| 0RO O

4 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

O 0O O AN

(10) International Publication Number

21 December 2000 (21.12.2000) PCT WO 00/77654 Al

(51) International Patent Classification: GOG6F 15/16 (81) Designated States (national): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CR, CU,CZ,DE, DK,

(21) International Application Number: PCT/US00/40186 DM, EE, ES, F1, GB, GD, GE, GH, GM, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KP, KR, KZ,L.C, LK, LR, LS, LT, LU,

(22) International Filing Date: 9 June 2000 (09.06.2000) LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, SL, SK, SL, TJ, TM, TR, TT, TZ, UA,

(25) Filing Language: English UG, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM,

(30) Priority Data:

09/329,677 10 June 1999 (10.06.1999) US
(71) Applicant: BOW STREET SOFTWARE, INC.
[US/US]; One Harbour Place, Portsmouth, NH 03801

us).

(72) Inventors: ROBERTS, Andrew, F.; 78 Larchmont Road,
Melrose, MA 02176 (US). BOOTH, Jonathan, P.; 19
South School Street, Portsmouth, NH 03801 (US).

(74) Agent: HARRIMAN, J., D.; Coudert Brothers, 333 South
Hope Street, 23rd Floor, Los Angeles, CA 90071 (US).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR CREATING SERVICES

100 102 104
4)
CHILD RUNTIME IWEB SERVICES
TEMPLATE [——» " ""yiope | APPLICATION

W (57) Abstract: A method and apparatus for creating network services. Instead of programming or hard coding an entire web service,
the invention provides the ability to easily create a module/mechanism (referred to as a template (100)) that produces code that may
be utilized to create a web service. Thus, a template (100) is formed and utilized to create a model (204) that can generate an
~~. application (104) or web service. Each template is comprised of a list of features (202), and a model (102) (referred to as a run
time model or RTM). An RTM (102) is an XML document that declares the structure, functionality, and behavior of a web service
application (referred to as a WSA (304)). In one or more embodiments, each feature is responsible for generating XML entities to
be output in a new RTM (102). Each feature may obtain one or more user’s input that is utilized to build an XML entity in a new
RTM. Further, each feature may be processed sequentially and has the ability to modify any existing XML entities that have already

776

been created (by other features, for example).

WO 00/77654 PCT/US00/40186

METHOD AND APPARATUS FOR
CREATING SERVICES

INVENTOR:

10 ANDREW F. ROBERTS
JONATHAN P. BOOTH

15 PREPARED BY:

COUDERT BROTHERS
Twenty-Third Floor
333 South Hope Street
20 Los Angeles, CA 90071

(213) 229-2900

WO 00/77654 PCT/US00/40186

BACKGROUND QOF THE INVENTION

1. FIELD OF THE INVENTION

This invention relates to the field of creating network services.

Portions of the disclosure of this patent document contain material
that is subject to copyright protection. The copyright owner has no objection
10 to the facsimile reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office file or records, but

otherwise reserves all copyright rights whatsoever.

2. BACKGROUND ART

15
The World Wide Web is a collection of web sites that each provide
information, data, and/or services of one kind or another. A problem with
current Internet and Web services is that each service must be programmed
statically and independently from other services. Further, to modify or
20 change a capability of the web service, a programmer must modify the web
service's code. This problem can be better understood by reviewing business

and their use of the internet.

A large number of businesses rely on other businesses as part of their
functionality. For example, a distributor of products relies on all of the

25 different manufacturers of the products to reliably supply not only the

(6]

10

WO 00/77654 PCT/US00/40186

products themselves, but information about the price and availability of the
products. Manufacturers themselves also rely on parts suppliers to build
complete products. To compete in a competitive business environment, it is
necessary for companies to be able to provide rapid responses to customers
about products and services. This often requires interaction with many other
companies. In the past, a customer might have been willing to wait while a
company representative made phone calls or referenced catalogs to provide
answers to customer requests. But today, customers demand faster service, or
the ability to obtain information themselves. In other cases, customers may
not be interacting with a compaﬁy representative at all, but with a company
web site. In that environment, the customer requires even more rapid and

efficient service.

One way for companies to stay competitive in today's business
environment is to develop application programs (software) that allows them
to interact with third party company computer systems to obtain information
and services that are needed to operate the companies business.

Traditionally, however, it has been difficult to create these applications. One
problem is the difficulty in interfacing with the often proprietary computer
systems of different companies. Another problem is the difficulty in writing
and debugging the applications themselves, as well as updating them when
conditions change or when third party companies change or update their own

systems.

This change in business climate has also been driven in part by the

internet. The internet has made information from multiple sources easily

10

WO 00/77654 PCT/US00/40186

available to individuals. In addition, the internet has changed the way
companies interact with each other. Business to Business interaction is now
often accomplished via the internet. Often the relationship between
businesses (such as between a distributor and its suppliers) is called a

"channel relationship”, or a "business channel”.

Creating software applications to manage business channels is complex
and inflexible using traditional techniques. If a hard coded application is
created, it may not be able to respond to new channels that are created or
modified over time. Repeated recoding efforts may be required. In other
cases, a company may be in a channel relationship with another company
without the other company realizing it. For example, companies that use
Federal Express or other shippers to transport goods do so without explicit
formal relationships with the shipper. For the shipper, maintaining business

channels with every company that uses it is a daunting, if not impossible task.

Traditional techniques focus on efficiency in the design of an
application in the re-use of code, through object oriented programming for
example, but do not provide efficiency or customizability at runtime of an
application. With millions of companies making services available on the
internet, there is a need to be able to efficiently create custom applications that
dynamically invoke and interconnect a combination of web services, and
configure themselves in customized formats at runtime. To date, the prior

art has not provided effective solutions.

O]]

10

WO 00/77654 PCT/US00/40186

Currently the web is used to provide predefined web pages for viewing
by a user/client. But there is a need to do more than provide static web pages.
It is desirable to easily create a mechanism/module that will modify or create
a web page dynamically while taking into consideration the other elements or-
components of the web page. Further, there is a growing need to utilize web
services that provide users with a variety of capabilities. There are currently
no mechanisms for dynamically generating or modifying a web service.
Additionally, there is no mechanism to modify a web service based on

existing aspects of the web service.

(5]

ul

10

20

WO 00/77654 PCT/US00/40186

SUMMARY OF THE INVENTION

The present invention provides a method and apparatus for creating
network services. Instead of programming or hand coding an entire web
service, one or more embodiments of the invention provide the ability to
easily create a module/mechanism (referred to as a template) that produces
code (referred to as a runtime model) that provides the XML definitions of a
web service application. Thus, a template is formed and utilized to create a

model that can generate the foundation of a web service application.

Each template is comprised of a list of features, and a model (referred to
as a run time model or RTM). An RTM is an XML document that declares
the structure, functionality, and behavior of a web service application
(referred to as a WSA). In one or more embodiments, each feature is
responsible for generating XML entities to be output in a new RTM. Each
feature may obtain one or more users’ input that is utilized to build an XML
entity in a new RTM. Further, each feature may be processed sequentially and
has the ability to modify any existing XML entities that have already been
created (by other features, for example) in an RTM. Consequently, features
have the ability to look at an application as a whole to effect a change to the
entire existing application instead of merely adjusting and modifying the

entity they are responsible for.

WO 00/77654 PCT/US00/40186

In one or more embodiments of the invention, when a condition that
may affect an application changes, the template may be utilized to regenerate

the RTM to produce a new web service or XML document.

~J

WO 00/77654 PCT/US00/40186

BRIEE DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates the use of a template to produce a W5A in

accordance with one or more embodiments of the invention.

Figure 2 illustrates the composition (induding parameters) of a

template in accordance with one or more embodiments of the invention.

Figure 3 illustrates the generation of a web services application using

10 templates in accordance with one or more embodiments of the invention.

Figure 4 illustrates the regeneration process in accordance with one or

more embodiments of the invention.

15 Figure S illustrates the use of features and features services to create a
transformed runtime model in accordance with one or more embodiments of

the invention.

Figure 6 illustrates the selection of a feature for use in a template in

20 accordance with one or more embodiments of the invention.

Figure 7A illustrates a cellular phone system display produced in

accordance with one or more embodiments of the invention.

w

10

15

WO 00/77654 PCT/US00/40186

Figure 7B illustrates the resulting display upon pressing a "details”
button of Figure 7A in accordance with one or more embodiments of the

invention.

Figure 8 illustrates the selection of a cellcatalog template from an
"Open a Template” screen of a template author application in accordance

with one or more embodiments of the invention.

Figure 9 illustrates the open cellcatalog template in accordance with

one or more embodiments of the invention.

Figure 10 illustrates the Active Column feature Ul template in

accordance with one or more embodiments of the invention.

Figure 11 illustrates the creation of a service in accordance with one or

more embodiments of the invention.

Figure 12 illustrates the next page of the feature UI template for
specifying a service’s inputs in accordance with one or more embodiments of

the invention.

Figure 13 illustrates the creation of an imported page feature in

accordance with one or more embodiments of the invention.

WO 00/77654 PCT/US00/40186

Figure 14 illustrates the UI for a Fixed XML Text Feature in accordance

with one or more embodiments of the invention.

Figure 15 illustrates the Ul for a Button feature called “Go Back” in

5 accordance with one or more embodiments of the invention.

Figure 16 illustrates the Ul for adding a Function feature in accordance

with one or more embodiments of the invention.
10 Figure 17 illustrates the Active Column Feature of figure 10 where a

the function is being modified from OnLoad to Show Details in accordance

with one or more embodiments of the invention.

10

(6]

10

15

WO 00/77654 PCT/US00/40186

DETAILED DESCRIPTION OF THE INVENTION

In the following description, numerous specific details are set forth in
order to provide a more thorough understanding of the present invention. It
will be apparent, however, to one skilled in the art, that the present
invention may be practiced without these specific details. In other instarices,
well-known features have not been described in detail in order not to

unnecessarily obscure the present invention.

The present invention provides a method and apparatus for creating
applications that use available web services. Millions of services are being
made available via the internet as well as through existing API's and other
techniques. In the internet, many services are being made available as XML
services. XML (extensible markup language) is a language used to describe
information, or more accurately, to make information self describing.
Traditionally, web pages are built using HTML. HTML (hypertext markup
language) describes the geometry and appearance of a page of data, in effect
creating holes or slots in which data is inserted. However, there is no direct
communication of the data that appears on the page in the HTML description.
A user might be presented with a page that includes recognizable

information, such as name, address, and phone number. But to HTML, the

data is simply text to display.

11

10

WO 00/77654 PCT/US00/40186

XML, on the other hand, provides a protocol where the type of data
being used can be identified. XML can do this in part using predefined
"schemas” that can be used to understand the type of data being transmitted.
If a standard schema is used, the data need only include a reference to the
schema, which need not travel with the data. If a custom schema is used, it
can be sent before or after the data, or eﬁplicit directions to the location of the

schema can be provided.

