PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

G11B 5/027

(11) International Publication Number:

WO 92/10831

A1 |

(43) International Publication Date:

25 June 1992 (25.06.92)

(21) International Application Number:

PCT/US91/08007

(22) International Filing Date:

23 October 1991 (23.10.91)

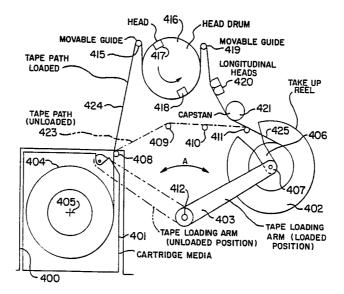
(30) Priority data:

611,922

6 December 1990 (06.12.90) US

(71) Applicant: STORAGE TECHNOLOGY CORPORATION [US/US]; 2270 South 88th Street, Louisville, CO 80028 (US).

(72) Inventors: LEONHARDT, Michael, Lawrence; 5519 Colt Drive, Longmont, CO 80503 (US). MILLIGAN, Charles, Allen; 14300 West 50th Avenue, Golden, CO 80403 (US).


(74) Agent: GRAZIANO, James, M.; Dorr, Carson, Sloan & Peterson, 3010 East 6th Avenue, Denver, CO 80206 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report.

(54) Title: CARTRIDGE TAPE SYSTEM FOR HELICAL SCAN TRANSPORTS

(57) Abstract

This system makes use of a tape cassette helical scan tape transport (415-421) and 3480-type magnetic tape cartridge (401) as the data storage media. The merging of these two incompatible elements is accomplished by the use of a novel interface that implements a "virtual tape cassette" using a tape cartridge (401) in a manner that makes this media compatible with the tape transport (415-421). The virtual tape cassette is implemented by providing a takeup reel (402) positioned with the magnetic tape cartridge (401) in a relationship that substantially matches the format of a magnetic tape cassette. A short tape threading arm (403) is used to retrieve the leader block (311) from the tape cartridge (401) and thread the magnetic tape (424) over a short tape threading path (423) to the takeup reel (402). Once the tape (424) is affixed to the takeup reel (402), the helical scan tape guide arms (415, 419) transport the length of tape (424) that is now exposed between the tape cartridge (401) and the takeup reel (402) to the rotary heads (416).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	· Fi	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NĽ	Netherlands
BJ BJ	Benin	GR	Greece	NO	Norway
BR.	Brazil	HU	Hungary	PL	Poland
		IT	Italy	RO	Romania
CA	Canada Central African Republic	JP	Japan	SD	Sudan
CF	-	KP	Democratic People's Republic	SE	Sweden
CG	Congo		of Korea	SN	Senegal
CH	Switzerland	KR	Republic of Korea	su+	Soviet Union
CI	Côte d'Ivoire	LI	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanka	TG	Togo
cs	Czechoslovakia		Luxembourg	US	United States of America
DE*	Germany	LU	•	-	
DK _	Denmark	MC	Monaco		

⁺ Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

10

15

20

CARTRIDGE TAPE SYSTEM FOR HELICAL SCAN TRANSPORTS

FIELD OF THE INVENTION

This invention relates to helical scan tape transports and, in particular, to apparatus that adapts a tape cassette helical scan tape transport to the use of tape cartridges.

PROBLEM

It is a problem in the field of data processing systems to most efficiently store data on a recording media while working within the constraints of industry standard media form factors. Commercially available helical scan video tape transports can be the basis of very high data density magnetic tape data storage helical scan tape transport subsystems. The architecture has already been applied to computer systems data storage in the form of modified helical scan tape transports which use either 4 mm, 8 mm or 1/2 inch magnetic tape formats. Unfortunately, all of these helical scan tape transports are designed for cassette type media that is not compatible with existing data processing manual or automated media handling systems and, in the case of the video tape cassette media, not mechanically well suited to the rigors of the commercial data processing environment.

25 In addition, typical helical scan tape cassettes

10

15

20

25

30

contain both supply and takeup reels, with the provision of the empty takeup reel in each tape cassette representing an inefficient use of space.

The data processing industry standard 3480-type magnetic tape cartridge offers the advantages of durability, handling compatibility and the volumetric efficiency of a single reel, but is mechanically existing helical scan incompatible with transports. The 3480-type tape cartridge is a single reel tape cartridge which has a leader block attached to one end of the tape. The tape transport mechanism threads the leader block end of the magnetic tape to a takeup reel over a predefined tape path which includes a plurality of bearings for guiding the tape The takeup reel and a read/write head assembly. includes a slot for receiving the leader block and is connected to an associated drive mechanism which transports the tape between the takeup reel and the tape cartridge.

In order to follow the complex tape threading path, a jointed tape threading arm is provided, whose path is determined by a cam track. The cam track has a beginning point for positioning a longitudinal cam member into engagement with the magnetic tape leader block which is exposed through an opening in the tape cartridge. The tape threading arm is connected at one end to the longitudinal cam member and at the other end to a servo controlled drive motor. The drive motor activates the tape threading arm to transport the longitudinal cam member from the end of the cam track, where it engages the leader block, to a slot in the takeup reel, threading the magnetic tape through the tape threading path as it traverses this path. Due to the complex nature of this tape threading path,

WO 92/10831 PCT/US91/08007

5

10

15

20

25

30

a servo mechanism controls the threading arm operation to pull the tape at a constant speed and provide a constant tension on the tape as it is being withdrawn from the tape cartridge and transported to the takeup reel.

