a2 United States Patent

Rodriguez et al.

US008365088B1

US 8,365,088 B1
Jan. 29, 2013

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)
(1)
(52)

(58)

INTERACTIVE DESIGN ENVIRONMENT
HAVING DESIGN TOOL PORTION AND
DENSITY DISPLAY PORTION

Inventors: Julia Argentina Granada Rodriguez,
Needham, MA (US); Ashok Ruman
Charry, Shrewsbury, MA (US); Darel
Allen Linebarger, Southborough, MA
(US)

The MathWorks, Inc., Natick, MA
us)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 365 days.

Appl. No.: 12/924,660

Filed: Oct. 1, 2010

Int. CI.

GOG6F 3/00 (2006.01)

US.CL ..o 715/771, 365/185.2; 345/691;
712/5;,717/136

Field of Classification Search None

See application file for complete search history.

Simulation
Environment
120

Operating System
115

Computer, 110

Input Device(s)
125

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0231194 Al* 12/2003 Morganetal. 345/691
2005/0015755 Al* 1/2005 Holmesetal. 717/136
2012/0151182 Al* 6/2012 Madajczakcccoooeenn. 712/5
2012/0213001 Al* 82012 Yangcccceoevvinnnnn 365/185.2

* cited by examiner

Primary Examiner — Boris Pesin

Assistant Examiner — Ayesha Huertas Torres

(74) Attorney, Agent, or Firm — Nelson Mullins Riley &
Scarborough LLP

(57) ABSTRACT

Exemplary embodiments provide an interactive tool that
allows users to design and evaluate storage mechanisms
while program code executes. For example, an embodiment
uses compact histogram density scales (CHDS’s) to display
count information for bins making up the storage mechanism
(e.g., a register). The user can determine whether counts are
within a desirable range, exceeding an overflow threshold, or
exceeding an underflow threshold for a bin. Embodiments
allow the user to observe overflow/underflow thresholds,
signedness, word lengths, fraction lengths, etc., while pro-
gram code that interacts with the register executes.

19 Claims, 40 Drawing Sheets
(36 of 40 Drawing Sheet(s) Filed in Color)

100
Network Target Environment
140 130

US 8,365,088 B1

Sheet 1 of 40

Jan. 29, 2013

U.S. Patent

0¢}
Jusluuodiaug 19bie |

| "Bl

7
HIOMIBN

00t

7]
(s)saine Indu

0}1 ‘Jeindwon

7
we)sAg bunesado

0zt
JUSWUOJIAUT
uone|nwIS

US 8,365,088 B1

Sheet 2 of 40

Jan. 29, 2013

U.S. Patent

-~ 0z 807 907
71z 424

| N
H
H
H
H
H
H
w | M
:
: :
i
2e¥ e

| H /
-0z Nezzz TR

SININOJWOD TWNAIAIONE -3TVOS ALISNIU WYADO0LSIH

0oz

US 8,365,088 B1

Sheet 3 of 40

Jan. 29, 2013

U.S. Patent

m N .@sl yiBus| seBeju; au) eBueyo Ajeoydeid o) smojy - Jazisey yiBua sebajul oy —— gg7
. UiBus| jeuonoedy ay; abuey AjeoiydelB o) smojly - Jszisay ybua jeuonoeld Gyl ——9£Z

janoasnow uodn sesn syl O}

olde|ene j6us UooBY pug PIOM JuBLIND U} JO UOREOIUNWWIOD [eixa - Aejdsiq J0308[8S UIg BAORIBN] BY|— pe

‘yyBusj uonoedy pue ‘sebaul
‘piom 8y} sBueya Afeaiydelt o) smojje sjels sAloRIsul 8L Ul BuUIT YIBUST PIOM - 10199188 Ulg SAIjORIBYU|

UIq 8y U1 Jussald sanjea

€30} J0 Jusa.ad pue JUN0J BU1 SJeIPUI AjjEnIXs) 1By} 8njeA PaUuI] JO UONBULIOUI [2OISIRIS - Bleq pauulg
"gSI Jo Buiieas z semod aanebau Jo UORBIIUNWIWOD JenX3) - J0jedipu) ssaupaubis

Buiieos 7 ;emod - [age uig

'BJEp pauuig sjussaidal jey) ojeas Aisuap welbojsiy sy jo jun - uig Aysuag weibojsiy

Buijess 7 jemod - (g87) wig Jueaiyubis jses

sanuenb [2UOII0RY) 818 JBY) SeN|BA Uig - SUIE [BUONRIS

'$JUN09 MojpepuN JayBiy eeoipul

MOJ[eA O SapeYS JaXIE("SJUN0D MOJLIBPUN Jamo] 81eaIpul MOjaA 1o sapeys Jejubi] - Jojeaipuj mojuepun
“UIpim UWNIOD pajjojie ey} Ojul Ji Jou UED Jey] 81eag Alsua(] weibojsiH Jebuo) e seieaipy) - Aynuiuos
"BJep pauulg Jo sjunoo ybiy eienipus

an|q Jo Sepeys Jayde(] "elep pauuIg SUN0D MO| 31edIpUL 8Njg J0 sapeys Jajybi - Jojeipu) abues-u

90/} Juiod-paxy oy Jo YiBus| piom 8y} 1o 2IUBDIOLE [BNSIA - 103eaipu] Y3BuaT piop 40 ‘aurt yibus piopm

"sUig [euoioel 4 pue uig Jebeju| ay) usamieq Alepunog sy} SejeoIpu| - JUIod XIpey

*8dA) Juiod-paxiy 8y} Jo ssaupaubis sy}

sejeoipul uig Aysusq weibojsiH syl punose suipno abuelo ayj Jo sousseld 8y - Joledipu) ug peubig
'SIBQUINU SjOYM BJE JY) SanjeA suig - uig JeBauy

"SJUN0D MOjLIBA0 Jaybiy a1eaipul

paJ JO Sapeys Jayle(] 'SJUNOI MOILIBAO JaMO] B1BIIPUI PaJ JO SBpeys JajubiT - 10Je91pUj MOJLIBAD
Buiieas 7 Jemod - (gSW) wig Jueayubig jsop

Yl

)02
7828
V—022
Ol——¥2

‘eg—00C

Q94
—¥}T

g I T4
G0}
Y—80Z

902
Bl—202

7—— P02
202

US 8,365,088 B1

Sheet 4 of 40

Jan. 29, 2013

U.S. Patent

AHAC-HEN0ON NOGN AVTdBET NIg TYNOLLYINMO NI

US 8,365,088 B1

Sheet 5 of 40

Jan. 29, 2013

U.S. Patent

95g—

07

HIAC-IEN0OW NOCN HOLIZT3S NIg TYROULYHHOIN

US 8,365,088 B1

Sheet 6 of 40

Jan. 29, 2013

U.S. Patent

sishpiuny adA] eie0 wiog-

“

pexid 1o} weiboisiy pedwon

g

%o %0

oty

oy

%o %O

oy

dRos0yyl

suossesdny mous i]

US 8,365,088 B1

Sheet 7 of 40

Jan. 29, 2013

U.S. Patent

L v eanop

'L vzoL elgnop

oL

US 8,365,088 B1

Sheet 8 of 40

Jan. 29, 2013

U.S. Patent

%ﬁi e PN
I 5 IR B
OB
ST

por

wrwmsisin

mamz

HE4Y QA,.

s Q M bowa w\.«m %@%x

BN €

JRUM T 00 O MOl 7T S0y “Gﬁw

TR RGN,

AOPYOC PiReL BNOST H00)

B0 00 W8 URE Sig

{elozdl XX BYUYE W

oo

US 8,365,088 B1

Sheet 9 of 40

Jan. 29, 2013

U.S. Patent

e w0 agop Am
L mmﬁmamm 2

%o WO 9% T

%o %h ¥4

susssasdez moug £ emosainyl Op

SORE
sor PUTEAIIONO 4 2 = A
d{nyIoes = Z
IBDTBARUBIBULDY 4 X = L

%

‘EIBITTY ¥R BUTEn uoTIOUnI WHISASAN:

{anTeasIees ‘surTeasusssoot ‘wiweasdsdy = & voranung

US 8,365,088 B1

Sheet 10 of 40

Jan. 29, 2013

U.S. Patent

\..mwm
i 028

oy

sEpp

S RPOORE s onBnee [
10 LAS02Ts BHEARRISICO
P N <0

SHEA

BRI g@ﬁgw? %
LRIECH BiRd] :
Q 1k ﬁw b
WU L b

SRR

e @uc&‘wm W.W&S\, P PSE T

FAN SIEUMLE PPY G RGH LD SP0NS

Hion MOpuiRs GomNsen jeueiRd Bngan

Senl o el D PRl MpE e

(e Loz X SYUYH

US 8,365,088 B1

Sheet 11 of 40

Jan. 29, 2013

U.S. Patent

£ (vs emmop

US 8,365,088 B1

Sheet 12 of 40

Jan. 29, 2013

U.S. Patent

Pred con iRy 80 §
<GHHE 000085 SNRANERWS B

FE P * i

FHEA L HLEN
s LY b
X Ll e e
X e
THLBTELEL UrssAgA

TSRO S

ﬁnﬁﬂmm"

133

ISEAERASRAL S SUXOGUUERING I T O H e g T Y e

Sy

i R

e jsns i e o

RN CIOUR T, 0 0 MR BIRUPS

OBy wopupR OuppBg feleig DOGGD S0l g OB D@L bW Phd

Lo K BY LY B

US 8,365,088 B1

Sheet 13 of 40

Jan. 29, 2013

U.S. Patent

- Apsdg

A

Aoadg

&

Ameds

£ 2oL agnop

Am
2%

nigl

suoissandey mougl]

wwmmmmwawmm

US 8,365,088 B1

Sheet 14 of 40

Jan. 29, 2013

U.S. Patent

W%

&y

<y

SR AR 1T sy {7

ccgmpop ks onmapon)
<HLI DO0GOZZe SNRAREIED FH

R0 $Xy L3t

Y BN

E Ry

b A u&.&. SORGSHIOA

ot S

GLOTHLTL wrumhiu 8

. el gy
M .:.\A!.ﬁgm CIERACEEE @A.dn&& mw)w&mw&‘ahww
USIBBASALNRIE SSMIDUDIREELS - I H 3B T g SBPIt e