The present invention can take full advantage of XML based services,
but is also applicable for use with any service for which communication

protocols can be established.

One or more embodiments of the invention create a web services
directory for a business or enterprise that contains available services for use.
Interfaces are available for each service to convert requests and responses into
appropriate formats for use in internet and back end system environments.
Additionally, the interfaces may be utilized to define the schema of request
data passed into a called service, and for defining the schema of response data

passed out by a called service.

The web services architecture (referred to as the “system”) maintains
metadata about web services that have been published for use by web service
consumers. The system provides access control, organization, interface
definition, management, and operation of web services. The web services
architecture serves as a centralized location from which web service

consumers can gain all information about a set of published web services. In

WO 00/77654 PCT/US00/40186

addition, the web services architecture provides a central location from which
web services can be run, despite the fact that the systems (applications) that
perform the actual work of the individual web services are distributed

throughout the Internet.

w

The web services architecture is comprised of the web services directory
and the web services engine. The web services directory is the database, while

the web services engine is the processor that handles web service requests.

10

Web Services Applications and Runtime Models

One of the most significant activities that a web services engine
performs is the execution of multiple web services in the context of a single
15 session. The web services architecture supports a type of XML object called a
runtime model, which defines the context in which multiple web services are
to be executed. When a web services engine receives a request to run the
model runner service with such a specified runtime model, the system

generates something called a web services application in the session.

A runtime model is significantly different than a declaration of how to
chain together the execution of a number of web services. One or more
embodiments of the invention provide a runtime model that declares
multiple actions, each of which can be bound to the execution of elaborate

25 functionality defined in functions. In addition, a runtime model declares

WO 00/77654 PCT/US00/40186
multiple parameters which are used as web service inputs and outputs. And
finally, a runtime model draws on the use of a number of web services that
construct special user interface pages as output data. The behavior of these
pages Is to generate subsequent web service requests to the web services

5 engine, and to call for the execution the actions defined in a web services
application session. As such, a runtime model, and the web services

application it generates, is the recipe for a complex new form of application.

Without WSA's, the web services architecture would be atomic,

10 meaning that, in some instances, the only activity during the processing of a
request to the web services engine would be the execution of a single web
service. WSA's provide a means to enable the web services engine to
perform complex tasks involving many web services. In addition, WSA’s
enable web service requestors outside the web services engine to interact with

15 asingle session state, across requests.

Operation of Web Services Applications

20 When a request to the web services engine invokes a WSA, the system
processes the request, and generates a response. The response can be in XML,
HTML, MIME encoded (e.g., a .gif file), or anv format supported by Internet
wire protocols. In one or more embodiments, a web service request generates
a response that takes the rorm or a graphical user interface to be displaved in a

25 browser. This is the case when the requestor (web service consumer) is a web

WO 00/77654 PCT/US00/40186

10

25

browser. The returned user interfaces often have embedded controls in them
that react to subsequent user generated events, and cause the browser to
generate subsequent HTTP requests back to the web services engine. These
requests are often targeted at the same WSA. In the web services architecture,
it is possible for a single WSA session on the web services engine to maintain
its state throughout a number of interactions with different requests,
generated by different user interfaces. For example, it is possible for a WSA to
generate an initial page of Ul as the response to an initial request. This Ul
could contain a button. When the user presses the button, the browser
generates a new request targeted against the same WSA. The web services
engine invokes a service that enables the existing WSA to process the request,

and generate another Ul page.

The web services engine manages the caching of WSA's. The web
services directory manages the persistent descriptions of web services, and of
templates used to build runtime models. The web services engine
implements the invocation of W5A's through the use a model runner web

service.

The web services architecture maintains a web service for one or more
runtime models. When a requestor wants to run a WSA, he generates an
HTTP request to run a special type of web service called 2 “model-based” web
service. These web services have the responsibility of maintaining the
runtime models for corresponding to WSA’s. These web services also

reference a common web service driver called the model runner, which is

T

WO 00/77654

10

PCT/US00/40186

responsible for taking the runtime model as a service parameter, and

generating a WSA.

Once the web services engine has invoked an instance of the model
runner driver, and has generated the WSA, the model runner driver calls a
specific named action (called Onload in this implementation) defined in the
WSA. An action is a call to a web service, or a function (which defines the
invocation of a number of actions). An action is analogous to an operation
performed by a method (e.g., a call to another method/function or

performing simple data manipulation like an assignment or concatenation).

The Onload function establishes the initial state of the WSA, and it
performs the unit of work that generates the response data to the web services
request. When the Onload function has finished running, the model runner
driver saves the state of the WSA in the requestor’s session. Additionally,

the runtime model may also be saved in the requestor’s session.

The Page action is a special type of action used to generate response data
in the form of an interactive UL. A Page action generates a packet of response
data in either HTML or XML, that contains graphically presentable
information along with user interface (UI) controls. The behavior of these
controls can be set to generate subsequent web service requests to the web

services engine, using the handle of the original WSA session.

16

PCT/US00/40186

WO 00/77654

10

| o]

Sometimes, a WSA does all its work in the Onload function, sends
back its response data, and terminates without any intention of subsequent
web service requests establishing downstream contact. Other times, an action
(or function) in a WSA generates response data that contains an embedded
XML model session handle. This data enables a browser, or other system toA

generate web service requests against the same WSA session.

Functionality of Web Service Applications

The functionality of a WSA is entirely defined by XML-based
declarations in the runtime model, and the functionality provided by the
invoked web services. The runtime model that declares the functionality of
the W5A, 1s used by the Model Runner Service to instantiate all of the
involved web services invoked by the WSA. In addition, the runtime model

contains declarations of logic (functionality), data structure, and behavior.

The behavior of a WSA is defined by a set of bindings of actions to
events that are declared in the runtime model. Many of the events are those
that would be generated by a user interacting with Pages defined in the
runtime model. As web services interact with a WSA, the WSA generates
Pages as response data, and these Pages contain the behavior defining

bindings of events to actions that call additional web services.

In accordance with one or more embodiments or the invention, upon

startup, a WSA executes its Onload functionality. During execution, the

WO 00/77654 PCT/US00/40186
model runner service driver makes internal calls to additional web services,
which results in the web services engine engaging additional service drivers.
An internal request to run a web service comes from the web services engine

with a set of service inputs that are present in the WSA session. However,

(G}

external calls come in the form of an HTTP post or get, to a URL in a web

services engine, with a packet of input data.

Once the initial web service request has been processed, and the

response data has been sent back, the web services engine can handle

10 subsequent web service requests targeted at the model session of the already
running WSA. These session specific requests each contain a model handle
ID that enables the web services engine to engage a specified WSA. These
requests also identify an action to execute in the WSA to perform the work of
the web service request. For example, a WSA could have initially obtained a

15 list of employees through its Onload activity, and sent this information in a
page, as a response, down to the browser. In addition, this page could contain
a button. When this button is pressed, the browser generates a web service
request to run a specified action in the same WGSA session. This time the
request contains the ID of the WSA session. As a result, the button generates

20 a request to run an action in the running WSA, to obtain additioﬁal

information on an employee whose status is already present in the WSA.

A WSA’s state is represented bv a set of XML parameters (including
web service call data outputs). Parameters are XML containers for data, and

25 thev have XML schemas that define the tvpe of data that is supported in the

WO 00/77654 PCT/US00/40186

10

parameters. The data in parameters changes over time in the WSA session.
By way of logic defined in functions, a WSA can assign parameter values to
service call inputs, as well as direct the outputs of web service calls to
parameters. A WSA serves as a brokering system for moving information

into and out of web service calls managed by the web services engine.

Finally, a WSA supports the genera'tion and update of fully interactive
user interfaces. The user interface is comprised of a set of dynamically
generated and updated XML entities called Pages. A Pages is a block of XML
data (HTML being a subset), suitable for display by a browser (but in no way

limited to view in a browser. A Page doesn’t have to contain HTML)

User interface is an optional property of a WSA. Some WSA’s have
functionality that performs computation on data inputs, and generates output
data containing no UI components. These WSA’s typically shut down after
execution of the initial web service request. Other WSA’s have startup
functionality that generates Ul in the response data. This generated Ul can
contain tagged behavior that causes the browser to generate subsequent
service requests to the web services engine to connect to the running WSA,
and invoke additional actions. In turn, these actions can result in the
generation of a new or updated page that gets sent back as a response to the
service request. Through this interaction, 2 WSA is capable of handling a
complex interaction with a user, while at the same time performing web
service call actions that engage web services that are distributed throughout

the Internet.

19

WO 00/77654 PCT/US00/40186

Structure of Runtime Models

5 A runtime model is a type of document that represents any XML data
(including a web service written in XML). For example, in one or more
embodiments, a runtime model is an XML document that declares the
structure, functionality, and behavior of a WSA. In another embodiment, a
runtime model represents 3D geometric data entities, or XSL (eXtensible

10 Stylesheet Language entities), for example. In one or more embodiments, the
model runner driver in the web services engine interprets the content of a
runtime model in order to produce a WSA. However, other types of services
may handle interpretation of runtime model entities used for new
applications. One or more embodiments provide for runtime models to

15 follow a schema that is open and extensible.

Runtime models support a wide array of entities that describe different
aspects of WSA’s. Runtime models can declare functionality that results in
multiple runtime models being invoked into WSA's that collaborate during

20 runtime execution. This is accomplished by having runtime models declare

calls to web services, that, in turn, make references to other runtime models.

WO 00/77654 PCT/US00/40186

U

10

Models

In one or more embodiments, the runtime model may have a root
node called a Model. The Model entity contains a set of sub-nodes. In the
current implementation, this includes Pages, ServiceCalls, Triggers,
Parameters, and Behaviors. As referenced hereinafter, the functionality and
use of XML is based on that commonly utilized. Further, the XML
descriptions utilized herein are for descriptive purposes and the XML data
may be comprised of empty tags. Empty tags are formatted as <tagname/>.
XML data may contain filled tags in the form of <tag name>data including
other <tagged data>moredéta</ tagged data></tag name>. Additionally, the
structure of XML may not be defined in a schema language and a runtime

model can contain any XML data, following any XML schema.

For example, the XML below describes one or more embodiments that

contains some entities that may be utilized in a runtime model.

<?xml version="1.0" ?>

<Model xmlns:LDS="" »xmlns:LDT="" xml:space="preserve">
<Pages/>
<ServiceCalls/>
<Triggers/>
<Paramezers/>
<3ehaviors/>

</Model>

Pages

The Pages entity of a runtime model contains a set of individual

page entities. A runtime model can have any number of pages. Pages serve

WO 00/77654 PCT/US00/40186

o

as a vehicle to for both content and UI that is suitably formatted for display in

a browser.