Another approach to tape loading was demonstrated in a tape cartridge design which used, in place of a leader block, an elongated stiff member (leader tape) wider than the associated magnetic tape and attached to the end thereof for tape threading purposes. stiff leader tape fits into a slotted tape threading track which follows a complex tape threading path around the associated heads to the takeup reel. the leader tape traverses the entirety of this complex tape threading path, the narrower magnetic tape is also pulled through the tape threading path and physically wrapped around a rotary head. This tape transport apparatus was used to read and write video signals on the magnetic tape in helical scan format but suffered from the complexity of the tape threading path and the need for a long stiff leader tape member attached to the end of the magnetic tape, which must be pushed through the tape threading path by the unwinding action of the tape cartridge reel.

An alternative helical scan data storage apparatus uses a magnetic tape configuration that consists of a two reel tape cassette. In one application, the two reel cassette placed the reels coaxially, one over the other, and provided an angled tape path within the tape cassette between the two reels to transport the tape between the two reels. A window is provided in the front of the cassette so that a tape threading mechanism could access a length of tape to retrieve it from within the tape cassette

15

20

25

30

and wrap it around the rotary heads of the helical scan tape transport. The tape retrieved from the tape cassette is on an angular relationship with the takeup and supply reels and this angular relationship must be maintained as the tape is applied to the rotary head in order to enable the writing of data in helical scan format thereon. Complex tape guide mechanisms were provided in this apparatus to maintain the proper angular relationship of the tape to the rotary head.

Another helical scan system is the video cassette recording (VCR) tape transport that makes use of a rotary head and analog video recording in a helical scan format. The VCR mechanism obviates the need for a complex tape threading apparatus by placing two reels in the tape cassette in a coplanar, juxtaposed relationship. Instead of angling the tape, the rotary head is angled with respect to the coplanar source and takeup reels. In this manner, the tape maintains a coplanar transport relationship with the source and takeup reels and it is the head that is positioned to be at the proper angular relationship with the recording surface of the tape.

The 3480-type tape cartridge has become the data processing industry standard form factor. The helical scan transports are not applicable to the computer data storage environment due to the different tape form factor even though they have a greater data recording density than 3480-type media. These helical scan tape transports have primarily found use in the video cassette recording technology. Thus, the tape cartridge longitudinal format data storage media and the tape cassette helical scan format data storage media are two diverse technologies with inconsistent requirements.

WO 92/10831 PCT/US91/08007

5

10

15

20

25

30

-5-

SOLUTION

The above described problems are solved and a technical advance achieved in the art by the cartridge tape system for a helical scan tape transport. The successful integration of the incompatible helical scan tape transport and tape cartridge media elements centers on the tape path used in the tape transport and the apparatus used to load and unload the magnetic tape through this path. A novel interface has been developed to present the tape cartridge media to a helically scanned head in a manner that emulates tape cassette media. The resulting "virtual tape cassette" nakes the tape cartridge media compatible with the tape transport.

The virtual tape cassette is implemented by providing a takeup reel positioned with respect to the magnetic tape cartridge in a relationship that substantially matches the format of the magnetic tape cassette required by the associated helical scan drive. A short tape threading arm is used to retrieve the end of the magnetic tape from the tape cartridge and thread the magnetic tape over a short tape threading path to the takeup reel. A leader block is typically provided on the end of the magnetic tape to enable the tape threading arm to securely grasp the end of the tape. Once the tape leader block is inserted into the takeup reel, a helical scan tape wrap mechanism transports the length of magnetic tape, that is now exposed between the tape cartridge and the takeup reel, to the rotary heads which are located in a position with respect to the tape cartridge and takeup reel to be compatible with the tape cassette operation of the helical scan transport.

This cartridge tape system therefore operates in

10

a two step process: first - threading the magnetic tape from a tape cartridge to a takeup reel to create a virtual tape cassette image, second - transporting the magnetic tape from the virtual tape cassette onto the rotary head of the helical scan tape transport. By use of this two step process, the need for complex tape threading paths is avoided and the computer system compatible 3480-type tape cartridge can be used in the higher data recording density helical scan tape transport. In addition to this adaptation of the 3480-type tape cartridge's mechanical form factor, a magnetic tape that has been optimized magnetically and mechanically for helical scan usage can be loaded into the 3480-type tape cartridge.

10

15

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 illustrates, in block diagram form, the overall architecture of a typical prior art tape cassette helical scan transport;

Figure 2 illustrates, in perspective view, a typical prior art tape cassette;

Figure 3 illustrates, in perspective view, the orientation of the tape cartridge and takeup reel in the virtual tape cassette of the present invention;

Figure 4 illustrates the architecture of the apparatus of the present invention, using a helical scan tape transport with a unique virtual tape cassette;

Figures 5 and 6 illustrate the architecture of the apparatus of the present invention, using a conventional tape cartridge tape transport.

10

15

20

25

30

DETAILED DESCRIPTION

Figure 1 illustrates the architecture of a basic prior art helical scan tape cassette drive 100. tape cassette 101 contains a pair of juxtaposed reels 111, 112 as the transport mechanism for magnetic tape 118. Each of reels 111, 112 is rotatably mounted on an associated spindle 115, 116, respectively, and rotates in a clockwise direction to transport the magnetic tape 118 from the supply reel 111 to the The tape cassette 101 includes a takeup reel 112. fixed guide 113 located adjacent to the supply reel 111 and another fixed guide 114 located adjacent to the takeup reel 112. Fixed guides 113, 114 are used to guide the positioning of magnetic tape 118. Dotted line path 117 indicates the placement of magnetic tape 118 in tape cassette 101 as it is placed into the helical scan tape transport 100. Fixed guides 113, 114 position magnetic tape 118 along path 117 so that it is accessible by the helical scan tape transport mechanism, to be retrieved from within tape cassette 101.

