
(12) United States Patent
Rodriguez et al.

USOO8365088B1

(10) Patent No.: US 8,365,088 B1
(45) Date of Patent: Jan. 29, 2013

(54)

(75)

(73)

(*)

(21)

(22)

(51)

(52)

(58)

INTERACTIVE DESIGN ENVIRONMENT
HAVING DESIGN TOOLPORTION AND
DENSITY DISPLAY PORTION

Inventors: Julia Argentina Granada Rodriguez,
Needham, MA (US); Ashok Ruman
Charry, Shrewsbury, MA (US); Darel
Allen Linebarger, Southborough, MA
(US)

The MathWorks, Inc., Natick, MA
(US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 365 days.

Appl. No.: 12/924,660

Filed: Oct. 1, 2010

Int. C.
G06F 3/00 (2006.01)
U.S. Cl. 715/771; 365/185.2: 345/691;

712/5: 717/136
Field of Classification Search None
See application file for complete search history.

Simulation
Environment

120

Operating System
115

Computer, 110

Input Device(s)
125

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0231194 A1* 12/2003 Morgan et al. 345,691
2005, OO15755 A1 1/2005 Holmes et al. T17.136
2012/0151182 A1* 6/2012 Madajczak 712/5
2012/0213001 A1* 8/2012 Yang 365, 1852

* cited by examiner
Primary Examiner — Boris Pesin
Assistant Examiner — Ayesha Huertas Torres
(74) Attorney, Agent, or Firm — Nelson Mullins Riley &
Scarborough LLP
(57) ABSTRACT
Exemplary embodiments provide an interactive tool that
allows users to design and evaluate storage mechanisms
while program code executes. For example, an embodiment
uses compact histogram density scales (CHDSs) to display
count information forbins making up the storage mechanism
(e.g., a register). The user can determine whether counts are
within a desirable range, exceeding an overflow threshold, or
exceeding an underflow threshold for a bin. Embodiments
allow the user to observe overflowfunderflow thresholds,
signedness, word lengths, fraction lengths, etc., while pro
gram code that interacts with the register executes.

19 Claims, 40 Drawing Sheets
(36 of 40 Drawing Sheet(s) Filed in Color)

100

Target Environment
130

US 8,365,088 B1

Va

SD
U

U.S. Patent

US 8,365,088 B1

|

Sheet 2 of 40 Jan. 29, 2013 U.S. Patent

US 8,365,088 B1 Sheet 3 of 40 Jan. 29, 2013 U.S. Patent

US 8,365,088 B1 Sheet 4 of 40 Jan. 29, 2013 U.S. Patent

US 8,365,088 B1 Sheet 5 of 40 Jan. 29, 2013 U.S. Patent

(~zez

US 8,365,088 B1 Sheet 6 of 40 Jan. 29, 2013 U.S. Patent

&

3

US 8,365,088 B1 Sheet 7 of 40 . 29, 2013 Jan U.S. Patent

928 •

ul ºg annon
? ºzo, elanop |

Vý ‘61-I

.

US 8,365,088 B1 Sheet 8 of 40 Jan. 29, 2013

Y.

U.S. Patent

US 8,365,088 B1 U.S. Patent

US 8,365,088 B1 Sheet 10 of 40 Jan. 29, 2013 U.S. Patent

',

US 8,365,088 B1 Sheet 11 of 40 Jan. 29, 2013 U.S. Patent

US 8,365,088 B1 Sheet 12 of 40 Jan. 29, 2013 U.S. Patent

• • • • • • • • • • • • • ••••••****************?~~~~•••••*****************

Y Y

US 8,365,088 B1 Sheet 13 of 40 Jan. 29, 2013 U.S. Patent

5e ºs annon

«el

US 8,365,088 B1 Sheet 15 of 40 2013 Jan. 29 U.S. Patent

?staess

%% , 0'

US 8,365,088 B1 Sheet 16 of 40 Jan. 29, 2013 U.S. Patent

§ 29-å

US 8,365,088 B1 Sheet 17 of 40 Jan. 29, 2013 U.S. Patent

20$ ~~~~

US 8,365,088 B1 Sheet 18 of 40 2013 Jan. 29 U.S. Patent

US 8,365,088 B1 Sheet 19 of 40 Jan. 29, 2013 U.S. Patent

· · · % , : : · · · · •

US 8,365,088 B1 Sheet 20 of 40 Jan. 29, 2013 U.S. Patent

()

US 8,365,088 B1 Sheet 21 of 40 Jan. 29, 2013 U.S. Patent

!!!!!!!!!!!!!!!

US 8,365,088 B1 Sheet 22 of 40 Jan. 29, 2013 U.S. Patent

ael

US 8,365,088 B1 Sheet 23 of 40 Jan. 29, 2013 U.S. Patent

wo-seases

3333333

Sheet 24 of 40 2013 Jan. 29

%se :

vzor agnop |

US 8,365,088 B1 Sheet 25 of 40 Jan. 29, 2013 U.S. Patent

??

US 8,365,088 B1 Sheet 26 of 40 2013 Jan. 29 U.S. Patent

×o wo .

US 8,365,088 B1 Sheet 27 of 40 Jan. 29, 2013 U.S. Patent

US 8,365,088 B1 Sheet 28 of 40 Jan. 29, 2013 U.S. Patent

US 8,365,088 B1 Sheet 29 of 40 Jan. 29, 2013 U.S. Patent

.---~--~~~~--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sooooooooo-------------------

US 8,365,088 B1 Sheet 30 of 40 . 29, 2013 Jan U.S. Patent

US 8,365,088 B1 Sheet 31 of 40 Jan. 29, 2013 U.S. Patent

Six ---

US 8,365,088 B1 Sheet 32 of 40 2013 Jan. 29 U.S. Patent

agnop (

US 8,365,088 B1 Sheet 33 of 40 Jan. 29, 2013 U.S. Patent

|

US 8,365,088 B1 Sheet 35 of 40 Jan. 29, 2013 U.S. Patent

US 8,365,088 B1 Sheet 36 of 40 Jan. 29, 2013 U.S. Patent

%% ,

§§§§
nr

US 8,365,088 B1 Sheet 37 of 40 Jan. 29, 2013 U.S. Patent

„--~--~~~~~~~~

US 8,365,088 B1 Sheet 38 of 40 Jan. 29, 2013 U.S. Patent

||~ 0,8;
& _VT

iz ºg annon u ve ºdnoo?
wzo, ºdnop |

U.S. Patent Jan. 29, 2013

RECEIVE DESIGN RECUREMENTS
1905

LAUNCH DESIGN ENVIRONMENT
1910

LAUNCH INTERACTIVE DESIGN TOOL
1915

DISPLAY INITIAL DESGN
1920

DISPLAY DENSTY FOR DENTIFIED
BN
1925

EVALUATE INTEGER AND FRACTION
DENSTIES

1930

MODIFY WORD LENGTH FORWARIABLE
1935

MODIFY SIGNEDNESS FORWARIABLE
1940

MODIFY SCALING FORWARIABLE
1945

Sheet 39 of 40 US 8,365,088 B1

DETERMINE WHETHER OCCURRENCES
OF OVERFLOWS/UNDERFLOWS

SACCEPTABLE
1950

ADJUST WORD LENGTH
1955

ADJUST FRACTION LENGTH
1960

DETERMINE THAT DESIGN SATSFES
RECUREMENTS

1965

VERIFY DESIGN
1970

GENERATE CODE FOR DESGN
1975

DEPLOY GENERATED CODE IN
TARGET ENVIRONMENT

1980

EXECUTE GENERATED CODE IN
TARGET ENVIRONMENT

1985

Fig. 19

U.S. Patent Jan. 29, 2013 Sheet 40 of 40 US 8,365,088 B1

100
input Device awa-a-a-a-a- Memory ROM

2060 2030 2040

Output Devi Bus

Communication Processing
Interface X Logic Storage Device
2080 2020 2050

Fig. 20

100

S. Service Provider
2140

Remote Database
2150

110 140

Target Environment
130

Fig. 21

Cluster

US 8,365,088 B1
1.