Once the model runner service driver has produced a WSA, it executes
a block of functionality in the WSA (see the section on service calls and
triggers below), that ultimately sends back a response to the requestor. Many

times, the response is in the form of an page, suitable for display in a browser.

Since a page as just another type of parameterized XML data in the
WSA session, a WSA can utilize a page as output to a service request, or as
input to another web service. This means that a WSA can send pages as
inputs to a variety of web services. For example, a WSA could send a page to

an email web service as the content of a message.

A Page entity contains the following entities:
<Page>
<UniqueID/>
<UserReacdableName/>
<Target/>
<Contents/>
</Page>

The Contents entity in a Page contains any type of HIML, including
nested XML. The Content section also contains XML entities that represent

placeholders for data and controls.

One of the actions that can be called in a WSA is the Page action. This

action invokes a web service, that applies a transformation to a set of Page

WO 00/77654

10

5]
()]

PCT/US00/40186

entities in preparation for sending the data as a response to a service request.
The Page action causes the system to insert parameter data into the data
placeholders declared in the Page entities, and to write callbacks in the Page
for any declared behaviors defined in the runtime model for that Page. For
example, an LDT:Button entity declares the presence of an HTML button thét
has a click action which invokes a web service request against an action in the

WSA.

Service Calls

The ServiceCalls entity of a runtime model contains a set of
individual ServiceCall entities. Service calls are actions that invoke web
services defined in a web services directory. In one or more embodiments, a
service call may only identify web services that are located in the same web
services directory that is managing the execution of the WSA. In one or more
additional embodiments, a web services engine may make web service
requests to web services located in another web services directory, on behalf of

a WSA that it is running.

A service call is an action that calls a web service in the web services
directory. A service call also provides a WSA resident representation of the
input and output data schemas for the named web service, as well as
placeholders for the data. And rinally, a service call can maintain a definition
of the assignment of input values to the web service’s inputs. These assigned
values can either be constants, or references to values in parameters in the

runtime model.

1
[}

WO 00/77654 PCT/US00/40186

A ServiceCall entity contains the following:
<ServiceCall>
<UniqueID/>
5 <UserReadableName/>
<ServicelID>cn=xml_file_services,ou=System
Services,ou=Bow Street
Services, o=BowStreet,c=US</ServicelD>
<InputDefinitions/> '
10 </ServiceCall>

The InputDefinitions entity contains a set of individual DataDefinition
entities. These entities contain assignments of constant values to the inputs,
as well as assignments of parameters in the runtime model as sources of data

15 for the inputs to the service call.

In one or more embodiments, effectivity selection criteria may be
included as part of the ServiceID information. In one or more embodiments,
a service call identifies a service by its name. Further, in one or more
20 embodiments, ServiceIDs may utilize a unique identifier instead of an LDAP

distinguished name. In such an embodiment, a template can easily be moved
from one directory to another. In another embodiment, a service call may
identify attribute values for attributes such as “release level” as a means of
identifying the correct version of a service. Further, a service cail may

25 identify the version of a service by a selection criteria.

WO 00/77654 PCT/US00/40186

10

129
Ut

Triggers (also known as functions)

The Triggers entity of a runtime model contains a set of Action
entities. Triggers are the equivalent of methods in a class, and functions in a

scripted HTML page.

A trigger is a block of execution logic, with an action that serves as an
identifying handle. A runtime model can bind action handles to events, and
this is what constitutes the notion of behavior. Behavior in the runtime

model is defined to be the binding of actions to events.

In one or more embodiments, a trigger 1is defined to be a sequence of
actions. When the trigger’s action is invoked, the system invokes the actions
specified by the trigger. In another embodiment, triggers support many forms

of logic processing including branching.

A Trigger entity contains the following:

<Trigger>
<UnigueID/>
<UserRkeadableNare/>
<Actions/>
</Trigger>

The Actions entity contains information that describes logic and flow
of actions that are executed when the Trigger is invoked. This may be a

simple list of actions.

[Re)
w

WO 00/77654 PCT/US00/40186

Actions are the handles to functionality defined in the runtime model.
In one or more embodiments, there may be an action associated with each

service call, trigger, and page, in the runtime model.

5 Parameters’

The Parameters entity can contain any type and number of XML

entities. This means that a parameter can represent any form of data.

A Parameter is a place holder for data, but is also a place holder for the
10 structural representation of the data. In other words, for each parameter, the
system maintains an XML entity that defines the allowable content, and

structure (i.e. the schema) for data in the parameter.

The structural representation of a parameter can be filled in long before

15 there is data associated with a parameter.

Behaviors

Behavioral entities define the mapping of events to actions. In
the current implementation, behavior is only defined in Pages through
20 controls. A control can identify the action associated with one of its events.
In the current implementation, these actions can only be web service requests

back into the web services engine.

WO 00/77654 PCT/US00/40186

Templates

In one or more embodiments, runtime models are hard coded and
programmed individually. However, it is difficult to code and maintain such
5 runtime models due to the constantly changing nature of the web services
involved (that may be called as part of the runtime model) and the high
amount of variability that is required among the runtime models for
different uses. As a result, one or more embodiments of the invention
provide a system that records instructions for building runtime models.
10 These instructions are called features, and they are recorded in objects called

templates.

Templates provide a mechanism for easily generating a runtime model
that produces or declares the structure, functionality, and behavior of a WSA.
15 Further, templates provide a powerful and versatile model for invoking
WSA's instead of simply issuing a web service requést for an explicit hard
coded runtime model-based service. Templates provide the ability to

dynamically generate a runtime model instead of hard coding a runtime

model.

In one or more embodiments, templates are a special type of runtime
model (written using high level instructions) that provide for the dynamic
construction of a child runtime model (by executing the runtime model
represented by the template. Similar to the runtime models discussed above,

23 the child runtime model represents the underlying structure of a WSA and

[}
~)

WO 00/77654 PCT/US00/40186

10

may be turned into a WSA. However, templates and features could be
implemented in a different format altogether, not as runtime models. For
example, in one or more embodiments, a web service may retrieve the
content of a template as a block of data from a relational database. Thus, a
template is an intermediate object that provides for the use of a set of high

level instructions for building a runtime model.

As described above, a run time model has parameters that are utilized
as a place holder for data or the structural representation of data. One of the
parameters of a template is a runtime model (referred to as a child or nested
runtime model). So, a template is a runtime model that, when transformed
into a WSA and run, produces another runtime model inside it, which it

may execute.

Figure 1 illustrates the use of a template to produce a WSA. In the
embodiment of Figure 1, template 100 1s a runtime model. However,
template 100 may not be a runtime model, in which case runtime model 102
is not a child of any runtime model but just a runtime model created by
template 100. The runtime model represented by template 100 is turned into
a WSA and executed. The output of the WSA is child runtime model 102.
Child runtime model 102 represents and may be used to produce web services
application 104. Thus, templates automate the construction of runtime

models.

WO 00/77654 PCT/US00/40186

10

As described above, the parameter section of a runtime model may
support various types of XML data. Consequently, one or more embodiments
of the invention nest child runtime model 102, as a sort of “work bench”,
inside the parameters section. Furthermore, since a runtime model can
define a WSA's functionality and behavior, one or more embodiments of the
invention use a runtime model (i.e., template 100) to define and construct
child runtime model 102 through a series of web service calls to web services
known as feature services. Feature services have the property of accepﬁng a
reference to a runtime model as input, along with other parameters, and
producing a transformed runtime model as output. In another embodiment,
child runtime model 102 may be constructed using code referred to as "feature
creators” instead of actual services. A feature creator can be embodied as a

service (e.g., the feature service) or as a Java class, for example.

As described, template 100 is a runtime model that has a number of
special types of data in its parameters section, as well as a number of web

service calls that generate nested runtime model 102.

The special types of data in the parameters section of a template may

contain the following entities:

<Parameters>
<Teaguras/>
<Mocdel />

</Parameters>
Figure 2 illustrates the composition (including parameters) of template
100. Runtime model 102 is one parameter. The second parameter is that of

feature lists 202. The model entity/parameter is a runtime model as described

29

WO 00/77654 PCT/US00/40186

above. Thus, when the template is turned into a WSA, one of the parameters
used by the WSA is a runtime model. As will be described below, this
runtime model is modified by the WSA until the complete child runtime
model 102 is produced. Thus, the child runtime model is produced by

5 modifying the runtime model parameter. The runtime model parameter is
modified in accordance with specifications provided by the other parameter

entity - features.

Figure 3 illustrates the generation of a web services application using
10 templates. First, web services engine 300 receives a request for a template
based service. Web services engine 300 transmits the request to model runner
302. Model runner 302 is configured to load a runtime model and generate a
WSA. Thus, model runner 302 loads template 100 and produces the
corresponding WSA 304. WSA 304 contains features 202 that are utilized to
15 modify and create child runtime model 102. WSA 304 makes calls to the
feature services or feature creators ident—iﬁed by features 202 to generate the
child runtime model 102. Model runner 302 is then utilized to load child
runtime model 102 and transform it into WSA 306. Thus, template 100 1s
utilized to generate runtime model 102 which corresponds to a web services

20 application that may be utilized by the system.

WO 00/77654 PCT/US00/40186

Features

The features entity/parameter of template 100 provides the ability to
build or generate entities to produce child runtime model 102. The features

entity contains a list of features that comprise what is known as the feature

(62}

list. The feature list is the instruction set that describes how a web service
(known as regenerate) should build the cﬁild runtime model, through the
use of a set of “side kick” web services (called feature services or feature
creators), and a set of input values (referred to as feature input parameters).

10

The features in feature list 202 utilize runtime model 204 as input and
are executed in the order that the features are listed. Each feature may modify
or alter the existing runtime model 204 used as input. This execution process
is called regeneration. As an alternative to standard programs, the

15 regeneration process may be in the form of a WSA (described in detail below).
The regeneration process generates the content of nested runtime model 102,
based on the input parameters that are defined for each feature in the feature
list. Figure 4 illustrates the regeneration process in accordance with one or
more embodiments of the invention. Regeneration WSA 400 utilizes feature

20 list 202 and runtime model 204 as input to produce transformed runtime

model 102.
In one or more embodiments, the regeneration process may be

executed immediately upon the creation of a template. By executing the

25 regeneration process at such a time, the runtime model does not need to be

31

WO 00/77654 PCT/US00/40186

10

generated when the web service is requested to be run. However, in this
scenario the completed runtime model must be stored in persistent memory.
In other embodiments, the regeneration process is executed dynamically at
the time a web service is requested to be run. By executing the regeneration
process at such a time, the user can be more adequately assured that any web
services that are referenced by features are the most recent versions of the
services and that any input/output schema data utilized is the most recent
data. However, by dynamically generating the model or WSA, the processing

time may be lengthened.