BigiASIUGHLEBINORLD LAIORRIT WaunD
00N

Sl D@ G XIY

RN SIEURA L TDY O MO i) GI0pOUS

S50 mofulp dOpBE(joeieg Dhgdg Siob)y jvw oG el PPs ol

(211078} 0X X BYUYH ¢

US 8,365,088 B1

Sheet 15 of 40

Jan. 29, 2013

U.S. Patent

susmsaud moys 7l

spasmnyl]

US 8,365,088 B1

Sheet 16 of 40

Jan. 29, 2013

U.S. Patent

IKBOCEU e W
<HIRE YHODENT BABALESUID

UL

Kl

sy

L33 kY
ARV

Lt

RO srweEAg i

R SRS B
i S el S o
WHRUASASISERETIN S AT O~ T 1) B8 L e SEG BN,

S A58A00 ?mﬁmmwwwéuw&ﬁ s

K3 peey ro

>
rass
g
-

&% mmu@@.v X 3

MO SR ES Py CLAGMH] Bintieug

oy mopum doleey ey Dagay AIR0L R O Bl by e

{eL o0 X SYUYR S

US 8,365,088 B1

Sheet 17 of 40

Jan. 29, 2013

U.S. Patent

suomsanig moug [seosol] A

gig—

208 —

US 8,365,088 B1

Sheet 18 of 40

Jan. 29, 2013

U.S. Patent

Z0¢

US 8,365,088 B1

Sheet 19 of 40

Jan. 29, 2013

U.S. Patent

4

SUCSERRI BOUT 1Y Hewany Iy

AR
A

] Sty
: £ XY 1)

F B Lo e EEy

e sl

OLOISLITY R s P AIEE

~oodiooy; S BUEN T

; ey B8 4 L

e o P AR BpBL s

SIS SHIUGESINOS L) TAIDYOBICE UBHRD SlE o~ o X g

DN I LA DPY U R] BPOLDLG

Sl MODUE GODBAY iy DOASG Sjo0) fog oh UL Wby 4ig

{ELond e gY U

US 8,365,088 B1

Sheet 20 of 40

Jan. 29, 2013

U.S. Patent

6

0 Apadg)

g py enop A

7 Tipsds

- Apedgy

e e 2

Lo$20L eEnop ngm

US 8,365,088 B1

Sheet 21 of 40

Jan. 29, 2013

U.S. Patent

HEE

YIRS XLy m}miﬂwwﬂﬁ&w
<QPBE LNRR0CE> ANEATSIEY

<HB XL %75
K I L o £V Q@oﬁ
bl e
- SITRLTL wrymmhnhe B
LA IOk - BB RS e T
BT ey 9l o RS R BLIT IEESTL R L2
UPUESAR AN SEAROCDUERIOON T - I SO 1R L] Yae BB RIS
SOLsOGULES OO DADDeIG BN eli plile Alad U

RN BIRUAA Y DY AGHE SCulg

O MODULR O0ppe jeieieg DhSG B00] jaD 0% kel dg g

{eLLozl XL BYUYR 3

US 8,365,088 B1

Sheet 22 of 40

Jan. 29, 2013

U.S. Patent

suoEsade mous |

peosonyl]

US 8,365,088 B1

Sheet 23 0of 40

Jan. 29, 2013

ORI L BORARG @
<UL IRGO0TE ShpAmeisus [
RO X5 X {3

BRIEA Hih
% % i B8 G

S

£ Rt e e

mﬁ ¥
i,

L o i v A e

MRS LUBIRAGAL
*DAGDON wEn LB

i A T MBS Al
WUAEAAL R SOOI aa T - SO0 H B D de

cmidl UERANSUTD A0 eLnD SiEGH o oK
AN BIEUM [E] DY G AOIFT RIDHOUR
g MODUM, OO BliEing DBUB Si00) 85 Of el udg Sy

{eLi004) XX YUY G

U.S. Patent

US 8,365,088 B1

Sheet 24 of 40

Jan. 29, 2013

U.S. Patent

09kL

%0

%0

GBI

v erop hm

yZoL eop @

eor

US 8,365,088 B1

Sheet 25 of 40

Jan. 29, 2013

U.S. Patent

Pl iy

supmsasba AUy I

HEWHY MHM

DO HIOTRIR X >
QLA LREDGHT

FEAEe ()

FBARRNG T

- <K XL ¥y
BN
BRI
K o e BOBHRNIOM
b SEEn
CGLLIITE U UABAGAL B

-Dogna Biedl

) - e
UCASICALASIT IR COIDUES IO A ~ SOUDT 1 BE T fe SO BN
T iy feg wﬁm%ﬁxgw%mﬁmﬁﬁW“&%ﬁ RN B OB~ ol w R

Rk SRR DRV 0L MOMIFL SI0L0UD

diaH mopulgy dopseg

ity Oage ooy)

oh PRp o 3eR ad

(Lol O BYUYH ¥

US 8,365,088 B1

Sheet 26 of 40

Jan. 29, 2013

U.S. Patent

ouzs

% %E

% %0

sumsssitkg mous 1 oeosoeyl)

- QL¢1

US 8,365,088 B1

Sheet 27 of 40

Jan. 29, 2013

U.S. Patent

s

ogop |

sumpsseicyaouy aposmny I

<YIBUOORNS 1Xi>

23 L <HIS AL

QLM R0G0R7S BIEANBISUDD

o AT

ORI

EAL A

_ N - OBO0 B sy
i i B ik e L3 vy ;@aa? ST i
E.&&&uzﬁw&w .‘.mvuxgmnmzxumx Re) éur X ﬁum BN

e e T m,m &@_c

M LA 8

RON SIEUR TS DY O %bxmu R

i

H RDpUE Uompeq pleiey wen Swol

B3 o By U ey

{1100} 00X SYUYH

US 8,365,088 B1

Sheet 28 of 40

Jan. 29, 2013

U.S. Patent

suossaidxy moug [l

sjposany]

US 8,365,088 B1

Sheet 29 of 40

Jan. 29, 2013

U.S. Patent

sunmemvI NONG [T eImounY L

OO Ky onpagon L
<G IKIGOTE FRAMESIK HY

< XL ER 1%
snie BEY

o 4 L s SORUBHIOM

7 SHE

ORI wrwesfgiu &

LBl

e BTG
Goreia SR ¢ 0

LIHSATAUASISHL A SO OUDURRN DT T ~ SOUDT

AN

wh&wmmwmwxﬁwcm@waww,mw AR NG

2.5 b B AR ueding
olE o Bl - Alenu

REN SR DRy B AL SIRODUR

G MOpUG CGONSE PliRied DISQ MDY IBG OH kel upg 4

{sLi0es) OWX BY LY

US 8,365,088 B1

Sheet 30 of 40

Jan. 29, 2013

U.S. Patent

w Sanop

agnop

#|anop

US 8,365,088 B1

Sheet 31 of 40

Jan. 29, 2013

U.S. Patent

iy ¥

PRE ek

ey

OV RO Ly FHEAIBOD

DR OOS0IT, SRBANEBIN
<R PR i ey
Ty Glign

<

S8R0

ROTRVE ursyaiohn
L 1DRRDOR RO BN B
4 Mm« U s iy -
it rww ?a 3?&?@@%3}2 D REOR X B T B
ags SSMUUDURGIAYELT FAIDRN BN SE DB~ 8

AN BIEUA (AT DDY O MO 7] mﬁﬁtwrm

digy wopulgy GopSey RIEg Dogsg wool 9D 00 VBRI upg 4y

{eLL00dl XX SY UV

US 8,365,088 B1

Sheet 32 of 40

Jan. 29, 2013

U.S. Patent

- 085

et 2rop ke

agnop

sumssaudxg mous] smosoynyl

US 8,365,088 B1

Sheet 33 of 40

Jan. 29, 2013

U.S. Patent

wR
e
anon

ogsponn gy empgeo)
;,ENN, sspasess 1

{3

THOERZE WHSRASAL @

el L) SN

e,

BB e Binnm S ¢ 2
IRty ?;@&E B L B JOPI0S RN
wm&g««xa@&éﬁm @i m,c 57 el U

%wx I IEUAATSY DY O3 MOK 2 BGOSR

dal wopulg UDUReG piliey URGRD §00] R0 b Tl W3 el

{LL02d) O SYUYH &

365,088 B1

9

US 8

Sheet 34 of 40

Jan. 29, 2013

U.S. Patent

- 094

¥9 elgnop

suomsaitey sous |

sposoy]]

US 8,365,088 B1

4}

BB XLy SREARND)
POOMETy BRARESNY %
» SR <

Sheet 35 of 40

o5 L B
<

Jan. 29, 2013

31BN
TR S L bw,
_ e B
UBEAZ AR ,mcv%.n&m 28 395 saw %.u&w wmwmm)

S ASOGIUERNDS m.m*o.%.kmm rmm,%ﬁ BlE O o

#an] SISUM T B0y o) MO wwwuﬁ?.w

ROpI, USHEen T MREG BRGRG ERST Y o5 VR WRY ER

{eL1074) 00X SYILYH

U.S. Patent

US 8,365,088 B1

Sheet 36 of 40

Jan. 29, 2013

U.S. Patent

e

bg eanop

% Ot) L - L sz0) sEnop

“ o w0 v lb

ot
£

suopsmdrg mous T aposoimyl

US 8,365,088 B1

Sheet 37 of 40

Jan. 29, 2013

U.S. Patent

WY L TR o

[T g

.

