Uusi julkaistu Patentti

PATENTTIJULKAISU
PATENTSKRIFT

FI 107898 B

Patentti myönnetty - Patent beviljats 31.10.2001
Kv.lk.7 - Int.kl.7
B32B 27/08 // B65D 65/40

Patentihakemus - Patentansökning 945769
Hakemispäivä - Ansökningsdag 08.12.1994
Akupäivä - Löp dag 08.04.1994
Tullut julkiseksi - Blivit offentlig 07.02.1995
Kv. hakemus - Int. ansökan PCT/US94/04051
Etuoikeus - Prioritet

09.04.1993 US 044669 P

(73) Haltija - Innehavare
1 Curwood, Inc., 2200 Badger Avenue, Oshkosh, WI 54903, AMERIKAN YHDYSVALLAT, (US)

(72) Keksiälä - Uppfinnare
1 Vicik, Stephen James, 418 70th Street, Darien, IL 60561, AMERIKAN YHDYSVALLAT, (US)

(74) Asiaines - Ombud: Borenius & Co Oy Ab Kansakoulukuja 3, 00100 Helsinki

(54) Keksinön nimitys - Uppfinningens benämning
Venytetty monikerroskalvo, jossa on EVOH-happiaste
Sträckt multilagerfilm med EVOH-syrebarrär

(56) Viilejulkaisut - Anförda publikationer
EP A 334293 (B32B 27/08), EP A 236099 (B32B 27/08), EP A 141555 (B32B 27/08)

(57) Tiivistelmä - Sammandrag
Keksinön kohteena on kaksiasiakseten
venytetty ja suunnattu, lämpöpuolisuva
kalvo elintarvikkeen pakkaamiseksi, joka
kasittää EVOH-nailon 6,66-sekoitettu ole-
van ydinkerroksen, toisen ja kolmannen
väliilmakeroksen, itsensä kanssa kuuma-
saumautuvan neljänneen ulkokerroksen ja ku-
lutusta kestävän viidenneen ulkokerroksen.

Uppfinningen avser en biaxialt tänjd och
orienterad i varme krympande film för
föpackning av livsmedel, vilken film
innehåller ett kärlager av en EVOH-nylon
6,66-blendning, andra och tredje mellan-
liggande limlager, ett fjärde yttelager
som är varmefogbart med sig själv, samt
ett femte slitstarkt yttelager.
Venytetty monikerroskalvo, jossa on EVOH-happiaste
Sträckt multilagerfilm med EVOH-syrebarriär

Oheisen keksinnön kohteena ovat kaksiakselisesti venytetyt, lämpökutistuvat monikerroksiset kalvot, joissa on EVOH-pohjainen, hapen estokerroksena toimiva ydinkerros, ja joita kalvoja voidaan käyttää esimerkiksi elintarvikkeiden pakkaamiseen.

Termoplastisia kalvoja on käytetty useiden vuosien ajan erilaisten tuotteiden, mukaan lukien elintarviketuotteet kuten tuore punainen liha, pakkaamisen yhteydessä. Tällainen liha on usein suurina kappaleina (alustavasti leikattuina kappaleina), jotka on laitettu termoplastisista kalvoista tehtyihin pusseihin, joihin on imetetty tyhjö ja jotka on saumattu kiinni esimerkiksi kuumentamalla pussin avoimessa suupäässä sijaitsevat vastakkaiset pinnat ja painamalla sisäpinnat yhteen kuumasau- man muodostamiseksi.

Tuloksena olevat, elintarviketta sisältävät pakkausket kuljetetaan usein pakkaamosta suuriin valintamyymälöihin tai vähittäismyntiä harjoittaville lihakauppiaille, missä nämä pakkausket avataan ja nämä alustavasti leikatut kappaleet paloittelualaan pienemmiksi paloiksi niiden pakkaamiseksi vähittäismyntiä varten. Näissä elintarvikkeita sisältävissä pakkauskississa on vallittava hapettomat olosuhteet olennaisten ajanjaksojen kuten 4-8 viikon ajan, joten kalvopakkauksalalla on saatu ai-kaan monikerroksisia kalvoja, joiden käsittämä ydinkerros on hapen estokerroksena toimivaa materiaalia. Yleisimmin käytetynä, hapen estokerroksena toimivia materiaaleja ovat vinyldeenikloridisekapolymeerit, joissa on läsnä erilaisia komono- meereja kuten vinylchloridia (VC-VDC-sekapolymeerit) tai me- tyyliakrylaattia (MA-VDC-sekapolymeerit). Muita tunnettuja, hapen estokerroksena toimivia materiaaleja ovat mm. polyamidit ja eteeni-vinylialkoholi-sekapolymeerit (EVOH).
Sen lisäksi, että tämän termoplastisen kalvon tehtävänä on toimia hapen estokerroksena, sille asetetaan monia muita vaatimuksia kuten esimerkiksi kyky kestää kulumista ja rasitusta pakkaamisen ja käsitelyn aikana, miellyttävä tasainen ja juovaton ulkonäkö sekä hyvät optiset ominaisuudet siten, että arvokas elintarviketuote kuten tuoreesta punaisesta lihasta alustavasti leikatut kappaleet voidaan tarkastaa näköhavainnon perusteella säännöllisin väliajoin, jotta voitaisiin varmistua siitä, että pakkaus on pysynyt ehjänä. Näin ollen hyviin optiisiin ominaisuuksiin kuuluvat pieni sameus ja hyvä kiilto.

Toimivuutta ajatellen tämän termoplastisen kalvon on kyettävä vastustamaan hyvin kulumista, koska näitä elintarvikkeita sisältäviä pakkausia siirretään usein monen otteeseen kuljetus- ja jakeluketjussa, ja niihin kohdistuu ulkoista kulutusta ja iskuja. Samoin sisäpinnan on tavallisesti oltava kuumasautuva itsensä kanssa ja koska eri kuumasautuslaitteet toimivat usein erilaisissa lämpötiloissa, niin tämän sisäpinnan on oltava kuumasautuva laajalla lämpötila-alueella.

Hapelle herkkien tuotteiden kuten tuoreen punaisen lihan pakkaamiseen sopiville termoplastisille kalvoille asetettu toinen fysikaalinen vaatimus on se, että kalvon on oltava lämpökutila sekä koneen suunnassa (MD) että poikkisuunnassa (TD). Tämä on välttämätöntä siksi, että kun elintarviketta sisältävä kalvopakkauksesta metää aihemääräinen, niin kalvo luhistuu kasaan ja sen sisäseinämä painautuu elintarviketuotteen ulkopintaa vasten, minkä jälkeen pakkausta kuuminnettavan esimerkiksi kuumavesisuihkulla tunnelissa tämän luhistuneen kalvon lämpökuutistamiseksi ja tiiviin pakkaoksen aikaansaamiseksi.

Näiden monien vaatimusten seurauksena termoplastisissa kalvoissa on usein vähintään kolme kerrosta: edellä mainittu, estokerroksena toimiva ydinkerros, kulutusta kestävä kerros ydinkerroksen yhdellä puolella ja kuumasautuva kerros ydinkerroksen toisella puolella.
Tähän saakka yleisesti käytetty monikerroksinen kalvo tuoreen punaisen lihan pakkaamiseksi on ollut tyyppiltään kolmikerroksinen kalvo, joka käsittää vinylideenikloridi-sekapolymeria olevan estokerroksen sekä vastakkaisilla puolilla polyleifiinikerroksen, tavallisimmin polyleenistä ja eteen-vinyyliäsetaatti- (EVA) sekapolymerista tehtyä sekoitetta olevan kulutuskerroksen ja kuumasauvaskerroksen. Edulliset polyleeten ovat hyvin pienitiheyksinen polyleeni (VLDPE), jotka kutsutaan myös äärimmäisen pienitiheyksiseksi polyleeniksi (ULDPE), sekä lineaarinen pienitiheyksinen polyleeni (LLDPE).

Alalla esiintyy tarvetta saada aikaan kloridia sisältämätöntä tyyppiä oleva, hapen estokerroksena toimiva kalvo johtuen osittain viranomaisten antamista suosituksista, jotka koskevat jätemateriaalien hävittämistä polttamalla klooripitoisia kaasuja tuottamatta.

Toinen syy siihen, että alalla esiintyy tarvetta korvata vinylideenikloridi-sekapolymerin tyyppinen hapen estokerros, on niiden hyvin tunnettu taipumus hajota osittain ja muuttaa väriään, kun niihin kohdistetaan olennaisia säteilyannoksia. Säteilyttämillä toteutetun silloittamisen sanotaan yleisesti parantavan sisä- ja ulkokerroksissa läsnäolevan polyleenin puhkeamisljuuttua, tai parantavan sisäkerroksessa läsnäolevan EVA:n vetoljuutta niin, että kaksiakselinen suuntaaminen voidaan toteuttaa muodostamalla primääripukkeista stabilikupla, tai laajentavan sisäkerroksen kuumasauvasaluetta, tai johtavan edellä mainittujen parannusten yhdistelmään. Kun VC-VDC-sekapolymeria säteilytetään suuruussluokkaa 5 MR olevina säteilyannoksina, niin tämä materiaali hajoaa osittain ja siihen kehittyy keltainen väri, joka on esteettisesti ajatelten epämiellyttävä.

Jo useiden vuosien ajan on tiedetty, että EVOH on sopiva hapen estokerrosmateriaali, ja itse asiassa sitä käytetään kaupallisesti tietystä elintarvikkeiden pakkaussovelluksissa, kuten esimerkiksi kypsennysjärjestelmissä, joissa tuore elintarviketuote laitetaan pussiin, johon imetään tyhjö ja joka sauma-

Tietojemme mukaan EVOH-pohjaisen hapen estokerroksen käsittäviä kalvoja ei olla käytetty laajasti kaupallisissa sovelluksissa tuoreen punaisen lihan pakkaamiseen, säilytykseen ja kuljetukseen. Eräs syy tähän on se, että EVOH on paljon herkempi kosteuden vaikutuksele kuin vinylideenikloridi-sekapolymerit. Toisin sanoen EVOH:n kyky toimia hapen estokerroksena huonneeseen nopeasti ja palautumattomasti, kun se joutuu alttiiksi merkittäville vesimäärille. Tämä tarkoittaa sitä, että EVOH-kerros on suojattava äärimmäisen hyvin kosteuden tunkeutumiselta kalvon sisään pakatusta tuotteesta sisäkerroksen (-kerrosten) läpi sekä myös ilmakehästä ulkokerroksen (-kerrosten) läpi.