A feature consists of two components: a feature user interface template
and a feature service. The feature user interface template is responsible for
obtaining input from a user or other application, and for building and
subsequently maintaining a feature block in the feature list. The user
supplied inputs to a feature user interface template are utilized in the creation
of the input parameters for the feature service identified in the feature block.
The feature service performs the work of generating entities in runtime
model 102 based on the feature parameters. In one or more embodiments,
the feature user interface template gets inputs from a user, and then produces
a feature block. This block of data is placed in sequence in the feature list.

The feature block contains input parameters and the name of a feature service
that does the work of building the runtime model entities. In one or more
embodiments, the inputs that the user supplies to the feature Ul template,
may not be the same as what the Ul template puts in the reature block. For

example, in one feature, the Ul template takes inputs from the user about the

WO 00/77654 PCT/US00/40186

10

25

name of a relational database table and columns to query, and then writes
these as SQL (structured query language) data inputs in the feature block. So,
a feature UI template can perform a transform on the inputs before placing
them in the feature block. If a user modifies a feature, the feature Ul template
also performs the reverse mapping to take the feature block inputs, and map

them back into the Ul for the user to modify.

Each feature in a template is represented by a block of XML data that
defines a set of input parameter values for the feature, and the name of the
feature service that performs the work of using the feature input values to
transform runtime model 204 into runtime model 102. Each feature service
effectively takes runtime model 204 in as one of its inputs, and produces
transformed runtime model 102 as its output. Figure 5 illustrates the use of
features and features services to create transformed runtime model 102. A
feature user interface template for feature 1 may obtain feature 1 input
parameters 500. Feature service 1 utilizes feature 1 iﬁput parameters 500 and
runtime model 204 to produce transformed runtime model 102. Feature
service 2 then utilizes transformed runtime model 102 and feature 2 input
parameters 502 as input to generate a new transformed runtime model 102.
The feature service corresponding to each feature in the feature list processes
the transformed runtime model in combination with the feature input

parameters to produce a final child runtime model 102.

Since the feature services are executed sequentially, each feature service

may modify the transformed runtime model as a whole as desired. Thus,

33

WO 00/77654 PCT/US00/40186

1

)
wm

0

each feature has the ability to dynamically look at an existing runtime model
and modify the model based on the presence, absence, or state of the runtime
model. Such an ability provides a significant advantage over typical
programming wherein a program is hard coded and only individual units
may be modified independent from the existing program. Additionally, a
hard coded program can only run. During execution, a hard coded program
can only react to the environment as a means of altering its behavior. In
templates, the features build the program prior to its running. Thus, the
program has another level of adaptation that is infused into the program or
synthesized in, prior to it running. Thus, because a feature can modify any
aspect of an existing runtime model, one feature can reverse the effects of any

prior executed feature, if desired.

An example of a simple feature is an Imported Page feature (that
constructs the HTML background content of a Page entity in the runtime
model). This feature has a feature input parameter for specifying a URL to
the page that serves as the basis, or starting point, for the content of the
Imported page. For example, a feature user interface template may request a
URL from a user or other service. Once the URL is obtained, the feature user
interface template may forward the URL to the feature service for further
processing.. Alternatively, the feature Ul template may write a feature block,
which contains data that the regenerate service will ensure gets passed into
the feature service. As described above, the page located at the specified URL
may be utilized as the input to the feature service that will eventually

produce a page for transmission to the end user. The feature also has an

34

WO 00/77654 PCT/US00/40186

wn

10

input for specifying how many pages should be constructed in the runtime
model that uses the imported URL content. Based on the values supplied for
its two inputs, the feature service that constructs Imported Pages in the
runtime model produces the correct number of page entities in the runtime
model, and guarantees that the pages have unique ID’s with respect to the
other entities that have been constructed in the runtime model (by features

prior to the current feature).

In one or more embodiments, one or more features may have a static
HTML document as input (as specified by a URL, for example) and the output
from the runtime model is a service enabled web page. A service enabled web
page may permit an end user/viewer to invoke services by selecting certain
portions of the document. For example, if a table is displayed on a web page, a
user may be able to select a column with which to sort the item in the table.
Such an action may invoke a web service that has the ability to sort
information based on the selected input (e.g., the value of the column
selected). Alternatively, a user may be able to select a particular row of a table
and obtain more detailed information related to that row (e.g., if a row
represents an employee and the employee's salary, clicking on the row may
produce more detailed information relating to the employee). To complete 2
desired action as part of a web service or to service enable a web page, one or
more features may need to be utilized. Each feature is comprised of one or

more entities.

(98]
s

10

[S]
Ul

WO 00/77654

PCT/US00/40186

A feature entity may be comprised of the following entities, for
example:

<Feature>
Featurel
<FeatureServiceID>cn=create_empty_page_service,ou=System
Services,ou=Bow Street Services,o=BowStreet,c=US
</FeatureServicelID> .
<FeatureModifyTrigger>ModifyPageUI</FeatureModifyTrigger>
<FeatureName>Page</FeatureName>
<FeatureInputs>
<PageName>inputs page</PageName>
<FeatureRegenData>
<UnigqueID>Pagel</UniquelID>
</FeatureRegenData>
</Featurelnputs>
</Feature>

The FeatureServicelD entity is the name of the feature service that
performs the work of constructing the runtime entities for this feature during

the regeneration process.

The FeatureModifyTrigger entity is the name of the template that
provides the UI for gathering the input values that are supplied to the
Feature Service. This Ul is invoked when the user initially creates the feature
in the template, as well as whenever the user desires to change some of the

input values supplied to a feature.

The Featurelnputs entity contains value assignment information for
the feature’s input parameters. This information can be supplied in the form
of constant values, or references to the values of other parameters in the

runtime model.

36

u

10

15

20

WO 00/77654 PCT/US00/40186

In one or more embodiments, a feature is just a block of metadata in a
template that identifies a feature service, and a set of input parameters that

enable the feature service to construct entities in the runtime model.

Alternatively, in one or more embodiments, a feature entity may be
comprised of the following entities, for example:

<Feature>
Feature3
<IsEnabled>true</IsEnabled>
<FeatureClassname>
com.bowstreet.services.PageFeatureCreator
</FeatureClassname>
<FeatureName>ImportedPage</FeatureName>
<FeatureModi fyTrigger>InvokeFeatureTemplate
</FeatureModifyTrigger>
<FeatureModifyTemplate>ImportedPageFeature
</FeatureModifyTemplate>
<Featurelnputs>
<URL ID="0">demol.html</URL>
<PageName ID="1">Main page</PageName>
</Featurelnputs>
</Feature>

The FeatureClassname entity is the name of the feature creator that

performs the work of constructing the runtime entities for this feature during

the regeneration process.

The FeatureModify Template entity is the name of the template that
provides the Ul for gathering the input values that are supplied to the feature
creator. This Ul is invoked when the user initially creates the feature in the
template, as well as whenever the user desires to change some of the input

values supplied to a feature.

37

10

WO 00/77654 PCT/US00/40186

Feature Selection

Users may select features for creation in a template by using a template
author application. In one or more embodiments, a template author
application may allow a user to merely select a desired feature (e.g., by clicking
a mouse button while the cursor i1s located over a desired feature) and
dragging and dropping the feature into a template. Such an implementation
may be provided by a WSA that generates the user interface and drag and
drop capabilities. The user interface in such an embodiment may provide the
mechanism through which a user supplies feature input parameters that are
used to place features in a template. The template author application takes

the input values, and writes the feature metadata block in the features section

of the template.

Figure 6 illustrates the selection of a feature for use in a template in
accordance with one or more embodiments of the invention. To select a
feature for placement in template 604, the user selects a feature from a list of
feature types in template author application 602. The system invokes a
template based web service designed to generate the applicable Ul to interact
with the user to get the input values for the specified feature. This Ul known
as “Feature Editing” UI 600, is responsible for obtaining values for the
feature’s input parameters, from the user. These values can be explicit values
supplied by the user (like the number “123” or a URL such as

"http:/ /www.bowstreet.com"), or they can be user supplied references to

38

10

15

20

WO 00/77654 PCT/US00/40186

entities in the runtime model (like a reference to a parameter “pdq” that

contains a number like “123” or a URL).

An example of the use of references is with the Button feature. One of
the input parameters to the Button feature is the set of pages to which this
button is to be added. The user can reference specific pages by name, or can
specify a keyword such as “All”. The Button feature constructs the correct
number of buttons, on the correct pages, depending upon the value supplied

for the feature input parameter.

Once the user has completed supplying values to feature editing UI 600,
feature editing Ul WSA 600 writes a block of XML data into the template
being edited 604, called the feature block. The feature editing Ul writes this
block of data into the features section 606 of the parameters in the template

being edited 604, after the last feature that already exists in template 604.

The way that a user instructs the template author WSA to begin the
creation process of a new feature is by making a web service request (clicking
on the feature in the template author UI) to run an action in the WSA. This
action invokes a template based web service for the specified feature editing
Ul template 600. This template based service generates its own Ul to get
inputs from the user, and eventually, calls an action in template author WSA
602 that instructs it of the feature input values, so that the template author

WSA can build the feature metadata block.

39

10

15

20

WO 00/77654 PCT/US00/40186

After the feature Ul template and the template author WSA jointly
write the feature block, template author WSA 602 invokes the regeneration
web service. This web service executes the feature service associated with the
feature block that has just been written into the template. (Note:
Regeneration is responsible for executing all of the feature services 610
corresponding to the features in feature list 606.) Feature service 610 uses its
input parameter values, along with runtime model 608 (which it can analyze
and use as a basis for making decisions), to generate a transformed runtime

model.

A feature captures one of the process steps that transforms the runtime
model. The set of features in a template collaboratively defines the complete
sequence of transformations that is needed to transform an empty runtime

model into one that is ready for instantiation into a WSA by the web services

engine.

One property of features is that they capture and automate the
execution of a set of process steps that is normally performed manually by an
application developer. Traditional application development tools support an
explicit modeling approach that fails to capture the design intent of the
developer, as well as the complete process followed in building an
application. Traditional tools, including Java and C++ development
products, capture data representing the end result of a manual design process
(i.e. source code). As such, traditional applications are time consuming to

build, and difficult to change. Developers must delete code and create new

40

WO 00/77654 PCT/US00/40186

code to affect change. The developer is responsible for making sure that

change is propagated thoroughly. Traditional application editing tools can

assist in determining if the application is corrupt, and it can try to reverse

engineer the application to diagnose the problem. However, since the recipe
5 followed to build the application is not present, there is no straight forward

means of regenerating an application from its recipe.