g

s

*

CHFEROER

e fned AR g

EATEY

T BRESRION,

%] e

SNSRI DML s i
AR o T SN B IR
f ey o G4 o

X i L g BRGNS

&m;wm&%%%%%mﬁméﬁ«é& WL BEOB~ o

=R

s 5 IPUAR

21 DI O MO i Spoug

Sy Aopuly OOERD gty Drgay wo0y by 09 Pl Wby A

(L1078 X SY UV

US 8,365,088 B1

Sheet 38 of 40

Jan. 29, 2013

U.S. Patent

%o

97 Tl oy

e

gy

0L 99 e zm

ARCEE RIS

4201 enop

suosssndxg mous T

Rpastiyl |

£
708 —

U.S. Patent Jan. 29, 2013 Sheet 39 of 40 US 8,365,088 B1

RECEIVE DESIGN REQUIREMENTS DETERMINE WHETHER OCCURRENCES
1805 R OF OVERFLOWS/UNDERFLOWS
‘L IS ACCEPTABLE
1950
LAUNCH DESIGN ENVIRONMENT
1910 ¥
L ADJUST WORD LENGTH
1955
LAUNCH INTERACTIVE DESIGN TOOL
1915 l :
‘L ADJUST FRACTION LENGTH
1960
DISPLAY INITIAL DESIGN
1920 l
L DETERMINE THAT DESIGN SATISFIES
REQUIREMENTS
DISPLAY DENSITY FOR IDENTIFIED 1965
BIN l
1925
L VERIFY DESIGN
1970
EVALUATE INTEGER AND FRACTION
DENSITIES l
1830 GENERATE CODE FOR DESIGN
l 1975
MODIFY WORD LENGTH FOR VARIABLE \lr
1935 DEPLOY GENERATED CODE IN
‘L TARGET ENVIRONMENT
1980
MODIFY SIGNEDNESS FOR VARIABLE ‘L
1940
l’ EXECUTE GENERATED CODE IN
TARGET ENVIRONMENT
MODIFY SCALING FOR VARIABLE 1985

1945 '

Fig. 19

U.S. Patent Jan. 29, 2013 Sheet 40 of 40 US 8,365,088 B1

100
Input Device |, Memory ROM
2060 2030 2040
F.y o
Output Device |, Bus
p2070 v - (2010
vV v A4 v
3 i
Communication Processing v
Interface « Logic Storage Device
2080 2020 2050

Fig. 20

100
% Service Provider
2140

Remote Database

2150
110 140
Cluster
2160
Target Environment UE
130 2170A
— UE
21708
UE
2170C

Fig. 21

US 8,365,088 B1

1
INTERACTIVE DESIGN ENVIRONMENT
HAVING DESIGN TOOL PORTION AND
DENSITY DISPLAY PORTION

BACKGROUND INFORMATION

Techniques exist for displaying information to computer
users in ways that allow the users to gain an understanding
about characteristics of information making up a display. For
example, computer users employing design tools, such as
tools for designing fixed or floating point computing systems,
may wish to display information about the number of times a
particular bit in a register is written or read. Continuing with
the example, auser may be working with a fixed point register
having a width of 8 bits. When designing a system that will
use the register, the user may wish to know how many times
each of the 8 bits is written or read for a particular design. In
this example, the user may run a simulation of the system and
then access simulation results containing data written to and
read from the register as well as information about other
register interactions.

In conventional design systems, the user may visualize
simulation results/information using histogram displays that
show a number of occurrences or events associated for each
bit, or bin, of the register. The amplitude of displayed infor-
mation in the histogram may vary depending on the number
of occurrences for a respective bin. When a user is working
with systems having more than one register, the user may
have to toggle between histograms for each register because
histogram displays typically take up a relatively large portion
of an available display area. For example, when histograms
are displayed in a small window, information displayed in the
histogram can become so compressed that a user cannot glean
relevant simulation details from the small window.

Toggling between appropriately sized histogram display
windows can make it difficult for the user to make compari-
sons from one register to another because information for the
two or more registers cannot be displayed simultaneously.
Also, one or more histogram display windows may occupy so
much display area that the user may be unable to display other
types of information that might be useful for determining
whether a design is satisfactory. For example, a user may wish
to see code associated with variables stored in the registers,
debugging information associated with the registers, over-
flow and/or undertflow information for the registers, etc. The
user may be unable to view adequate quantities/types of other
information because the histogram display windows occupy
too much of the available display area.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more embodiments of the invention and, together with the
description, explain the invention. The patent or application
file contains at least one drawing executed in color. Copies of
this patent or patent application publication with color draw-
ing(s) will be provided by the Office upon request and pay-
ment of the necessary fee. In the drawings,

FIG. 1 illustrates an exemplary system for practicing
embodiments of the invention;

FIG. 2A illustrates an exemplary compact histogram den-
sity scale that can be used with embodiments of the invention;

FIG. 2B illustrates an exemplary legend that can be used to
provide information about aspects of a compact histogram
density scale display;

20

25

30

35

40

45

50

55

60

65

2

FIG. 2C illustrates an exemplary bin display feature that
can be used with embodiments of the invention;

FIG. 2D illustrates exemplary bin selector features that can
be used to display and/or manipulate information associated
with a histogram density scale;

FIGS. 3A and 3B illustrate an exemplary implementation
of'a compact histogram density scale;

FIGS. 4A-4C illustrate an exemplary implementation of a
compact histogram density scale display that can be used to
display information about variables in a program;

FIGS. 5A-7B illustrate an exemplary implementations for
displaying bin count information for a compact histogram
density scale;

FIGS. 8A-8C illustrate an exemplary implementation for
changing word length information associated with a compact
histogram density scale;

FIGS. 9A-9B illustrate an exemplary implementation for
changing the signedness information associated with a com-
pact histogram density scale;

FIGS. 10A and 10B illustrate an exemplary implementa-
tion for splitting a display region of a compact histogram
density scale;

FIGS. 11A and 11B illustrate an exemplary implementa-
tion for changing a word length associated with a compact
histogram density scale;

FIGS. 12A and 12B illustrate an exemplary implementa-
tion for changing a fraction length from a user specified value
to an automatically determined value, where the parameter is
associated with compact histogram density scale;

FIGS. 13A and 13B illustrate an exemplary implementa-
tion for manipulating a signed bit and for an auto scaling
feature of a compact histogram density scale;

FIGS. 14A and 14B illustrate an exemplary implementa-
tion that can be used to eliminate overflows for a fixed point
register associated with a compact histogram density scale;

FIGS. 15A and 15B illustrate an exemplary implementa-
tion that provides an interactive bin selector for manipulating
information associated with a compact histogram density
scale;

FIGS. 16A and 16B illustrate an exemplary implementa-
tion for manipulating a word length via a shifting operation
for a compact histogram density scale;

FIGS. 17A-18B illustrate an exemplary implementation
that allows for independently changing the word length and
the fraction length for a register associated with a compact
histogram density scale;

FIG. 19 illustrates exemplary processing that can be used
for implementing aspects of the invention;

FIG. 20 illustrates an exemplary architecture for imple-
menting embodiments of the invention in computational
devices; and

FIG. 21 illustrates an exemplary system for implementing
a distributed implementation of the invention.

DETAILED DESCRIPTION

The following detailed description of implementations
consistent with principles of the invention refers to the
accompanying drawings. The same reference numbers in dif-
ferent drawings may identify the same or similar elements.
Also, the following detailed description does not limit the
invention. Instead, the scope of the invention is defined by the
appended claims and their equivalents.

Overview

Exemplary embodiments provide an interactive design
and/or analysis environment for allowing a user to design and

US 8,365,088 B1

3

evaluate systems employing storage mechanisms, such as
registers. For example, a user may be designing an embedded
system that makes use of four fixed-point registers for storing
information in the embedded device. The user may wish to
use the smallest register size (e.g., register having the fewest
number of bits) to minimize manufacturing costs and to
improve performance of the embedded device. A satisfactory
design may require that the selected register size does not
exceed a threshold for overflows or underflows in the bits,
making up the register.

Conventional design techniques and tools may force a user
to perform iterative design attempts to come up with a small-
est register size that satisfies design criteria. For example, the
user may need to pick a register size, simulate the embedded
system by running code for the system, and then access simu-
lation results to determine whether any bins had overtlows or
underflows, and if so whether the number of overflows/un-
derflows was acceptable. When a selected register size is
determined to be inadequate, the user may have to manually
pick a larger register size. In other situations, the user may
have to manually move the radix point within a register to
vary the integer length (the register portion to the left of the
radix point) with respect to the fraction length (the register
portion to the right of the radix point).

The user of a conventional technique/tool may have to
rerun the simulation using the new register size and/or word/
fraction lengths to produce a new simulation result. The user
may have to manually access the simulation result and, for
example, look at a conventional histogram display for each
register of the embedded system by cycling through indi-
vidual histogram display windows using a pointing mecha-
nism or technique, such as a mouse, track ball, touch sensitive
display, etc.

Exemplary embodiments of the invention allow a user to
interactively design, analyze and/or simulate systems
employing storage mechanisms, such as registers represent-
ing fixed-point data types. Exemplary embodiments allow a
user to simulate a system having a plurality of registers using
a model. Embodiments further allow the user to observe
information about bins making up the registers while a simu-
lation of the system progresses. For example, an embodiment
can provide a compact histogram density scale (CHDS) dis-
play for four fixed-point registers used in an embedded sys-
tem simulation. The embodiment may use representations of
the registers with the model as opposed to actual hardware
registers. Alternatively, the embodiment can be configured to
interact with actual hardware registers if desired.

The CHDS displays can present a user with information
about the number of times data is written to respective bins
making up a register. For example, a CHDS can be used to log
data at a number of sample times when values for the data
change with each write and when values for the data do not
change. Embodiments may allow a user to determine how
many times a value for data in a bin changed, how many times
data for the bin was written, etc.