Toinen syy siihen, ettei EVOH:ta olla käytetty laajasti hapen estokerroksena tuoreen punaisen lihan pakkaamiseen tarkoitetuissa termoplastisissa pusseissa, on se, että sen tarttumisminaisuuget polyteeni-EVA-sekoitteisiin ovat olennaisesti huono mmat kuin vinylideenikloridi-sekapolymeriteilla. Nämä viimeisinä sheet voidaan saada tarttumaan suoraan polyteeni-EVA-sekoitteisiin riittävän voimakkaasti siten, että ne vastustavat kerroksen irrottavia voimia lämpökutistamisen aikana, kun taas tämä ei ole ollut mahdollista EVOH-pohjaisten hapen estokerrosten tapauksessa. Sen sijaan estokerroksen ja kulutus- tai kuumasaumauksen kerrosten väliin on ollut välittämätöntä lisää ylimääräisiä kerroksia. Nämä ylimääräiset kerrokset tunnetaan liima- tai sidekerroksina ja niiden tehtävänä on saada aikaan kerrosten välistä tarttumista EVOH-kerroksen ja kulutusta kestävän (ulko)kerroksen tai kuumasaumautuvan (sisä)kerroksen välillä tästä monikerroksisesta termoplastisesta
kalvosta muodostetussa pussissa. Näiden liimakerrosten muodos-
tamiseksi käytetty materiaalit ovat kemiallisesti monimutkai-
sia, esimerkiksi polysteenipohjaisen muokatun maleiinhappo-
anhdyridin tyypisiä, ja ne ovat näin ollen kalliita. Lisäksi
ne tekevät valmistusprosessin monimutkaisemmaksi ja lisäävät
siitä aiheutuvia kustannuksia.

Eräs muu syy siihen, etteivät monikerroksiset EVOH-kalvot ole
korvanneet vinylideenikloridisekapolymerista tehtyjä kalvoja, on se, että ensiksi mainitut ovat paljon herkempiä kaksiaksel-
lsen suuntaamisen olosuhteille, ja että tyydyttävien proses-
siолосuhteiden alue on paljon kapeampi.

Vielä yksi syy siihen, etteivät EVOH-pohjaiset hapen estoker-
rokset ole korvanneet vinylideenikloridisekapolymerin tyyppi-
siä kerroksia, on se, että EVOH-hartsista johtuvat kustannuk-
set ovat paljon suuremmat. Tyypillisesti, tällä hetkellä tun-
netuissa monikerroksisissa kalvoissa läsnäoleva EVOH-pohjainen
kerros muodostaa noin 8-20 % kalvon kokonaispaksuudesta, ja se
on kalvon kaikkein kallein materiaali.

Oheisen keksinnön tavoitteena on saada aikaan kaksiakselisesti
venytetty, lämpökutistuva, monikerroksinen kalvo, jossa on
EVOH-pohjainen hapen estokerros, ja jonka kalvon fysikaaliset
ominaisuudet ovat vähintään yhtä hyvät kuin vinylideeniklori-
di-sekapolymeria olevan estokerroksen käsittävillä kalvoilla,
jollaisia käytetään tällä hetkellä tuoreen punaisen lihan
pakkaamiseen.

Keksinnön toisena tavoitteena on saada aikaan sellainen EVOH-
pohjaisen estokerroksen tyyppinen kalvo, jonka estokerros on
olennaisesti ohuempi kuin tunnetuissa EVOH-tyyppisissä moni-
kerroksisissa kalvoissa, joita on ehdotettu käytettäviksi
tuoreen punaisen lihan pakkaamiseen.

Keksinnön tavoitteena on edelleen saada aikaan sellainen EVOH-
pohjaisen estokerroksen tyyppinen kalvo, jossa on vähemmän
kuin kuusi kerrosta.
Keksinnön tavoitteena on edelleen saada aikaan sellainen EVOH-pohjaisen estokerroksen tyyppinen kalvo, jonka optiset ominaisuudet ovat vähintään yhtä hyvät kuin vinylideenikloridisekapolymeria olevan estokerroksen käsitettävillä monikerroksilla kalvoilla, joita käytetään tällä hetkellä tuoreen punaisen lihan pakkaamiseen.

Keksinnön mukaisen kalvon muut tavoitteet ja edut ovat ilmeisiä seuraavan kuvauksen ja liitteenä olevien patenttivaatimusten perusteella.

Nimellä Farrell et al. myönnetyssä US-patentti julkaisussa 4 407 897 on kuvattu monikerroksinen kalvo, joka käsitteää EVOH-ydinkerroksen, muokattua polylefiinia olevat liimavälikerrokset ja polylefiinia olevat ulkokerrokset.

Nimellä Ohya et al. myönnetyssä US-patentti julkaisussa 4 495 897 on kuvattu kaksiakselisesti venytetty, lämpökutistuva, monikerroksinen kalvo, joka käsitteää EVOH-polyamidisekoitettu olevan ydinkerroksen, liimavälikerrokset, jotka on muodostettu karboksylimuokkausista sisältävistä olefinisistä polymeereistä, sekä EVA-LLDPE-sekoitetta olevat ulkokerrokset.

Nimellä Newsome et al. myönnetyssä US-patentti julkaisussa 4 557 780 on kuvattu kaksiakselisesti venytetty, lämpökutistuva, monikerroksinen kalvo, joka käsitteää 0–50 %:sta polyamidia, esim. nailon 6,66:ta ja 50–100 %:sta EVOH:ta muodostetun ydinkerroksen, liimavälikerrokset, jotka on muodostettu karboksylimuokkausista sisältävistä olefinisistä polymeereistä, sekä ulkokerrokset, jotka on muodostettu 40–100 %:sta EVA:aa ja 0–60 %:sta LLDPE:ta.

Nimellä Hsu et al. myönnetyssä US-patentti julkaisussa 4 615 926 on kuvattu monikerroksinen kalvo, joka käsitteää EVOH-polyamidi-sekoitetta olevan ydinkerroksen, olefiniin perustuvaa liimaa olevat välikerrokset, ionomeeria olevan sisäkerroksen ja polyleeniä olevan ulkokerroksen.
Nimellä Vicik myönnetyssä US-patenttiulkaisussa 4 758 463 on kuvattu kolmikerroksen, kaksiakselisesti venytetty, lämpökuştistuva kalvo, joka soveltuu pakkauksen sisällä kypsennettävään lihan kohdistuviin sovellutuksiin, ja jossa on EVOH-polyamidi-sekoitetta oleva ydinkerros sekä ulkokerrokset, jotka on muodostettu EVA:n ja EVA-anhydriïä olevan, funktionaalisen liimayhdisteen välisestä sekoitteesta. Tämän tyyppistä kalvoa ei voida käyttää tuoreen punaisen lihan pakkaamiseen johtuen kalvon suhteellisen pienestä puhkeamislukuudesta ja suhteellisen kalliista EVOH-ydinkerroksesta.

Nimellä Shah myönnetyssä US-patenttiulkaisussa 5 004 647 on
kuvaattu kaksiakselisesti venytetty, lämpökutistuva kalvo, jossa on 80-99 % EVOH:ta ja 1-20 % polyamidia sisältävästä sekoitteesta tehty ydinkerros, liimavälicherroset, jotka on muodostettu esihevinen anhydridillä muokatusta polyetenistä, sekä ulkokerrokset, jotka on tehty kolme komponenttia eli LLDPE:tä, lineaarista, tiheydeltään keskimääräistä polyetenia (LMDPE) ja EVA:aa sisältävästä sekoitteesta.

Keksinnön kohteena on kaksiakselisesti suunnattu, lämpökutistuva, monikerroksinen kalvo, joka on valmistettu kaksoiskuplamenetelmällä ja jossa on vähintään viisi kerrosta: hapen estokerroksen toimiva ydinkerros, toinen ja kolmas liimavälicherros, jotka ovat tarttuneet suoraan ydinkerroksen vastakkaisille puolille, itseensä kuumasaumautuva neljäs ulkokerros, joka on tarttunut suoraan toisen liimavälicherroksen yhdelle, ydinkerroksen vastakkaisella puolella sijaitsevalle puolelle, sekä kulutusta kestävä viides ulkokerros, joka on tarttunut suoraan kolmannen liimavälicherroksen yhdelle, ydinkerroksen vastakkaisella puolella sijaitsevalle puolelle. Kun tästä kalvosta tehdään pussi, niin neljäs kerros on pussin sisällä, ja kun kalvossa on vain viisi kerrosta, niin se on suorassa kosketuksessa sen sisään pakattuun tuotteeseen, ja viides kerros on pussin ulkopuolella suorassa kosketuksessa ympäristöön, kun kalvo käsittää vain viisi kerrosta.

Hapen estokerroksen toimiva ydinkerros on polymeerisekoitettu, jolla on suhteellisen suuri painotettu keskimääräinen sulamispiste. Tämä sekoite käsittää noin 70-85 paino-% eteni-vinyylialkoholi-sekapolymeeria (EVOH) ja noin 15-30 paino-% nailon 6,66-sekapolymeeria. EVOH:n sulamispiste on
noin 162-178 °C. Nailon 6,66-sekapolymeerin sulamispiste eroaa korkeintaan noin 35 °C:n verran EVOH:n sulamispisteestä. Tällä sekoitteella on suhteellisen suuri keskimääräinen sulamispiste. Ydinkerroksen paksuus on noin 0,05-0,1 mil (noin 1,3-2,5 μm) ja se toimii hapen estokerroksena siten, että happea siirtyy kalvon läpi vähemmän kuin noin 35 cm³/m² 24 tunnissa. Tämä läpäisevyys on mitattu 1 atm:n paineessa ja 23 °C:n lämpötilassa testatulle kalvon paksuudelle.

Toinen ja kolmas liimavalikerros on kulloinkin tehty sekoitteesta, joka sisältää noin 35-80 paino-% hyvin pienihiheksista polyeeniä ja noin 20-40 paino-% joko polyeeniin perustuvaa anhydridiilimaa, jonka sulavirta on vähemmän kuin noin 1,7, tai EVA-pohjaista muokattua anhydridiilimaa, jonka sulavirta on vähemmän kuin noin 0,5. Nämä kerrokset voivat myös sisältää 0-40 paino-% eteenn-vinyyliasettaattia, jonka sulavirta on vähäinen ja jossa vinyyliasettaattipitoisuus voi olla noin 7-15 paino-%. Tämän kaksi tai kolme komponenttia sisältävän sekoitteen (tai sekoitteiden) keskimääräinen sulavirta on vähäinen, ja samoin sillä on suhteellisen pieni keskimääräinen sulamispiste, joka on ydinkerroksessa käytetyn polymeerisekoitteen keskimääräisen sulamispisteen alapuolella. Toinen ja kolmas liimavalikerros muodostavat kulloinkin noin 2,5-5 % kalvon kokonaispaksuudesta.

