Tyr Ala Ile Ser Thr Ser Pro Phe Thr Ser Asn Glu Thr
 865 870 875 880

Asn Ile Ile Glu Val Val Ala Ser Ser Glu Val Gly Arg Tyr Val Ala
 885 890 895

Lys Asp Phe Leu Val Asn Asn Trp Gln Ala Val Ser Lys Arg Phe Thr
 900 905 910

Asp Cys Gly Glu Gly Ser Phe Ser Phe Gln Asp Thr Gly Arg Ala Asp
 915 920 925

Thr Arg Thr Tyr Ser
 930

<210> 3
<211> 966
<212> PRT
<213> Homo sapiens

<400> 3

Ala Lys Gly Phe Tyr Ile Ser Lys Ser Leu Gly Ile Leu Gly Ile Leu
 1 5 10 15

Leu Gly Val Ala Ala Val Cys Thr Ile Ile Ala Leu Ser Val Val Tyr
 20 25 30

Ser Gln Glu Lys Asn Lys Asn Ala Asn Ser Ser Pro Val Ala Ser Thr
 35 40 45

Thr Pro Ser Ala Ser Ala Thr Thr Asn Pro Ala Ser Ala Thr Thr Leu
 50 55 60

Asp Gln Ser Lys Ala Trp Asn Arg Tyr Arg Leu Pro Asn Thr Leu Lys
 65 70 75 80

Pro Asp Ser Tyr Gln Val Thr Leu Arg Pro Tyr Leu Thr Pro Asn Asp
 85 90 95
Arg Gly Leu Tyr Val Phe Lys Gly Ser Ser Thr Val Arg Phe Thr Cys
100 105 110
Lys Glu Ala Thr Asp Val Ile Ile Ile His Ser Lys Leu Asn Tyr
115 120 125
Thr Leu Ser Gln Gly His Arg Val Val Leu Arg Gly Val Gly Gly Ser
130 135 140
Gln Pro Pro Asp Ile Asp Lys Thr Glu Leu Val Glu Pro Thr Glu Tyr
145 150 155 160
Leu Val Val His Leu Lys Gly Ser Leu Val Lys Asp Ser Gln Tyr Glu
165 170 175
Met Asp Ser Glu Phe Glu Gly Glu Leu Ala Asp Asp Leu Ala Gly Phe
180 185 190
Tyr Arg Ser Glu Tyr Met Glu Gly Asn Val Arg Lys Val Val Ala Thr
195 200 205
Thr Gln Met Gln Ala Ala Asp Ala Arg Lys Ser Phe Pro Cys Phe Asp
210 215 220
Glu Pro Ala Met Lys Ala Glu Phe Asn Ile Thr Leu Ile His Pro Lys
225 230 235 240
Asp Leu Thr Ala Leu Ser Asn Met Leu Pro Lys Gly Pro Ser Thr Pro
245 250 255
Leu Pro Glu Asp Pro Asn Trp Asn Val Thr Glu Phe His Thr Thr Pro
260 265 270
Lys Met Ser Thr Tyr Leu Leu Ala Phe Ile Val Ser Glu Phe Asp Tyr
275 280 285
Val Glu Lys Gln Ala Ser Asn Gly Val Leu Ile Arg Ile Trp Ala Arg
290 295 300
Pro Ser Ala Ile Ala Ala Gly His Gly Asp Tyr Ala Leu Asn Val Thr
305 310 315 320
Gly Pro Ile Leu Asn Phe Phe Ala Gly His Tyr Asp Thr Pro Tyr Pro
325 330 335
<table>
<thead>
<tr>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu Pro Lys Ser Asp Glu Ile Gly Leu Pro Asp Phe Asn Ala Gly Ala</td>
</tr>
<tr>
<td>340</td>
</tr>
<tr>
<td>345</td>
</tr>
<tr>
<td>350</td>
</tr>
<tr>
<td>Met Glu Asn Trp Gly Leu Val Thr Tyr Arg Glu Asn Ser Leu Leu Phe</td>
</tr>
<tr>
<td>355</td>
</tr>
<tr>
<td>360</td>
</tr>
<tr>
<td>365</td>
</tr>
<tr>
<td>Asp Pro Leu Ser Ser Ser Ser Ser Ser Asn Lys Glu Arg Val Val Thr Val</td>
</tr>
<tr>
<td>370</td>
</tr>
<tr>
<td>375</td>
</tr>
<tr>
<td>380</td>
</tr>
<tr>
<td>Ile Ala His Glu Leu Ala His Glu Trp Phe Gly Asn Leu Val Thr Ile</td>
</tr>
<tr>
<td>385</td>
</tr>
<tr>
<td>390</td>
</tr>
<tr>
<td>395</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>Glu Trp Trp Asn Leu Trp Leu Asn Glu Gly Phe Ala Ser Tyr Val</td>
</tr>
<tr>
<td>405</td>
</tr>
<tr>
<td>410</td>
</tr>
<tr>
<td>415</td>
</tr>
<tr>
<td>Glu Tyr Leu Gly Ala Asp Tyr Ala Glu Pro Thr Trp Asn Leu Lys Asp</td>
</tr>
<tr>
<td>420</td>
</tr>
<tr>
<td>425</td>
</tr>
<tr>
<td>430</td>
</tr>
<tr>
<td>Leu Met Val Leu Asn Val Tyr Arg Val Met Ala Val Asp Ala Leu</td>
</tr>
<tr>
<td>435</td>
</tr>
<tr>
<td>440</td>
</tr>
<tr>
<td>445</td>
</tr>
<tr>
<td>Ala Ser Ser His Pro Leu Ser Thr Pro Ala Ser Glu Ile Asn Thr Pro</td>
</tr>
<tr>
<td>450</td>
</tr>
<tr>
<td>455</td>
</tr>
<tr>
<td>460</td>
</tr>
<tr>
<td>Ala Gln Ile Ser Glu Leu Phe Asp Ala Ile Ser Tyr Ser Lys Gly Ala</td>