INTERACTIVE DESIGN ENVIRONMENT
HAVING DESIGN TOOLPORTION AND

DENSITY DISPLAY PORTION

BACKGROUND INFORMATION

Techniques exist for displaying information to computer
users in ways that allow the users to gain an understanding
about characteristics of information making up a display. For
example, computer users employing design tools, such as
tools for designing fixed or floating point computing systems,
may wish to display information about the number of times a
particular bit in a register is written or read. Continuing with
the example, a user may be working with a fixed point register
having a width of 8 bits. When designing a system that will
use the register, the user may wish to know how many times
each of the 8 bits is written or read for a particular design. In
this example, the user may run a simulation of the system and
then access simulation results containing data written to and
read from the register as well as information about other
register interactions.

In conventional design systems, the user may visualize
simulation results/information using histogram displays that
show a number of occurrences or events associated for each
bit, or bin, of the register. The amplitude of displayed infor
mation in the histogram may vary depending on the number
of occurrences for a respective bin. When a user is working
with systems having more than one register, the user may
have to toggle between histograms for each register because
histogram displays typically take up a relatively large portion
of an available display area. For example, when histograms
are displayed in a small window, information displayed in the
histogram can become so compressed that a user cannot glean
relevant simulation details from the small window.

Toggling between appropriately sized histogram display
windows can make it difficult for the user to make compari
Sons from one register to another because information for the
two or more registers cannot be displayed simultaneously.
Also, one or more histogram display windows may occupy so
much display area that the user may be unable to display other
types of information that might be useful for determining
whethera design is satisfactory. For example, a user may wish
to see code associated with variables stored in the registers,
debugging information associated with the registers, over
flow and/or underflow information for the registers, etc. The
user may be unable to view adequate quantities/types of other
information because the histogram display windows occupy
too much of the available display area.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more embodiments of the invention and, together with the
description, explain the invention. The patent or application
file contains at least one drawing executed in color. Copies of
this patent or patent application publication with color draw
ing(s) will be provided by the Office upon request and pay
ment of the necessary fee. In the drawings,

FIG. 1 illustrates an exemplary system for practicing
embodiments of the invention;

FIG. 2A illustrates an exemplary compact histogram den
sity scale that can be used with embodiments of the invention;

FIG. 2B illustrates an exemplary legend that can be used to
provide information about aspects of a compact histogram
density Scale display;

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 2C illustrates an exemplary bin display feature that

can be used with embodiments of the invention;
FIG. 2D illustrates exemplary bin selector features that can

be used to display and/or manipulate information associated
with a histogram density scale;

FIGS. 3A and 3B illustrate an exemplary implementation
of a compact histogram density Scale;

FIGS. 4A-4C illustrate an exemplary implementation of a
compact histogram density scale display that can be used to
display information about variables in a program;

FIGS. 5A-7B illustrate an exemplary implementations for
displaying bin count information for a compact histogram
density scale;

FIGS. 8A-8C illustrate an exemplary implementation for
changing word length information associated with a compact
histogram density Scale;

FIGS. 9A-9B illustrate an exemplary implementation for
changing the signedness information associated with a com
pact histogram density Scale;

FIGS. 10A and 10B illustrate an exemplary implementa
tion for splitting a display region of a compact histogram
density scale;

FIGS. 11A and 11B illustrate an exemplary implementa
tion for changing a word length associated with a compact
histogram density Scale;

FIGS. 12A and 12B illustrate an exemplary implementa
tion for changing a fraction length from a userspecified value
to an automatically determined value, where the parameter is
associated with compact histogram density Scale;

FIGS. 13A and 13B illustrate an exemplary implementa
tion for manipulating a signed bit and for an auto Scaling
feature of a compact histogram density Scale;

FIGS. 14A and 14B illustrate an exemplary implementa
tion that can be used to eliminate overflows for a fixed point
register associated with a compact histogram density Scale;

FIGS. 15A and 15B illustrate an exemplary implementa
tion that provides an interactive bin selector for manipulating
information associated with a compact histogram density
scale;

FIGS. 16A and 16B illustrate an exemplary implementa
tion for manipulating a word length via a shifting operation
for a compact histogram density scale;

FIGS. 17A-18E3 illustrate an exemplary implementation
that allows for independently changing the word length and
the fraction length for a register associated with a compact
histogram density Scale;

FIG. 19 illustrates exemplary processing that can be used
for implementing aspects of the invention;

FIG. 20 illustrates an exemplary architecture for imple
menting embodiments of the invention in computational
devices; and

FIG. 21 illustrates an exemplary system for implementing
a distributed implementation of the invention.

DETAILED DESCRIPTION

The following detailed description of implementations
consistent with principles of the invention refers to the
accompanying drawings. The same reference numbers in dif
ferent drawings may identify the same or similar elements.
Also, the following detailed description does not limit the
invention. Instead, the scope of the invention is defined by the
appended claims and their equivalents.

Overview

Exemplary embodiments provide an interactive design
and/or analysis environment for allowing a user to design and

US 8,365,088 B1
3

evaluate systems employing storage mechanisms, such as
registers. For example, a user may be designing an embedded
system that makes use of four fixed-point registers for storing
information in the embedded device. The user may wish to
use the Smallest register size (e.g., register having the fewest 5
number of bits) to minimize manufacturing costs and to
improve performance of the embedded device. A satisfactory
design may require that the selected register size does not
exceed a threshold for overflows or underflows in the bits,
making up the register. 10

Conventional design techniques and tools may force a user
to perform iterative design attempts to come up with a small
est register size that satisfies design criteria. For example, the
user may need to pick a register size, simulate the embedded
system by running code for the system, and then access simu- 15
lation results to determine whether any bins had overflows or
underflows, and if so whether the number of overflowsfun
derflows was acceptable. When a selected register size is
determined to be inadequate, the user may have to manually
pick a larger register size. In other situations, the user may 20
have to manually move the radix point within a register to
vary the integer length (the register portion to the left of the
radix point) with respect to the fraction length (the register
portion to the right of the radix point).
The user of a conventional technique/tool may have to 25

rerun the simulation using the new register size and/or word/
fraction lengths to produce a new simulation result. The user
may have to manually access the simulation result and, for
example, look at a conventional histogram display for each
register of the embedded system by cycling through indi- 30
vidual histogram display windows using a pointing mecha
nism or technique, such as a mouse, track ball, touch sensitive
display, etc.

Exemplary embodiments of the invention allow a user to
interactively design, analyze and/or simulate systems 35
employing storage mechanisms. Such as registers represent
ing fixed-point data types. Exemplary embodiments allow a
user to simulate a system having a plurality of registers using
a model. Embodiments further allow the user to observe
information about bins making up the registers while a simu- 40
lation of the system progresses. For example, an embodiment
can provide a compact histogram density Scale (CHDS) dis
play for four fixed-point registers used in an embedded sys
tem simulation. The embodiment may use representations of
the registers with the model as opposed to actual hardware 45
registers. Alternatively, the embodiment can be configured to
interact with actual hardware registers if desired.
The CHDS displays can present a user with information

about the number of times data is written to respective bins
making up a register. For example, a CHDS can be used to log 50
data at a number of sample times when values for the data
change with each write and when values for the data do not
change. Embodiments may allow a user to determine how
many times a value for data in a bin changed, how many times
data for the bin was written, etc. 55

Embodiments can further represent types of information or
occurrences of events using display techniques such as vary
ing colors, varying intensities of colors, varying patterns or
shadings, varying symbols, etc. The CHDS allows the user to
view the four registers at the same time using a single display 60
Surface. Such as a window, pane, region, etc. Moreover, the
user can view CHDS for the registers along with program
code containing variables stored in the registers.

Embodiments may be configured to support workflows
employed by users working with registers. For example, 65
embodiments may allow a user to execute code using floating
point computations. The user may use a CHDS tool to operate

4
as a fixed point lens with respect to the floating point data.
This lens may allow the user to determine whether a register
of a certain length will satisfy a design requirement without
actually affecting the floating point data. When the user deter
mines that a given register size will satisfy a design require
ment, the user may modify floating point code to operate with
fixed point registers. The user may execute the fixed point
code and may evaluate performance of the code using the
CHDS tool.