In accordance with one or more embodiments of the invention,
10 features can be applied towards the construction of any type of XML mode],
not just runtime models. For example, a set of features may be created for

building XML-based messages.

One property of features is the ability to have feature input values that
15 are references to entities in the model. This property allows a feature to not
only add entities to the model, but to mark entities as “obsolete” as well. A

feature can make very profound transformations to the model to which it is

applied.

Feature Regeneration

As described above, the regeneration process create a WSA based on the
features as specified in a template. The feature regeneration web service

25 operates on the feature list and the runtime model. Complete regeneration

41

10

2

ro
w

0

WO 00/77654 PCT/US00/40186

involves rebuilding the runtime model from scratch, whereas partial
regeneration involves transforming the runtime model on behalf of only
some of the features. For example, one or more embodiments of the
invention may provide for the use of some features in one situation and
another set of features in another situation (wherein both sets of features are

present in the same template).

When the regeneration service executes a feature service, it passes the
runtime model into the service so that it can make references to entities in
the runtime model. Each feature service has the ability to add entities. One
or more embodiments provide for a runtime model to span a single XML
document. In other embodiments, feature services build entities in a

runtime model that span a whole collection of XML documents.

In one or more embodiments, the regeneration service does not
maintain a copy of the old runtime model while it is constructing the new
model. However, in other embodiments, the old runtime model is stored so
that if the regeneration process fails, the regeneration service can return the
original runtime model. Further, a backup copy of the runtime model may
enable the ability to compare an old model to the new one as it is being

regenerated.

In one or more embodiments, the regeneration service maintains a
“forwarding address” list of XML entities that are eliminated from the -

runtime model during the current regeneration, compared with the past

42

10

15

20

WO 00/77654 PCT/US00/40186

regeneration. If a feature service regenerates and produces different entities
than it generated the previous time, then the mapping of the old entities to
the new entities is added to a forwarding address list. Subsequent feature
services that might reference the eliminated entities can be “rescued” by the
regeneration service, which can use the forwarding address list to

automatically “bend” the references to the new entities.

One or more embodiments of the invention maintain a mapping of
the feature that produced each entity. This allows a number of web services
to be more efficient in their dealings with the runtime model. For example,
when a user wants to edit a feature in the middle of the feature list, the
system can immediately find all entities that were produced by features after
the edited feature. The system uses this information to prevent the user from
selecting an entity for reference purposes in a feature that was created after it.
By preventing this referencing from taking place, the system prevents
unnecessary regeneration failures caused by a feature not being able to
reference an entity because it hasn't been created yet in the feature

regeneration process.

43

WO 00/77654 PCT/US00/40186

Table feature

One or more embodiments of the invention provide for the utilization
of a variety of features. For example, in accordance with one or more

5 embodiments, a table feature may be utilized.

The table feature creates a table to display XML data in a page. Such a
feature may allow the user to bind the table to a named entity in the page.
This entity can be an empty tag, or a table that defines the graphical

10 formatting.

In one or more embodiments, the table feature utilizes one or more of
the following inputs: what page, what placeholder (named tag in the page),
and what XML parameter to display.

15
The feature builds a table in the page that displays the XML data in row

format, with a header of labels for the column names. When the user
activates a "page” action on this page, the table data will be displayed in the
table, according to any formatting that has been defined in the named tag

20 contents (i.e. formatting of <TD> and <TR> tags).

10

15

20

PCT/US00/40186

WO 00/77654

Active lumn featur

In one or more embodiments, a feature called "active column feature”
may be utilized. The active column feature transforms a static display
column (e.g., produced by a table feature), into an active column. Thus, the
cell contents of the column are under the control of the WSA. The column
can contain a button that triggers an action, or can display a link, checkbox, or
textfield, etc. The user specifies the control, and the behavior. For example,
the user can put a button in the column, and have the click action activate a

call to a function that accesses specific table row values in order to make a

service call.

In one or more embodiments, the active column feature utilized one
or more of the following inputs: what table, what column name (can be a new
one by specifying a position), what column entity (button, Clickable link,

hidden, checkbox, textfield, etc).

The active column feature transforms a static column into a
parameterized, controlled column. The feature can put a control in the
column, and map the original contents into some property of the control, like
its name. The feature also builds behavior on the column, such as defining

the click behavior of a button.

45

10

15

20

25

WO 00/77654 PCT/US00/40186

Visibili ntrol/UIl Constraint Featur

One or more embodiments provide for a visibility control feature (also
referred to as a Ul Constraint feature). The Ul Constraint feature builds one
or more service calls to a web service that utilizes an inference engine on a
server. The inference engine maintains a set of patterns, and manages the
process of checking whether or not the user has done anything in the UI to

trigger an update to the UL

Many features in a behavior category would be users of an inference
engine. A variety of combination of state changes in the model can be linked
to actions that affect everything from visibility of UI controls, to calling of

functions.

The features that generate calls to the inference engine based web
service take input from the user, and, as part of regeneration, construct rule
defining input parameters, that get passed into the inference engine service
on model runtime load. These features also add behaviors to the model in
the form of update actions bound to events. The actions inform the inference
engine of important changes to the model’s state. The inference engine
service may respond by changing the model’s state and calling various

actions.

For example, suppose a user had created a drop down list control

allowing the user to select one or more of the 50 States. In addition, suppose

46

10

WO 00/77654

PCT/US00/40186

the user had constructed a checkbox control with the options Yes/No, and the

label: Are any of your drivers Mexican?.

Next, the user constructs a Ul Constraint feature. The feature asks the
user questions about the nature of the constraint. The user indicates that
when State = CA, or TX, the Mexican Driver Question checkbox should be

visible, other wise not.

This feature takes care of the rest, by building the appropriate entities in
the runtime model. The feature builds a call to the “load inference engine”
service, and adds the action to the Onload function. The feature writes the
syntax of a new rule (State = CA, TX -> checkbox visible, otherwise opposite)
and appends it to the input to this service. Next, the feature binds a call to the
“update inference engine” service, to the “On Value Change” event on the
State Dropdown. Now, when the user changes the state value, and tabs out of
the control, the browser will inform the inference engine service of the
change, so that the inference engine can make any changes to the visibility
status of the checkbox, and perform a page action. Consequently, the
inference engine would know that the value of State (e.g., when the state has

been changed from California or Texas to Minnesota) and would know not to

display the question relating to Mexico.

The Ul constraint feature can provide control over visibility of

individual controls, multiple controls, or things like DIV tags, that control

47

10

20

19
w

WO 00/77654

PCT/US00/40186

bunches of controls. In addition, this feature can provide control over ranges

of allowable values, and lists of values.

XML Transformation Feature

One or more embodiments of the invention provide for a versatile
service that performs a transformation of an XML tagged data object, using
another tagged data object containing a block of XSL instructions. The service
outputs a transformed tagged data object representing the transformed data.
The service will wrap a standard XML and XSL processing engine such as the

one from IBM called LotusXSL.

In addition, one or more embodiments construct a number of features
that, in general, take inputs from the user, including references to tagged data
object parameters, and write blocks of XSL, and write calls to the XSL

processor service.

As an example, a column filtering feature could ask the user to select a
result set, and then ask the user to select a set of columns to filter (include)
from the structural representation (schema) of the result set. This feature
service writes a service call to the XSL processor service, writes a block of XSL
data, in the form of a parameter, as the instructions for the transformation,
and writes a function that assigns the XML data as input and the XSL

parameter as the transformation logic, and calls the service.

48

10

15

20

WO 00/77654 PCT/US00/40186

At regeneration, such a feature service dynamically builds the XSL
block which is executed at runtime when the XML transformation service is

called.

This XSL processor service has the ability to serve as the work horse for
a number of features that write XSL blocks, make assignments, and call this
service’s action. In one or more embodiments, the service can be used by
features that wanted to merge two different tagged data objects. Such a feature
could “concatenate” two tagged data objects into a single input XML object,

and then let the XSL logic perform the merging (inter splicing) of data.

Sample Template

In accordance with the description above, one or more embodiments of
the invention may provide for a cellular phone catalog system. A cellular
phone catalog system may be useful for displaying the phones available from
a certain manufacturer and by clicking on one of the displayed phones,
providing detailed information about the selected phone. For example, a user
may be presented with display 700 in figure 7A. By selecting one of the
"Details” buttons 702, the user may be presented with a detailed description of
the phone in the corresponding row as display 704 of figure 7B. One or more
embodiments of the invention provide the ability to construct the

functionality and display the results as illustrated in figures 7A and 7B.

49

10

15

WO 00/77654

PCT/US00/40186

For illustrative purposes, the following description assumes that part
of the "cellcatalog” template (the template utilized in accordance with one or
more embodiments of the invention) has already been created. For example,
it is assumed that the template already has a number of service calls and Ul
control features that present an XML cell phone catalog in a table on an input
page. The base functionality provided in the template includes the ability to
open a cell phone XML data source, and transform the data source into a
catalog using an XML transformation service. In addition, the functionality
includes the ability to extract the cell phone brand name list from the XML
data, and presenting the information in drop down list 710 so that the user
can select a brand, and filter the cell phone catalog by brand. Thus, the
existing template provides for the display of a static HTML page (with the
ability to select and display a specific brand of cellular phones) without a

product info column containing Details buttons 702.

The goal of the described embodiment is to add an active column of
buttons to the table that causes the system to call a product specification
service (e.g., to obtaiﬁ the detailed product description display 704). This
service has been published in the web services directory. The service returns
detailed product specifications for a product identified by the selected row in
the table. When a user presses a Details button 702 in a table row, the WSA
calls the service and passes row specific information into the service call, and

then presents the output data 704 on a separate page.

50

10

WO 00/77654 PCT/US00/40186

In accordance with one or more embodiments, to edit an existing
template, the template is opened using a template author application. Figure
8 illustrates the selection of the cellcatalog template 800 from the "Open a

Template"” screen 802 of the template author application.
Figure 9 illustrates the open cellcatalog template 800. Display 700

illustrates the current view of the output from the template. Display 900

illustrates the current list of features in cellcatalog template 800.

Preexisting Features

The preexisting features (as displayed in display 900) of template 800
may be constructed in accordance with one or more embodiments of the
invention. The first preexisting feature is a service call to a “Get User Profile”
service. This service provides a number of XML entities in its service outputs
that can be referenced by other features in the template. This includes
information about the user’s name: dsml:givenname, membership:

MemberList/dsml:dn; mail address, etc...

The second preexisting feature is a function that defines the Onload
functionality when the runtime model is executed. The feature defines a
sequence of service call actions, and a page action at the end that generates the
initial page. Other features in the template are responsible for creating the

service call actions that this feature references. The sequence is: Get User

10

WO 00/77654 PCT/US00/40186

Profile, Load Transform, Load Catalog, Transform Catalog, selectBrands,

selectphones, and perform the page action cellphonedata, which is the start

page.