</tr>
<tr>
<td>465</td>
</tr>
<tr>
<td>470</td>
</tr>
<tr>
<td>475</td>
</tr>
<tr>
<td>480</td>
</tr>
<tr>
<td>Ser Val Leu Arg Met Leu Ser Ser Phe Leu Ser Glu Asp Val Phe Lys</td>
</tr>
<tr>
<td>485</td>
</tr>
<tr>
<td>490</td>
</tr>
<tr>
<td>495</td>
</tr>
<tr>
<td>Gln Gly Leu Ala Ser Tyr Leu His Thr Phe Ala Tyr Gln Asn Thr Ile</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>505</td>
</tr>
<tr>
<td>510</td>
</tr>
<tr>
<td>Tyr Leu Asn Leu Trp Asp His Leu Gln Glu Ala Val Asn Asn Arg Ser</td>
</tr>
<tr>
<td>515</td>
</tr>
<tr>
<td>520</td>
</tr>
<tr>
<td>525</td>
</tr>
<tr>
<td>Ile Gln Leu Pro Thr Thr Glu Arg Asp Ile Met Arg Trp Thr Leu</td>
</tr>
<tr>
<td>530</td>
</tr>
<tr>
<td>535</td>
</tr>
<tr>
<td>540</td>
</tr>
<tr>
<td>Gln Met Gly Phe Pro Val Ile Thr Val Asp Thr Ser Thr Gly Thr Leu</td>
</tr>
<tr>
<td>545</td>
</tr>
<tr>
<td>550</td>
</tr>
<tr>
<td>555</td>
</tr>
<tr>
<td>560</td>
</tr>
<tr>
<td>Ser Gln Glu His Phe Leu Leu Asp Pro Asp Ser Asn Val Thr Arg Pro</td>
</tr>
<tr>
<td>565</td>
</tr>
<tr>
<td>570</td>
</tr>
<tr>
<td>575</td>
</tr>
</tbody>
</table>
Ser Glu Phe Asn Tyr Val Trp Ile Val Pro Ile Thr Ser Ile Arg Asp
580 585 590
Gly Arg Gln Gln Gln Asp Tyr Trp Leu Met Asp Val Arg Ala Gln Asn
595 600 605
Asp Leu Phe Ser Thr Ser Gly Asn Glu Trp Val Leu Leu Asn Leu Asn
610 615 620
Val Thr Gly Tyr Tyr Arg Val Asn Tyr Asp Glu Glu Asn Trp Arg Lys
625 630 635 640
Ile Gln Thr Gln Leu Gln Arg Asp His Ser Ala Ile Pro Val Ile Asn
645 650 655
Arg Ala Gln Ile Ile Asn Asp Ala Phe Asn Leu Ala Ser Ala His Lys
660 665 670
Val Pro Val Thr Leu Ala Leu Asn Asn Thr Leu Phe Leu Ile Glu Glu
675 680 685
Arg Gln Tyr Met Pro Trp Glu Ala Ala Leu Ser Ser Leu Ser Tyr Phe
690 695 700
Lys Leu Met Phe Asp Arg Ser Glu Val Tyr Gly Pro Met Lys Asn Tyr
705 710 715 720
Leu Lys Lys Gln Val Thr Pro Leu Phe Ile His Phe Arg Asn Asn Thr
725 730 735
Asn Asn Trp Arg Glu Ile Pro Glu Asn Leu Met Asp Gln Tyr Ser Glu
740 745 750
Val Asn Ala Ile Ser Thr Ala Cys Ser Asn Gly Val Pro Glu Cys Glu
755 760 765
Glu Met Val Ser Gly Leu Phe Lys Gln Trp Met Glu Asn Pro Asn Asn
770 775 780
Asn Pro Ile His Pro Asn Leu Arg Ser Thr Val Tyr Cys Asn Ala Ile
785 790 795 800
Ala Gln Gly Gly Glu Glu Glu Trp Asp Phe Ala Trp Glu Gln Phe Arg
805 810 815
Asn Ala Thr Leu Val Asn Glu Ala Asp Lys Leu Arg Ala Ala Leu Ala
 820 825 830
Cys Ser Lys Glu Leu Trp Ile Leu Asn Arg Tyr Leu Ser Tyr Thr Leu
 835 840 845
Asn Pro Asp Leu Ile Arg Lys Gln Asp Ala Thr Ser Thr Ile Ile Ser
 850 855 860
Ile Thr Asn Asn Val Ile Gly Gln Gly Leu Val Trp Asp Phe Val Gln
 865 870 875 880
Ser Asn Trp Lys Lys Pro Phe Asn Asp Tyr Gly Gly Gly Ser Phe Ser
 885 890 895
Phe Ser Asn Leu Ile Gln Ala Val Thr Arg Arg Phe Ser Thr Glu Tyr
 900 905 910
Glu Leu Gln Gln Leu Glu Gln Gln Phe Lys Gln Asp Asn Glu Glu Thr Gly
 915 920 925
Phe Gly Ser Gly Thr Arg Ala Leu Glu Gln Ala Leu Glu Lys Thr Lys
 930 935 940
Ala Asn Ile Lys Trp Val Lys Glu Asn Lys Glu Val Val Leu Gln Trp
 945 950 955 960
Phe Thr Glu Asn Ser Lys
 965
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>C12N9/48</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>C12N</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EPO-Internal
- EMBL
- BIOSIS
- MEDLINE
- SEQUENCE SEARCH
- PAJ
- WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason as specified
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "S" document member of the same patent family