Embodiments may further be configured to allow the user
to manipulate characteristics of registers as a simulation
progresses. For example, an embodiment may allow a user to
move a radix point in a register, change the size of a register,
cause registers to auto Scale, etc., while a simulation is run
ning. Embodiments may allow the user to manipulate CHDS
related display characteristics without affecting the underly
ing data being produced by executing program code. Embodi
ments may further allow a user to obtain detailed information
aboutbins in a registerby, for example, mousing overabin. In
this embodiment, a pop-up window, balloon, etc., may be
displayed and may contain detailed information about the bin.

Exemplary embodiments may support other aspects of user
workflows, such as code generation, code Verification and/or
validation, code deployment, system testing, etc.

Exemplary System

FIG. 1 illustrates an exemplary system 100 for practicing
an embodiment. For example, system 100 may be used to
design, simulate, test, and/or deploy systems having one more
storage mechanisms. System 100 may include computer 110.
input device 125, network 140, and target environment 130.
The system in FIG. 1 is illustrative and other embodiments of
system 100 can include fewer devices, more devices, and/or
devices in configurations that differ from the configuration of
FIG 1.
Computer 110 may include a device that performs process

ing operations, display operations, communication opera
tions, etc. For example, computer 110 may include logic, Such
as one or more processing or storage devices, that can be used
to perform and/or Support processing activities on behalf of a
user. Embodiments of computer 110 may include a desktop
computer, a laptop computer, a client, a server, a mainframe,
a personal digital assistant (PDA), a web-enabled cellular
telephone, a Smartphone, Smart sensor/actuator, or another
computation or communication device that executes instruc
tions for performing one or more activities and/or to generate
one or more results.
Computer 110 may further perform communication opera

tions by sending data to or receiving data from another device,
such as a server (not shown in FIG. 1). Data may refer to any
type of machine-readable information having Substantially
any format that may be adapted for use in one or more net
works and/or with one or more devices. Data may include
digital information or analog information. Data may further
be packetized and/or non-packetized.
An embodiment of computer 110 may include simulation

environment 120 and operating system 115. Simulation envi
ronment 120 may provide a computing environment that
allows users to perform simulation or modeling tasks related
to disciplines, such as, but not limited to, mathematics, sci
ence, engineering, medicine, business, etc. Simulation envi
ronment 120 may support one or more applications that
execute instructions to allow a user to construct a model
having executable semantics. In an embodiment, simulation
environment 120 may execute the model to produce a result.

US 8,365,088 B1
5

Models used with exemplary embodiments of the inven
tion may include information in a textual or graphical form.
For example, a model may be a textual model or graphical
model that can be a time-based model (e.g., differential equa
tion models, difference equation models, discrete-time mod
els, or continuous-time models with or without algebraic
constraints, etc.), event-based model, state transition model,
data flow model, component diagram, entity flow diagram,
equation-based language diagram, etc.

In an embodiment, simulation environment 120 can
include a component, such as a Software module, that pro
vides capabilities for displaying CHDS representations for
registers associated with a system being simulated. The
CHDS component can provide capabilities for displaying
information about registers, for allowing a user to interac
tively manipulate characteristics of registers, for allowing
computer 110 to programmatically scale registers on behalf
of a user, etc.

Operating system 115 may manage hardware and/or soft
ware resources associated with computer 110. For example,
operating system 115 may manage tasks associated with
receiving user inputs, operating computer 110, allocating
memory, prioritizing system requests, etc. In an embodiment,
operating system 115 may be a virtual operating system.
Embodiments of operating system 115 may include Linux,
Mac OS, Microsoft Windows, Solaris, UNIX, etc. Operating
system 115 may further run on a virtual machine, which can
be provided by computer 110.

Computer 110 can further include one or more display
devices for displaying information to a user. In an embodi
ment, the display may include a cathode ray tube (CRT),
plasma display device, light emitting diode (LED) display
device, liquid crystal display (LCD) device, etc. Embodi
ments of the display may be configured to receive user inputs
(e.g., via a touch sensitive screen) when desired. In an
embodiment, the display can provide one or more graphical
user interfaces (GUIs) to a user. The GUIs may display a
model, inputs for a model (e.g., user specified objectives,
constraints, display characteristics, etc.), model outputs,
graphical representations of registers, representations for
data associated with a bin of a register, and/or other types of
information to a user.

Input device 125 may include logic to receive input from a
user. For example, input device 125 may transform a user
motion or action into a signal or message that can be inter
preted by computer 110. Input device 125 can include, but is
not limited to, keyboards, pointing devices, biometric
devices, accelerometers, microphones, cameras, haptic
devices, etc.

Network 140 may include any network capable of trans
ferring data (e.g., packet data or non-packet data). Implemen
tations of network 140 may include local area networks
(LANs), metropolitan area networks (MANs) and/or wide
area networks (WANs), such as the Internet, that may operate
using Substantially any network protocol. Such as Internet
protocol (IP), asynchronous transfer mode (ATM), synchro
nous optical network (SONET), user datagram protocol
(UDP), IEEE 802.10, etc.
Network 140 may include network devices, such as rout

ers, switches, firewalls, and/or servers (not shown). Network
140 may be a hardwired network using wired conductors
and/or optical fibers and/or may be a wireless network using
free-space optical, radio frequency (RF), and/or acoustic
transmission paths. In an implementation, network 140 may
be a substantially open public network, Such as the Internet. In
another implementation, network 140 may be a more
restricted network, Such as a corporate virtual network.

10

15

25

30

35

40

45

50

55

60

65

6
Implementations of networks and/or devices operating on
networks described herein are not limited to any particular
data type, protocol, architecture/configuration, etc. For
example, in an embodiment, network 140 may be a quantum
network that uses quantum-compatible networking proto
cols.

Target environment 130 may include logic that executes
instructions to perform one or more operations. In an embodi
ment, target environment 130 can include registers for storing
information and processing logic adapted to execute code
generated from one or more models. In an embodiment, target
environment 130 can include real-time logic for performing
processing operations in real-time. For example, target envi
ronment 130 may include a real-time operating system and
hardware that are configured to process received signals or
events in real-time or to execute simulations in real-time.

Exemplary embodiments of target environment 130 can
include field programmable gate arrays (FPGAs), application
specific integrated circuits (ASICs), application specific
instruction-set processors (ASIPs), digital signal processors
(DSPs), graphics processor units (GPUs), programmable
logic devices (PLDs), etc. Target environments 130 can fur
ther include a single processor that includes two or more types
of logic, such as cores. Target environments 130 can be con
figured to Support multi-threaded or multi-process applica
tions using FPGAs, ASICs, ASIPs, DSPs, GPUs, PLDs,
cores, etc.

Exemplary Compact Histogram Density Scale

FIG. 2A illustrates an exemplary graphical representation
for a register 200. Register 200 can include histogram density
information within regions of a register representation, which
in FIG. 2A is made up of square regions arranged side-by
side. For example, a register may be divided into bins where
each bin represents a bit for the register. By way of example,
representation 200 may depict a fixed point register having an
integer region consisting of four bits as depicted by element
222. The integer portion may store values that are whole
number and that reside to the left of a radix point 208 (also
referred to as decimal point 208). Register 200 may include a
most significant bin (MSB) 204 based on power of two scal
ing and least significant bin (LSB) 216. MSB 204 may be a
leftmost bin in FIG.2A and LSB 216 may be a rightmost bin.
FIG. 2A may also include an MSB identifier 202 and an LSB
identifier 218.

Bins may include coloring or shading to represent overflow
occurrences, and this coloring/shading may be referred to as
overflow indicator. MSB 2.04 may further include a border, or
other indicator, to indicate the signedness of the fixed point
type for the bin. For example, a signed bit indicator may
identify signedness in FIG. 2A using a border around a bin.