Embodiments can further represent types of information or
occurrences of events using display techniques such as vary-
ing colors, varying intensities of colors, varying patterns or
shadings, varying symbols, etc. The CHDS allows the user to
view the four registers at the same time using a single display
surface, such as a window, pane, region, etc. Moreover, the
user can view CHDS for the registers along with program
code containing variables stored in the registers.

Embodiments may be configured to support worktlows
employed by users working with registers. For example,
embodiments may allow a user to execute code using floating
point computations. The user may use a CHDS tool to operate

20

25

30

35

40

45

50

55

60

65

4

as a fixed point lens with respect to the floating point data.
This lens may allow the user to determine whether a register
of a certain length will satisty a design requirement without
actually affecting the floating point data. When the user deter-
mines that a given register size will satisty a design require-
ment, the user may modify floating point code to operate with
fixed point registers. The user may execute the fixed point
code and may evaluate performance of the code using the
CHDS tool.

Embodiments may further be configured to allow the user
to manipulate characteristics of registers as a simulation
progresses. For example, an embodiment may allow a user to
move a radix point in a register, change the size of a register,
cause registers to auto scale, etc., while a simulation is run-
ning. Embodiments may allow the user to manipulate CHDS
related display characteristics without affecting the underly-
ing data being produced by executing program code. Embodi-
ments may further allow a user to obtain detailed information
aboutbins in a register by, for example, mousing over a bin. In
this embodiment, a pop-up window, balloon, etc., may be
displayed and may contain detailed information about the bin.

Exemplary embodiments may support other aspects of user
workflows, such as code generation, code verification and/or
validation, code deployment, system testing, etc.

Exemplary System

FIG. 1 illustrates an exemplary system 100 for practicing
an embodiment. For example, system 100 may be used to
design, simulate, test, and/or deploy systems having one more
storage mechanisms. System 100 may include computer 110,
input device 125, network 140, and target environment 130.
The system in FIG. 1 is illustrative and other embodiments of
system 100 can include fewer devices, more devices, and/or
devices in configurations that differ from the configuration of
FIG. 1.

Computer 110 may include a device that performs process-
ing operations, display operations, communication opera-
tions, etc. For example, computer 110 may include logic, such
as one or more processing or storage devices, that can be used
to perform and/or support processing activities on behalf of a
user. Embodiments of computer 110 may include a desktop
computer, a laptop computer, a client, a server, a mainframe,
a personal digital assistant (PDA), a web-enabled cellular
telephone, a smart phone, smart sensor/actuator, or another
computation or communication device that executes instruc-
tions for performing one or more activities and/or to generate
one or more results.

Computer 110 may further perform communication opera-
tions by sending data to or receiving data from another device,
such as a server (not shown in FIG. 1). Data may refer to any
type of machine-readable information having substantially
any format that may be adapted for use in one or more net-
works and/or with one or more devices. Data may include
digital information or analog information. Data may further
be packetized and/or non-packetized.

An embodiment of computer 110 may include simulation
environment 120 and operating system 115. Simulation envi-
ronment 120 may provide a computing environment that
allows users to perform simulation or modeling tasks related
to disciplines, such as, but not limited to, mathematics, sci-
ence, engineering, medicine, business, etc. Simulation envi-
ronment 120 may support one or more applications that
execute instructions to allow a user to construct a model
having executable semantics. In an embodiment, simulation
environment 120 may execute the model to produce a result.

US 8,365,088 B1

5

Models used with exemplary embodiments of the inven-
tion may include information in a textual or graphical form.
For example, a model may be a textual model or graphical
model that can be a time-based model (e.g., differential equa-
tion models, difference equation models, discrete-time mod-
els, or continuous-time models with or without algebraic
constraints, etc.), event-based model, state transition model,
data flow model, component diagram, entity flow diagram,
equation-based language diagram, etc.

In an embodiment, simulation environment 120 can
include a component, such as a software module, that pro-
vides capabilities for displaying CHDS representations for
registers associated with a system being simulated. The
CHDS component can provide capabilities for displaying
information about registers, for allowing a user to interac-
tively manipulate characteristics of registers, for allowing
computer 110 to programmatically scale registers on behalf
of a user, etc.

Operating system 115 may manage hardware and/or soft-
ware resources associated with computer 110. For example,
operating system 115 may manage tasks associated with
receiving user inputs, operating computer 110, allocating
memory, prioritizing system requests, etc. In an embodiment,
operating system 115 may be a virtual operating system.
Embodiments of operating system 115 may include Linux,
Mac OS, Microsoft Windows, Solaris, UNIX, etc. Operating
system 115 may further run on a virtual machine, which can
be provided by computer 110.

Computer 110 can further include one or more display
devices for displaying information to a user. In an embodi-
ment, the display may include a cathode ray tube (CRT),
plasma display device, light emitting diode (LED) display
device, liquid crystal display (LCD) device, etc. Embodi-
ments of the display may be configured to receive user inputs
(e.g., via a touch sensitive screen) when desired. In an
embodiment, the display can provide one or more graphical
user interfaces (GUIs) to a user. The GUIs may display a
model, inputs for a model (e.g., user specified objectives,
constraints, display characteristics, etc.), model outputs,
graphical representations of registers, representations for
data associated with a bin of a register, and/or other types of
information to a user.

Input device 125 may include logic to receive input from a
user. For example, input device 125 may transform a user
motion or action into a signal or message that can be inter-
preted by computer 110. Input device 125 can include, but is
not limited to, keyboards, pointing devices, biometric
devices, accelerometers, microphones, cameras, haptic
devices, etc.

Network 140 may include any network capable of trans-
ferring data (e.g., packet data or non-packet data). Implemen-
tations of network 140 may include local area networks
(LANs), metropolitan area networks (MANs) and/or wide
area networks (WANS), such as the Internet, that may operate
using substantially any network protocol, such as Internet
protocol (IP), asynchronous transfer mode (ATM), synchro-
nous optical network (SONET), user datagram protocol
(UDP), IEEE 802.10, etc.

Network 140 may include network devices, such as rout-
ers, switches, firewalls, and/or servers (not shown). Network
140 may be a hardwired network using wired conductors
and/or optical fibers and/or may be a wireless network using
free-space optical, radio frequency (RF), and/or acoustic
transmission paths. In an implementation, network 140 may
be asubstantially open public network, such as the Internet. In
another implementation, network 140 may be a more
restricted network, such as a corporate virtual network.

20

25

30

35

40

45

50

55

60

65

6

Implementations of networks and/or devices operating on
networks described herein are not limited to any particular
data type, protocol, architecture/configuration, etc. For
example, in an embodiment, network 140 may be a quantum
network that uses quantum-compatible networking proto-
cols.

Target environment 130 may include logic that executes
instructions to perform one or more operations. In an embodi-
ment, target environment 130 can include registers for storing
information and processing logic adapted to execute code
generated from one or more models. In an embodiment, target
environment 130 can include real-time logic for performing
processing operations in real-time. For example, target envi-
ronment 130 may include a real-time operating system and
hardware that are configured to process received signals or
events in real-time or to execute simulations in real-time.

Exemplary embodiments of target environment 130 can
include field programmable gate arrays (FPGAs), application
specific integrated circuits (ASICs), application specific
instruction-set processors (ASIPs), digital signal processors
(DSPs), graphics processor units (GPUs), programmable
logic devices (PLDs), etc. Target environments 130 can fur-
ther include a single processor that includes two or more types
of'logic, such as cores. Target environments 130 can be con-
figured to support multi-threaded or multi-process applica-
tions using FPGAs, ASICs, ASIPs, DSPs, GPUs, PLDs,
cores, etc.

Exemplary Compact Histogram Density Scale

FIG. 2A illustrates an exemplary graphical representation
for a register 200. Register 200 can include histogram density
information within regions of a register representation, which
in FIG. 2A is made up of square regions arranged side-by-
side. For example, a register may be divided into bins where
each bin represents a bit for the register. By way of example,
representation 200 may depict a fixed point register having an
integer region consisting of four bits as depicted by element
222. The integer portion may store values that are whole
number and that reside to the left of a radix point 208 (also
referred to as decimal point 208). Register 200 may include a
most significant bin (MSB) 204 based on power of two scal-
ing and least significant bin (LSB) 216. MSB 204 may be a
leftmost bin in FIG. 2A and L.SB 216 may be a rightmost bin.
FIG. 2A may also include an MSB identifier 202 and an L.SB
identifier 218.

Bins may include coloring or shading to represent overflow
occurrences, and this coloring/shading may be referred to as
overflow indicator. MSB 204 may further include a border, or
other indicator, to indicate the signedness of the fixed point
type for the bin. For example, a signed bit indicator may
identify signedness in FIG. 2A using a border around a bin.

Register 200 may further be associated with a word length
indicator 210 that indicates the word length of the fixed-point
type in register 200. Word length indicator 210 may be a
visual affordance in an embodiment of the invention. Register
200 may use display techniques to identify bin values that are
within a determined range. For example, a bin may use a first
color shade to indicate low counts of binned data and a second
color shade that may be darker, or denser, than the first color
shade to indicate high counts of binned data.

Embodiments may use an in-range indicator 212 to iden-
tify a number of binned values with respect to one or more
thresholds. For example, a light color shade may indicate low
counts of binned data and a darker shade of the color may
indicate higher counts. In this embodiment, all shades of a
color, e.g., blue, may indicate that binned data is in range. A

US 8,365,088 B1

7

second color, such as red, may indicate that binned data
exceeds an upper threshold of the range, and a third color,
such as yellow, may indicate that binned data is below a lower
threshold of the range. In an embodiment, an overflow indi-
cator and an underflow indicator may be used to identify
overflows (e.g., red) and/or underflows (e.g., yellow), respec-
tively.