Itseensä kumusaumautuva neljäs kerros (josta tulee kalvosta tehdyn pussin sisäkerros) käsittää yhtä tai useampaa termoplastista polymeeria, tämän kerroksen EVA-pitoisuuden ollessa noin 0-45 paino-%. Tämän kerroksen sulavirta on vähäinen ja sillä on suhteellisen pieni sulamispiste, joka on ydinkerrokssessa käytetyn polymeerisekoitteen keskimääräisen sulamispisteen alapuolella. Tämä neljäs ulkokerros muodostaa noin 40-70 % kalvon kokonaispaksuudesta.

Kulutusta kestävä viides ulkokerros (josta tulee kalvosta tehdyn pussin ulkokerros) käsittää yhtä tai useampaa termoplastista polymeeria, tämän kerroksen EVA-pitoisuuden ollessa noin 0-45 paino-%. Tämän kerroksen sulavirta on vähäinen ja
sillä on suhteellisen pieni sulamispiste, joka on ydinkerrok-sessa käytetyn polymeerisekoitteen keskimääräisen sulamispiste-teen alapuolella. Tämä viides ulkokerros muodostaa noin 20-35 % kalvon kokonaispaksuudesta.

Vähintään joko neljännänen tai viidennänen ulkokerroksen sulamispiste on vähintään noin 105 °C.

Mikäli jompikumpi neljännestä ja viidennestä ulkokerroksesta tai ne molemmat käsitellätä polyolefiinien sekoitetta, niin tällöin edellä kuvatut riippuvuudet perustuvat sekoitteen keskimääräiseen sulavirtaan. Samoin edellä kuvatut riippuvuu- det perustuvat sekoitteen keskimääräiseen sulamispisteeseen.

Keksinnön mukaisella kalvolla on myös vähintään 30 % oleva vapaa kutistuvuus 90 °C:ssa poikkisuunnassa ja sen kokonais- paksuus on noin 1,5-3,5 mil (noin 38,1-88,9 μm).

Keksinnön mukaisen kalvon muut edut ovat ilmeisiä seuraavan kuvauksen perusteella.
Kuviot 1 ja 2 ovat logaritmisia käyriä, joissa sulavirta on esitetty sen sekoitteessa läsnäolevan polymeerin, jolla on suurempi sulavirta, prosentuaalisen osuuden funktiona.

Kuten edellä on selitetty, keksinnön mukainen monikerroksinen kalvo on "kaksiakselisesti venytetty ja lämpökutistuva". Tällä tarkoitetaan ohessa sitä, että kalvon vapaa kutistuvuus on vähintään kolmekymmentä (30) prosenttia poikkisuunnassa, 90 °C:ssa mitattuna, ja edullisesti vapaa kutistuvuus on vähintään kaksikymmentä (20) prosenttia koneen suunnassa. Kaikkein edullisimmin kalvon vapaa kutistuvuus on vähintään 30 % kummassakin suunnassa.

Mikäli kalvon jossakin mainitussa viidessä kerroksessa on käytetty polymeerisekoitteita ja mikäli sulavirta on kerrokseen tärkeä fysiikaalinen ominaisuus, niin tällöin se on määritelty "keskimääräisenä sulavirtana". Tietyn polymeerisekoitteen tapauksessa tämä keskiarvo on määritetty kuvioista 1 ja 2, jotka ovat logaritmisia käyriä, joissa sulavirta on esitetty
yhdellä akselilla (esim. oordinaatalla) ja sen sekoitteessa läsnäolevan polymeerin, jolla on suurempi sulavirta, prosentuaalinen osuus on esitettä toisella akselilla (esim. abskissalla). Komponenttipolymeerien sulavirta määritetään normin ASTM D 1238 mukaisella toimenpiteellä 190 °C:ssa ja yksikössä gramma/10 minuuttia, mikäli toisin ei ole esitettä. Tämän toimenpiteen käsitettävät vaiheet kaksi komponenttia sisältävän sekoitteen keskimääräisen sulavirran määrittämiseksi ovat seuraavat:

1. Komponenttin, jolla on pienempi sulavirta, sulavirta esitetään vastaamaan 0 prosenttia (pisteenä) sillä akselilla, joka esittää sen sekoitteessa läsnäolevan polymeerin, jolla on suurempi sulavirta, prosentuaalistaa osuutta;

2. Komponenttin, jolla on suurempi sulavirta, sulavirta esitetään vastaamaan 100 prosenttia (pisteenä) sillä akselilla, joka esittää sen sekoitteessa läsnäolevan polymeerin, jolla on suurempi sulavirta, prosentuaalista osuutta;

3. Nämä kaksi pistettä yhdistetään suoralla viivalla;

4. Sekoitteen keskimääräinen sulavirta määritetään paikantaammalla se tällä suoralla oleva piste, joka vastaa sen sekoitteessa läsnäolevan komponentin, jolla on suurempi sulavirta, prosentuaalista osuutta.

Mikäli sekoite sisältää kolme komponenttia, niin tällöin kahta näitä komponenttia sisältävän sekoitteen keskimääräinen sulavirta määritetään edellä kuvattulla tavalla. Sitten näiden kahden komponentin keskimääräinen sulavirta esitetään käyränä tämän kolmannen komponentin funktiona edellä vaiheissa 1 ja 2 kuvattulla tavalla. Nämä kaksi pistettä yhdistävät suoralta voidaan saada tällaisen kolme komponenttia sisältävän sekoitteen keskimääräinen sulavirta etsimällä suoralta piste, joka vastaa sen sekoitteessa läsnäolevan komponentin (komponenttien), jo(i)lla on suurin sulavirta, prosentuaalista osuutta. Mikäli näitä kahta komponenttia sisältävän sekoitteen keski-
määräinen sulavirta on suurempi kuin kolmannen komponentin sulavirta, niin tällöin näiden kahden komponentin keskimääräistä sulavirtaa käytetään sekoitteessa läsnäolevan komponentin, jolla on suurin sulamispiste, prosentuaalisena osuutena ja käyrä tehdään vastaavalla tavalla.

Kaksi komponenttia sisältävän sekoitteen keskimääräisen sulavirran määrittämistä kuvion 1 avulla havainnollistetaan seuraavasti: Sekoite käsitteää 40 paino-% EVA:aa, jonka sulavirta on 0,25, ja 60 % LLDPE-pohjaista, anhydridillä muokattua liimaa, jonka sulavirta on 2,0. EVA:n sulavirta sijoitetaan pisteenä vasemmalla sijaitsevalle oordinaatta-asteikolle vastaamaan 0 prosenttia liimaa. Liiman sulavirta sijoitetaan pisteenä oordinaatta-asteikolla oikealle puolelle vastaamaan 100 prosenttia liimaa. Nämä kaksi pistettä yhdistetään suoralla viivalla. Sekoitteen keskimääräinen sulavirta saadaan tältä suoralta etsimällä se piste, joka vastaa abskissalla 60 painoprosenttia liimaa, jolloin sulavirraksi saadaan noin 0,88 g/10 min.

Kolme komponenttia sisältävän sekoitteen keskimääräisen sulavirran määrittämistä kuvion 2 avulla havainnollistetaan seuraavasti: Sekoite käsitteää 52,5 % VLDPE:ta, jonka sulavirta on 0,5, 17,5 paino-% EVA:aa, jonka sulavirta on 0,25, sekä 30 % LLDPE-pohjaista, anhydridillä muokattua liimaa, jonka sulavirta on 0,8. EVA:n sulavirta sijoitetaan pisteenä vasemmalla sijaitsevalle oordinaatta-asteikolle vastaamaan 0 prosenttia liimaa. VLDPE:n sulavirta sijoitetaan pisteenä oordinaatta-asteikolla oikealle puolelle vastaamaan 100 prosenttia VLDPE:ta. Nämä kaksi pistettä yhdistetään suoralla viivalla. EVA-LLDPE-sekoitteen keskimääräinen sulavirta saadaan tältä suoralta etsimällä se piste, joka vastaa abskissalla 75 % painoprosenttia VLDPE:ta, jolloin sulavirraksi saadaan noin 0,42 g/10 min. Tämä arvo sijoitetaan pisteenä vasemmalla sijaitsevalle oordinaatta-asteikolle vastaamaan 0 prosenttia liimaa. Liiman sulavirta sijoitetaan pisteenä oordinaatta-asteikolla oikealle puolelle vastaamaan 100 prosenttia liimaa (0,8). Nämä kaksi pistettä yhdistetään suoralla viivalla. Kolme komponenttia
käsittävän sekoitteen keskimääräinen sulavirta saadaan tältä suoralta etsimällä se piste, joka vastaa abskissalla 30 painoprosenttia liimaa, eli noin 0,50 g/10 min.

Mikäli kalvon jossakin mainitussa viidessä kerroksessa on käytetty polymeerisekoitetta ja mikäli sulamispiste on kerroksen tärkeä fysikaalinen ominaisuus, niin tällöin se on määritelty "keskimääräisenä sulamispisteenä". Tietyn polymeerisekoitteen tapauksessa se saadaan laskemalla yhteen yksittäisten polymeerien sulamispisteen ja polymeerin sekoiteosuuden tulo, eli polymeerin 1 sulamispiste kertaa sen osuus sekoitteessa plus polymeerin 2 sulamispiste kertaa sen osuus sekoitteessa plus sekoitteessa mahdollisesti läsnäolevalla muilla komponenteilla saatavasta tekijä.

Käsitteellä "vähäinen" tarkoitetaan sitä, että yhden ainoan polymeerin sulavirta tai polymeerisekoitteen keskimääräinen sulavirta ei ole suurempi kuin noin 1.

Ohessa käytetyllä käsitteellä "estävä" tai "estokerros" tarkoitetaan monikerroksisen kalvon kerrosta, joka toimii kaasumaisten happimolekyylien fysikaalisena esteenä. Fysikaalisesti tarkastellen, estokerrosmateriaali pientää hapon läpäisevyyden kalvossa (joka on tavallisesti pussina) pienemmäksi kuin 70 cm³/m² 24 tunnin aikana yhden ilmakihon paineessa, 23 °C:ssa ja 0 %:n suhteellisessa kosteudessa. Nämä arvot tulisi mitata standardin ASTM D-1434 mukaisesti.