Register 200 may further be associated with a word length
indicator 210 that indicates the word length of the fixed-point
type in register 200. Word length indicator 210 may be a
visual affordance in an embodiment of the invention. Register
200 may use display techniques to identify bin values that are
within a determined range. For example, a bin may use a first
color shade to indicate low counts of binned data and a second
color shade that may be darker, or denser, than the first color
shade to indicate high counts of binned data.
Embodiments may use an in-range indicator 212 to iden

tify a number of binned values with respect to one or more
thresholds. For example, a light color shade may indicate low
counts of binned data and a darker shade of the color may
indicate higher counts. In this embodiment, all shades of a
color, e.g., blue, may indicate that binned data is in range. A

US 8,365,088 B1
7

second color, such as red, may indicate that binned data
exceeds an upper threshold of the range, and a third color,
such as yellow, may indicate that binned data is below a lower
threshold of the range. In an embodiment, an overflow indi
cator and an underflow indicator may be used to identify
overflows (e.g., red) and/or underflows (e.g., yellow), respec
tively.

Embodiments may include a continuity indicator 214 to
indicate that a CHDS displayed to a user is longer than a
distance allocated for displaying the CHDS. For example,
ellipses or another type of indicator may be used to indicate
that a left portion of a displayed CHDS is related to a right
portion of a displayed CHDS even though the left and right
portions may be separated by a distance.

Embodiments may further use fractional bins 220 that can
include values that are fractional quantities that reside to the
right of the radix point. Fractional bins 220 may be associated
with a fractional bin indicator that can include a visual iden
tifier, e.g., a horizontal line drawn with respect to a CHDS.

Embodiments may provide a user with information about
various aspects of a CHDS, such as names for portions of the
CHDS or for information displayed in the CHDS. For
example, a user may select a help feature associated with a
CHDS tool and may be presented with a legend as shown in
FIG. 2B. The legend may provide the user with names,
numerical identifiers and explanations about aspects of the
CHDS tool. Embodiments of the legend may be interactive or
may be static depending on a configuration of the tool.

Referring to FIG. 2C, a user may interact with a histogram
density bin 224 and a CHDS tool may provide the user with
information about the bin. For example, a user may employ a
pointing device, such as a mouse for interacting with aspects
of a CHDS. When a cursor for the mouse passes over or
hovers proximate to bin 224, the user may be presented with
a window 225 that includes information about bin 224. For
example, window 225 of FIG. 2C may include bin label 226
that can display information about bin 224 using power 2
scaling. Window 225 can further include signedness indicator
228 for identifying sign information for bin 224, and binned
data 230 for presenting information about data in bin 224,
Such as but not limited to, count information (e.g., data) and
occurrence information that can be displayed as a percentage
of total occurrences for a CHDS.

FIG. 2D illustrates other interactive aspects of an exem
plary CHDS. A user may hover proximate to an identifier for
a radix point 223. Such as a triangular icon, and may be
presented with window 234 containing information related to
the location of radix point 223. For example, a user may be
presented with a word length size and a fraction length size. In
an embodiment, the sizes can be provided in terms of bits.

Exemplary embodiments may include interactive bin
selector 232 that can identify a word length line that allows
the user to interactively change a word length for a displayed
CHDS. The word length line may include an icon to the left of
a radix point. For example, an embodiment can use an icon, or
identifier, that is a dot or other shape. Embodiments can
further include a fraction length resize 236 that can be used to
determine a fraction length or to change a fraction length
associated with a register displayed via a CHDS. An integer
length resize 238 may allow a user to change an integer length
for a register displayed via a CHDS. Selector 232 and resizers
236 and 238 can be visual affordances that can be manipu
lated by a user.

FIG. 3A illustrates an exemplary implementation of a
CHDS. Display 300 may include an interactive CHDS region
302. Region 302 may include information related to registers
that are written to or read from when code for a program is

10

15

25

30

35

40

45

50

55

60

65

8
executed. Embodiments of CHDS tools can be used with
simulation code or application code that runs, for example, in
an embedded system containing registers.

FIG. 3B illustrates region 302 of FIG. 3A in greater detail.
Region 302 can include variable field 304 that can identify
information about variables associated with registers dis
played in region 302. For example, program code may
include variables u, Z, and y that are each associated with a
register displayed in register field 310, also log 2histogram
field in FIG. 3B. Region 302 may further include class field
306 that contains information about a class of a variable, such
as double, single, etc. Size field 308 includes information
about a size of a variable. Size information can be provided in
number of elements, bytes, bits, etc.

Signedness field 312 includes information about the sign
edness of data associated with a register in region 302.
Embodiments may allow signedness to be determined auto
matically, to be unsigned (i.e., not allowed to have negative
values), etc. Word length field 314 may include information
indicating a word length for a variable or register in region
302. Word length and fraction length field 316 may include
information identifying a fraction length for a variable or
register in region 302. Fraction lengths may be programmati
cally specified by computer 110 or may be specified by a user.
Minimum value field 322 may include information identi

fying a minimum value of data associated with a variable of
region 302, and maximum value field 324 may include infor
mation identifying a maximum value of data for the variable.
Overflow field 326 may include information indicating a
number of overflows, and underflow field 328 may include
information indicating a number of underflows for data
observed with a register. In an embodiment, overflow and
underflow information may be displayed as a percentage of a
total count.

Region 302 may include options that can be selected by a
user via a pointing device. For example, auto Scale 318 may
allow a user to specify that parameters associated with regis
ters in region 302 should be auto scaled programmatically by
computer 110. Show expressions 320 may show expressions
associated with variables in region 302 when selected by a
USC.

Radix point 340 may include a symbol, shape, letter, or
other type of identifier for indicating the location of a radix
point for a register in region 302. Register region 330 may
designate a portion of region 302 in which bins for a register,
a MSB value, and an LSB value can be displayed.

FIG. 4A illustrates an embodiment that can include a
graphical user interface 400 for allowing a user to interact
with code and/or registers. Interface 400 may include drop
down menus 402 that allow a user to quickly access common
functionality associated with interface 400. Drop down
menus 402 may, for example, allow the user to create or save
files; cut, copy or paste information into interface 400; debug
or execute code; etc.

Interface 400 may further include directory region 404 that
can occupy a portion of interface 400. Region 404 may
include file system information, such as file names, folder
names, file paths, directory paths, etc. Interface 400 can also
include workspace region 406 that includes information
about variables used in program code executed using inter
face 400. Region 406 can include variable names, size infor
mation for variables, and/or icons associated with variables.

Interface 400 can also include program region 410 for
displaying program code to a user. Region 410 can allow a
user to interact with displayed code and to perform operations
on the code, such as running code, debugging code, annotat
ing code, creating code, editing code, etc. For example, region

US 8,365,088 B1
9

410 can include program code 408 that includes variables
associated with information stored in registers illustrated in
region 302 of interface 400.

FIG. 4B illustrates program code 408 in greater detail. For
example, program code 408 includes variables u, Z, and y that
are respectively associated with registers in region 302 of
FIG. 4C. In an embodiment, variable identifiers (e.g., names)
in region 302 may appear in the order in which they occur in
program code 408. For example, variable field 304 includes
variables u, Z, and y displayed in the order in which they
appear in program code 408 of FIG. 4B. Code 408 may be
configured to perform floating point or fixed point computa
tions as determined by a user.

FIG. 5A illustrates an embodiment in which region 302
includes a bin label. FIG.5B illustrates region302 of FIG.5A
in greater detail. A user may move a cursor over a segment of
a CHDS. Label window 510 may be displayed when cursor
520 is proximate to a bin of a register, e.g., a register storing
data associated with variable u. Label window 510 may dis
play information about a bin to the user. For example, label
window 510 may display bin label information 530 identify
ing a particular bin for which displayed data is associated.
Label window 510 may further display signed bit information
540, count information 550, and occurrence information 560.

FIG. 6A illustrates an embodiment displaying a label win
dow for a bin adjacent to the bin of FIGS.5A and 5B. A user
may move a cursor to the right of the 2' bin so that the cursor
is proximate to the 2' bin. Referring to FIG. 6B, bin label
information 530 may identify the 2' bin, count information
550 may identify bin counts for the 2' bin, and occurrence
information 560 may identify information about bin counts as
a percentage of, for example, total bin counts for a register.