In well known fashion, when tape cassette 101 is loaded into the helical scan tape drive, a pair of moveable guides 133, 134 are activated to a first position wherein the magnetic tape 118, as placed on path 117, is located between the moveable guides 133, 134 and the rotary head 121. The moveable guides 133, 134 (or a vacuum) are operated to retrieve magnetic tape 118 from path 117 and transport magnetic tape 118 to wrap around rotary head 121 as illustrated in Figure 1. Rotary head 121 is rotatable about spindle 124 and includes a pair of heads 122, 123 for reading and writing data onto the magnetic tape 118. The positioning of magnetic tape 118 as illustrated in

Figure 1 traverses a path 137 such that magnetic tape 118 extends from file reel 111, over fixed guide 113 of tape cassette 101, over moveable quide 133, rotary head 121, moveable guide 134, longitudinal heads 135, capstan 136 of the helical scan transport mechanism, and fixed guide 114 of tape cassette 101. tape is placed in this position, data can be written to or read from magnetic tape 118. The helical scan tape transport mechanism 100 illustrated in Figure 1 is dependent on the use of tape cassette 101 that contains a pair of coplanar, juxtaposed reels 111, 112 having the magnetic tape 118 extending therebetween along path 117 so that the helical scan transport mechanism 100 can retrieve the magnetic tape 118 from tape cassette 101 to position the magnetic tape 118 along path 137 as illustrated in Figure 1. obvious that this architecture is incompatible with the use of a single reel tape cartridge.

Figure 2 illustrates a perspective drawing of tape cassette 101 showing supply reel 111 and takeup reel 112 along with fixed guides 113, 114. Magnetic tape 118, as can be seen from this figure, extends from supply reel 111 to takeup reel 112 along one edge of tape cassette 101. Tape cassette 101 typically includes an access door (not shown) adjacent to magnetic tape 118 such that the helical scan tape transport can open the access door to access magnetic tape 118 located within tape cassette 101.

Virtual Tape Cassette

5

10

15

20

25

Figure 3 illustrates in perspective view, a typical virtual tape cassette that is implemented using a tape cartridge 302. In this configuration, a tape cartridge 302 containing a single supply reel 303

15

20

25

30

rotatably mounted on a spindle 304 is positioned substantially coplanar with and adjacent to takeup reel 301 to emulate one type of tape cassette. cartridge 302 contains a length of magnetic tape 308 stored therein. At one end of magnetic tape 308 is 5 affixed a leader block 311 which is used by a typical tape cartridge transport to retrieve a length of magnetic tape 308 from tape cartridge 302 and thread the magnetic tape 308 along a tape threading path to the slot 309 in takeup reel 301 which is configured to Takeup reel 301 is receive leader block 311. rotatably mounted on a spindle 310. A pair of fixed guides 305, 306 are provided in the configuration illustrated in Figure 3 in order to position magnetic tape 308 in a manner that is analogous to that illustrated in Figure 2 for the tape cassette 101. The virtual tape cassette of Figure 3 provides substantially the same configuration of supply reel 303 and takeup reel 301 as that of tape cassette 101 The positioning of tape illustrated in Figure 2. cartridge 302 matches that used in tape cartridge drives so that loading and unloading of tape cartridge 302 from the cartridge drive of the present invention is substantially the same as that used in standard It is obvious that another tape cartridge drives. virtual tape cassette that can be similarly emulated in the two reel coaxial tape cassette using a slightly different tape threading mechanism.

Tape Cartridge Handling Mechanism for Helical Scan <u>Drive</u>

Figure 4 illustrates the architecture of a tape cartridge handling mechanism for use with a helical scan tape transport. The tape transport illustrated

10

15

20

25

30

in Figure 4 is identical to that illustrated in Figure The virtual tape cassette is implemented using cartridge 401 which contains a source reel rotatably mounted on spindle 405. Tape cartridge 401 is loaded into a receiving mechanism 400 which includes a plurality of elements not illustrated in Figure 4 for simplicity purposes including: a drive motor, servo mechanism, eject mechanism, etc. takeup reel 402 and tape threading mechanism, such as tape threading arm 403 are provided to transform tape cartridge 401 into a virtual tape cassette. cartridge 401 when positioned in a receiver 400 is substantially coplanar with and located adjacent to In addition, rotary head 416 is takeup reel 402. typically substantially coplanar with and adjacent to tape cartridge 401 and takeup reel 402. In order to optimize the contact between magnetic tape 425 and rotary head 416, it may be advantageous to orient the takeup reel 402 so it is not coplanar with the tape cartridge 401. In this configuration, the magnetic tape 425 follows an angled path from tape cartridge 401 to rotary head 416 to takeup reel 402.

In the system illustrated in Figure 4, a plurality of fixed guides 408, 411 are provided to position the magnetic tape 425 along a tape path 423 which emulates a tape path used in a tape cassette. In operation, tape threading arm 403 is pivotally attached to spindle 412 and operates by swinging in the arc illustrated by arrow A to grasp leader block 407 from tape cartridge 401 and thread magnetic tape 425 along path 423 to takeup reel 402 where leader block 407 is inserted into slot 406. Tape threading arm 403 positions magnetic tape 425 along fixed guides 408, 411 as it traverses its path.

10

15

20

25

The second step in the tape loading operation is the tape wrap process which transports the magnetic tape to contact the rotary head 416. The positioning of magnetic tape 425 along path 423 enables one or more moveable guides 415, 419 of the tape wrap mechanism, when in a first position (indicated by 409, 410), located such that tape path 423 is between moveable guides 415, 419 and rotary head 416, to grasp magnetic tape 425 on the backside thereof and transport magnetic tape 425 from tape path 423 to tape path 424 as illustrated in Figure 4. Magnetic tape 425 is wrapped around rotary head 416 by one or more moveable guides 415, 419 as described above with respect to the helical scan tape transport mechanism By contacting the back surface of of Figure 1. magnetic tape 425, moveable guides 415, 419 guide magnetic tape 425 into position in the tape loaded path 424 without causing wear on the recording surface of magnetic tape 425.