Ohessa käytetyllä käsitteellä "eteeni-vinyyliasetaatti-sekapolymeeri" (EVA) tarkoitetaan eteeni- ja vinyyliasetaattimonomeereista muodostettua sekapolymeria siten, että eteenistä peräisin olevia yksiköitä (monomeeriysiköt) on läsnä sekapolymerissa huomattavina määrinä (painosta laskien) ja vinyyliasetaattista peräisin olevia yksiköitä (monomeeriysikötä) on läsnä sekapolymerissa vähäisemminä painomäärinä.

Käsitteellä hyvin pienitiheyksenä polyteeni ("VLDFE"), jota kutsutaan joskus äärimmäisen pienitiheyksiseksi polyteeniksi
("ULDPE"), tarkoitetaan lineaarisia ja ei-plastomeerisia poly-
eteenejä, joiden tiheys on pienempi kuin noin 0,914 g/cm³ ja
ainakin yhden valmistajan mukaan niinkin pieni kuin 0,86
g/cm³. Tämä käsite ei kata eteeni-alfa-olefiinisekapolymeere-
ja, joiden tiheys on pienempi kuin noin 0,90 g/cm³, ja jolla
on elastomeerisista ominaisuuksista, ja joita ainakin yksi valmis-
taja kutsuu "eteenin ja alfa-olefiinin välisiksi plastomeerei-
si". Kuikenin, kuten jäljempänä on selitetty, eteenin ja
alfa-olefiinin välisiä plastomeereja voidaan käyttää edullises-
ti oheista keksintöä käytännössä toteutettaessa vähäisenä kompo-
nettina monikerroksisen kalvon tietyssä kerroksissa. Käsite
VLDPE ei sisällä lineaarisia, pieni-tiheyksisiä polyetyneejä
(LLDPE), joiden tiheys on noin alueella 0,915-0,930 g/cm³.

VLDPE käsittää eteenin ja alfa-olefiinin, tavallisesti 1-bute-
teenin, 1-hekseenin tai 1-okteenin välisiä sekapolymeereja
(terpolymerit mukaan lukien) ja eräissä tapauksissa terpoly-
meereja, esimerkiksi eteenin, 1-buteenin ja 1-hekseenin väli-
siä terpolymereja. Menetelmä VLDPE-yhdisteiden valmistamisek-
si on kuvattu Eurooppalaisessa patenttiluonnossa, jonka
julkaisunumero on EP 120503, jonka teksti ja piirustukset si-
sälytetään oheiseen julkaisuun tällä viitauksella.

Kuten on esimerkiksi kuvattu nimellä Ferguson et al. myönne-
tyssä US-patenttiluonnossa 4 640 856 sekä nimellä Lustig et
al. myönteisissä US-patenttiluonnossa 4 863 769, näitä VLDPE-
yhdisteitä voidaan käyttää kaksiakselisiin suunnatuissa kal-
voissa, joilla on paremmat ominaisuudet kuin LLDPE:tä käytettäen
valmistetuissa vastaanot tuottavissa kalvoissa. Näistä paremmista
ominaisuuksista voidaan mainita suurempi kutistuvuus, suurempi
vetoiluus ja suurempi puhkeamislujuus.

Sopivista VLDPE-yhdisteistä voidaan mainita yhtiöiden Dow
Chemical Company, Exxon Chemical Company ja Union Carbide
Corporation valmistamat tuotteet, joiden hartsimuodoilla on
seuraavat, taulukkoon A kootut fysiikaaliset ominaisuudet val-
mistajilta saatujen tietojen mukaan:
Taulukko A

VLDPE:n fysikaaliset omniaisuudet

<table>
<thead>
<tr>
<th>Tyypi</th>
<th>Valmistaja</th>
<th>Ominaisuus/ASTM no.</th>
<th>Yksikkö</th>
<th>Arvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attane</td>
<td>Dow (eteeni-okteeni-sekapolymeeri)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XU61520.1 ja 4001</td>
<td></td>
<td>Sulavirta (D-1238)</td>
<td>g/10 min</td>
<td>1,0</td>
</tr>
<tr>
<td>Attane</td>
<td>Dow (eteeni-okteeni-sekapolymeeri)</td>
<td>Tiheys (D-792)</td>
<td>g/cc</td>
<td>0,912</td>
</tr>
<tr>
<td>XU61509.3 2 4001</td>
<td></td>
<td>Sulamisp. (DSC: 11â)</td>
<td>°C</td>
<td>123</td>
</tr>
<tr>
<td>Attane</td>
<td>Dow (eteeni-okteeni-kopolymeeri)</td>
<td>Sulavirta (D-1238)</td>
<td>g/10 min</td>
<td>0,8</td>
</tr>
<tr>
<td>4003</td>
<td></td>
<td>Tiheys (D-792)</td>
<td>g/cc</td>
<td>0,905</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulamisp.</td>
<td>°C</td>
<td>123</td>
</tr>
<tr>
<td>DFDA</td>
<td>Union Carbide (eteeni-buteeni-kopolymeeri)</td>
<td>Sulavirta (D-1238)</td>
<td>g/10 min</td>
<td>1,0</td>
</tr>
<tr>
<td>1137</td>
<td></td>
<td>Tiheys (D-792)</td>
<td>g/cc</td>
<td>0,905</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulamisp. (DSC: 11â)</td>
<td>°C</td>
<td>120</td>
</tr>
<tr>
<td>DEFD</td>
<td>Union Carbide (eteeni-buteeni-hekseeni-terpolymeeri)</td>
<td>Sulavirta (D-1238)</td>
<td>g/10 min</td>
<td>0,19</td>
</tr>
<tr>
<td>1192</td>
<td></td>
<td>Tiheys (D-792)</td>
<td>g/cc</td>
<td>0,912</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulamisp. (DSC: 11â)</td>
<td>°C</td>
<td>122</td>
</tr>
</tbody>
</table>
EVOH valmistetaan eteeni-vinyliasetaatisekapolymeerin hydraulysillä (tai saippuoinilla) ja hyvin tunnettua on se, että tehokkaan hapen estokerroksen aikaansamiseksi tämän hydrolyysein-saippuoinnin on oltava lähes täydellinen, eli se on edettävä vähintään 97-prosenttisesti loppuun. EVOH:ta on saatavana kaupallisesti hartsimuodossa, joka sisältää eteeniä erilaisina prosentuaalisina osuuksina, ja eteenipitoisuuden ja sulamispisteen välillä on suora riippuvuus.

Oheista keksintöä käytäntöön toteutettaessa hapen estokerroksen toimivassa ydinkerroksessa läsnäolevan EVOH-komponentin sulamispiste on noin 162-178 °C. Tämä on tunnusomaista EVOH-materiaaleille, joiden eteenipitoisuus on noin 38-44 mooli-%. Ollaan todettu, että sellaiset ydinkerroksen valmistamiseen tarkoitettuun polymerisekoitteessa läsnäolevat EVOH-materiaalit, joiden sulamispiste on tämän alueen alapuolella, johtavat ydinkerrokseihin, joiden hapenesto-ominaisuudet eivät ole riittävä tyydyttävän lämpökutistuvan, ohuen ydinkerroksen käsittävän tuotteen aikaansamiseksi. Tästä syystä EVOH-materiaalit, joissa eteenipitoisuus on noin 48 mooli-% tai enemmän (mikä johtaa noin alle 162 °C olevaan sulamispisteeeseen), eivät sovellu oheisen keksinnön toteuttamiseen, kuten esimerkissä 1 on osoitettu (näyte 1).

Toisaalta on todettu, että sellaiset EVOH-materiaalit, joiden sulamispiste on edellä mainitun alueen yläpuolella, ovat liian täykkä ja vaikeasti venytettäviä keksinnön mukaisen monikerroksen kalvon kaksiakselisen suuntaamisen aikana. Näin ollen EVOH, jonka eteenipitoisuus on 32 mooli-% tai vähemmän, eivät sovellu oheisen keksinnön toteuttamiseen. Tästä syystä 38 mooli-% eteeniä sisältävä EVOH-tyyppi on edullinen.

EVOH-materiaalien sulavirta on myös erilainen jopa yhtäsuuren eteenipitoisuuden tapauksessa. Esimerkiksi 38 mooli-% eteeniä sisältävää EVOH-tyyppiä on saatavana kaupallisesti muodoissa, joiden sulavirta on alueella 3-8 g/10 min. (mitattuna 190 °C:ssa standardin ASTM D 1238 mukaisella menetelmällä). Vaikka sulavirta ei olekaan rajoituksena sopivia EVOH-materiaaleja
valittaessa, niin suuremmat sulavirrat ovat kuitenkin edullisia, koska tuloksena oleva kalvo pehmeee ja venyy helpommin kaksiakselisen suuntaamisen aikana. Näistä syistä 38 mooli-% eteenä sisältävää EVOH-tyypia, jonka sulavirta on 8,4, käytetään edullisesti monikerroksisen kalvon ydinkerrosta varten tarkoitetussa polymeerisekoitteessa.