FIG. 7A illustrates an embodiment displaying a label win
dow for a bin to the right of a radix point. FIG. 7B illustrates
the contents of region 302 of FIG. 7A in greater detail. Refer
ring to FIG. 7B, a user may move cursor 340 to the right with
respect to the cursor position of FIG. 5B. Cursor 340 may be
proximate to the 2' bin and label window 510 may display
information for the 2' bin, such as bin label 530, count
information 550, and occurrence information 560.

FIG. 8A illustrates an embodiment that allows for chang
ing a word length of a register. FIG. 8A illustrates region 302
in an embodiment that allows a user to change a word length
for one or more registers containing CHDS data. Referring to
FIG. 8B, which shows region 302 of FIG.8A in greater detail,
a user may position a cursor proximate to word length iden
tifier810 for a register storing data for variable u. A bin, such
as bin 820, for the register may include CHDS data of a first
color or shade which may indicate that data for the bin is
between a lower threshold defining underflows and an upper
threshold defining overflows. An initial word length for reg
ister 820 may be 18 bits as shown in FIG. 8B.
The user may select word length identifier 810 and may

change the word length value to, for example, 16 bits as
shown in FIG. 8C. Changing a word length for a register may
cause statistics for the register to change. For example, over
flows for the register of variable u may be 0% when the word
length is 18 bits (FIG. 8B). However, the overflows may rise
to, for example, 33% when the word length is changed to 16
bits as shown by element 850 of FIG. 8C.
A bin for the register, such as bin 840, may include CHDS

data having a shade or color that differs from the shade or
color of bin 820 in FIG.8B. The shade or color of bin 840 may
differ from that of bin 820 to indicate the presence of over
flows when the word length for the register is 16 bits. Embodi
ments, such as the one shown in FIGS. 8A-8C, provide a user
with real-time feedback with respect to the operation of reg

5

10

15

25

30

35

40

45

50

55

60

65

10
isters when parameters associated with the registers are
manipulated. Real-time as used herein can refer to response
times that are sufficiently fast so as not to adversely affect a
users interactions with a tool, application, etc., and/or so as
not to discourage the user from making use of interactive
capabilities of the tool, application, etc.

FIG. 9A illustrates an embodiment that allows for chang
ing the signedness of a register. FIG. 9A illustrates an
embodiment of region 302 that includes registers for which
the signedness of CHDS data in the registers can be changed.
FIG.9B illustrates region 302 of FIG.9A in greater detail. A
user may place a cursor proximate to a signedness identifier
910 for a register displayed in region 302. The user may select
identifier 910 and a drop down menu may be provided that
offers the user valid selections for the register. For example,
the user may select identifier 910 and may select “unsigned
and “unsigned’ may be loaded into identifier 910 (FIG.9C).
When unsigned is specified, values for variable Z may be
unrepresentable and may further translate into overflows. In
FIGS. 9A-9B, the overflows for the register of variable Z may
be 0% (element 920 in FIG.9B); however, when unsigned is
selected, overflows for the register may increase to 12%.
Embodiments may allow a user to changed signedness for a
register without affecting underlying data associated with
executing program code.

FIG. 10A illustrates an embodiment in which a register bin
containing CHDS data can be partitioned into an upper por
tion and a lower portion. In some situations, a user may wish
to detect overflows in a positive direction (e.g., greater than
Zero) and overflows in a negative direction (e.g., less than
Zero). FIG. 10B illustrates region 302 of FIG. 10A in greater
detail. The CHDS of variable Z may use the same colors
and/or shading with unsigned values as was used when sign
edness field 312 was specified as “auto”. In FIG. 10B, the
lower regions for the 2' and 2' bins (i.e., the leftmost bins in
FIG. 10B for the register of variable z) may include coloring/
shading that indicates overflows in the negative direction
(negative values). The overflows may further be reflected by
the number 12% in overflow field 326.
The embodiment of FIG. 10B may further allow a user to

change other parameters associated with registers displayed
in region 302. For example, the user may be able to change a
word length using an interactive bin selector 1050. In FIG.
10B a word length for variable y may be 36 bits as shown by
identifier 1030 and a fraction length may be 32 bits as shown
by identifier 1040. A word length of 36 bits and a fraction
length of 32 bits may maintain an overflow percentage of 0%
as shown by identifier 1060.

FIG. 11A illustrates an embodiment that allows a user to
change a word length and fraction length for a register asso
ciated with a variable. FIG. 11B shows region 302 of FIG.
11A in greater detail. A bin, such as 2", may indicate an
overflow (element 1190) by showing a color, such as red. The
overflow may occur when the fraction length is set to
“specify” and 16 bits. Region 302 may include an identifier
1180 that indicates the length of a fractional part of the reg
ister, here 16 bits.
A cursor may be used to select and toggle fraction length

identifier 1170 for variableu. For example, a user may change
identifier 1170 from “specify” to “auto’, where auto causes
the fraction length to automatically scale so as to achieve a
desired overflow or under flow rate. The embodiment of FIG.
11B may further allow a user to change a word length for a
register associated with variable y from 36 bits (as shown in
FIG. 10B) to 32 bits in FIG. 11B. The user may also change
the fraction length for the register from 30 bits (as shown in
FIG.10B) to 32bits as shown in FIG. 11B via identifier 1140.

US 8,365,088 B1
11

Changing the word length from 36 bits to 32 bits for variable
y may cause an overflow value to go from 0% (FIG. 10B) to
2.5% (FIG. 11B) as indicated by identifier 1160.

FIG. 12A illustrates an embodiment that allows for chang
ing a fraction length parameter from a user specified value to 5
an auto-scaled value. FIG. 12B illustrates region 302 of FIG.
12A in greater detail. In FIG. 12B, a user may toggle identifier
1270 from “specify” to “auto’. For example, a user may have
specified that the fraction length be 16 bits (FIG. 11B) for
variable u. The user may decide to allow a system to auto- 10
scale the fraction length for the register storing data for vari
able u and may change identifier 1270 from “specify” to
“auto' using a pointing device.
When auto is specified, a fraction length value 1210 may

change from 16 (FIG. 11B) to 14 (FIG. 12B). The new value 15
of the fraction length may also be displayed proximate to
register bins as shown by identifier 1280. Decreasing the
fraction length may allow more bits to be used for the integer
length which may reduce overflows from 33% (FIG. 11B) to
0% (FIG.12B) for variable u. The increased word length may 20
change bin data, e.g. 2' bin shown by identifier 1290, from a
first color (e.g., red) in FIG. 11B to a second color (e.g., dark
blue) in FIG. 12B.

FIG. 13A illustrates an embodiment that allows a user to
change signedness and a scaling parameter for a register. FIG. 25
12B illustrates region 302 of FIG. 12A in greater detail. In
FIG. 12B, a user may wish to change parameters for variable
Z using a pointing device or other input mechanism/tech
nique. A user or computer 110 may determine that negative
values forbin 2' and 2' are overflowing in the negative direc- 30
tion when signedness is set to “unsigned’ and the fraction
length is user specified to be 16 bits (see FIG. 12B). The user
may manipulate signedness identifier 1310 and may toggle
identifier 1310 to be “signed'. Changing identifier 1310 may
cause CHDS displays for bins 2 and 2' to be shown as one 35
region instead of a divided region having an upper and lower
portion. The user may also toggle identifier 1340 from
“specify” to “auto. Prior to toggling identifier 1340, over
flows for the register of variable Z may be at 12% (identifier
1330), and after toggling the overflows may be 0%. 40

FIG. 14A illustrates an embodiment in which overflows are
eliminated for variable Z. FIG. 14B illustrates region 302 of
FIG. 14A in greater detail. As seen in FIG. 14B, overflows of
negative values for variable Zare eliminated when the user has
set the signedness identifier to signed, the fraction length 45
identifier to auto which shortens the fraction length to 14 as
shown by identifiers 1460 and 1450. In the embodiment of
FIG.14B, the word length is reduced to 16 bits. Embodiments
allow the user to make modifications to variables while code
is executing and registers are being written to or read from. 50
The embodiment of FIG. 14B can allow a user to perform

additional operations on variables, registers, etc. For
example, a user may be able to interact with word lengths for
a register by manipulating a guide, Such as guide 1470. In an
embodiment, guide 1470 can become active when a cursor, or 55
other pointing mechanism/technique, is proximate to or oth
erwise associated with guide 1470.