The third and fourth preexisting features are both service calls to an
“XML File Reader” service. The third preexisting feature loads an XML
catalog from an XML file, while the fourth preexisting feature loads an XSL

document.

The fifth preexisting feature is a service call to an “XSL Transform”
service. The feature assigns the XML catalog and XSL document service
outputs from the third and fourth features, as the inputs to this service call.
This service builds a new XML document that contains specific extracted data
from the input catalog. Some of the data is transformed from attributes to

entities and vise versa.

The sixth preexisting feature is an Imported Page. This feature takes
the name of a URL as input, and constructs a Page entity in the runtime
model that contains the imported HTML content. This page content is

imported at regeneration time, and made available to other features for

reference purposes.

The seventh preexisting feature is a Table. This feature takes a
reference to a named entity in the imported page, and builds an HTML table.

In addition, the feature assigns the service output from another service in the

wm
158]

WO 00/77654 PCT/US00/40186

runtime model to be the body of the table. What happens is the XSL
Transform service extracts data and presents it in a table format, and then
another service filters the table data. The output from this service call
(Feature 11) is what is placed in the table. As a result, the extracted and

5 transformed cell phone catalog data is displayed on the imported page.

The eighth preexisting feature is a Parameter that contains a fixed list of
entities that represent the headers of the table. This information may be
created automatically by a different feature that serves as a more powerful
10 alternative to the service call feature to the XSL Transform service. Such a
feature is referred to as a data extraction feature. This feature would not only

build a service call to the XSL Transform service, but also write the XSL data,

and the schema of the service output parameter. Such a feature will be able to

perform these actions because it is writing the XSL, so it knows what the
15 structure of the XML output data from the service will be. In this case, the
structure of the output data is the table header names that are manually

encoded in the parameter feature.

The ninth and tenth preexisting features are Ul controls that construct
20 entities in the imported page. Specifically, they are the “Show Phones”

button, and the “Select Manufacturer:” label.

The eleventh preexisting feature is a Service Call to a “Filter XML Table
Data” service. The service call is named Select Phones. This service filters an

25 XML table using a field list and a test value. The feature assigns the output

[S2]
)

10

20

WO 00/77654

PCT/US00/40186

from the XSL Transform service as input to the filter service. In addition, the
feature assigns the value from the filterfield Selection Control (feature 14) as

the test value used to find cell phones for a specific brand.

The twelfth preexisting feature is a Function that calls the select phones
action (feature 11), and the cell phone data page action (feature 6). The intent
of this function is group the two actions so that they can be called in sequence

when a user presses the Show Phones button.

The thirteenth preexisting feature is a Fixed Text block that gets its
value from the dsml:cn service output generated by the Get User Profile Data
service. Depending upon the user profile, this text field updates to show the

user’s name.

The fourteenth preexisting feature is a Selection Control. This feature
builds a control in the imported page that displays the list of phone brands
that are extracted from the XML phone catalog. The selected item in this list

is used by the Select Phones service call (feature 11).

The fifteenth and sixteenth preexisting features are a Service Call and a
Parameter, respectively. The service call is to the XSL Transform service.
This feature assigns the XML phone catalog as input, along with a block of
XSL supplied in the showBrands parameter. The service call generates the list

of phone brands in its service output. This output data is referenced by the

z

10

15

WO 00/77654

PCT/US00/40186

filterfield Selection control in order to present the user with a list of phones

to filter.

New Features

To enable the column of buttons and the display resulting from the
selection of one of the Detail buttons 702, one or more embodiments of the
invention provide for the creation/selection of several features through

various steps.

1 Referring to figure 8, the first step, as described above, is to open
cellcatalog template 800 in the template author application. In the template
author application, the user is presented with a set of templates 804 that are

stored in the LDAP directory, as well as templates 806 stored in files (.tpl).

2. Referring to figure 9, upon selecting preview button 902, the
regenerated runtime model is displayed in display 700. The regenerated
runtime model displayed in figure 9 illustrates what will be displayed by the
resulting running WSA. Note, the user can select a phone brand from the
drop down list 710, and press the Show Phones button 708 in the Preview

pane to filter the phone list.

3. The next step is to add an Active Column feature as the first

column of the otherwise static table. In one or more embodiments, the active

10

WO 00/77654

PCT/US00/40186

column feature is created by selecting Active Column from a feature palette.
Figure 10 illustrates the Active Column feature Ul template 1000 once it is
opened. The user then specifies values for various settings. For example, as
illustrated in display 1000, the setting may include the following: the column
is going into tablel at table name setting 1002; the column position is
identified as column 1 at column display position setting 1004; the control
type (button, checkbox, etc) is set as a button at setting 1006; the action upon
depressing the button is "OnLoad" in setting 1008; and the button name

"Details” in setting 1010.

4. After completing the Active Column feature, the results may be
previewed by selecting preview button 902. Figure 7A illustrates the resulting
display including new column 712. However, selection (by pressing) of the
Details button doesn’t do anything yet, other than execute the Onload action

again. Note how the new feature 714 appears in the feature list.

5. The next step is to create a Service Call feature to a service in the
web services directory called getProductSpecification as illustrated in Figure
11. Note, the getProductSpecification service is a template-based service. The
service call is named with a local name that has meaning in the context of the
current runtime model. Figure 12 illustrates the next page of the feature Ul
template for specifying the service’s inputs. At this point, the feature looks
up the service’s input schema and builds a form like UI for specifying either
constant values, or references to service outputs and parameters in the

runtime model.

56

5

10

15

WO 00/77654 PCT/US00/40186

6. On service input specifications page 1200, the user is asked to
supply two string values to this service. One is a phone brand name 1202, the
other is a phone model name 1204. The user can specify constant values, but
rather than specify constants, the inputs may be obtained by referring to the
brand and model data values in the current row of the table. The user can
select these references because the table feature provided access to these
referenceable entities. Using this reference mechanism means that
depending upon the row that is selected in the table, row specific values are

fed into the service call.

7. After creating the Service Call to get product specification data,
an imported page feature that can display the results is needed. Figure 13
illustrates the creation of an imported page feature wherein the user supplies
URL 1300 to an HTML page that contains formatting ﬁfomation and
background color, etc. The user may also determine (by placing a checkmark
in check box 1302) whether the system will re-import the page content upon
regeneration in order to incorporate any changes that might have been made

to the HTML file.

8. The next step is to create a feature that will display the XML data
output from the get product specification service, on a catalog details output
page. In one or more embodiments, a Fixed XML Text feature may be
utilized. Figure 14 illustrates the Ul for the Fixed XML Text Feature. For the

feature’s inputs, the user may select a named placeholder on the page as a

57

WO 00/77654 PCT/US00/40186

locator, and specify the service output from the show details service call. In
one or more embodiments (including the example as demonstrated), the
output from this feature is a block of XML data that is formatted according to

HTML.

9. The catalog details page needs a button that returns the user to
the cell phone data page. Accordingly, a function feature is added that calls
this page action and then bind the function action to a button feature, or, for
simplicity at the expense of performance, a simple call to the Onload action

10 when the button is pressed may be utilized. Figure 15 illustrates the Ul for a
Button feature called “Go Back” that is attached to the place holder called back

in the catalog details page.

10. Figure 16 illustrates the Ul for the next step of adding a Function
15 feature called Show Details. This function groups the call to the show details

service call, with the call to the catalog details page action.

11. Next, the Active Column Feature must be modified to change

the selected Function from OnLoad to Show Details as illustrated in Figure 17.

20
12 This completes the feature creation portion of the example.-
Preview command 902 may be selected to view the application. When one of
the Details buttons is pressed, the output is product specification page 704 that
contains data relevant to the selected row in the data table.
25

58

WO 00/77654 PCT/US00/40186

Thus, a method and apparatus for creating network services is
described in conjunction with one or more specific embodiments. The

invention is defined by the claims and their full scope of equivalents.

59

WO 00/77654 PCT/US00/40186

LAIMS

1. A system for creating an XML model comprising:
an XML model;
5 a template configured to generate said XML model, said template
comprised of one or more features; and

one or more of said features configured to generate an entity in said

XML model.

10 2. The system of claim 1 wherein one or more of said features is

configured to modify an entity in said XML model.

(68}

The system of claim 1 wherein said XML model is a runtime

model.
15
4. The system of claim 3 wherein said runtime model may be
utilized to construct a network service.
5. The system of claim 1 wherein said template is in XML.
20
5. The system of claim 1 wherein said template is a runtime model.
6. The system of claim 1 wherein one or more of said features
utilize a runtime model as input.
25

60

€)]

10

20

WO 00/77654

PCT/US00/40186

7. The system of claim 1 wherein one or more of said features are

configured to obtain input from a user.

8. The system of claim 1 wherein each of said one or more features

is executed in an order that said features are listed in a feature list.

9. The system of claim 1 wherein an input to a feature is a

reference to an entity in said runtime model.

10. The system of claim 1 wherein one or more of said features is

comprised of a feature service and a feature user interface.

11. The system of claim 1 wherein said XML model represents XML-

based messages.

12. A method for creating an XML model comprising:
obtaining a request for a template-based service;
obtaining a template comprised of one or more features; and

executing one or more of said features to create an XML model.

13. The method of claim 12 wherein said XML model is comprised
of one or more entites and said one or more entities are created by one or

more of said features.

61

(RS
(O]

WO 00/77654 PCT/US00/40186

14. The method of claim 12 wherein one or more of said features are

configured to modify an entity in said XML model.

15. The method of claim 12 wherein said template is a runtime
model and said obtaining a template step comprises:
loading a template; and

generating an application containing one or more features utilizing

said template.

16. The method of claim 15 wherein said XML model is a runtime

model, said method further comprising;:
loading said XML model; and

generating a network service utilizing said XML model.

17. The method of claim 12 further comprising said one or more

features utilizing a runtime model as input.

18. The method of claim 12 further comprising said one or more

features obtaining input from a user.

19. The method of claim 12 wherein each of said one or more

features are executed in an order that said features are listed in a feature list.

20. The method of claim 12 further comprising said one or more

features utilizing a reference to an entity in a runtime model as input.

WO 00/77654 PCT/US00/40186

21, The method of claim 12 further comprising one or more of said

features utilizing a feature service and a feature user interface during

execution.
5
22. The method of claim 12 wherein said XML model represents
XML-based messages.
23. The method of claim 12 further comprising:
10 a user creating a new feature in a template author;

a user suppling feature input values to a user interface;
a user interface template creating a feature block utilizing said feature

input values and new feature.