Thus, the mechanism illustrated in Figure 4 operates in a two step process. The first step consists of tape threading arm 403 grasping the leader block 407 once the tape cartridge 401 is inserted into the receiver 400 and threading magnetic tape 425 along tape path 423 to takeup reel 402. Once this first operation is completed, then the helical scan tape transport mechanism can transport the magnetic tape 425 from path 423 to path 424 where it is helically wrapped around rotary head 416.

30 Conventional Tape Cartridge Mechanism

Figures 5 and 6 illustrate the implementation of the tape cartridge apparatus for helical scan tape transports using a conventional tape cartridge

10

15

20

25

30

This mechanism consists of a tape mechanism. cartridge receiver 400 which receives tape cartridge Takeup reel 402 is located adjacent to tape cartridge 401 and includes the leader block slot 406. Tape threading arm 403 is provided to grasp the leader block 407 on magnetic tape 425 and thread magnetic tape 425 along tape threading path 423, which includes fixed guides 408, 411, to insert the leader block into slot 406 of takeup reel 402. Once the magnetic tape 425 is positioned along tape threading path 423, the tape wrap mechanism, in the form of moveable guides 415, 419 of the helical scan mechanism, are moveable along guide paths 501, 502 to appropriately position magnetic tape 425 on rotary head 416. In this mechanism, the standard tape cartridge drive mechanism has been adapted by removing the read/write head unit therefrom and replacing it with a helical scan tape In addition, the tape threading loading mechanism. path has been significantly simplified since a complex tape threading path is not required. In fact, the two step process described above can be modified using this mechanism to enable the helical scan loading mechanism to begin transporting the magnetic tape 425 from tape loading path 423 to the rotary head 416 once the tape threading arm 403 has traversed tape loading path 423 and is positioned past fixed guide 422. The magnetic tape 425 is properly positioned for loading onto rotary head 416 once this segment of the tape loading path 423 has been traversed by tape threading An additional tension will be placed on magnetic tape 425 by the operation of the helical scan tape loading mechanism but this is easily compensated for by the servo mechanism on tape threading arm 403 such that the completion of the tape threading

10

15

20

25

30

operation is concurrent with transporting of the magnetic tape 425 to the rotary head 416.

An alternative to the architecture illustrated in Figure 5 is the use of a pneumatic tape wrap system as in Figure 6. The tape threading path is similar to that shown in Figure 5, but includes a source of pressurized fluid, such as air, which forces the magnetic tape 425 into contact with the rotary head 416 once the tape threading operation is completed.

In both of the embodiments disclosed above, many of the standard mechanisms located in the tape transport mechanism have not been shown for the purpose of simplicity but are well known in the art. The virtual tape cassette of the present invention converts a tape cartridge to the form factor necessary for the operation of the helical scan tape drive. This conversion can be implemented using a modified standard tape cartridge drive mechanism adapted for this purpose or can be implemented using a unique and simplified drive mechanism. In either case, the tape cassette helical scan tape transport mechanism is merged with the computer data standard tape cartridge via this virtual cassette interface to provide a magnetic tape drive that provides the data density benefits of the helical scan drive and the form factor standardization of the present tape cartridge mechanism.

While a specific embodiment of this invention has been disclosed, it is expected that those skilled in the art can and will design alternate embodiments of this invention that fall within the scope of the appended claims. WO 92/10831 PCT/US91/08007

-15-

I CLAIM:

5

10

15

20

5

1. A helical scan tape transport apparatus for reading and writing data on to a magnetic recording tape (424) which is supplied on a removable tape cartridge (401), containing a single reel (404) rotatably mounted within said tape cartridge (401), and having a leader block (311) affixed to one end of said magnetic recording tape (424) for use in withdrawing said one end from said tape cartridge (401), comprising:

means (400) for receiving a tape cartridge; takeup reel means (402) for receiving said one end of said magnetic recording tape (424) contained in said tape cartridge (401);

tape threading means (403) for grasping said leader block (311) to thread said magnetic recording tape (424) along a predetermined path (423) from said tape cartridge (401) to said takeup reel means (402);

rotary head means (416) for reading and writing data on to magnetic recording tape (424) in a helical scan format;

tape wrap means (415, 419) for translating said threaded magnetic tape (424) from said predetermined path (423) to helically wrap about said rotary head means (416).

5

5

5

supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423).

3. The apparatus of claim 2 wherein said tape wrap means (415, 419) includes:

at least one movable guide means (415, 419) movable between a first position, wherein said predetermined path (423) is located between said movable guide means (415, 419) and said rotary head means (416), and a second position, wherein said magnetic tape (424) is helically wrapped about said rotary head means (416).

4. The apparatus of claim 3 wherein said tape wrap means (415, 419) further includes:

means (501, 502), responsive to said tape threading means (403) threading said magnetic recording tape (424) along said predetermined path (423) from said tape cartridge (401) to a location past said second fixed guide means (411), for activating said movable guide means (415, 419) to move from said first position to said second position.

5. The apparatus of claim 3 wherein said tape wrap means (415, 419) further includes:

means, responsive to said tape threading means (403) threading said magnetic recording tape (424) along said predetermined path (423) from said tape cartridge (401) to said takeup reel means (402), for activating said movable guide means (501, 502) to move from said first position to said second position.