FIG. 15A illustrates an embodiment that allows a user to
modify word lengths with respect to bins displayed in region
302. FIG. 15B illustrates region 302 of FIG. 15A in greater 60
detail. A user may wish to graphically manipulate a word
length and/or fraction length with respect to a variable. Such
as variable y. Embodiments may provide the user with tools
for interactively manipulating word and fraction lengths
while code containing variable y executes. 65

The user may position a cursor proximate to a register
associated with variabley. A guide, such as guide 1470 (FIG.

12
14B) may change to visually depict an interactive guide 1520
(FIG. 15B). Interactive guide 1520 may allow a user to move
guide 1520 to the right or left to change word and/or fraction
lengths for variabley. For example, a radix point may be one
binto the right of bin 1530. In this arrangement, a word length
may be 32 bits and a fraction length 30 bits. The word length
and fraction lengths can also be displayed via word length
identifier 1540 and fraction length identifier 1550. The word
length and fraction length can be displayed to the user via
label window 1510.

Interactive guide 1520 may include end point identifiers,
such as dots or other shapes, to delineate the limits of a word
size. Embodiments may allow the user to select the endpoints
and move them when desired. Alternatively, interactive guide
1520 may allow the user to move guide 1520 and its end
points to the right or left by selecting the center portion of
guide 1520. A current configuration of a word and fraction
length may produce an overflow indicated by identifier 1560
and an underflow indicated by identifier 1570.
FIG.16A illustrates an embodiment that allows the user to

manipulate a word length and/or fraction length for a variable.
FIG.16B illustrates region 302 of FIG. 16A in greater detail.
In FIG. 16B, a user has shifted a word length to the left using
guide 1630 in an attempt to reduce overflows. Label window
1610 indicates that the word length has remained at 32 bits
and the fraction length has reduced to 29 bits from 30 bits as
they were in FIG. 15B prior to dragging the guide. The word
length is also indicated by word length identifier 1640 and the
fraction length is indicated by fraction length identifier 1650.

FIG. 17B illustrates an embodiment that allows a fraction
length and a word length to change without changing the
position of a radix point. FIGS. 17B and 17C illustrate region
302 of FIG. 17A in greater detail. A visual affordance 1720
may be operatively associated with guide 1730 selected using
a pointing device and moved from a current location to a new
location. A fraction length for variable y may change when
affordance 1720 is moved. For example, moving affordance
1720 to the right may increase the fraction length and moving
affordance 1720 to the left may decrease the fraction length.
A word length for variabley may be increased or decreased

in a manner similar to that used to change a fraction length.
Label window 1710 may display a current word length and
fraction length that reflects locations of affordance 1720 and
affordances for the word length. Bins 1740 may change color,
may appear, may disappear, etc., as a user manipulates affor
dance 1720 to reflect bin counts to the right of the radix point.
A fraction length identifier 1750 may also change as a user
manipulates affordance 1720.

FIG. 18A illustrates an embodiment that allows for resiz
ing an integer length in response to a command. FIG. 18B
illustrates region 302 of FIG. 18A in greater detail. A user
may select affordance 1810 to resize an integer length for
variable y. For example, a user may select affordance 1810
and move affordance 1810 to the right or to the left using a
pointing device. Changing an integer length for variable y
may also change a word length. In the embodiment of FIG.
18B, resizing the integer length may not affect a fraction
length.

Exemplary Processing

FIG. 19 illustrates exemplary processing for practicing an
embodiment of the invention. Computer 110 may receive
design requirements via simulation environment 120 (act
1905). Design requirements may specify parameters for the
design of an embedded system that makes use of one or more
storage mechanisms for storing information. A user may

US 8,365,088 B1
13

launch an interactive design environment on computer 110
(act 1910). For example, the user may launch an interactive
design tool that Supports CHDSS for depicting data associated
with registers of the embedded system (act 1915). The design
tool may allow the user to interactively manipulate register
characteristics while code for the embedded system executes.
An initial design for the embedded system may be dis

played using the interactive design tool (act 1920). In an
embodiment, the design may include executable source code
that contains variables that store information in the registers.
The user may execute the code in a simulation and the inter
active design tool may display density information for a bin of
a register (act 1925). The user or computer 110 may evaluate
density information for one or more bins of the register. For
example, density information for an integer portion and frac
tion portion of the register may be evaluated (act 1930).

The user may determine that a word length for a variable is
inadequate. For example, the user may determine that a bin
includes an inacceptable number of overflows. The user may
interactively modify a word length for the variable while the
program code executes (act 1935). Embodiments may sup
port modifying word lengths without affecting underlying
data produced by executing code or embodiments can be
configured to manipulate program code based on a user's
interactions with a CHDS tool. While program code executes,
the user may determine that signedness for the variable
should be modified. For example, the user or computer 110
may determine that the signedness should be changed from
“auto’ to “signed’. The user may interactively modify the
signedness for the variable using a pointing device (act 1940).
The user may observe how characteristics of bins making up
the register for a variable change based on the modified sign
edness for the variable.
The user or computer 110 may determine that scaling for a

variable should be modified and may modify scaling for the
variable using the design tool (act 1945). A determination
may be made as to whether occurrences of overflows and/or
underflows are acceptable (act 1950). In a first embodiment,
computer 110 may programmatically determine whether
occurrences of overflows/underflows are acceptable by com
paring measured overflows/underflows with threshold values
that identify acceptable counts.

In a second embodiment, a user may visually inspect col
ors, shading, etc., associated with register bins to determine
whether counts for overflows and/or underflows are accept
able. Adjustments may be made to a word length for a variable
when overflow/underflow rates are unacceptable (act 1955).
Alternatively, or in addition to adjusting a word length, an
embodiment may adjust a fraction length for the variable to
modify overflow/underflow occurrences (act 1960).
When adjustments have been made to registers storing

information associated with variables in executed code, it
may be determined whether a design satisfies design require
ments (act 1965). A design may be verified using verification
techniques when the design satisfies design requirements (act
1970). A verified design may be deemed acceptable for a
deployed application, Such as deployment in an embedded
system that includes one or more registers.
Code may be generated for a design using code generation

techniques (act 1975). Generated code may be tested and/or
Verified before deploying the generated code in a target envi
ronment 130. When generated code is determined to be sat
isfactory, the generated code can be deployed in target envi
ronment 130 (act 1980). Target environment 130 may execute
the generated code to perform operations (act 1985).

Exemplary embodiments can be configured to provide a
user with recommendations as to how code should be

5

10

15

25

30

35

40

45

50

55

60

65

14
changed to achieve desired operation with registers. For
example, a user may manipulate aspects offixed point regis
ters using a CHDS tool as floating point program code
executes. The user may settle on a register size and configu
ration that satisfies design requirements in terms of under
flows and overflows. The CHDS tool may provide the user
with recommendations on portions of program code that
should be changed in order to achieve the desired fixed point
operation. For example, the tool may recommend that the data
type of a variable “X” be changed to a certain fixed-point type.
A user may choose to accept the recommendation and may
apply the recommendation to the program code so that vari
able x is set to the recommended fixed-point data type in the
code.
By way of example, a user may work with a program code

of a model that includes numeric types that are software
objects configured to hold signed/unsigned information, a
word length, and a fraction length. These numeric type
objects may be stored in a workspace as program code
executes. The CHDS tool may create a new data dictionary
based on operation of the program code and the changed
numeric type objects in the workspace. The CHDS tool may
allow the user to accept the new data dictionary so that the
new data dictionary can be used with Subsequent execution of
the program code. Use of the new data dictionary may allow
the program code to satisfy a design requirement with respect
to registers used in the model.