Date of the actual completion of the international search

28 November 2002

Date of mailing of the international search report

11/12/2002

Name and mailing address of the ISA:

European Patent Office, P.B. 5816 Patentlaan 2 NL – 2280 HV Rijswijk Tel (+31-70) 340–2400, Tx 31 651 epi nl Fax (+31-70) 340–3016

Authorized officer:

Pilat, D
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>RIKEN GENOME EXPLORATION RESEARCH GROUP PHASE II TEAM AND FANTOM CONSORTIUM: "FUNCTIONAL ANNOTATION OF A FULL-LENGTH MOUSE CDNA COLLECTION" NATURE, MACMILLAN JOURNALS LTD. LONDON, GB, vol. 409, no. 6821, 8 February 2001 (2001-02-08), pages 685-690, XP001009930 ISSN: 0028-0836</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>& DATABASE EMBL 'Online! EMBL; 8 February 2001 (2001-02-08) "Mus musculus 0 day neonate head cDNA, RIKEN full-length enriched library, clone:4833403115:related to AMINOPEPTIDASE N (EC 3.4.11.2) (FRAGMENT), full insert sequence." Database accession no. AK014652 XP002222929 abstract</td>
<td>1</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>P, X</td>
<td>WO 01 83782 A (PLOWMAN GREGORY D; PAYNE VILIA (US); SUGEN INC (US); WHYTE DAVID () 8 November 2001 (2001-11-08) SEQ ID NO 30</td>
<td>1-13, 16-18</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. X Claims Nos.: 15 completely, 16-18 partially because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
 see FURTHER INFORMATION sheet PCT/ISA/210

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple Inventions in this International application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

□ The additional search fees were accompanied by the applicant's protest.

□ No protest accompanied the payment of additional search fees.
Continuation of Box I.2

Claims Nos.: 15 completely, 16-18 partially

Present claims relate to a compound defined by reference to a desirable characteristic or property, namely which modulates the activity of aminopeptidase N polypeptide or a polynucleotide. The claims cover all compounds having this characteristic or property, whereas the application provides no support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for such compounds. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compound by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has not been carried out for claim 15 and for claims 16-18 which refer to such a compound.

The applicant’s attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 9477398 A</td>
<td>29-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001516055 T</td>
<td>25-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9913329 A1</td>
<td>18-03-1999</td>
</tr>
<tr>
<td>WO 0183782 A</td>
<td>08-11-2001</td>
<td>AU 5947301 A</td>
<td>12-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0183782 A2</td>
<td>08-11-2001</td>
</tr>
</tbody>
</table>