63

WO 00/77654 PCT/US00/40186

1/19

FIGURE 1
100 102 104
/ . N
CHILD RUNTIME WEB SERVICES

TEMPLATE }——p MODEL | APPLICATION

WO 00/77654

202

2/19
FIGURE 2
100
TEMPLATE /
FEATURE RUNTIME
LIST MODEL
d
"R

204

PCT/US00/40186

WO 00/77654

3/19

FIGURE 3

TEMPLATE

PCT/US00/40186

102

304
WSA
B SERVICES
ENGINE MODEL RUNNER
FEATURE . RUNTIME
300 302 LIST MODEL
4 _l__
T
WSA
MODEL RUNNER pb———Pp;
302 /

306

WO 00/77654 PCT/US00/40186

4/19
204
RUNTIME
MODEL
400
TRANSFORMED
RUNTIME
MODEL
Features
feature 1 102
feature 2
fegéure N

—

202

WO 00/77654

5/19

FIGURE 5
204
RUNTIME
MODEL
FEATURE
SERVICE 1
FEATURE 1
INPUT
PARAMETERS

500

PCT/US00/40186

TRANSFORMED
RUNTIME

MODEL

102

FEATURE TRANSFORMED
SERVICE 2 RUNTIME
} MODEL
FEATURE 2
INPUT o
PARAMETERS
502
FEATURE TRANSFORMED
SERVICE 3 RUNTIME
: MODEL
FEATURE 2
INPUT 102
PARAMETERS

—_—

504

WO 00/77654

6/19

PCT/US00/40186

FIGURE 6

602

/

v

FEATURE EDITING Ul

600

TEMPLATE AUTHOR WSA

604

/

TEMPLATE BEING EDITED

FEATURE | |RUNTIME /

TEMPLATE

USER INPUT

606

) A E— -

> LIsT MODEL W

/608

S—

FEATURE SERVICE

—

610

PCT/US00/40186

7/19

WO 00/77654

Ut : hi ¢

: N
. Lajgel nunjojandy
........... . SPUP HHINAS 13)AuEIr
uroE fenp sMOZ .. “ SPUPIHIIMDS (|2)20
wo_:a VIMON|: - 7 i
_ B¢ _
.:m_ﬁxoz : .
s._:_ —::w._a 3_,:_ _a_E:._._,».._:_ .u:_.:.._ _.
sanodyp))

@ (L R ILE R

_ [RRILYEIN

101e1eD prap yea3anang

—_OSAZQ .-D.—u:ﬁ_m

: ARG IBS[ING ([R)ANMAT

_ —Ib| n...:z_on..m__:_

i ipapaag) 20 Goeieaas apy

2 pemes) i p3. ;. . B SV aAvs

PR

PCT/US00/40186

WO 00/77654

oot ures 10

13w iire L2y Auy
$10 0 PUT 13usRU 32088

Guriem
15024 200y

gag 2034 3L
> § edho 4 o570y
s perpPusns Ooneg

EETI I

u.ur

T

_ wowy - 4

12 w2 IS pReG -
nane g1
Aupgopy 4o SEa

weg g, wmpas o
) wpg) .
Wy .

AvL] e3ate

081Sn3: A

YU golLaamey .
wmruped (3 dlhp o

Ksunuy
(ammo)gnBiapy

(s1m)
| XB/G 9 XBJL | uoMAMNG o

SIVINP MOy UonIun §

-.aa i

neJeImIG
JuQ uedn g
NIALY 13511037 (8 JINAG

samyos 1ty .

) Boyeredger oy

nmeq

srowa]
bt

Inpoy]

SpeIep MmOyt Ui

PIAIBNY g
sweu 113
seuaydAeydup uordun g
[ETLIT AP L PRI
uoung uoing
1098 pe gy (say
WPIY dweie 4

s bojraranay any

PCT/US00/40186

WO 00/77654

9/19

g~

2,8,

\

- |

\

oU0Z JIUR U (9907 m_»

W

|saakojdwal

1auoydja
yebojmeoyas]-

uwIN|oI BANIY

ewedwa) vadg -

[« BwWBL 135() pUR sanqupy 3|yo1d ajdurexy
sawai4 buisny ajdurexy

uoissag dnuna|)) pue 1IAAIAG 133K/sSMO0 A o 1noHo
apuia | aseg Adw 3z Aaisjdwon

| PAsOq 2jI0Id 135N pur abed uoyednuayny JNauag
aw|rhua | paseg apjoid 1350 JUAUBY

1abouspy dnoigy ay |

1a0vuep 135 3y |

. aedwa) awoadIp
~uR Jasn ‘@19|duia | 321A1aG PBMO|[T O 1SI] IISIUILIPY

Kiopang saejdwa], u pasogs saejdwa]

Kiopang %QA w on..m sage[dwsy,

KAl

W ewan)

opmIuIBAY

10582201, ISX 12DIINAG
20Q1§sx 13jawierey
J0Q|uik 13jauwereyd
peoquQ uoljzun

m saineay =<_
(par 2) 3duIex 10SSA0I IS 2y

9 seworfy off meA] o3 |i

"~ 1910]dx3 {8U1a1u] 1]0S0IN - 19]A1BS WA/ OG0B 100WSPMEG//:duy By

PCT/US00/40186

WO 00/77654

10/19

U WE S A

ooz e poo) BE| J |

apour-fenp| VTHON|. 00| 10912
 Soewe| VIION| “051| +816
Borewe| VINON| 00F| 262

adfy| puesg

aud}jepout

sauondpp))

Ay +;80UOUG MOYS |

—)/ <_V_OZ— Jamdenue A 139138

3

. RAeweD

SO, e 1 0msboy:

M—:-M;:Uﬂ-_&m _m._m_tm_ma
SPURIJIDAAS I8)3IINAG

|Ayawe |xay
sauoydAe)dsip uoiduny
sauolydiaaas jlepasneg
uopng uoiing

Y xey
1) 1ajauere y
Lalgey aqe)
e pauoydyas abe podus
hoje)ed unoysuP) j|eJadNAg
Wojsue s peof ||eHadnaiag
fiojeje peoy eH3MAS
peojug uoljdun 4

301 1350189 |Ie)IINNBG

sameay __<_

| A=) Bojeteaea ap g

s o)

1310]dx% 3 Jau1alu| 1j0s0dI

4ol towoaty of ok 3 ofd ||
- 19[A13SWQT1/0606:|0owapmogyy:diy I

PCT/US00/40186

WO 00/77654

11/19

8y —

owrpuenapoot B3)) l.

(=]

spelagAumsuog)|

P —=
[E_poowo|[=

- . 00 & ~\\ {uopaIung

Raege]|
oAy Juangy

[< 129 121qey|

\gs\\

a vjopauoydyas

ojuj E:Un:n__ ;

8ainos
ejeq uwingo)

uopouny g-ud

:adA)
1940 113)

‘laqey
Japeaj| wmunjo)

uonisod
Ae|dsig utnjo)

Y]
el Q MUNj0?)

xapuy
eje() munjo?)

awiey s|qe |

. :afled

1192 ejqe) sy 10j Em:anoU BAIDE LB mc_ccmv Aq aAdE UWNIO 8|} B oxms_

ainjes :Es_oo Aoy
78}

_ :Kiohiaje)

/

2 pejqeusy esnjeaq

e

. sonosd pp3 N MojAIL

oRioussoy

121q0) .uuno)anay
Spueigiaajas sajawerey
spueigaalas |leHanmag
piatany 122135
playawen ixa|
saunoydAejdsip voijoun 4
sauaydiaagas |2)admag
uonng unyng
1Baepdtpany xa)
ISP 1218uRie 4

i31qer ‘ayqe)
ejepavoydyas abeqpaduy
fiojeed unogsuen enaomag
utinjsuen peoj |e)alnag
fiaeyea peoy enasmag
projuQ uoiduny

B|YO1Y 19S() 189 |leJAAMAT

[< sameay ||

Epapasty aezc) Gojeieapas - apy

def] 3.._23 off MR %u o_._m T

PCT/US00/40186

WO 00/77654

12/19

g oz oo BE| |0 | |

_‘ diaH _ .—.xmz . . — u.._.u:ozu(_ j8aue) _

U0NRIRISUSPNPOIGIBD

Jadgbome)isb

10553201478 K|

105533 d1SXSH

peay a4 TNX

AJINIBG[ICSBIqe |

a|ge | \mwio4

_” PuRI YN

v

spelap 39_m_

I1eD 39|AI2S

| :KsoBere) s . h_”

100105

- Yuofae) asvues

BuieN
nej NS

:..w___s:w aimeay

(2|

181P) UWR|0)BN|IY
spueira|as 121weled
SPUCIRINA|AS ||BDBINBG
piayiayg 123135
playawen 3|
sanoydAegdsip uoidun 4
sauaydpagas (j2333m3S
nonng unling
aqepaIay 1xay
ISEIMY) 1ajawRIe g

19jqey 8jge|
ejepavoydyan abeqpoduy
Hojejed uojsuen e)3dnag
uHojsueNy peo| |jeHadnag
fiojejed peoy e)admag
peojuQ uoidung4

aYor g 135} 139 (1R)AINRG

[< s3IniR3 4 |y |

(papanp) ey BoRedad Ay

n_un 10310AT 4 oa Zu_N _.vu “ord :

PCT/US00/40186

WO 00/77654

13/19

2| -]

7 i

" 9u0z Jauenul @00

uopng/sinduyy|.
prayayy/sindu)

oidavoyd/sindu|
JUBWINO0JUAY/S|IRIBP MOYS/aaInBS| -
soqindino/spusigioalas/aoines

ajqe pndinp/sauoydpajas/aoimas i(Ii

Joqindino/BoeiRo wiojsuen/adineg)’
JUBWNI0J TN X/ WIo)sUal pBO|/3dINBS

Bwna0x/B0leIed proyanag| O,:Em.u__mnOE ,
UP WS PASIIBUIBIUCD/BYDIQIBSNV/3])01d 185N 18D/33INBS L

i <l

) iom_:mtzo_m_guﬁ\mim:__

bums . pue

1q

d

b)

-

~¢0- S|1RJAP MOIS |[EJIDIARS
- 13[(e} [LWN{0)BANDY
spuesgiaa)as J3jawered

SpueRIgIaas [|[B)RINAIAG
plagaany asjag

piayauieu jxa)
sauoydAe|dsip :uonoun 4
sauoydjaajas jjeHadmag
uopng ‘uoyng

13qe|piaayy xaj

I1S1pjaYy ajaweled

tajqe) 8|qej

ejepauoydjjas abequoduwy)
hojejed wiojsuen
wjojsues; peof :
fojejeds peo) jjegaomiag
peoquQ uoidun 4

a|yoid 1asf 189 JeHINAG

[« sampea4 |Iv|

& i eeeiD

- oRIeURRdY i

Memalg

(papaap aseg) Bojejeaan © apy

9eR soworly of maR w3 o3 ||

1A S NAT/0606°100wapmagy/-dny By

PCT/US00/40186

WO 00/77654

14/19

9UDZ JoURNU [RI0]