- The apparatus of claim 1 wherein said receiving means (400), said takeup reel means (402), and said tape threading means (403) all comprise a standard tape cartridge drive.
- The apparatus of claim 1 wherein said rotary 7. head means (416) and said tape wrap means (415, 416) comprise a standard tape cassette drive.
- 8. A helical scan tape transport apparatus for reading and writing data on to a magnetic recording tape (424) which is supplied on a removable tape cartridge (401), containing a single reel (404) rotatably mounted within said tape cartridge (401), and having a leader block (311) affixed to one end of said magnetic recording tape (424) for use withdrawing said one end from said tape cartridge (401), comprising:

means (400) for receiving a tape cartridge (401);

takeup reel means (402), substantially with said receiving means (400)coplanar juxtaposed therewith, for receiving said one end of said magnetic recording tape (424) contained in said tape cartridge (401);

tape threading means (403) for grasping said leader block (311) to thread said magnetic recording tape (424) along a predetermined path (423) from said tape cartridge (401) to said takeup reel means (402);

rotary head means (416), substantially coplanar with said receiving means (400)juxtaposed therewith, for reading and writing data on to magnetic recording tape (424) in a helical scan

25 format;

5

10

15

20

10

5

5

tape wrap means (415, 419) for translating said threaded magnetic tape (424) from said predetermined path (423) to helically wrap about said rotary head means (416).

9. The apparatus of claim 8 further including: a first fixed guide means (408) located adjacent to and substantially coplanar with said receiving means (400) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423);

a second fixed guide means (411) located adjacent to and substantially coplanar with said takeup reel means (402) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423).

10. The apparatus of claim 9 wherein said tape wrap means (415, 419) includes:

at least one movable guide means (415, 419) movable between a first position, wherein said predetermined path (423) is located between said movable guide means (415, 419) and said rotary head means (416), and a second position, wherein said magnetic tape (424) is helically wrapped about said rotary head means (416).

11. The apparatus of claim 10 wherein said tape wrap means (415, 419) further includes:

means (501, 502), responsive to said tape threading means (403) threading said magnetic recording tape (424) along said predetermined path (423) from said tape cartridge (401) to a location past said second fixed guide means (411), for

PCT/US91/08007

5

5

10

activating said movable guide means (415, 419) to move from said first position to said second position.

12. The apparatus of claim 10 wherein said tape wrap means (415, 419) further includes:

means, responsive to said tape threading means (403) threading said magnetic recording tape (424) along said predetermined path (423) from said tape cartridge (401) to said takeup reel means (402), for activating said movable guide means (415, 419) to move from said first position to said second position.

- 13. The apparatus of claim 8 wherein said receiving means (400), said takeup reel means (402), and said tape threading means (403) all comprise a standard tape cartridge drive.
- 14. The apparatus of claim 8 wherein said rotary head means (416) and said tape wrap means (415, 419) comprise a standard tape cassette drive.
- 15. In a helical scan tape transport apparatus (415-421) that reads and writes data in a helical scan format, via a rotary head (416), on to a magnetic recording tape (424), which is supplied on a tape cassette containing two rotatably mounted reels, said tape transport system (415-421) including a threading guide (415, 419) for translating said magnetic tape (424) from said tape cassette to helically wrap about said rotary head (416), a virtual cassette apparatus for interfacing said helical scan tape transport system (415-421) with a removable tape cartridge (401), containing a single reel (404) rotatably mounted within said tape cartridge (401), and having

25

5

10

5

a leader block (311) affixed to one end of said 15 magnetic recording tape (424) for use in withdrawing said one end from said tape cartridge (401), comprising:

means (400) for receiving said tape cartridge (401);

takeup reel means (402), for receiving said one end of said magnetic recording tape (424) contained in said tape cartridge (401);

tape threading means (403) for grasping said leader block (311) to thread said magnetic recording tape (424) along a predetermined path (423) from said tape cartridge (401) to said takeup reel means (402).

- a first fixed guide means (408) located adjacent to said receiving means (400) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423); a second fixed guide means (411) located adjacent to said takeup reel means (402) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined position as it is threaded along said predetermined path (423).
- 17. The apparatus of claim 16 wherein said threading guide (415, 419) is movable between a first position, wherein said predetermined path (423) is located between said threading guide (415, 419) and said rotary head (416), and a second position, wherein said magnetic tape (424) is helically wrapped about said rotary head (416).
 - 18. The apparatus of claim 17 further including:

5

5

means, responsive to said tape threading arm means (403) threading said magnetic recording tape (424) along said predetermined path (423) from said tape cartridge (401) to a location past said second fixed guide means (411), for activating said threading guide (415, 419) to move from said first position to said second position.

- 19. The apparatus of claim 17 further including:
 means (501, 502), responsive to said tape
 threading means (403) threading said magnetic
 recording tape (424) along said predetermined path
 (423) from said tape cartridge (401) to said takeup
 reel means (402), for activating said threading guide
 (415, 419) to move from said first position to said
 second position.
- 20. The apparatus of claim 15 wherein said receiving means (400), said takeup reel means (402), and said tape threading means (403) all comprise a standard tape cartridge drive.
- 21. The apparatus of claim 15 wherein said rotary head (416) and said threading guide (415, 419) comprise a standard tape cassette drive.
- 22. In a helical scan tape transport apparatus for reading and writing data on to a magnetic recording tape (424) which is supplied on a removable tape cartridge (401), containing a single reel (404) rotatably mounted within said tape cartridge (401), and having a leader block (311) affixed to one end of said magnetic recording tape (424) for use in withdrawing said one end from said tape cartridge

15

20

5

10

15

(401), said tape transport including a takeup reel for receiving said one end of said magnetic recording tape (424) contained in said tape cartridge (401) and a rotary head (416) for reading and writing data on to magnetic recording tape (424) in a helical scan format, a method of threading said magnetic recording tape (424) from said tape cartridge (401) on to said rotary head (416) comprising the steps of:

threading said magnetic recording tape (424) along a predetermined path (423) from said tape cartridge (401) to said takeup reel (402);

translating said threaded magnetic tape (424) from said predetermined path (423) to helically wrap about said rotary head (416).