Embodiments may include a continuity indicator 214 to
indicate that a CHDS displayed to a user is longer than a
distance allocated for displaying the CHDS. For example,
ellipses or another type of indicator may be used to indicate
that a left portion of a displayed CHDS is related to a right
portion of a displayed CHDS even though the left and right
portions may be separated by a distance.

Embodiments may further use fractional bins 220 that can
include values that are fractional quantities that reside to the
right of the radix point. Fractional bins 220 may be associated
with a fractional bin indicator that can include a visual iden-
tifier, e.g., a horizontal line drawn with respect to a CHDS.

Embodiments may provide a user with information about
various aspects of a CHDS, such as names for portions of the
CHDS or for information displayed in the CHDS. For
example, a user may select a help feature associated with a
CHDS tool and may be presented with a legend as shown in
FIG. 2B. The legend may provide the user with names,
numerical identifiers and explanations about aspects of the
CHDS tool. Embodiments of the legend may be interactive or
may be static depending on a configuration of the tool.

Referring to FIG. 2C, a user may interact with a histogram
density bin 224 and a CHDS tool may provide the user with
information about the bin. For example, a user may employ a
pointing device, such as a mouse for interacting with aspects
of a CHDS. When a cursor for the mouse passes over or
hovers proximate to bin 224, the user may be presented with
a window 225 that includes information about bin 224. For
example, window 225 of FIG. 2C may include bin label 226
that can display information about bin 224 using power 2
scaling. Window 225 can further include signedness indicator
228 for identifying sign information for bin 224, and binned
data 230 for presenting information about data in bin 224,
such as but not limited to, count information (e.g., data) and
occurrence information that can be displayed as a percentage
of total occurrences for a CHDS.

FIG. 2D illustrates other interactive aspects of an exem-
plary CHDS. A user may hover proximate to an identifier for
a radix point 223, such as a triangular icon, and may be
presented with window 234 containing information related to
the location of radix point 223. For example, a user may be
presented with a word length size and a fraction length size. In
an embodiment, the sizes can be provided in terms of bits.

Exemplary embodiments may include interactive bin
selector 232 that can identify a word length line that allows
the user to interactively change a word length for a displayed
CHDS. The word length line may include an icon to the left of
aradix point. For example, an embodiment can use an icon, or
identifier, that is a dot or other shape. Embodiments can
further include a fraction length resize 236 that can be used to
determine a fraction length or to change a fraction length
associated with a register displayed via a CHDS. An integer
length resize 238 may allow a user to change an integer length
for aregister displayed via a CHDS. Selector 232 and resizers
236 and 238 can be visual affordances that can be manipu-
lated by a user.

FIG. 3A illustrates an exemplary implementation of a
CHDS. Display 300 may include an interactive CHDS region
302. Region 302 may include information related to registers
that are written to or read from when code for a program is

20

25

30

35

40

45

50

55

60

65

8

executed. Embodiments of CHDS tools can be used with
simulation code or application code that runs, for example, in
an embedded system containing registers.

FIG. 3B illustrates region 302 of FIG. 3 A in greater detail.
Region 302 can include variable field 304 that can identify
information about variables associated with registers dis-
played in region 302. For example, program code may
include variables u, z, and y that are each associated with a
register displayed in register field 310, also log 2histogram
field in FIG. 3B. Region 302 may further include class field
306 that contains information about a class of a variable, such
as double, single, etc. Size field 308 includes information
about a size of a variable. Size information can be provided in
number of elements, bytes, bits, etc.

Signedness field 312 includes information about the sign-
edness of data associated with a register in region 302.
Embodiments may allow signedness to be determined auto-
matically, to be unsigned (i.e., not allowed to have negative
values), etc. Word length field 314 may include information
indicating a word length for a variable or register in region
302. Word length and fraction length field 316 may include
information identifying a fraction length for a variable or
register in region 302. Fraction lengths may be programmati-
cally specified by computer 110 or may be specified by a user.

Minimum value field 322 may include information identi-
fying a minimum value of data associated with a variable of
region 302, and maximum value field 324 may include infor-
mation identifying a maximum value of data for the variable.
Overflow field 326 may include information indicating a
number of overflows, and underflow field 328 may include
information indicating a number of underflows for data
observed with a register. In an embodiment, overflow and
underflow information may be displayed as a percentage of a
total count.

Region 302 may include options that can be selected by a
user via a pointing device. For example, auto scale 318 may
allow a user to specify that parameters associated with regis-
ters in region 302 should be auto scaled programmatically by
computer 110. Show expressions 320 may show expressions
associated with variables in region 302 when selected by a
user.

Radix point 340 may include a symbol, shape, letter, or
other type of identifier for indicating the location of a radix
point for a register in region 302. Register region 330 may
designate a portion of region 302 in which bins for a register,
a MSB value, and an L.SB value can be displayed.

FIG. 4A illustrates an embodiment that can include a
graphical user interface 400 for allowing a user to interact
with code and/or registers. Interface 400 may include drop
down menus 402 that allow a user to quickly access common
functionality associated with interface 400. Drop down
menus 402 may, for example, allow the user to create or save
files; cut, copy or paste information into interface 400; debug
or execute code; etc.

Interface 400 may further include directory region 404 that
can occupy a portion of interface 400. Region 404 may
include file system information, such as file names, folder
names, file paths, directory paths, etc. Interface 400 can also
include workspace region 406 that includes information
about variables used in program code executed using inter-
face 400. Region 406 can include variable names, size infor-
mation for variables, and/or icons associated with variables.

Interface 400 can also include program region 410 for
displaying program code to a user. Region 410 can allow a
user to interact with displayed code and to perform operations
on the code, such as running code, debugging code, annotat-
ing code, creating code, editing code, etc. For example, region

US 8,365,088 B1

9

410 can include program code 408 that includes variables
associated with information stored in registers illustrated in
region 302 of interface 400.

FIG. 4B illustrates program code 408 in greater detail. For
example, program code 408 includes variables u, z, and y that
are respectively associated with registers in region 302 of
FIG. 4C. In an embodiment, variable identifiers (e.g., names)
in region 302 may appear in the order in which they occur in
program code 408. For example, variable field 304 includes
variables u, 7, and y displayed in the order in which they
appear in program code 408 of FIG. 4B. Code 408 may be
configured to perform floating point or fixed point computa-
tions as determined by a user.

FIG. 5A illustrates an embodiment in which region 302
includes a bin label. FIG. 5B illustrates region 302 of FIG. 5A
in greater detail. A user may move a cursor over a segment of
a CHDS. Label window 510 may be displayed when cursor
520 is proximate to a bin of a register, e.g., a register storing
data associated with variable u. Label window 510 may dis-
play information about a bin to the user. For example, label
window 510 may display bin label information 530 identify-
ing a particular bin for which displayed data is associated.
Label window 510 may further display signed bit information
540, count information 550, and occurrence information 560.

FIG. 6A illustrates an embodiment displaying a label win-
dow for a bin adjacent to the bin of FIGS. 5A and 5B. A user
may move a cursor to the right of the 2! bin so that the cursor
is proximate to the 2° bin. Referring to FIG. 6B, bin label
information 530 may identify the 2° bin, count information
550 may identify bin counts for the 2° bin, and occurrence
information 560 may identify information about bin counts as
a percentage of, for example, total bin counts for a register.

FIG. 7A illustrates an embodiment displaying a label win-
dow for a bin to the right of a radix point. FIG. 7B illustrates
the contents of region 302 of FIG. 7A in greater detail. Refer-
ring to FIG. 7B, a user may move cursor 340 to the right with
respect to the cursor position of FIG. 5B. Cursor 340 may be
proximate to the 27 bin and label window 510 may display
information for the 27* bin, such as bin label 530, count
information 550, and occurrence information 560.

FIG. 8A illustrates an embodiment that allows for chang-
ing a word length of a register. FIG. 8A illustrates region 302
in an embodiment that allows a user to change a word length
for one or more registers containing CHDS data. Referring to
FIG. 8B, which shows region 302 of FIG. 8 A in greater detail,
a user may position a cursor proximate to word length iden-
tifier 810 for a register storing data for variable u. A bin, such
as bin 820, for the register may include CHDS data of a first
color or shade which may indicate that data for the bin is
between a lower threshold defining underflows and an upper
threshold defining overflows. An initial word length for reg-
ister 820 may be 18 bits as shown in FIG. 8B.

The user may select word length identifier 810 and may
change the word length value to, for example, 16 bits as
shown in FIG. 8C. Changing a word length for a register may
cause statistics for the register to change. For example, over-
flows for the register of variable u may be 0% when the word
length is 18 bits (FIG. 8B). However, the overflows may rise
to, for example, 33% when the word length is changed to 16
bits as shown by element 850 of FIG. 8C.

A bin for the register, such as bin 840, may include CHDS
data having a shade or color that differs from the shade or
color ofbin 820 in FIG. 8B. The shade or color of bin 840 may
differ from that of bin 820 to indicate the presence of over-
flows when the word length for the register is 16 bits. Embodi-
ments, such as the one shown in FIGS. 8A-8C, provide a user
with real-time feedback with respect to the operation of reg-

20

25

30

35

40

45

50

55

60

65

10

isters when parameters associated with the registers are
manipulated. Real-time as used herein can refer to response
times that are sufficiently fast so as not to adversely affect a
user’s interactions with a tool, application, etc., and/or so as
not to discourage the user from making use of interactive
capabilities of the tool, application, etc.