Edustavia, tässä keksinnössä käyttökelpoisia EVOH-materiaaleja on luettu taulukossa B.
<table>
<thead>
<tr>
<th>Tyyppi & Valmistaja</th>
<th>Ominaisuus</th>
<th>Yksikkö</th>
<th>Arvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVAL H 101 (EVALCA)</td>
<td>Eteenipitoisuus Sulavirta (D1238 210 °C:ssa) Sulamispiste (DSC-menetelmällä)</td>
<td>mooli-% g/10 min °C ('F)</td>
<td>38 3,8 175 (347)</td>
</tr>
<tr>
<td>EVAL H 103 (EVALCA)</td>
<td>Eteenipitoisuus Sulavirta (D1238 210 °C:ssa) Sulamispiste (DSC-menetelmällä)</td>
<td>mooli-% g/10 min °C ('F)</td>
<td>38 8,4 175 (347)</td>
</tr>
<tr>
<td>EVAL H 151 (EVALCA)</td>
<td>Eteenipitoisuus Sulavirta (D1238 210 °C:ssa) Sulamispiste (DSC-menetelmällä)</td>
<td>mooli-% g/10 min °C ('F)</td>
<td>38 3,8 175 (347)</td>
</tr>
<tr>
<td>EVAL K 102 (EVALCA)</td>
<td>Eteenipitoisuus Sulavirta (D1238 210 °C:ssa) Sulamispiste (DSC-menetelmällä)</td>
<td>mooli-% g/10 min °C ('F)</td>
<td>38 6,0 175 (347)</td>
</tr>
<tr>
<td>EVAL E 105 (EVALCA)</td>
<td>Eteenipitoisuus Sulavirta (D1238 210 °C:ssa) Sulamispiste (DSC-menetelmällä)</td>
<td>mooli-% g/10 min °C ('F)</td>
<td>44 13,0 165 (329)</td>
</tr>
<tr>
<td>Tyyppi & Valmistaja</td>
<td>Ominaisuus</td>
<td>Yksikkö</td>
<td>Arvo</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>EVAL G 156 (EVALCA)</td>
<td>Eteenipitoisuus Sulavirta (D1238 190 °C:ssa) Sulamispiste (DSC-menetelmällä)</td>
<td>mooli-% g/10 min °C (°F)</td>
<td>48 6,4 158 (320)</td>
</tr>
<tr>
<td>EVAL E 151 (EVALCA)</td>
<td>Eteenipitoisuus Sulavirta (D1238 210 °C:ssa) Sulamispiste (DSC-menetelmällä)</td>
<td>mooli-% g/10 min °C (°F)</td>
<td>44 3,5 165 (329)</td>
</tr>
<tr>
<td>SOARNOL 3803 (Nippon Synthetic Chemical Industry Co., jäljempänä "Nippon")</td>
<td>Eteenipitoisuus Sulavirta (D1238 210 °C:ssa) Sulamispiste (DSC-menetelmällä)</td>
<td>mooli-% g/10 min °C (°F)</td>
<td>38 3,2 173 (343)</td>
</tr>
<tr>
<td>SOARNOL 3808 (Nippon)</td>
<td>Eteenipitoisuus Sulavirta (D1238 210 °C:ssa) Sulamispiste (DSC-menetelmällä)</td>
<td>mooli-% g/10 min °C (°F)</td>
<td>38 8 173 (343)</td>
</tr>
<tr>
<td>SOARNOL 4403 (Nippon)</td>
<td>Eteenipitoisuus Sulavirta (D1238 210 °C:ssa) Sulamispiste (DSC-menetelmällä)</td>
<td>mooli-% g/10 min °C (°F)</td>
<td>44 3,5 164 (327)</td>
</tr>
</tbody>
</table>

Kuten esimerkki 2 havainnollistaa, kun hapen estokerrosta varten tarkoitetun polymeerisekoitteen polyamidina käytetään muunlaisia nailoneita kuten tyypillä 6,12 olevaa nailonia, niin tällöin viisikerroksisen kalvon ydinkerrokseen kehittyy geelejä ja eräissä tapauksissa syntyy murtumia. Näitä geelit voivat johtua EVOH:n ja nailon 6,12:n yhteensopimattomuudesta tai näiden kahden polymeerin välisestä kemiallisesta reaktiosta. Murtumia kehittyy todennäköisesti siitä syystä, ettei polymeerisekoite veny tasaisesti suuntaamisen aikana. Edustavien nailonien fysikaaliset ominaisuudet on koottu taulukkoon C.
<table>
<thead>
<tr>
<th>Tyyppi & Valmistaja</th>
<th>Ominaisuus</th>
<th>Yksikkö</th>
<th>Arvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon 1539</td>
<td>Sekapolymeri 6:n pitoisuus</td>
<td>mooli-%</td>
<td>85</td>
</tr>
<tr>
<td>(tyyppi 6,66)</td>
<td>Sekapolymeri 66:n pitoisuus</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Allied Chemical Co</td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td></td>
<td>195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(383)</td>
</tr>
<tr>
<td>Nylon 5033</td>
<td>Sekapolymeri 6:n pitoisuus</td>
<td>mooli-%</td>
<td>85</td>
</tr>
<tr>
<td>(tyyppi 6,66)</td>
<td>Sekapolymeri 66:n pitoisuus</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Ube Ind. Ltd.</td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(385)</td>
</tr>
<tr>
<td>Nylon 6041</td>
<td>Sekapolymeri 6:n pitoisuus</td>
<td>mooli-%</td>
<td>85</td>
</tr>
<tr>
<td>(tyyppi 6,66)</td>
<td>Sekapolymeri 66:n pitoisuus</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Toray Industries</td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(385)</td>
</tr>
<tr>
<td>Nylon CR9</td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td>'C ('F)</td>
<td>196</td>
</tr>
<tr>
<td>(tyyppi 6,12)</td>
<td></td>
<td></td>
<td>(385)</td>
</tr>
<tr>
<td>Emser Chemical Co.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon 6041</td>
<td>Sekapolymeri 6:n pitoisuus</td>
<td>mooli-%</td>
<td>85</td>
</tr>
<tr>
<td>(tyyppi 6,66)</td>
<td>Sekapolymeri 66:n pitoisuus</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Toray Industries</td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(385)</td>
</tr>
<tr>
<td>Nylon CF62BSE</td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td>'C ('F)</td>
<td>134</td>
</tr>
<tr>
<td>(tyyppi 6,12)</td>
<td></td>
<td></td>
<td>(273)</td>
</tr>
<tr>
<td>Emser Chemical Co.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon C35Q2</td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td>'C ('F)</td>
<td>196</td>
</tr>
<tr>
<td>(tyyppi 6,66; ydinnetty)</td>
<td></td>
<td></td>
<td>(385)</td>
</tr>
<tr>
<td>BASF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon Selar 3426</td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td>'C ('F)</td>
<td>amorfinen</td>
</tr>
<tr>
<td>(tyyppi amorfinen 6I/6T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DuPont</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taulukko D
EVA:n fysikaaliset ominaisuudet

<table>
<thead>
<tr>
<th>Tyyppi</th>
<th>Valmistaja</th>
<th>Ominaisuus</th>
<th>Yksikkö</th>
<th>Arvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>XV67.06</td>
<td>Exxon</td>
<td>Vinyyliasetaatti-pitoisuus</td>
<td>paino-%</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulavirta (D-1238)</td>
<td>g/10 min</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td>°C</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DQDA 6833</td>
<td>Union Carbide</td>
<td>Vinyyliasetaatti-pitoisuus</td>
<td>paino-%</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulavirta (D-1238)</td>
<td>g/10 min</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td>°C</td>
<td>98</td>
</tr>
<tr>
<td>Elvax 3135</td>
<td>DuPont</td>
<td>Vinyyliasetaatti-pitoisuus</td>
<td>paino-%</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulavirta (D-1238)</td>
<td>g/10 min</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulamispiste (DSC-menetelmällä)</td>
<td>°C</td>
<td>95</td>
</tr>
</tbody>
</table>

Kuten aikaisemmin on esitetty, toinen ja kolmas liimavälikerro-rros on sidottu hapen estokerroksena toimivan ydinkerroksen vastakkaisille puolille, ja kumpikin niistä on tehty kaksi olennaista komponenttia sisältävästä sekoitteesta, jotka komponentit ovat 35-80 paino-% VLDPE, jolla on vähäinen sulavir- tta, sekä 20-40 paino-% joko (a) polyyteenin perustuvaa muokattua anhydridiliimaa, jonka sulavirta on vähemmän kuin noin 1,7, tai (b) EVA-pohjaista muokattua anhydridiliimaa, jonka sulavirta on vähemmän kuin noin 0,5. Kolmas valinnainen komponentti on noin 0-40 paino-% EVA:aa, jolla on vähäinen sulavir- tta, ja jossa vinyyliasetaatti-pitoisuus on noin 7-15 paino-%. Tämän kaksi tai kolme komponenttia sisältävän, toisen ja kolmannen liimavälikerroksen muodostavan sekoitteen (sekoittein- den) keskimääräinen vähäinen sulavirta sekä samoin keskimääräinen sulamispiste ovat pienemmät kuin ydinkerroksessa käytetyllä polymeerisekoitteella.

Taulukko E on epätäydellinen luettelol seuraavissa esimerkeissä käytetyistä, anhydridillä muokatuista, eteenisekapolymeriin perustuvista liimoista.
Taulukko E
Anhydridillä muokatut eteenisekapolymeriiliimat

<table>
<thead>
<tr>
<th>Tyyppi & Valmistaja</th>
<th>Perussakepolymeri</th>
<th>Sulavirta (g/10 min)</th>
<th>S.p. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plexar 106 (Quantum Company)</td>
<td>EVA (9% vinyyliaesetaatti)</td>
<td>1,2</td>
<td>98 (208)</td>
</tr>
<tr>
<td>Plexar PPX 5075¹ (Quantum Company)</td>
<td>EVA (10% vinyyliaesetaatti)</td>
<td>0,25</td>
<td>98 (208)</td>
</tr>
<tr>
<td>Plexar 169 (Quantum Company)</td>
<td>LDPE (0,92 tiheys)</td>
<td>2,5</td>
<td>105 (221)</td>
</tr>
<tr>
<td>Plexar 3779 (Quantum Company)</td>
<td>LLDPE (hekseeni)</td>
<td>0,8</td>
<td>120 (248)</td>
</tr>
<tr>
<td>Plexar 3741 (Quantum Company)</td>
<td>LLDPE (buteeni)</td>
<td>1,5</td>
<td>120 (248)</td>
</tr>
<tr>
<td>Admer 500 (Mitsui Petro Ltd.)</td>
<td>LLDPE</td>
<td>2,0</td>
<td>120 (248)</td>
</tr>
<tr>
<td>Bynel CXA 3048 (DuPont Chemical Company)</td>
<td>EVA (ter-(polymeeri)</td>
<td>0,9</td>
<td>98 (208)</td>
</tr>
<tr>
<td>Orevac 18302 (Atochem Company)</td>
<td>EVA (ter-(polymeeri)</td>
<td>0,8</td>
<td>--</td>
</tr>
</tbody>
</table>

¹ Valmistettu DQDA 6833-tyyppisestä EVA:sta
² DSC-menetelmällä
³ Menetelmän D-123 mukaisesti, 190 °C:ssa

Keksinnön mukainen viisikerroksinen kalvo voidaan valmistaa suulakepuristamalla kaikki kerrokset samanaikaisesti eli samaan aikaan suulakepuristuksella esimerkiksi tavalla, joka on kuvattu nimellä Schirmer myönnetyssä US-patentituloksessa 4 448 792, tai vaiheittain, eli pinnoittavalla laminointitoimenpiteellä, joka on kuvattu nimellä Brax et al. myönnetyssä US-patentituloksessa 3 741 253 suhteellisen pakson primäärin kalvon muodostamiseksi joko laakeana arkkina tai putkena, tavallisimmin putkena. Tämä primääri ja suhteellisen paksu

Venytysuhde kaksiakselisessa suuntaamisessa pussimateriaalin muodostamiseksi on riittävä sellaisen kalvon aikaansaamiseksi, jonka kokonaispaksuus on noin 1,5-3,5 mil (noin 38,1 - 88,9 μm) MD-venytysuhde on tyyppillisesti 3-5 ja TD-venytysuhde on samoin tyyppillisesti 3-5. Sopiva kokonaisvenytysuhde (venytys MD-suunnassa kerrottuna venytysellä TD-suunnassa) on noin 9x-25x.