23. The method of claim 22 wherein the tape transport apparatus includes a first fixed guide (408) located adjacent to said tape cartridge (401) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423), a second fixed guide (411) located adjacent to said takeup reel (402) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423), said step of threading includes:

transporting said magnetic tape (424) from said tape cartridge (401), across said first fixed guide (408), across said second fixed guide (411), to said takeup reel (402) to emulate the format of a magnetic tape (424) in a tape cassette.

24. The method of claim 23 wherein said step of translating includes:

moving at least one movable guide (415, 419)

5

5

5

10

15

from a first position, wherein said predetermined path (423) is located between said movable guide (415, 419) and said rotary head (416), to a second position, wherein said magnetic tape (424) is helically wrapped about said rotary head (416).

- The method of claim 24 wherein said step of 25. moving is initiated when said magnetic recording tape (424) is threaded along said predetermined path (423) from said tape cartridge (401) to a location past said second fixed guide (411).
- The method of claim 24 wherein said step of moving is initiated when said magnetic recording tape (424) is threaded along said predetermined path (423) from said tape cartridge (401) to said takeup reel (402).
- The method of claim 22 wherein the tape transport apparatus includes a first fixed guide (408) located adjacent to said tape cartridge (401) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423), a second fixed guide (411) located adjacent to said takeup reel (402) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423), said step of translating includes:

moving at least one movable guide (415, 419) from a first position, wherein said predetermined path (423) is located between said movable guide (415, 419) and said rotary head (416), to a second position, wherein said magnetic tape (424) is helically wrapped about said rotary head (424).

5

5

5

10

- 28. The method of claim 27 wherein said step of moving is initiated when said magnetic recording tape (424) is threaded along said predetermined path (423) from said tape cartridge (401) to a location past said second fixed guide (411).
- 29. The method of claim 27 wherein said step of moving is initiated when said magnetic recording tape (424) is threaded along said predetermined path (423) from said tape cartridge (401) to said takeup reel (402).
- 30. The method of claim 22 wherein said step of threading includes:

grasping said leader block (311) on said magnetic tape (424);

transporting said leader block (311) along said tape threading path (423);

inserting said leader block (311) into said takeup reel (402).

reading and writing data on to a magnetic recording tape (424) which is supplied on a removable tape cartridge (401), containing a single reel (404) rotatably mounted within said tape cartridge (401), and having a leader block (311) affixed to one end of said magnetic recording tape (424) for use in withdrawing said one end from said tape cartridge (401), said tape transport including a takeup reel, substantially coplanar with said tape cartridge (401) and juxtaposed therewith, for receiving said one end of said magnetic recording tape (424) contained in said tape cartridge (401) and a rotary head (416),

20

25

5

10

15

substantially coplanar with said takeup reel (402) and juxtaposed therewith, for reading and writing data on to magnetic recording tape (424) in a helical scan format, a method of threading said magnetic recording tape (424) from said tape cartridge (401) on to said rotary head (416) in helical scan format, comprising the steps of:

grasping said leader block (311) from said tape cartridge (401);

threading said magnetic recording tape (424) along a predetermined path (423) from said tape cartridge (401) to said takeup reel (402);

translating said threaded magnetic tape (424) from said predetermined path (423) to helically wrap about said rotary head (416).

32. The method of claim 31 wherein the tape transport apparatus includes a first fixed guide (408) located adjacent to said tape cartridge (401) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423), a second fixed guide (411) located adjacent to said takeup reel (402) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423), said step of threading includes:

transporting said magnetic tape (424) from said tape cartridge (401), across said first fixed guide (408), across said second fixed guide (411), to said takeup reel (402) to emulate the format of a magnetic tape (424) in a tape cassette.

33. The method of claim 32 wherein said step of translating includes:

5

5

5

10

15

moving at least one movable guide (415, 419) from a first position, wherein said predetermined path (423) is located between said movable guide (415, 419) and said rotary head (416), to a second position, wherein said magnetic tape (424) is helically wrapped about said rotary head (424).

- 34. The method of claim 33 wherein said step of moving is initiated when said magnetic recording tape (424) is threaded along said predetermined path (423) from said tape cartridge (401) to a location past said second fixed guide (411).
- 35. The method of claim 33 wherein said step of moving is initiated when said magnetic recording tape (424) is threaded along said predetermined path (423) from said tape cartridge (401) to said takeup reel (402).
- 36. The method of claim 31 wherein the tape transport apparatus includes a first fixed guide (408) located adjacent to said tape cartridge (401) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423), a second fixed guide (411) located adjacent to said takeup reel (402) for supporting said magnetic tape (424) in a predetermined position as it is threaded along said predetermined path (423), said step of translating includes:

moving at least one movable guide (415, 419) from a first position, wherein said predetermined path (423) is located between said movable guide (415, 419) and said rotary head (416), to a second position, wherein said magnetic tape (424) is helically wrapped

5

5

5

about said rotary head (416).

- 37. The method of claim 36 wherein said step of moving is initiated when said magnetic recording tape (424) is threaded along said predetermined path (423) from said tape cartridge (401) to a location past said second fixed guide (411).
- 38. The method of claim 36 wherein said step of moving is initiated when said magnetic recording tape (424) is threaded along said predetermined path (423) from said tape cartridge (401) to said takeup reel (402).
- 39. The method of claim 31 wherein said step of threading includes:

grasping said leader block (311) on said magnetic tape (424);

transporting said leader block (311) along said tape threading path (423);

inserting said leader block (311) into said takeup reel (402).