Exemplary Architecture

FIG.20 illustrates an exemplary computerarchitecture that
can be used to implement computer 110 of FIG. 1. FIG. 20 is
an exemplary diagram of an entity corresponding to computer
110. As illustrated, the entity may include a bus 2010, pro
cessing logic 2020, a main memory 2030, a read-only
memory (ROM) 2040, a storage device 2050, an input device
2060, an output device 2070, and/or a communication inter
face 2080. Bus 2010 may include a path that permits commu
nication among the components of the entity.

Processing logic 2020 may include a processor, micropro
cessor, or other types of processing logic (e.g., FPGA, GPU,
DSP, ASIC, etc.) that may interpret and execute instructions.
For an implementation, processing logic 2020 may include a
single core processor or a multi-core processor. In another
implementation, processing logic 2020 may include a single
processing device or a group of processing devices, such as a
processing cluster or computing grid. In still another imple
mentation, processing logic 2020 may include multiple pro
cessors that may be local or remote with respect each other,
and may use one or more threads while processing.
Main memory 2030 may include a random access memory

(RAM) or another type of dynamic storage device that may
store information and instructions for execution by process
ing logic 2020. ROM 2040 may include a ROM device or
another type of static storage device that may store static
information and/or instructions for use by processing logic
2020. Storage device 2050 may include a magnetic, solid
state and/or optical recording medium and its corresponding
drive, or another type of Static storage device that may store
static information and/or instructions for use by processing
logic 2020.

Input device 2060 may include logic that permits an opera
tor to input information to the entity, Such as a keyboard, a
mouse, a pen, a touchpad, an accelerometer, a microphone,
Voice recognition, camera, neural interface, biometric mecha
nisms, etc. In an embodiment, input device 2060 may corre
spond to input device 125.

US 8,365,088 B1
15

Output device 2070 may include a mechanism that outputs
information to the operator, including a display, a printer, a
speaker, a haptic interface, etc. In an embodiment, output
device 2070 may correspond to display device coupled to
computer 110. Communication interface 2080 may include
any transceiver-like logic that enables the entity to commu
nicate with other devices and/or systems. For example, com
munication interface 2080 may include mechanisms for com
municating with another device or system via a network.
The entity depicted in FIG. 20 may perform certain opera

tions in response to processing logic 2020 executing Software
instructions stored in a computer-readable storage medium,
Such as main memory 2030. A computer-readable storage
medium may be defined as a physical or logical memory
device. The software instructions may be read into main
memory 2030 from another computer-readable storage
medium, such as storage device 2050, or from another device
via communication interface 2080. The software instructions
contained in main memory 2030 may cause processing logic
2020 to perform techniques described herein when the soft
ware instructions are executed on processing logic. Alterna
tively, hardwired circuitry may be used in place of or in
combination with Software instructions to implement tech
niques described herein. Thus, implementations described
hereinare not limited to any specific combination of hardware
circuitry and Software.

Although FIG. 20 shows exemplary components of the
entity, in other implementations, the entity may contain
fewer, different, or additional components than depicted in
FIG. 20. In still other implementations, one or more compo
nents of the entity may perform one or more tasks described
as being performed by one or more other components of the
entity.

Exemplary Distributed Embodiment

Distributed embodiments may perform processing using
two or more processing resources. For example, embodi
ments can perform processing using two or more cores in a
single processing device, distribute processing across mul
tiple processing devices installed within a single enclosure,
and/or distribute processing across multiple types of process
ing logic connected by a network.

FIG. 21 illustrates an exemplary system that can Support
distributed design and/or modeling applications that make
use of storage mechanisms. System 2100 may include com
puter 110, network 140, service provider 2140, and cluster
2160. The implementation of FIG. 21 is exemplary and other
distributed implementations of the invention may include
more devices and/or entities, fewer devices and/or entities,
and/or devices/entities in configurations that differ from the
exemplary configuration of FIG. 21.

Service provider 2140 may include a device that makes a
service available to another device. For example, service pro
vider 2140 may include an entity that provides one or more
services to a destination using a server and/or other devices.
Services may include instructions that are executed by a
destination to perform an operation. Alternatively, a service
may include instructions that are executed on behalf of a
destination to perform an operation on the destination’s
behalf.

Assume, for sake of example, that a service provider oper
ates a web server that provides one or more web-based ser
vices to a destination, such as computer 110. The web-based
services may allow computer 110 to perform CHDS assisted
design and/or analysis activities. For example, a user of com
puter 110 may be allowed to evaluate the performance of

10

15

25

30

35

40

45

50

55

60

65

16
registers used by models side-by-side using the service pro
viders hardware. In an implementation, a customer (user)
may receive services on a Subscription basis. A subscription
may include Substantially any type of arrangement, such as
monthly subscription, a per-use fee, a fee based on an amount
of information exchanged between service provider 2140 and
the customer, a fee based on a number of processor cycles
used by the customer, a fee based on a number of processors
used by the customer, etc.

Cluster 2160 may include a group of processing devices,
such as units of execution 2170 that can be used to perform
remote processing (e.g., distributed processing, parallel pro
cessing, etc.). Units of execution 2170 may include hardware
and/or hardware/software based devices that perform pro
cessing operations on behalf of a requesting device. Such as
computer 110. In an embodiment, units of execution 2170
may each compute a partial result and the partial results can
be combined into an overall result for a model.

Embodiments operating in a standalone or in a distributed
implementation can perform activities described herein on
code/results associated with text-based computing and/or
modeling applications, such as, but not limited to, MAT
LAB(R) by The MathWorks, Inc.; Octave; Python; Comsol
Script; MATRIXx from National Instruments: Mathematica
from Wolfram Research, Inc.; Mathcad from Mathsoft Engi
neering & Education Inc.; Maple from Maplesoft; Extend
from Imagine That Inc.; Scilab from The French Institution
for Research in Computer Science and Control (INRIA):
Virtuoso from Cadence; or Modelica or Dymola from
Dynasim.
Embodiments can further perform activities described

herein on code/results associated with graphical modeling
environments, such as, but not limited to, Simulink(R), State
flow(R, SimEventsTM, etc., by The MathWorks, Inc.; VisSim
by Visual Solutions; LabView(R) by National Instruments:
Dymola by Dynasim: SoftWIRE by Measurement Comput
ing: WiT by DALSA Coreco: VEE Pro or SystemVue by
Agilent; Vision Program Manager from PPT Vision; Khoros
from Khoral Research; Gedae by Gedae, Inc.; Scicos from
(INRIA); Virtuoso from Cadence; Rational Rose from IBM;
Rhapsody or Tau from International Business Machines
(IBM) Corporation; Ptolemy from the University of Califor
nia at Berkeley; ASCET, CoWare, or aspects of a Unified
Modeling Language (UML) or SysML environment. Graphi
cal modeling environments can include block diagrams and/
or other types of diagrams.

Embodiments may be implemented in a variety computing
environments, such as environments that Support statically or
dynamically typed programming languages. For example, a
dynamically typed language may be one used to express
problems and/or solutions in mathematical notations familiar
to those of skill in the relevant arts. For example, the dynami
cally typed language may use an array as a basic element,
where the array may not require dimensioning. These arrays
may be used to support array programming in that operations
can apply to an entire set of values, such as values in an array.
Array programming may allow array based operations to be
treated as a high-level programming technique or model that
lets a programmer think and operate on whole aggregations of
data without having to resort to explicit loops of individual
non-array, i.e., Scalar operations. An exemplary embodiment
that uses a dynamically typed language may be implemented
in the Embedded MATLAB programming language that can
be used to create code for use in embedded applications.

CONCLUSION

Implementations may allow users to interactively design
configure and/or analyze storage mechanisms while program
code that interacts with the storage mechanisms executes.

US 8,365,088 B1
17

The foregoing description of exemplary embodiments of
the invention provides illustration and description, but is not
intended to be exhaustive or to limit the invention to the
precise form disclosed. Modifications and variations are pos
sible in light of the above teachings or may be acquired from
practice of the invention. For example, while a series of acts
has been described with regard to FIG. 19, the order of the acts
may be modified in other implementations consistent with the
principles of the invention. Further, non-dependent acts may
be performed in parallel.