Edullinen menetelmä monikerroksisen kalvon muodostamiseksi on primärin putken samanaikainen suulakepuristaminen, minkä jälkeen tämä primäri putki suunnataan kaksiakselisesti taval- la, joka on kuvattu yleisesti edellä mainitussa Pahlken pa- tenttiulkaisussa. Seuraavissa esimerkkeissä kaikki viisi ker- rosta suulakepuristettiin yhtäaikaa ja primäri putki jäähdyet- tettiin. Sitten se kuumennettiin osittain uudestaan säteily- kuumentimilla ja se kuumennettiin edelleen vetolämpötilaan sen suuntaamiseksi kaksiakselisesti ilmatyyyn avulla, joka ilma- tyyny oli puolestaan kuumennettu samankeskisesti liikkuvan primärin putken ympärille sijoitetun kuuman huokoisien putken läpi tapahtuvalla poikittaisvirtauksella.
On todettu, että keksinnön mukaista viisikerroksista kalvaa valmistettaessa kaksiakselisen suuntaamisen aikana suhteellisen pienillä puhallussuhteilla saadaan aikaan suuremmat kutsuuvuusarvot kuin suhteellisen suurilla puhallussuhteilla. Esimerkiksi käytettäessä primääriä putkea, jonka litteä leveys on 3 1/8 tuumaa (noin 7,9 cm) kussakin tapauksessa, 4,6 olvalla puhallussuhteella saatiin kalvo, jossa kutistuminen oli 21 % MD/32 % TD. 3,3 olvalla puhallussuhteella tämän saman kalvon kutistuminen oli 31 % MD/39 % TD 90 °C:ssa.

Seuraavasta kuvauksesta nähdään, että keksinnön mukaisessa viisikerroksisessa kalvossa on hyvin ohut, EVOH-nailon 6,66-sekoitetta oleva ydinkerros, jonka paksuus on noin 0,05-0,1 mil (noin 1,3-2,5 μm), mutta jolla saadaan kuitenkin aikaan vähemmän kuin noin 35 cm²/m²/24 tuntia oleva hapen läpäiseyys. Tämä arvo on tuoreen punaisen lihan kutistuspakkaamiseen tarvittava suoritustaso. Tähän on päästyt olennaisesti chuumalla, suhteellisen kalliosta EVOH:ta sisältävällä estokerroksella kuin tähän saakka ehdoteuissa tämäntyyppisissä kalvoissa.

Kalvon kokonaispaksuus on kuitenkin noin 1,5-3,5 mil (noin 38,1 - 88,9 μm) eli sama kuin tavanomaisissa monikerroksisissa, hapen ja kosteuden estokerroksen käsittävissä kalvoissa, joita käytetään tällä hetkellä tuoreen punaisen lihan pakkaamiseen.

Tämän kalvon toinen ja kolmas liimakerros ovat seuraavaksi kalleimpia komponentteja, ja ne muodostavat vain noin 2,5-5 % kalvon paksuudesta.

Kalvon neljännestä ulkokerroksesta tulee kalvosta muodostetun pussin sisäkerros, ja se on suorassa kosketuksessa pakatun lihatuotteen kanssa. Tämä kerros muodostaa noin 40-70 % kalvon paksuudesta ja koska se on paksuin kerros, sillä saadaan aikaan suurin osa tarvittavista kutistuvuusominaisuksista. Tämän neljännestä kerroksen sisäpinta on myös kuumaauomautuva itsensä kanssa, eli näitä sisäpinnat saumataan yhteen sen jälkeen, kun lihaa sisältävään pussiin on imettä hyöhy. Tämän pussin sisäkerroksen paksuuden on muodostettava vähintään noin 40 % kalvon kokonaispaksuudesta läpipalamisen estämiseksi kuumasaumaamisen aikana. Toisaalta tämä neljäs kerros ei saisi muodostaa enempää kuin noin 70 % kalvon paksuudesta, koska viidennen kerroksen (josta tulee pussinulkokerros) on oltava riittävän paksu ulkopuolisia kosketuksia ajatellen riittävään kulutuskestävytyyn ja puhkeamisluuteen päärämiseksi. Nämä ollen viides kerros muodostaa noin 20-35 % kalvon paksuudesta. Kääntäen, mikäli viidennen kerroksen paksuus on enemmän kuin noin 35 % kalvon kokonaispaksuudesta, niin tällöin neljäs
kerros on liian ohut suorituukseen edellä mainituista pussin sisäkerroksen tehtävistä.

Tässä kalvossa EVOH-nailon 66-sekoitetta olevalla, estokerroksena toimivalla ydinkerroksella on suhteellisen suuri keskimääräinen sulamispiste. Tässä yhteydessä käsitteellä "suhteellisen suuri" viitataan toisen ja kolmannen liimavälikerroksen muodostavan sekoitteen (sekoitteiden) suhteellisen pienin keskimääräisiin sulamispisteisiin sekä neljänneen ja viidenneen ulkokerroksen suhteellisen pienin sulamispisteisiin. Näiden suhteellisen pienten sulamispisteiden on oltava riittävän pieniä, jotta kalvo kutistuisi vähintään 30 % 90 °C:ssa; poikkisuunnassa, ja edullisesti vähintään 20 % koneen suunnassa. Tämä on vaatimuksena lihaa sisältävän ja kiinnisaumatuksen pussin, johon on imetty tyhjö, kutistamisesti lihan ulkopintaa vasten kuljettamalla pussi tavanomaisen, kuuman veden avulla kuumennetun kutistustunnelin läpi.

Esimerkki 1

Tämän keskeisarjan avulla osoitetaan se, kuinka tärkeätä on käyttää viisikerroksisessa kalvossa ydinkerroksen muodostavassa polymeerisekoitteessa sellaista EVOH:ta, jonka sulamispiste on noin alueella 162-178 °C ja eteenpitoisuus noin alueella 36-44 mol-%. Kokeissa käytettiin kuutta erilaista ydinkerros-sekoitetta (joista jokainen sisälsi 80 % EVOH:ta ja 20 % samaa Allied 1539-tyypistä nailon 6,66:ta). Näytteissä 2-6 käytettiin samoja valmisteita ja toinen ja kolmas välikerros olivat samanlaisia ja neljäs ja viiden ulkokerrolos olivat samanlaisia. Näiden ensimmäisestä viidenteen kerroksen paksuudet mil:einä (ja prosentuaalinen osuus kalvon kokonaispaksuudesta) olivat seuraavat: 0,08 (3)/0,08 (32)/0,08 (3)/1,72 (65)/0,69 (26) [0,08 mil = noin 2,0 μm; 1,72 mil = noin 43,7 μm; 0,69 mil = noin 17,5 μm]. Näytteen 1 välikerros ja ulkokerroso poikkesi jonkin verran näytteistä 2-6. Näytteessä 1 toisen ja kolmannen välikerroksen koostumus oli 53 % DEF KD 1192-tyypinien VLDPE, 30 % Plexar 3741-liima ja 17 % DQDA 6833-tyypinien EVA, ja painotettu keskimääräinen sulamispiste oli 116 °C. Neljännäen ulko-
kerroksen koostumus oli 100 % DQDA 6833-tyyppinen EVA ja vii-
dennen ulkokerroksen koostumus oli 76,5 % DQDA 6833-tyyppinen
EVA, 19,1 % DFPD 1192-tyyppinen VLDPE ja 4,4 % käsittelyn
apuainetta. Näytteissä 2-6 toisen ja kolmannen välikerroksen
koostumus oli 52,5 % Attane XU 61509.32-tyyppinen VLDPE, 30 %
Plexar 3779-liima ja 17,5 % DQDA 6833-tyyppinen EVA, ja niiden
keskimääräinen sulamispiste oli 116 °C. Neljännä ja viidennen
ulkokerroksen koostumus oli 70,6 % DEFD 1192-tyyppinen VLDPE,
25 % DQDA 6833-tyyppinen EVA ja 4,4 % käsittelyn apuainetta.
Niiden keskimääräinen sulavirta oli 0,25 g/10 min. ja niiden
painotettu keskimääräinen sulamispiste oli 115 °C.

Optiset ominaisuudet tarkastettiin ja eräissä tapauksissa
kiito mitattiin. Samoin tietyt fysikaaliset ominaisuudet,
esimerkiksi kutistumis-% ja dynaaminen puhkeamislujus, mitat-
tiin. Näiden kokeiden tulokset on koottu taulukkoon F.

Näytteen 2, jonka ydinkeroksessa oli käytetty 80 % EVOH:ta,
jossa eteenipitoisuus oli 38 %, ja 20 % nalion 6,66 sisältävää
sekoitetta, ulkonäkö oli kohtalainen. Näytteen 3, jossa oli
käytetty samaa nalionia kuin näytteessä 2, mutta sellaista
samaan valmistajan EVOH:ta, jonka sulavirta oli ollenaisesti
suurempi (8,4 verrattuna arvoon 3,8), ulkonäkö oli parempi ja
sen kutistuvuus oli hieman suurempi. Tämä osoittaa, että sel-
lainen EVOH-materiaali, joka sisältää 38 % eteeniä ja jonka su-
lavirta on 8, on edullista monikerroksien kalvon ydinkerroks-
sessa. Näytteet 4 ja 5 sisälsivät eri valmistajan EVOH:ta,
jossa eteenipitoisuus oli 38 %, ja sillä päästiin hyviin omi-
naisuuksiin. Näiden sekapolymeerien sulamispiste oli 173 °C.
Näiden tulosten perusteella voidaan päätellä, että tämän kek-
sinnön mukaisessa monikerroksisessa kalvossa hapen estoker-
roksena toimivassa ydinkerkosessa käytetyn EVOH:n sulamispis-
teen yläraja on noin 178 °C. Kun EVOH:n sulamispiste on suurem-
pi kuin noin 178 °C ja sen eteenipitoisuus on pienempi kuin
noin 36 paino-%, niin tällöin materiaalin venyttäminen ei ole
helppoa niissä suuntaamislämpötiloissa, jotka soveltuvat ni-
ille toisesta viidenteen kerrokselle, joilla on paljon pienem-
pi sulamispiste. Tuloksena on se, että kalvon lämpökutistuvuus on epäasianmukainen pieni tuoreen lihan pakkaamisesta ajatellen.