FIG. 9A illustrates an embodiment that allows for chang-
ing the signedness of a register. FIG. 9A illustrates an
embodiment of region 302 that includes registers for which
the signedness of CHDS data in the registers can be changed.
FIG. 9B illustrates region 302 of FIG. 9A in greater detail. A
user may place a cursor proximate to a signedness identifier
910 for a register displayed in region 302. The user may select
identifier 910 and a drop down menu may be provided that
offers the user valid selections for the register. For example,
the user may select identifier 910 and may select “unsigned”
and “unsigned” may be loaded into identifier 910 (FIG. 9C).
When unsigned is specified, values for variable z may be
unrepresentable and may further translate into overflows. In
FIGS. 9A-9B, the overflows for the register of variable z may
be 0% (element 920 in FIG. 9B); however, when unsigned is
selected, overflows for the register may increase to 12%.
Embodiments may allow a user to changed signedness for a
register without affecting underlying data associated with
executing program code.

FIG. 10A illustrates an embodiment in which a register bin
containing CHDS data can be partitioned into an upper por-
tion and a lower portion. In some situations, a user may wish
to detect overflows in a positive direction (e.g., greater than
zero) and overtlows in a negative direction (e.g., less than
zero). F1G. 10B illustrates region 302 of FIG. 10A in greater
detail. The CHDS of variable z may use the same colors
and/or shading with unsigned values as was used when sign-
edness field 312 was specified as “auto”. In FIG. 10B, the
lower regions for the 2* and 2° bins (i.e., the leftmost bins in
FIG. 10B for the register of variable z) may include coloring/
shading that indicates overtflows in the negative direction
(negative values). The overflows may further be reflected by
the number 12% in overflow field 326.

The embodiment of FIG. 10B may further allow a user to
change other parameters associated with registers displayed
in region 302. For example, the user may be able to change a
word length using an interactive bin selector 1050. In FIG.
10B a word length for variable y may be 36 bits as shown by
identifier 1030 and a fraction length may be 32 bits as shown
by identifier 1040. A word length of 36 bits and a fraction
length of 32 bits may maintain an overtlow percentage of 0%
as shown by identifier 1060.

FIG. 11A illustrates an embodiment that allows a user to
change a word length and fraction length for a register asso-
ciated with a variable. FIG. 11B shows region 302 of FIG.
11A in greater detail. A bin, such as 2°, may indicate an
overflow (element 1190) by showing a color, such as red. The
overflow may occur when the fraction length is set to
“specify” and 16 bits. Region 302 may include an identifier
1180 that indicates the length of a fractional part of the reg-
ister, here 16 bits.

A cursor may be used to select and toggle fraction length
identifier 1170 for variable u. For example, a user may change
identifier 1170 from “specify” to “auto”, where auto causes
the fraction length to automatically scale so as to achieve a
desired overflow or under flow rate. The embodiment of FIG.
11B may further allow a user to change a word length for a
register associated with variable y from 36 bits (as shown in
FIG. 10B) to 32 bits in FIG. 11B. The user may also change
the fraction length for the register from 30 bits (as shown in
FIG. 10B) to 32 bits as shown in FIG. 11B via identifier 1140.

US 8,365,088 B1

11

Changing the word length from 36 bits to 32 bits for variable
y may cause an overflow value to go from 0% (FIG. 10B) to
2.5% (FIG. 11B) as indicated by identifier 1160.

FIG. 12A illustrates an embodiment that allows for chang-
ing a fraction length parameter from a user specified value to
an auto-scaled value. FIG. 12B illustrates region 302 of FIG.
12 A in greater detail. In FIG. 12B, a user may toggle identifier
1270 from “specify” to “auto”. For example, a user may have
specified that the fraction length be 16 bits (FIG. 11B) for
variable u. The user may decide to allow a system to auto-
scale the fraction length for the register storing data for vari-
able u and may change identifier 1270 from “specify” to
“auto” using a pointing device.

When auto is specified, a fraction length value 1210 may
change from 16 (FIG. 11B) to 14 (FIG. 12B). The new value
of the fraction length may also be displayed proximate to
register bins as shown by identifier 1280. Decreasing the
fraction length may allow more bits to be used for the integer
length which may reduce overflows from 33% (FIG. 11B) to
0% (FIG. 12B) for variable u. The increased word length may
change bin data, e.g., 2° bin shown by identifier 1290, from a
first color (e.g., red) in FIG. 11B to a second color (e.g., dark
blue) in FIG. 12B.

FIG. 13A illustrates an embodiment that allows a user to
change signedness and a scaling parameter for a register. FIG.
12B illustrates region 302 of FIG. 12A in greater detail. In
FIG. 12B, a user may wish to change parameters for variable
7 using a pointing device or other input mechanism/tech-
nique. A user or computer 110 may determine that negative
values for bin 2° and 2* are overflowing in the negative direc-
tion when signedness is set to “unsigned” and the fraction
length is user specified to be 16 bits (see FIG. 12B). The user
may manipulate signedness identifier 1310 and may toggle
identifier 1310 to be “signed”. Changing identifier 1310 may
cause CHDS displays for bins 2* and 2° to be shown as one
region instead of a divided region having an upper and lower
portion. The user may also toggle identifier 1340 from
“specify” to “auto.” Prior to toggling identifier 1340, over-
flows for the register of variable z may be at 12% (identifier
1330), and after toggling the overflows may be 0%.

FIG. 14A illustrates an embodiment in which overflows are
eliminated for variable z. FIG. 14B illustrates region 302 of
FIG. 14A in greater detail. As seen in FIG. 14B, overflows of
negative values for variable z are eliminated when the user has
set the signedness identifier to signed, the fraction length
identifier to auto which shortens the fraction length to 14 as
shown by identifiers 1460 and 1450. In the embodiment of
FIG. 14B, the word length is reduced to 16 bits. Embodiments
allow the user to make modifications to variables while code
is executing and registers are being written to or read from.

The embodiment of FIG. 14B can allow a user to perform
additional operations on variables, registers, etc. For
example, a user may be able to interact with word lengths for
a register by manipulating a guide, such as guide 1470. In an
embodiment, guide 1470 can become active when a cursor, or
other pointing mechanism/technique, is proximate to or oth-
erwise associated with guide 1470.

FIG. 15A illustrates an embodiment that allows a user to
modify word lengths with respect to bins displayed in region
302. FIG. 15B illustrates region 302 of FIG. 15A in greater
detail. A user may wish to graphically manipulate a word
length and/or fraction length with respect to a variable, such
as variable y. Embodiments may provide the user with tools
for interactively manipulating word and fraction lengths
while code containing variable y executes.

The user may position a cursor proximate to a register
associated with variable y. A guide, such as guide 1470 (FIG.

20

25

30

35

40

45

50

55

60

65

12

14B) may change to visually depict an interactive guide 1520
(FIG. 15B). Interactive guide 1520 may allow a user to move
guide 1520 to the right or left to change word and/or fraction
lengths for variable y. For example, a radix point may be one
bin to the right of bin 1530. In this arrangement, a word length
may be 32 bits and a fraction length 30 bits. The word length
and fraction lengths can also be displayed via word length
identifier 1540 and fraction length identifier 1550. The word
length and fraction length can be displayed to the user via
label window 1510.

Interactive guide 1520 may include end point identifiers,
such as dots or other shapes, to delineate the limits of a word
size. Embodiments may allow the user to select the end points
and move them when desired. Alternatively, interactive guide
1520 may allow the user to move guide 1520 and its end
points to the right or left by selecting the center portion of
guide 1520. A current configuration of a word and fraction
length may produce an overflow indicated by identifier 1560
and an underflow indicated by identifier 1570.

FIG. 16A illustrates an embodiment that allows the user to
manipulate a word length and/or fraction length for a variable.
FIG. 16B illustrates region 302 of FIG. 16 A in greater detail.
In FIG. 16B, a user has shifted a word length to the left using
guide 1630 in an attempt to reduce overtlows. Label window
1610 indicates that the word length has remained at 32 bits
and the fraction length has reduced to 29 bits from 30 bits as
they were in FIG. 15B prior to dragging the guide. The word
length is also indicated by word length identifier 1640 and the
fraction length is indicated by fraction length identifier 1650.

FIG. 17B illustrates an embodiment that allows a fraction
length and a word length to change without changing the
position of a radix point. FIGS. 17B and 17C illustrate region
302 of FIG. 17A in greater detail. A visual affordance 1720
may be operatively associated with guide 1730 selected using
apointing device and moved from a current location to a new
location. A fraction length for variable y may change when
affordance 1720 is moved. For example, moving affordance
1720 to the right may increase the fraction length and moving
affordance 1720 to the left may decrease the fraction length.

A word length for variable y may be increased or decreased
in a manner similar to that used to change a fraction length.
Label window 1710 may display a current word length and
fraction length that reflects locations of affordance 1720 and
affordances for the word length. Bins 1740 may change color,
may appear, may disappear, etc., as a user manipulates affor-
dance 1720 to reflect bin counts to the right of the radix point.
A fraction length identifier 1750 may also change as a user
manipulates atfordance 1720.

FIG. 18A illustrates an embodiment that allows for resiz-
ing an integer length in response to a command. FIG. 18B
illustrates region 302 of FIG. 18A in greater detail. A user
may select affordance 1810 to resize an integer length for
variable y. For example, a user may select atfordance 1810
and move affordance 1810 to the right or to the left using a
pointing device. Changing an integer length for variable y
may also change a word length. In the embodiment of FIG.
18B, resizing the integer length may not affect a fraction
length.

Exemplary Processing

FIG. 19 illustrates exemplary processing for practicing an
embodiment of the invention. Computer 110 may receive
design requirements via simulation environment 120 (act
1905). Design requirements may specify parameters for the
design of an embedded system that makes use of one or more
storage mechanisms for storing information. A user may

US 8,365,088 B1

13

launch an interactive design environment on computer 110
(act 1910). For example, the user may launch an interactive
design tool that supports CHDSs for depicting data associated
with registers of the embedded system (act 1915). The design
tool may allow the user to interactively manipulate register
characteristics while code for the embedded system executes.