- 40. A helical scan tape transport apparatus for reading and writing data on to a magnetic recording tape (424) which is supplied on a removable tape cartridge (401), containing a single reel (404) rotatably mounted within said tape cartridge (401), and having a leader block (311) affixed to one end of said magnetic recording tape (424) for use in withdrawing said one end from said tape cartridge (401), comprising:
- means (400) for receiving a tape cartridge (401);

25

30

35

40

45

takeup reel means (402) for receiving said one end of said magnetic recording tape (424) contained in said tape cartridge (401);

tape threading means (403) for grasping said leader block (311) to thread said magnetic recording tape (424) along a predetermined path (423) from said tape cartridge (401) to said takeup reel means (402);

rotary head means (416) for reading and writing data on to magnetic recording tape (424) in a helical scan format;

tape wrap means (415, 419) for translating said threaded magnetic tape (424) from said predetermined path (423) to helically wrap about said rotary head means (416), including

at least one movable guide means (415, 419), movable between a first position, wherein said predetermined path (423) is located between said movable guide means (415, 419) and said rotary head means (416), and a second position, wherein said magnetic tape (424) is helically wrapped about said rotary head means (416),

means (501, 502), responsive to said tape threading means (403) threading said magnetic recording tape (424) along said predetermined path (423) from said tape cartridge (401) to a location past said second fixed guide means (411), for activating said movable guide means (415, 419) to move from said first position to said second position;

a first fixed guide means (408), located adjacent to said receiving means (400) for supporting said magnetic tape (424) in a predetermined position

as it is threaded along said predetermined path (423);
a second fixed guide means (411) located
adjacent to said takeup reel means (402) for
supporting said magnetic tape (424) in a predetermined
position as it is threaded along said predetermined
path (423).

- 41. The apparatus of claim 40 wherein said receiving means (400), said takeup reel means (402), and said tape threading means (403) all comprise a standard tape cartridge drive.
- 42. The apparatus of claim 40 wherein said rotary head means (416) and said threading guide means (415, 419) comprise a standard tape cassette drive.

WO 92/10831 PCT/US91/08007

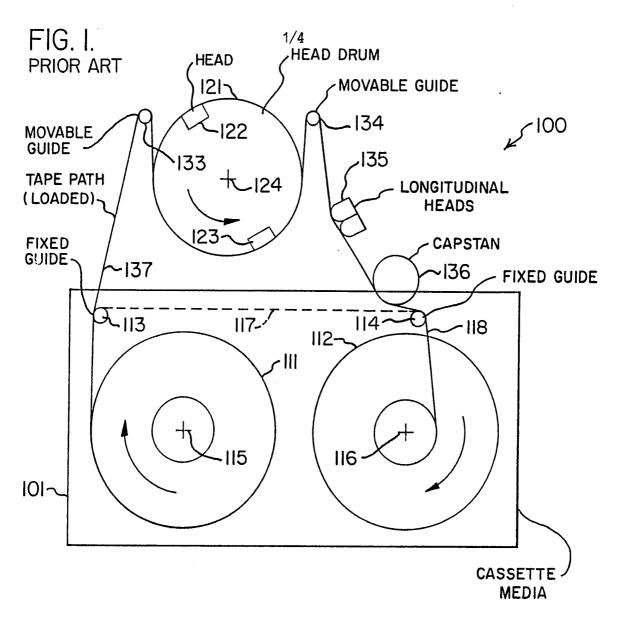
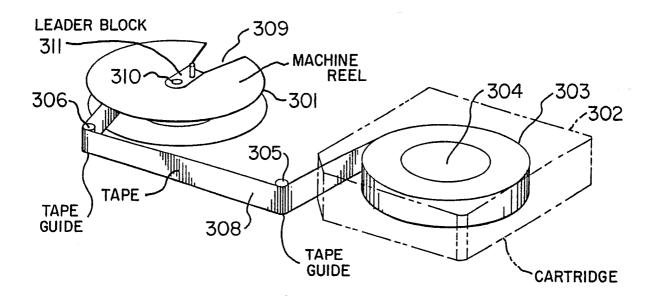
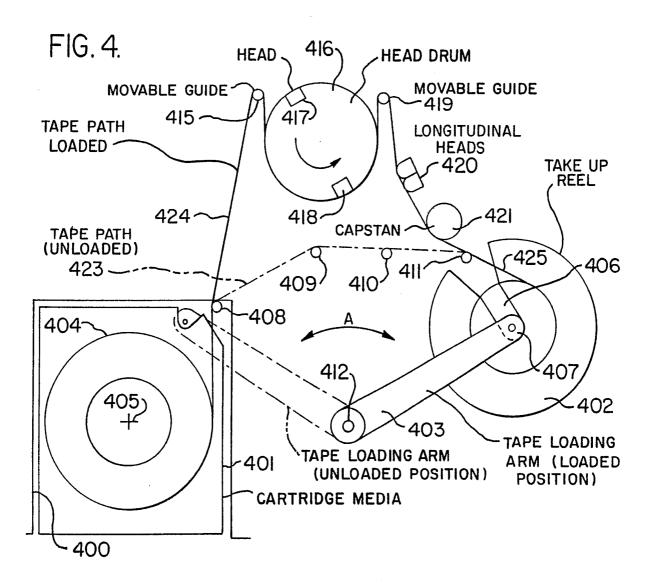