Näyte 6 sisälsi 44 % eteenä sisältävää EVOH-tyyppiä, ja se oli keksinnön suoritusmuoto, jossa käytetyn EVOH:n sulamispiste oli suhteellisen pieni, eli 164 °C.
Taulukko F
EVOH-tyypit (8)

<table>
<thead>
<tr>
<th>Näyte #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ydinker-roksen koostumus</td>
<td>80% Gl56 (2)/ 20% nylon 1539(3)</td>
<td>80% H101(1)/ 20% nylon 1539(3)</td>
<td>80% H103(4)/ 20% nylon 1539(3)</td>
<td>80% 3803(5)/ 20% nylon 1539(3)</td>
<td>80% 3808(6)/ 20% nylon 1539(3)</td>
<td>80% 4403(7)/ 20% nylon 1539(3)</td>
</tr>
<tr>
<td>EVOH s.p., °C (% eteenä)</td>
<td>158 (48)</td>
<td>175 (38)</td>
<td>175 (38)</td>
<td>173 (38)</td>
<td>173 (38)</td>
<td>164 (44)</td>
</tr>
<tr>
<td>Ydinkerroksen keskim. s.p. °C(°F)</td>
<td>166 (331)</td>
<td>179 (340)</td>
<td>179 (340)</td>
<td>179 (340)</td>
<td>179 (340)</td>
<td>171 (340)</td>
</tr>
<tr>
<td>Hapanläpsi-sevyys (μm)</td>
<td>93/2.35 93/59,7 μm</td>
<td>13.6/2.80 13,6/ 71,1 μm</td>
<td>9.8/2.60 9,8/66,0 μm</td>
<td>11.9/2.30 11,9/ 58,4 μm</td>
<td>8.4/2.80 8,4/71,1 μm</td>
<td>28.1/2.70 28,1/68,6 μm</td>
</tr>
<tr>
<td>Sameus, %</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulko- näkö (10)</td>
<td>hyvä</td>
<td>kohtalainen</td>
<td>hyvä</td>
<td>hyvä</td>
<td>hyvä</td>
<td>hyvä</td>
</tr>
<tr>
<td>Kiilto H.U.</td>
<td>79.8</td>
<td>64.6</td>
<td>67.0</td>
<td>70.8</td>
<td>70.9</td>
<td></td>
</tr>
<tr>
<td>Kutistumis-%, MD/TD 90 °C:ssa, 80 °C:ssa</td>
<td>40/49 20/34 22/38 13/33 27/38 20/37</td>
<td>25/38 12/23 14/25 8/23 17/26 11/36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Taulukko F (jatkoa)

<table>
<thead>
<tr>
<th>Näyte</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynaaminen puhkeaminen (cmkg/mil)</td>
<td>2.40</td>
<td>1.91</td>
<td>1.71</td>
<td>1.52</td>
<td>2.04</td>
<td>1.57</td>
</tr>
<tr>
<td>Vetolūjuus (psi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD/TD</td>
<td>8373/7767</td>
<td>8030/8803</td>
<td>8602/7939</td>
<td>7299/7809</td>
<td>10058/8864</td>
<td>10058/8864</td>
</tr>
<tr>
<td>N/cm²</td>
<td>5773/5355</td>
<td>5537/6070</td>
<td>5931/5474</td>
<td>5033/5384</td>
<td>6935/6112</td>
<td>6935/6112</td>
</tr>
</tbody>
</table>

(1) EVAL H101 on 38 % eteeniä sisältävä EVOH
(2) EVAL G156 on 48 % eteeniä sisältävä EVOH
(3) Nailon 1539 on 6,66-tyyppinen sekapolymeri
(4) EVAL H103 on 38 % eteeniä sisältävä EVOH
(5) Soarnol 3803 on 38 % eteeniä sisältävä EVOH
(6) Soarnol 3808 on 38 % eteeniä sisältävä EVOH
(7) Soarnol 4403 on 44 % eteeniä sisältävä EVOH
(8) Näytteissä 2-6 oli samanlaiset vähkerokset (kaksi) ja samanlaiset ulkokorokset (kaksi)
(9) Ensimmäinen lukuarvo on varsinaisen mitattu yksikössä cm³/m²/24 tuntia. Toinen lukuarvo on kalvon paksuus yksikössä mil millauspisteessä.
(10) Ulkonäkö tarkoittaa geelijuovia ja murtumia.
Näytteessä 1, jossa on käytetty 48 % eteenlä sisältävää EVOH:ta, jonka sulamispiste on 158 °C, saatiin aikaan tyydyt-tävät optiset, kutistuvuus- ja lujuusominaisuudet, mutta hapen läpsiirtymisnopeus oli olennaisesti suurempi kuin vähemmän eteenlä sisältävissä ja korkeammassa lämpötilassa sulavissa EVOH-näytteissä, jota hapen läpsiirtymisnopeutta ei voida hyväksyä kaupallisissa sovelluksissa. Näytteissä 1 ja 2-6 kerrosten 2-5 erilaisuus ei vaikuta hapen suhteelliseen läpsiirtymisnopeuteen näissä näytteissä. Nämä tulokset tukevat sitä, että keksinnön mukaisen monikerroksisen kalvon hapen estokerroksena toimivassa ydinkerroksessa käytetyn EVOH:n eteenpitoisuuden ylärajan tulisi olla 44 % ja sen sulamispisteen alarajan tulisi olla 162 °C.

Yhteenvetona esittäen, näytteet 2-6 ovat keksinnön suoritusmuotoja, joissa ydinkerroksen keskimääräiset sulamispisteet ovat suuremmat kuin muiden kerrosten, ja neljännellä ja viidennellä ulkokerroksella on suurin piirtein sama sulamispiste kuin toisella ja kolmannella liimavälikerroksella. Nämä arvot ovat seuraavat: 179 °C (ydinkerros), 116 °C (liimakerrokset) ja 115 °C (ulkokerrokset). Liima- ja ulkokerroksilla on vähäi-nen sulavirta.

suurempi nailon 6,66-pitoisuus pienentää estokerrosominaisu-
ukuksia aiotta käyttää ajatellen epäasianmukaiselle tasolle.
Näiden huomioon otettavien tekijöiden edullinen tasapaino on
sellainen ydinkerros, joka sisältää noin 78-82 paino-% EVOH:ta
ja noin 12-18 paino-% nailon 6,66:ta.

Esimerkki 2

Tässä viisikerroksisia kalvoja käyttävää koesarjassa havain-
nollistetaan sitä, kuinka tärkeää on käyttää nailon 6,66:ta
EVOH-pohjaisen, hapen estokerroksena toimivan ydinkerroksen
polyamidikomponenttina. Yleisesti ollaan todettu, että mikäli
tämäntyypiseen kalvoon ilmaantuu geelejä, niin niitä esiintyy
ydinkerroksessa. Tästä syystä geelien läsnäolo tai puuttuminen
on suora osittus ydinkerroksessa käytetyn erityisen EVOH-nai-
lon-muodosteen yhteesopivuudesta. Koesarjassa käytettiin
kahdeksaa erilaista näytettä, joiden ydinkerros oli tehty
erilaisista polymeeriyhdistelmistä, jotka sisälsi 80 %
EVOH:ta ja 20 % nailonia. Tulokset on koottu taulukkoon G.
Taulukko G

Ydinkerroksessa läsnäolevat nailontyypit

<table>
<thead>
<tr>
<th>Näyte No.</th>
<th>Nylon-tyyppi (%) eteeniä</th>
<th>EVOH-tyyppi (%)</th>
<th>Ydinkerroksen keskim. s.p., (°C)</th>
<th>Ulkokerrosten keskim. s.p., (°C)</th>
<th>Optinen ulkonäkö</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6,12**(1)**</td>
<td>38**(1)**</td>
<td>180</td>
<td>75% VLDPE, 25% EVA (115)</td>
<td>pahoja geelejä</td>
</tr>
<tr>
<td>8</td>
<td>6,12**(1)**</td>
<td>44**(1)**</td>
<td>162</td>
<td>75% VLDPE, 25% EVA (115)</td>
<td>pahoja geelejä</td>
</tr>
<tr>
<td>9</td>
<td>6,66**(2)**</td>
<td>38**(2)**</td>
<td>167</td>
<td>EVA (98)</td>
<td>pahoja geelejä</td>
</tr>
<tr>
<td>10</td>
<td>95% 6,12 & 5% amorf. nylon**(3)**</td>
<td>38**(3)**</td>
<td>EVA yhdessä kerroksessa (98); 75% VLDPE, 25% EVA toisessa kerroksessa (115)</td>
<td>pahoja geelejä</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6,66**(4)**</td>
<td>38**(4)**</td>
<td>180</td>
<td>75% VLDPE, 25% EVA (115)</td>
<td>melko hyvä; vähän geelejä</td>
</tr>
<tr>
<td>3</td>
<td>6,66**(4)**</td>
<td>38**(4)**</td>
<td>180</td>
<td>75% VLDPE, 25% EVA (115)</td>
<td>hyvä; ei geelejä</td>
</tr>
<tr>
<td>6</td>
<td>6,66**(4)**</td>
<td>44**(4)**</td>
<td>171</td>
<td>75% VLDPE, 25% EVA (115)</td>
<td>hyvä; ei geelejä</td>
</tr>
<tr>
<td>11</td>
<td>6,66**(4)**</td>
<td>38**(4)**</td>
<td>178</td>
<td>EVA (98)</td>
<td>huono; paljon geelejä</td>
</tr>
</tbody>
</table>

(1) nylon CR 9
(2) nylon CF62BSE
(3) nylon CR 9: ja Sellar 3426
(4) nylon 1539
(5) nylon 5033
(6) H 101 EVOH
(7) H 103 EVOH
(8) E 105 EVOH
(9) 4403 EVOH
Taulukosta G nähdään, ettei yhdensäkalvon, jonka ydinkerroksessa oli läsnä nailon 6,12:ta, optiset ominaisuudet olleet tyydyttävät (näytteet 7, 8 ja 10). Tämä johtui mahdollisesti nailonin ja EVOH:n välisestä osittaisesta reaktiosta tai sekoittumis- tai yhteensopimattomuusilmiöistä, jotka johtivat pahoihin geelieihin.