An initial design for the embedded system may be dis-
played using the interactive design tool (act 1920). In an
embodiment, the design may include executable source code
that contains variables that store information in the registers.
The user may execute the code in a simulation and the inter-
active design tool may display density information fora binof
a register (act 1925). The user or computer 110 may evaluate
density information for one or more bins of the register. For
example, density information for an integer portion and frac-
tion portion of the register may be evaluated (act 1930).

The user may determine that a word length for a variable is
inadequate. For example, the user may determine that a bin
includes an inacceptable number of overflows. The user may
interactively modity a word length for the variable while the
program code executes (act 1935). Embodiments may sup-
port modifying word lengths without affecting underlying
data produced by executing code or embodiments can be
configured to manipulate program code based on a user’s
interactions with a CHDS tool. While program code executes,
the user may determine that signedness for the variable
should be modified. For example, the user or computer 110
may determine that the signedness should be changed from
“auto” to “signed”. The user may interactively modify the
signedness for the variable using a pointing device (act 1940).
The user may observe how characteristics of bins making up
the register for a variable change based on the modified sign-
edness for the variable.

The user or computer 110 may determine that scaling for a
variable should be modified and may modify scaling for the
variable using the design tool (act 1945). A determination
may be made as to whether occurrences of overflows and/or
underflows are acceptable (act 1950). In a first embodiment,
computer 110 may programmatically determine whether
occurrences of overflows/underflows are acceptable by com-
paring measured overflows/undertlows with threshold values
that identify acceptable counts.

In a second embodiment, a user may visually inspect col-
ors, shading, etc., associated with register bins to determine
whether counts for overflows and/or underflows are accept-
able. Adjustments may be made to a word length for a variable
when overflow/underflow rates are unacceptable (act 1955).
Alternatively, or in addition to adjusting a word length, an
embodiment may adjust a fraction length for the variable to
modify overflow/underflow occurrences (act 1960).

When adjustments have been made to registers storing
information associated with variables in executed code, it
may be determined whether a design satisfies design require-
ments (act 1965). A design may be verified using verification
techniques when the design satisfies design requirements (act
1970). A verified design may be deemed acceptable for a
deployed application, such as deployment in an embedded
system that includes one or more registers.

Code may be generated for a design using code generation
techniques (act 1975). Generated code may be tested and/or
verified before deploying the generated code in a target envi-
ronment 130. When generated code is determined to be sat-
isfactory, the generated code can be deployed in target envi-
ronment 130 (act 1980). Target environment 130 may execute
the generated code to perform operations (act 1985).

Exemplary embodiments can be configured to provide a
user with recommendations as to how code should be

20

25

30

35

40

45

50

55

60

65

14

changed to achieve desired operation with registers. For
example, a user may manipulate aspects of fixed point regis-
ters using a CHDS tool as floating point program code
executes. The user may settle on a register size and configu-
ration that satisfies design requirements in terms of under-
flows and overtlows. The CHDS tool may provide the user
with recommendations on portions of program code that
should be changed in order to achieve the desired fixed point
operation. For example, the tool may recommend that the data
type of a variable “x” be changed to a certain fixed-point type.
A user may choose to accept the recommendation and may
apply the recommendation to the program code so that vari-
able x is set to the recommended fixed-point data type in the
code.

By way of example, a user may work with a program code
of a model that includes numeric types that are software
objects configured to hold signed/unsigned information, a
word length, and a fraction length. These numeric type
objects may be stored in a workspace as program code
executes. The CHDS tool may create a new data dictionary
based on operation of the program code and the changed
numeric type objects in the workspace. The CHDS tool may
allow the user to accept the new data dictionary so that the
new data dictionary can be used with subsequent execution of
the program code. Use of the new data dictionary may allow
the program code to satisfy a design requirement with respect
to registers used in the model.

Exemplary Architecture

FIG. 20 illustrates an exemplary computer architecture that
can be used to implement computer 110 of FIG. 1. FIG. 20 is
an exemplary diagram of an entity corresponding to computer
110. As illustrated, the entity may include a bus 2010, pro-
cessing logic 2020, a main memory 2030, a read-only
memory (ROM) 2040, a storage device 2050, an input device
2060, an output device 2070, and/or a communication inter-
face 2080. Bus 2010 may include a path that permits commu-
nication among the components of the entity.

Processing logic 2020 may include a processor, micropro-
cessor, or other types of processing logic (e.g., FPGA, GPU,
DSP, ASIC, etc.) that may interpret and execute instructions.
For an implementation, processing logic 2020 may include a
single core processor or a multi-core processor. In another
implementation, processing logic 2020 may include a single
processing device or a group of processing devices, such as a
processing cluster or computing grid. In still another imple-
mentation, processing logic 2020 may include multiple pro-
cessors that may be local or remote with respect each other,
and may use one or more threads while processing.

Main memory 2030 may include a random access memory
(RAM) or another type of dynamic storage device that may
store information and instructions for execution by process-
ing logic 2020. ROM 2040 may include a ROM device or
another type of static storage device that may store static
information and/or instructions for use by processing logic
2020. Storage device 2050 may include a magnetic, solid
state and/or optical recording medium and its corresponding
drive, or another type of static storage device that may store
static information and/or instructions for use by processing
logic 2020.

Input device 2060 may include logic that permits an opera-
tor to input information to the entity, such as a keyboard, a
mouse, a pen, a touchpad, an accelerometer, a microphone,
voice recognition, camera, neural interface, biometric mecha-
nisms, etc. In an embodiment, input device 2060 may corre-
spond to input device 125.

US 8,365,088 B1

15

Output device 2070 may include a mechanism that outputs
information to the operator, including a display, a printer, a
speaker, a haptic interface, etc. In an embodiment, output
device 2070 may correspond to display device coupled to
computer 110. Communication interface 2080 may include
any transceiver-like logic that enables the entity to commu-
nicate with other devices and/or systems. For example, com-
munication interface 2080 may include mechanisms for com-
municating with another device or system via a network.

The entity depicted in FIG. 20 may perform certain opera-
tions in response to processing logic 2020 executing software
instructions stored in a computer-readable storage medium,
such as main memory 2030. A computer-readable storage
medium may be defined as a physical or logical memory
device. The software instructions may be read into main
memory 2030 from another computer-readable storage
medium, such as storage device 2050, or from another device
via communication interface 2080. The software instructions
contained in main memory 2030 may cause processing logic
2020 to perform techniques described herein when the soft-
ware instructions are executed on processing logic. Alterna-
tively, hardwired circuitry may be used in place of or in
combination with software instructions to implement tech-
niques described herein. Thus, implementations described
herein are not limited to any specific combination of hardware
circuitry and software.

Although FIG. 20 shows exemplary components of the
entity, in other implementations, the entity may contain
fewer, different, or additional components than depicted in
FIG. 20. In still other implementations, one or more compo-
nents of the entity may perform one or more tasks described
as being performed by one or more other components of the
entity.

Exemplary Distributed Embodiment

Distributed embodiments may perform processing using
two or more processing resources. For example, embodi-
ments can perform processing using two or more cores in a
single processing device, distribute processing across mul-
tiple processing devices installed within a single enclosure,
and/or distribute processing across multiple types of process-
ing logic connected by a network.

FIG. 21 illustrates an exemplary system that can support
distributed design and/or modeling applications that make
use of storage mechanisms. System 2100 may include com-
puter 110, network 140, service provider 2140, and cluster
2160. The implementation of FIG. 21 is exemplary and other
distributed implementations of the invention may include
more devices and/or entities, fewer devices and/or entities,
and/or devices/entities in configurations that differ from the
exemplary configuration of FIG. 21.

Service provider 2140 may include a device that makes a
service available to another device. For example, service pro-
vider 2140 may include an entity that provides one or more
services to a destination using a server and/or other devices.
Services may include instructions that are executed by a
destination to perform an operation. Alternatively, a service
may include instructions that are executed on behalf of a
destination to perform an operation on the destination’s
behalf.

Assume, for sake of example, that a service provider oper-
ates a web server that provides one or more web-based ser-
vices to a destination, such as computer 110. The web-based
services may allow computer 110 to perform CHDS assisted
design and/or analysis activities. For example, a user of com-
puter 110 may be allowed to evaluate the performance of

20

25

30

35

40

45

50

55

60

65

16

registers used by models side-by-side using the service pro-
vider’s hardware. In an implementation, a customer (user)
may receive services on a subscription basis. A subscription
may include substantially any type of arrangement, such as
monthly subscription, a per-use fee, a fee based on an amount
of information exchanged between service provider 2140 and
the customer, a fee based on a number of processor cycles
used by the customer, a fee based on a number of processors
used by the customer, etc.

Cluster 2160 may include a group of processing devices,
such as units of execution 2170 that can be used to perform
remote processing (e.g., distributed processing, parallel pro-
cessing, etc.). Units of execution 2170 may include hardware
and/or hardware/software based devices that perform pro-
cessing operations on behalf of a requesting device, such as
computer 110. In an embodiment, units of execution 2170
may each compute a partial result and the partial results can
be combined into an overall result for a model.

Embodiments operating in a standalone or in a distributed
implementation can perform activities described herein on
code/results associated with text-based computing and/or
modeling applications, such as, but not limited to, MAT-
LAB® by The MathWorks, Inc.; Octave; Python; Comsol
Script; MATRIXx from National Instruments; Mathematica
from Wolfram Research, Inc.; Mathcad from Mathsoft Engi-
neering & Education Inc.; Maple from Maplesoft; Extend
from Imagine That Inc.; Scilab from The French Institution
for Research in Computer Science and Control (INRIA);
Virtuoso from Cadence; or Modelica or Dymola from
Dynasim.