D T L T

. disH

| :Kiofiajen)

- [8auw) _ 0 _

| peouerpy]

s

\ .EE‘m._Emtmo_Qnu\,cmum” SoEw_u;on_a.E_

S|ie)ap MOYYS [[lB)3JIAI8S
1 8](qe) [UWN|B)BANIY

. spuelgiaa|as Jajgweled

.wE: : Spuelga3|as (||edadnag
S playg1aiy 123133

e : ayawieu Jx3

m__EmUmo_Enu_ .a:_az,e.am& ma:c__.;w__._.w_:- to._u__:w

. . . sauoyd)aajas Jleadmag

uonnq uojing

laqefplagay ixag

ISIIPpI3Y U3jawWweIe 4

laqey a|qe)

ejepauoyd|jad abeguoduwy

fiojejes wiojsuen |eHaamag

. uojsue) peo} |jeJaNMRS

SR L fiojeyes peoy jenaomeg

AT S e peojug :uonaun

e e ajyoid 1asn 189 [||e)H3IMAg
abed papodu

‘2l tpojqeu] aamea _H| samnmay __<_

(Papaap 242s) Boeieoyao - apy

Aury ejeand

mopald [Bl svoncs

omIouatay’

defj sewoAt4 of mak I op3 —

1a10]dw 3 1ausaju] 1JosOIIK - 1OIAOSHAT/0506:L00WapMoars:dny B

1
i

PCT/US00/40186

WO 00/77654

15/19

QUOZ jauR N (2307 mm_ _ _ ‘ _

i
la

.- .- C e e e e e e e ca s

deH . [peovorpy [--meeq | eawy | o |

EPPRIe 2

X8 X paxig
syieraphio|eiea abegpoduy

S|IPIaP MONS ||B)3IMIARG
.. : ajgey MUINo)AAID
o umu_>_mm\m.:a_30wu_>.mm_ ‘aamnes w_::w_m_um_a_um hw_no_:m_mM
. . : SPURINDALAS (|eD)AINES
. [<jewepino| 2IPINo| aep josu0n ____._Jm_,__““___”w .“uM_.v_Awm

- = sauoydhe|dsip umpduny

sauoydinaas |IRYAINAG
uopng uoling
1aqeipdipay xa

ISLIPIdY 1218uIRie g

Lajge) aqe}

ejyepauoydjas abeguoduy
fio|pyed unojsuen |ejadnag
unojsuen) pro| |RJ3NNIAG
fiojeyen peoy Yep3dmag
peoquQ unidun g

a0l 19S[1A [|2)3NNAEG

JUBLINJIO|URU/S|IR}8P MOUS/B3INIBS

« s|mapbojeyed :afied

a1njead 1xa L TNX Poxid

_S_omoﬁu 2] ‘hojyeny simeay * _|>| saimead =<_

ipapaag) a=ra) Gogeied@a . 3y

e EDEE KD EXXE TR
- R . o . Jr e T 991 g
oRieuatey IR : NN uny o oADS ¥ S u m. umgOﬂ

def .aoz_o\,m.)_ of maA) o_.u._

1210{dR J 10U131U]| 1J0SOIANY - 18]AIOSHAT/0606:L00WapMagy/dny

'

Ll fsm_.u

PCT/US00/40186

WO 00/77654

16/19

“ o swrpempoot®E | [T G i T R

| deH

T amiey

e L wopung

. : il plee] oo_ ‘Jaqe] uonng
[« oweq] xus;_ aUIeN (010D
» s|eppbopeieo

:ofed

- A 0Re) . seposd P

<. 9RNWeto

=

ejeP)N0 [Ixa) AKX paxiy4
sieyaphinjejen abeguoduy
S[IP)AP MOLS (LIRS
12141 UUIN0 Haady
SPUPIIIA|AS 13)3ee)
Spue pIalas ||2)33RS
MW 199428
pratjauteu 1x2y
dhepdsip um
s .-:.—-_—;.J_.Jm 1P 3R
unng :D:DE
1aeipamiy ag

-m_) 1RdjRwelr 4

1Mqey e

ejepanoydijas abeguodyy
fioje)rd wiojsuen |je333mag
wojsues peoy (|eHadNMag
linjejea peoj |2)a3mas
peoqug unnduny

D01y 13S[) 1B |€DBINDS

[« saineay v |

(papasgy areg) bopeteagas :apy

93f somosty of wmoR w3 o] |

PCT/US00/40186

WO 00/77654

17/19

© ouoz jouiiu poo R r-url_l-_, T

disH - _ ns..a>u<

Sl die e

s|e3apbojeind [abeyg
s|ap moys [aanag)

spuaigpajas [sonag]| -
sauoydpajas [aanag]l °
bo@92 unojsuay {aswag)
unojsuai proj [anniag)
bojmiea peo) [aonag)
apjold 13sn 199 (aomiag]

doo {jeadg]

uopgag uopduNy

-

Kiobaje)

" suonay oyqepeny

'

'

(Fapa;

et e e e e |f|.||._

yaeq :uoling
ejepIno 1xa) JAX paxi4
spejaplhinjejed abeduoduy
S|IPIAP MOYS |[ED3INAG
1AGP) UUIIND)ANIY
spuesinajas s3jatuerey
SPURINIBIS (j8)HINMBG
mayiany 133138
playawmen jxaj
sauoydAejdsip ‘uoijoun 4
sauoydpajas |[ejadmag
uopng uvolng

134eIn Iy 1xay
1SUIPIAL 19)13uere

1319e) 3|qe)
eyepaunid)jar abegpoduwy
finoje)ea nirojsuesn jejanmiag
unojsues) peo| elannag
fiojejyes peoy j2naomag
peauQ uoidun 4

o1 19s{}1 189 |rHaNag

[~ saniva 4 jiv |

;) bojeieayan apy

- 19|AIAS WA T/0606: L GowapMogs7:diy Iy

n_on somoaty off maR 103 a3 __

PCT/US00/40186

18/19

WO 00/77654

v weneedpoed®E QP sl Do el
= - - mm:oﬂ. .o_ ..mi .A.ew....Acw
e E A TS
. peouo| [« g uo|
. Juopouny . WAL NEAT © . uapaung enpoy
[. , N - sadAy S|1RI3P MOLS UsI3UN 4§
L ! ._r_ :o_.:m_ V8o 1e) yarq uolng
S — Gl 1P PIND Ix3] X paxt4
. - L spejaphogeyea abeguoduy
: ; S|IPJIP MOYS (|eD3INAG
: 1319e) {Uwnjo)amidy
. [: A \m“rn_ﬂ. spueigiaajas Jajaweled
: o ottt SPUEIIID]S ||e)BINAS
‘. - __:A.,mu._.“uo._@,::_..:._au, playany 109138
: ' I piayauieu xay
e iBURN sauoydAedsip uoysuny
ejeq uwnio) . sauoytaajas |jenaIawag
. uojpneg ‘uoling
T ixapy) jaqe)payiay ixaj
- Rleguwne) | 1S] P13y J213wesey
Ty eI ael
. ejepauoidjas abeguoduy
.o:..nzn._._eh . fiojeies unojsur)) ejasmag
wa uHojsuel) peo| |je)ddNnag
ig Gojejed peoj jenadmag
. B , peoquQ uoldun §
. S RS (RS i ajynid 18sf) 139 e YAINIBS
jUstioduio? ealide i mc_éov.E aAoB Liinjod sjgel e
injea4 uwn|od,
. < [samivag iv|
'
— (papaap areg) Bojeredyad - apy

"o sewoaty of waR w3 o ||

1310jdx3 13U31U] 1J05013T - 13|AIAS WAT/0606:100WapMOgs7:dny

PCT/US00/40186

WO 00/77654

19/19

paoo| [<

. RIS
4.,.E=:=:_=_=u

oy g

, KU RIOTE T RIY)

L souA)
[REIUPRTEN]

T Japeayy

opy _J:_.o_n__

__ %_..a_: WHNNY)

8]

- an
_v . ewquu

Xapu)
mnjp)

_,. meq

< 1917

422 n_nm_ 2: _o_ Jeundind c>=,_w :m 9 [

ol :ummn_ :E:_ou 3Oy

_.?aﬁu.uu

.;_‘_:__] ey e

.

. aley

19PN * seioid w3

_emiauehiay

ﬂ—_-.—ﬂ_- \.J:-—A "

ERETT
DAL PR
o abe gue

canmdAe o g

sauandp

TR RILYE RN

[A
A ahe oy

(R RRYREN

Pro gy angnn g
AP G IAS ARG e AT

_M samaay _

(papangy 4o 21 Gojeleayas apyg

au_._c.,u.*,.su [SENE o) | u_d

INTERNATIONAL SEARCH REPORT International application No.
PCT/US00/40186

Al CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6F 15/16

US CL :709/202, 206, 217, 219, 230
According to Intemational Patent Classitication (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. - 709/202, 206, 217, 219, 230

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

EAST
search terms: XML, template, service, DTD

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5,860,068 A (COOK) 12 January 1999, 1-23
col. 1, line 44 - col. 3, line 47,
col. 5, line 10 - col. 6, line 24.

X,P US 6,067,559 A (ALLARD et al) 23 May 2000, 1-23
col. 1, line 14 - col. 4, line 15,
col. 4, line 26 - col. 5, line 9.

X.,P US 6,125,391 A (MELTZER et al) 26 September 2000, 1-23
col. 1, line 30 - col. 8, line 27.

|:I Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: T later document published after the international filing date or priority

. . date and not i conflict with the application but cited to understand

A document defining the general state of the art which 1s not considered the principle or theory underlying the invention

to be of particular relevance
. . - X" document 1 ; i

"E" earlier document published on or after the international filing date . of particular relevance; the claimed invention cannot be
considered novel or cannot be -onsidered to involve an inventive step

"L document which may throw doubts on priority claim(s) or which is when the document 1s taken alone

crited to establish the publication date of another citation or other

special reason (as specified) "Y" document of parucular relevance; the claimed invention cannot be
considered to involve an invenuve step when the document is
" document referring to an oral disclosure, use. exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
“pr document pubhshed prior to the internauonal filing date but later than ~ g » document member of the same patent family
the priority date clauned i
Date of the actual completion of the international search Date of matling of the intenational search report

02 OCTOBER 2000 27 0CT 2000

1
Name and mailing address of the ISA/US Authorized ofticer
Commissioner of Patents and Trademarks M’M s

Box PCT
Washington. D.C. 20231 PAUL KANG
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9000

Form PCT/ISA/210 (second sheet) (July 1998)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