In addition, implementations consistent with principles of
the invention can be implemented using devices and configu
rations other than those illustrated in the figures and described
in the specification without departing from the spirit of the
invention. For example, devices and/or entities may be added
and/or removed from the implementations of FIGS. 1, 20 and
21 depending on specific deployments and/or applications.
Further, disclosed implementations may not be limited to any
specific combination of hardware.

Further, certain portions of the invention may be imple
mented as “logic' that performs one or more functions. This
logic may include hardware, Such as hardwired logic, an
application-specific integrated circuit, a field programmable
gate array, a microprocessor, Software, or a combination of
hardware and software.
No element, act, or instruction used in the description of the

invention should be construed as critical or essential to the
invention unless explicitly described as such. Also, as used
herein, the article 'a' is intended to include one or more
items. Where only one item is intended, the term “one' or
similar language is used. Further, the phrase “based on as
used herein is intended to mean “based, at least in part, on
unless explicitly stated otherwise.

Headings and Sub-headings used herein are to aid the
reader by dividing the specification into subsections. These
headings and Sub-headings are not to be construed as limiting
the scope of the invention or as defining the invention.

The scope of the invention is defined by the claims and their
equivalents.

What is claimed is:
1. One or more non-transitory computer-readable media

holding executable instructions that when executed on a pro
cessor Support interactions with bins of storage mechanisms
holding information associated with program code while the
program code executes, the media holding one or more
executable instructions for:

displaying a graphical user interface (GUI) comprising:
a first region for displaying program code containing a

plurality of variables, and
a second region for displaying graphical representations

for a plurality of storage mechanisms, where the plu
rality of storage mechanisms includes at least:
a first representation having bin identifiers for repre

senting bins that collectively make up a first storage
mechanism, and

a second representation having bin identifiers for rep
resenting bins that collectively make up a second
storage mechanism;

executing the program code using the processor, where the
program code includes at least:
a first variable that interacts with the first representation

via the first storage mechanism when the program
code executes, and

a second variable that interacts with the second repre
sentation via the second storage mechanism when the
code executes;

10

15

25

30

35

40

45

50

55

60

65

18
determining values for data written to the bins of the first

storage mechanism and to the bins of the second storage
mechanism;

representing the values for the bins of the first storage
mechanism and for the second storage mechanism using
a compact histogram density scale (CHDS), where the
CHDS uses:
a first color when the values are between an overflow

threshold and an underflow threshold for a respective
bin of the first storage mechanism or the second stor
age mechanism,

a second color when the values exceed the overflow
threshold for the respective bin of the first storage
mechanism or the second storage mechanism, and

a third color when the values exceed the underflow
threshold for the respective bin of the first storage
mechanism or the second storage mechanism,

where,
an intensity of the first color, the second color, or the

third color varies based on a number of occurrences
of values for the respective bin when the program
code executes;

receiving an instruction, where the instruction is related to
the first representation:

changing a parameter associated with the first representa
tion in response to the instruction; and

modifying, for the first representation, one or more of
the first color by changing the intensity of the first color

for the respective bin of the first storage mechanism,
the second color by changing the intensity of the second

color for the respective bin of the first storage mecha
nism, and

the third color by changing the intensity of the third color
for the respective bin of the first storage mechanism.

2. The media of claim 1, where the first storage mechanism
or the second storage mechanism is a register of bits repre
senting a scaled integer for fixed-point arithmetic.

3. The media of claim 1, where the program code is MAT
LAB-compatible program code or Simulink-compatible pro
gram code.

4. The media of claim 1, further holding one or more
instructions for:

generating code for the program code.
5. The media of claim 1, where the modifying further

comprises:
changing a word length for the first storage mechanism,
changing a fraction length for the first storage mechanism,
changing the size of the first representation, or
changing an integer length for the first storage mechanism.
6. The media of claim 1, further holding one or more

instructions for:
displaying a bin window proximate to a bin identifier for

the first representation.
7. One or more non-transitory computer-readable media

holding executable instructions that when executed on a pro
cessor display a compact histogram density scale (CHDS)
while program code interacts with a storage mechanism rep
resented via the CHDS, the media holding one or more
executable instructions for:

displaying a first CHDS, where the first CHDS includes:
a plurality of display bins corresponding to bins of a

storage mechanism holding information for a portion
of the program code when the program code executes,

a first color for the plurality of display bins, where the
first color has an intensity representative of a number
of occurrences for values of the plurality of display

US 8,365,088 B1
19

bins when the values are between an overflow thresh
old and an underflow threshold for the bins of the
storage mechanism,

a second color for the plurality of displaybins, where the
second color has an intensity representative of a num
ber of occurrences for values of the plurality of dis
playbins when the values exceed the overflow thresh
old for the bins of the storage mechanism,

a third color for the plurality of display bins, where the
third color has an intensity representative of a number
of occurrences for values of the plurality of display
bins when the values exceed the underflow threshold
for the bins of the storage mechanism, and

an identifier for identifying a radix point associated with
the bins of the storage mechanism, where the identi
fier is displaceable in response to an instruction; and

displaying at least a second CHDS, where:
the second CHDS includes a plurality of display bins,
the second CHDS and the first CHDS are included in a

first region of a graphical user interface (GUI), and
the second CHDS and the first CHDS modify a color or

an intensity for one or more of the plurality of display
bins for the first CHDS or the Second CHDS when the
program code executes.

8. The media of claim 7, further holding one or more
instructions for:

changing a word length for the storage mechanism, or
changing a fraction length for the storage mechanism.
9. The media of claim 7, further holding one or more

instructions for:
modifying a word length or a fraction length for the storage
mechanism by displacing a visual affordance using a
pointing device.

10. The media of claim 7, where a word length and a
fraction length are changed with respect to a radix point in
response to a user input.

11. The media of claim 7, further holding one or more
instructions for:

displaying a guide proximate to the plurality of display
bins; and

resizing a word length, a fraction length, an integer length,
or a bin identifier size for the storage mechanism in
response to a user input, where the user input manipu
lates a portion of the guide.

12. The media of claim 7, where the program code is
MATLAB-compatible or Simulink-compatible program
code.

13. A computer-implemented method for interacting with a
register representation when program code executes, the
method comprising:

receiving an instruction on behalf of a user, where the
instruction:
is associated with the register representation, where the

register representation includes a plurality of bins,

10

15

25

30

35

40

45

50

20
where the plurality of bins includes a compact histo
gram density scale (CHDS), where:
the CHDS represents a number of occurrences of

values for data associated with respective ones of
the plurality of bins;

changes one or more of
a word length for the register,
a fraction length for the register,
an integer length for the register,
signedness for the register,
a color associated with the CHDS,
an intensity associated with the CHDS, and
an appearance of a bin for the register; and

displaying the plurality of bins for the register using a
display device, where:
the plurality of bins for the register are displayed in a

graphical user interface (GUI) that includes a plural
ity of bins forming a register representation for a
second register, where the plurality of bins for the
second register represent values of the plurality of
bins using the CHDS, and

the displayed plurality of bins for the register reflects the
change to the one or more of the:
word length for the register,
fraction length for the register,
signedness for the register,
color associated with the CHDS,
intensity associated with the CHDS, and
appearance of a bin for the register.

14. The method of claim 13, further comprising:
receiving a debug instruction, where the debug instruction

is associated with a debugger operating on program code
generates the data values when the program code
eXecuteS.

15. The method of claim 13, further comprising:
generating code from program code, where the program

code generates the data values when the program code is
executed.

16. The method of claim 15, further comprising:
deploying the generated code to an embedded system,
where the embedded system includes a storage mecha
nism corresponding to the register.

17. The method of claim 13, where the instruction is
received using a MATLAB-compatible environment or a
Simulink-compatible environment.

18. The method of claim 13, further comprising:
modifying the program code in response to a second

instruction, where the second instruction indicates that
information in the displayed plurality of bins satisfies a
design requirement.

19. The method of claim 18, further comprising:
executing the modified program code.

k k k k k