Embodiments can further perform activities described
herein on code/results associated with graphical modeling
environments, such as, but not limited to, Simulink®, State-
flow®, SimEvents™, etc., by The MathWorks, Inc.; VisSim
by Visual Solutions; LabView® by National Instruments;
Dymola by Dynasim; SoftWIRE by Measurement Comput-
ing; WiT by DALSA Coreco; VEE Pro or SystemVue by
Agilent; Vision Program Manager from PPT Vision; Khoros
from Khoral Research; Gedae by Gedae, Inc.; Scicos from
(INRIA); Virtuoso from Cadence; Rational Rose from IBM;
Rhapsody or Tau from International Business Machines
(IBM) Corporation; Ptolemy from the University of Califor-
nia at Berkeley; ASCET, CoWare, or aspects of a Unified
Modeling Language (UML) or SysML environment. Graphi-
cal modeling environments can include block diagrams and/
or other types of diagrams.

Embodiments may be implemented in a variety computing
environments, such as environments that support statically or
dynamically typed programming languages. For example, a
dynamically typed language may be one used to express
problems and/or solutions in mathematical notations familiar
to those of skill in the relevant arts. For example, the dynami-
cally typed language may use an array as a basic element,
where the array may not require dimensioning. These arrays
may be used to support array programming in that operations
can apply to an entire set of values, such as values in an array.
Array programming may allow array based operations to be
treated as a high-level programming technique or model that
lets a programmer think and operate on whole aggregations of
data without having to resort to explicit loops of individual
non-array, i.e., scalar operations. An exemplary embodiment
that uses a dynamically typed language may be implemented
in the Embedded MATLAB programming language that can
be used to create code for use in embedded applications.

CONCLUSION

Implementations may allow users to interactively design
configure and/or analyze storage mechanisms while program
code that interacts with the storage mechanisms executes.

US 8,365,088 B1

17

The foregoing description of exemplary embodiments of
the invention provides illustration and description, but is not
intended to be exhaustive or to limit the invention to the
precise form disclosed. Modifications and variations are pos-
sible in light of the above teachings or may be acquired from
practice of the invention. For example, while a series of acts
has been described with regard to FIG. 19, the order of the acts
may be modified in other implementations consistent with the
principles of the invention. Further, non-dependent acts may
be performed in parallel.

In addition, implementations consistent with principles of
the invention can be implemented using devices and configu-
rations other than those illustrated in the figures and described
in the specification without departing from the spirit of the
invention. For example, devices and/or entities may be added
and/or removed from the implementations of FIGS. 1, 20 and
21 depending on specific deployments and/or applications.
Further, disclosed implementations may not be limited to any
specific combination of hardware.

Further, certain portions of the invention may be imple-
mented as “logic” that performs one or more functions. This
logic may include hardware, such as hardwired logic, an
application-specific integrated circuit, a field programmable
gate array, a microprocessor, software, or a combination of
hardware and software.

No element, act, or instruction used in the description of the
invention should be construed as critical or essential to the
invention unless explicitly described as such. Also, as used
herein, the article “a” is intended to include one or more
items. Where only one item is intended, the term “one” or
similar language is used. Further, the phrase “based on,” as
used herein is intended to mean “based, at least in part, on”
unless explicitly stated otherwise.

Headings and sub-headings used herein are to aid the
reader by dividing the specification into subsections. These
headings and sub-headings are not to be construed as limiting
the scope of the invention or as defining the invention.

The scope of the invention is defined by the claims and their
equivalents.

What is claimed is:

1. One or more non-transitory computer-readable media
holding executable instructions that when executed on a pro-
cessor support interactions with bins of storage mechanisms
holding information associated with program code while the
program code executes, the media holding one or more
executable instructions for:

displaying a graphical user interface (GUI) comprising:

a first region for displaying program code containing a
plurality of variables, and

a second region for displaying graphical representations
for a plurality of storage mechanisms, where the plu-
rality of storage mechanisms includes at least:

a first representation having bin identifiers for repre-
senting bins that collectively make up a first storage
mechanism, and

a second representation having bin identifiers for rep-
resenting bins that collectively make up a second
storage mechanism;

executing the program code using the processor, where the

program code includes at least:

a first variable that interacts with the first representation
via the first storage mechanism when the program
code executes, and

a second variable that interacts with the second repre-
sentation via the second storage mechanism when the
code executes;

20

25

30

35

40

45

50

55

60

65

18

determining values for data written to the bins of the first

storage mechanism and to the bins of the second storage

mechanism;

representing the values for the bins of the first storage

mechanism and for the second storage mechanism using

a compact histogram density scale (CHDS), where the

CHDS uses:

a first color when the values are between an overflow
threshold and an underflow threshold for a respective
bin of the first storage mechanism or the second stor-
age mechanism,

a second color when the values exceed the overflow
threshold for the respective bin of the first storage
mechanism or the second storage mechanism, and

a third color when the values exceed the underflow
threshold for the respective bin of the first storage
mechanism or the second storage mechanism,

where,
an intensity of the first color, the second color, or the

third color varies based on a number of occurrences
of values for the respective bin when the program
code executes;

receiving an instruction, where the instruction is related to

the first representation;

changing a parameter associated with the first representa-

tion in response to the instruction; and

modifying, for the first representation, one or more of:

the first color by changing the intensity of the first color
for the respective bin of the first storage mechanism,

the second color by changing the intensity of the second
color for the respective bin of the first storage mecha-
nism, and

the third color by changing the intensity of the third color
for the respective bin of the first storage mechanism.

2. The media of claim 1, where the first storage mechanism
or the second storage mechanism is a register of bits repre-
senting a scaled integer for fixed-point arithmetic.

3. The media of claim 1, where the program code is MAT-
LAB-compatible program code or Simulink-compatible pro-
gram code.

4. The media of claim 1, further holding one or more
instructions for:

generating code for the program code.

5. The media of claim 1, where the modifying further
comprises:

changing a word length for the first storage mechanism,

changing a fraction length for the first storage mechanism,

changing the size of the first representation, or

changing an integer length for the first storage mechanism.

6. The media of claim 1, further holding one or more
instructions for:

displaying a bin window proximate to a bin identifier for

the first representation.

7. One or more non-transitory computer-readable media
holding executable instructions that when executed on a pro-
cessor display a compact histogram density scale (CHDS)
while program code interacts with a storage mechanism rep-
resented via the CHDS, the media holding one or more
executable instructions for:

displaying a first CHDS, where the first CHDS includes:

a plurality of display bins corresponding to bins of a
storage mechanism holding information for a portion
of'the program code when the program code executes,

a first color for the plurality of display bins, where the
first color has an intensity representative of a number
of occurrences for values of the plurality of display

US 8,365,088 B1

19
bins when the values are between an overflow thresh-
old and an underflow threshold for the bins of the
storage mechanism,

a second color for the plurality of display bins, where the
second color has an intensity representative of a num-
ber of occurrences for values of the plurality of dis-
play bins when the values exceed the overflow thresh-
old for the bins of the storage mechanism,

a third color for the plurality of display bins, where the
third color has an intensity representative of a number
of occurrences for values of the plurality of display
bins when the values exceed the underflow threshold
for the bins of the storage mechanism, and

an identifier for identifying a radix point associated with
the bins of the storage mechanism, where the identi-
fier is displaceable in response to an instruction; and

displaying at least a second CHDS, where:

the second CHDS includes a plurality of display bins,

the second CHDS and the first CHDS are included in a
first region of a graphical user interface (GUI), and

the second CHDS and the first CHDS modify a color or
an intensity for one or more of the plurality of display
bins for the first CHDS or the second CHDS when the
program code executes.

8. The media of claim 7, further holding one or more
instructions for:

changing a word length for the storage mechanism, or

changing a fraction length for the storage mechanism.

9. The media of claim 7, further holding one or more
instructions for:

modifying a word length or a fraction length for the storage

mechanism by displacing a visual affordance using a

pointing device.

10. The media of claim 7, where a word length and a
fraction length are changed with respect to a radix point in
response to a user input.

11. The media of claim 7, further holding one or more
instructions for:

displaying a guide proximate to the plurality of display

bins; and

resizing a word length, a fraction length, an integer length,

or a bin identifier size for the storage mechanism in

response to a user input, where the user input manipu-
lates a portion of the guide.

12. The media of claim 7, where the program code is
MATLAB-compatible or Simulink-compatible program
code.

13. A computer-implemented method for interacting with a
register representation when program code executes, the
method comprising:

receiving an instruction on behalf of a user, where the

instruction:

is associated with the register representation, where the
register representation includes a plurality of bins,

20

25

30

35

40

45

50

20

where the plurality of bins includes a compact histo-
gram density scale (CHDS), where:
the CHDS represents a number of occurrences of
values for data associated with respective ones of
the plurality of bins;
changes one or more of
a word length for the register,
a fraction length for the register,
an integer length for the register,
signedness for the register,
a color associated with the CHDS,
an intensity associated with the CHDS, and
an appearance of a bin for the register; and
displaying the plurality of bins for the register using a
display device, where:
the plurality of bins for the register are displayed in a
graphical user interface (GUI) that includes a plural-
ity of bins forming a register representation for a
second register, where the plurality of bins for the
second register represent values of the plurality of
bins using the CHDS, and
the displayed plurality of bins for the register reflects the
change to the one or more of the:
word length for the register,
fraction length for the register,
signedness for the register,
color associated with the CHDS,
intensity associated with the CHDS, and
appearance of a bin for the register.

14. The method of claim 13, further comprising:

receiving a debug instruction, where the debug instruction

is associated with a debugger operating on program code
generates the data values when the program code
executes.

15. The method of claim 13, further comprising:

generating code from program code, where the program

code generates the data values when the program code is
executed.

16. The method of claim 15, further comprising:

deploying the generated code to an embedded system,

where the embedded system includes a storage mecha-
nism corresponding to the register.

17. The method of claim 13, where the instruction is
received using a MATLAB-compatible environment or a
Simulink-compatible environment.

18. The method of claim 13, further comprising:

modifying the program code in response to a second

instruction, where the second instruction indicates that
information in the displayed plurality of bins satisfies a
design requirement.

19. The method of claim 18, further comprising:

executing the modified program code.

#* #* #* #* #*