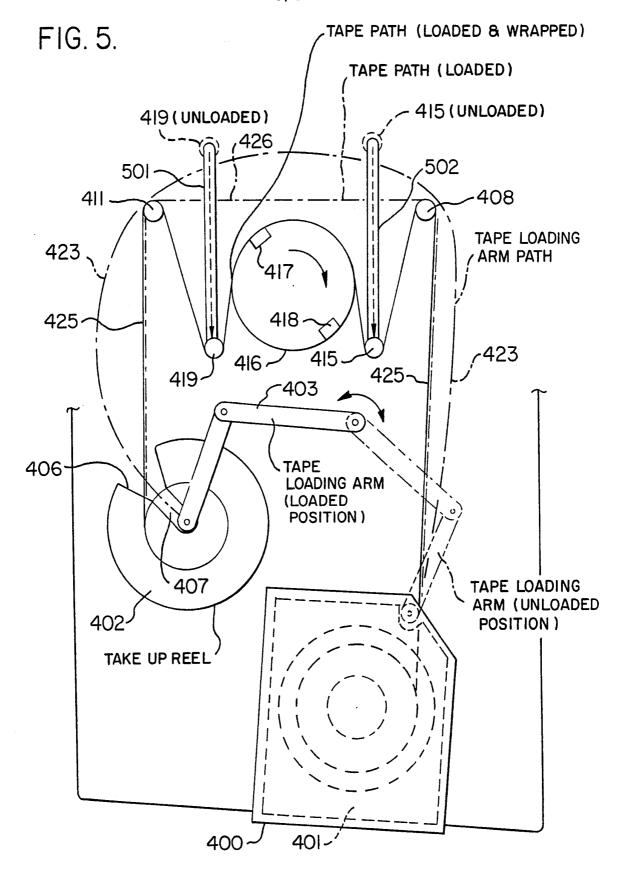
FIG. 2.
PRIOR ART

III

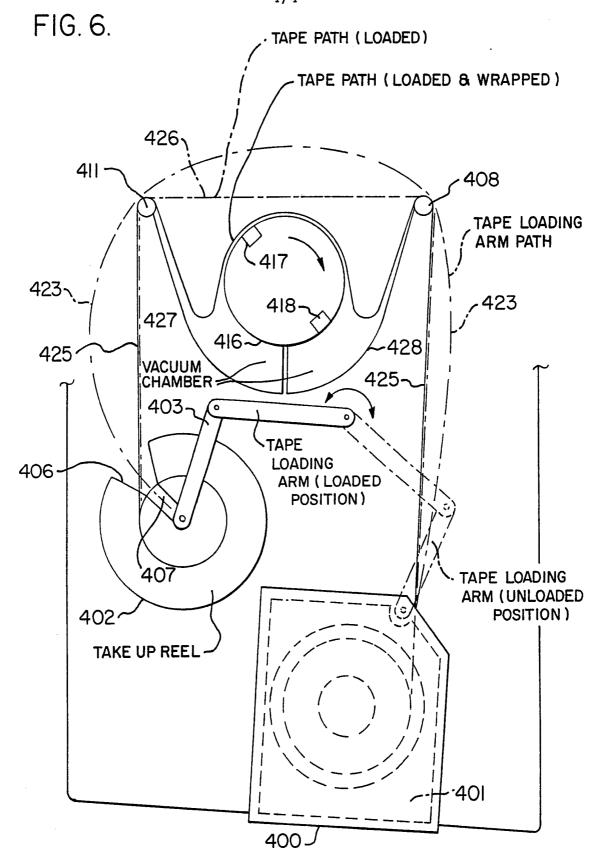

TAPE GUIDE


TAPE GUIDE

TAPE GUIDE


FIG. 3.

2/4



SUBSTITUTE SHEET

4/4

INTERNATIONAL SEARCH REPORT

I. CLASS	IFICATION OF SUBJECT MATTER (4	International Application No. PCT	/0591/0800/		
According	to International Patent Classification (IPC) or	everal classification symbols apply, indicate all) 6			
IPC ((5): G11B 5/027	to both National Classification and IPC			
U.S.0	Cl.: 360/85				
II FIELDS	SEARCHED				
	Minimui	m Documentation Searched 7			
Classificatio	↑ System	Classification Symbols			
U.S.	360/84,85,94,95,1	32			
		thed other than Minimum Documentation Documents are Included in the Fields Searched *			
III. DOCUI	MENTS CONSIDERED TO BE RELEVAN	T •			
Category •	Citation of Document, 11 with indication,	where appropriate, of the relevant passages 12	Relevant to Claim No. 13		
Y	US, A, 4,920,436 (NOVAK) See Figure 15.	24 April 1990	1-42		
A	US, A, 4,608,614 (RINKLE) See entire document.	IB) 26 August 1986			
	see entire document.				
			ļ		
	•				
* Special o	ategories of cited documents: 10				
"A" docum	ent defining the general state of the art which	"T" later document published after th or priority date and not in conflic	t with the application but		
consid	ered to be of particular relevance	cited to understand the principle	or theory underlying the		
ming a		cannot be considered revel as	e; the claimed invention		
"L" docum which	ent which may throw doubts on priority claim is cited to establish the publication date of a	n(s) or involve an inventive step	cannot be considered novel or cannot be considered to involve an inventive step "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the		
citation	n or other special reason (as specified)	ocument of particular relevanc			
otner n		tion or document is combined with one of ments, such combination being of	or more other such docu-		
"P" docume	ent published prior to the international filing di ian the priority date claimed	ate but in the art.			
IV. CERTIFIC		a document member of the same pa	LLUGT TEMHY		
	ctual Completion of the International Search	Date of Marilian of this International Co.	reh Panast		
		Date of Mailing of this International Sea	•		
22 Jar	nuary 1992	05 MAR 19	392		
nternational S	Searching Authority	Signature of Authorized Officer) ^ ·		
ISA/US		/- Y-1-du K	olumon		
TOW/ OF	י	A. J. Heinz			