Sitä vastoin nailon 6,6:ta sisältävät näytteet olivat optisesti hyviä eikä niissä esiintynyt geelejä, huolimatta siitä, että ydinkerroksessa käytettiin erityyppisiä EVOH-sekapolymeerejä (jotka sisälsivät vastaavasti 38 ja 44 mooli-% eteeniä). Näytteet 2 ja 3 sisälsivät kulloinkin samaa nailon 6,66-tyypia, mutta ensiksi mainittu näyte oli ainoastaan kohtalainen optisilta ominaisuuksiltaan, koska siinä oli vähän geelejä. Sitä vastoin näytteessä 3 ei ollut lainkaan geelejä ja se oli optisesti erinomainen, todennäköisesti siksi, että siinä käytetyn EVOH:n sulavirta oli 8,4 verrattuna näytteeseen 2, jossa käytetyn EVOH:n sulavirta oli 3,8. Keksinnön suoritusmuotoina toimivien näytteiden 2, 3 ja 6 tapauksessa 1.-5. kerroksen paksuus yksikössä mil (ja prosentuaalinen osuus kalvon koko paksuudesta) olivat seuraavat:

Näyte
2 - 0,079 mil=2,0 µm (3), 0,079 mil=2,0 µm (3), 0,079 mil=2,0 µm (3), 1,716 mil=43,6 µm (65), 0,686 mil=17,4 µm (26)
3 - 0,086 mil=2,2 µm (3), 0,086 mil=2,2 µm (3), 0,086 mil=2,2 µm (3), 1,666 mil=47,4 µm (65), 0,746 mil=18,9 µm (26)
6 - 0,086 mil=2,2 µm (3), 0,086 mil=2,2 µm (3), 0,086 mil=2,2 µm (3), 1,372 mil=34,8 µm (65), 0,749 mil=19,0 µm (26)

Taulukossa G esitettyissä näytteissä toisen ja kolmannen liima-välikerroksen koostumus oli 30 % Plexar 169-liima ja 70 % DQDA 6833-tyyppinen EVA (näytteet 7-9), 60 % Admer 500-liima ja 40 % DQDA 6833-tyyppinen EVA (näyte 10), 52,5 % Attane 61509.32, 17,5 % DQDA 6833-tyyppin EVA ja 30 % Plexar 3779-liima (näytteet 2 ja 3) tai 30 % Plexar 3741 (näyte 6) ja 30 % Plexar 169-liima ja 70 % DQDA 6833-tyyppinen EVA (näyte 11). Niiden keskimääräiset sulavirrat (g/10 min.) olivat: 0,51 (näytteet
7-9), 0,86 (näyte 10), 0,46 (näytteet 2, 3), 0,54 (näyte 6) ja
0,51 (näyte 11). Niiden keskimääräiset sulamispisteet (yksikössä 'C) olivat: 100' (näytteet 7-9), 111' (näyte 10), 116'
(näytteet 2, 3 ja 6), sekä 101' (näyte 11). Taulukko G osoit-
taa, että keksinnön mukaisessa viisikerroksisessa kalvossa
hapen estokerroksena toimivassa ydinkerroksessa läsnäolevan
nailonin on oltava nailon 6,66:ta.

Huomattakoon, että keksinnön mukaisten viisikerroksisten kal-
vojen, joiden hapen estokerroksena toimivissa ydinkerroksissa
on läsnä yhtäsuuri prosentuaalinen osuus eteeni-tyypistä
EVOH:ta ja nailon 6,66-sekapolymeeria, optiset ominaisuudet
eivät ole välttämättä samat. Esimerkiksi näytteiden 2, 9 ja 11
ydinkerrokset sisältävät samantyyppistä EVOH:ta 80 % ja 20 %
nailon 6,66:ta, mutta näytteiden 9 ja 11 ulkokerroksissa on
100 % EVA:aa, eikä lainkaan VLDPE:ta. Sitä vastoin näytteen 2
ulkokerrokset käsittävät 75 % VLDPE:tä ja 25 % EVA:aa. Näyt-
teen 2 optiset ominaisuudet ovat paljon paremmat kuin näyt-
teissä 9 ja 11. Näiden erojen syitä ei täysin ymmärretä, mutta
ne saattavat liittyä suulakepuristuksen ja kaksiakselisen
suuntaamisen suurempiin lämpötiloihin, jotka ovat välttämättö-
mät, kun suuremmassa lämpötilassa sulavaa VLDPE:tä sekoitetaan
ulkokerroksissa pienemmässä lämpötilassa sulavaan EVA:aan.
Tämä suurempi lämpötila on läheisesti vieläkin suurempaa ydink-
kerroksen sulamispistettä ja parantaa niiden yhteneisopivuutta.
Tästä syystä keksinnön mukaisessa kalvossa joko neljännän tai
viidennen kerroksen tai sekä neljännäntä että viidennen kerroks-
en sulamispisteen on oltava vähintään noin 105 °C, joten molem-
mat kerrokset eivät voi koostua 100 %:sta EVA:aa.

Toinen ero näytteinä 2, 9 ja 11 käytettyjen kalvojen välillä
on se, että näytteessä 2 liima on materiaalia, jolla on vähäin-
nen sulavirta (Plexar 3779), kun taas näytteissä 9 ja 11 käyte-
tyn liimamateriaalin (Plexar 169) sulavirta on 2,5. Kuten myö-
hemmän yksityiskohtaisemmin selitetään, keksinnön mukaisissa
kalvoissa, joissa on käytetty polyeteenipohjaisia muokattuja
anhydridiliimoja, tämän liiman sulavirran tulisi olla vähemmän
kuin noin 1,7. Tällä tavalla liimakerroksen lujuus saadaan riittäväksi kestämään venyttäviä voimia suuntaamistoimenpiteen aikana.

Yhteenvetona, näytteet 2, 3 ja 6 ovat keksinnön suoritusmuotoja, joissa ydinkerroksen (ensimmäisen kerroksen), toisen ja kolmanneksi liimavälikerroksen sekä neljännän ja viidennen ulkokerroksen keskimääräiset sulamispisteet pienenevät vähitellen, eli näyteissä 2 ja 3 ne ovat 180 °C, 116 °C ja 115 °C ja näytteessä 6 nämä sulamispisteet ovat 171 °C, 116 °C ja 115 °C. Toisella ja kolmannella liimavälikerroksella ja neljännellä ja viidennellä ulkokerroksella on vähäinen sulavirta. Kalvon
näytteet 7, 8 ja 10 ovat optisesti epätyvyystäviä, koska niden ydinkerroksessa ei käytetty naiton 6,66:ta. Kalvon
näytteet 9 ja 11 ovat optisesti epätyvyystäviä osittain siksi, ettei niissä neljänne eikä viidennellä ulkokerroksen sulamispiste ole vähintään noin 105 °C.

Esimerkki 3

Joukko kokeita toteutettiin EVA:n (10 % vinyyliaisetattia) kuudella erilaisella pitoisuudella sekoitteessa kahden ulkokerroksen muodostamiseksi yhdessä VLDPE:n kanssa. Toisin sanoen
yksittäisen kalvon kumpikin ulkokerroros oli samaa sekoitetta, jossa EVA-pitoisuus oli valittu alueelta 25-65 %. VLDPE:n
pitoisuus saatiin vähentämällä 100 %:sta EVA-pitoisuuden ja
käsittelyn apuaineen 4,4 % olevan osuuden summa. Esimerkissä
käytettiin kahta VLDPE-tyypia, joiden ainoa merkittävä ero
oli niiden sulavirta, joka oli 0,5 Attane 61509.32-tyypin
tapauksessa ja 1,0 Attane 4001-tyypin tapauksessa. Näytteissä
12-17 1. - 5. kerroksen prosentuaalinen osuus kalvon kokonais-
paksuudesta oli seuraava: 3, 3, 3, 65 ja 26 %. Näiden näyttei-
den kokonaispaksuus yksikössä mil oli: 2,45 (62,2 µm; näyte
12), 2,49 (63,2 µm; näyte 13), 2,88 (73,2 µm; näyte 14), 2,49
(63,2 µm; näyte 15), 2,51 (63,8 µm; näyte 16) ja 2,84 (72,1 µm
näyte 19). Näin ollen ydinkerrosten paksuudet olivat alueella
0,07-0,09 mil (noin 1,8-2,3 µm). Näissä kaikissa kalvon
näytteissä ydinkerroksen koostumus oli 80 % EVOH H 103-sekapolymeri-
ria ja 20 % naailon 1539:ää, ja sen keskimääräinen sulamispiste oli 116 °C. Kaksissa kalvoissa toisen ja kolmannen lii-
mavälikerroksen koostumus oli 52,5 % Attane 61509.32-tyyppin VLDPE, 30 % Plexar 3779-liimaa ja 17,5 % DQDA 6833-tyyppin EVA:aa, ja niiden keskimääräinen sulavirta oli 0,46 g/10 min ja niiden keskimääräinen sulamispiste oli 116 °C. Optisten ominaisuuksien lisäksi myös tietyt fysikaaliset ominaisuudet mitattiin. Tulokset on koottu taulukkoon H.

Yhteenvetona, näytteet 12-17 ovat keksinnön suoritusmuotoja, joissa ydinkerroksen keskimääräinen sulamispiste on suurempi kuin muissa kerroksissa, ja neljännä ja viidennä ulkokerroksen sulamispiste on hieman alempi kuin toisen ja kolmannen liimavälierokksen sulamispiste. Kussakin tapauksessa ydinkerroksen ja liimakerroksen sulamispisteet olivat 179 °C ja 116 °C, vastaavasti. Näissä näytteissä ulkokerroksilla on vähäinen sulavirta. Ulkokerroksissa 45 % oleva EVA-pitoisuuden raja nähän vertaamalla näytteiden 14 ja 16 optisia ominaisuuksia toisiinsa.
Taulukko H

EVA-pitoisuus ulkokerroksissa

<table>
<thead>
<tr>
<th>Näyte No.</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDPG kaehessa ulkokerroksessa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attane 61509.32</td>
<td>Attane 61509.32</td>
<td>Attane 61509.32</td>
<td>Attane 4001</td>
<td>Attane 4001</td>
<td>Attane 4001</td>
<td></td>
</tr>
<tr>
<td>Paine-% EVA:aa (10% VA)</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>45</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>Ulkokerroksen sulavirta (g/10 min) /s.p. (°C)</td>
<td>0.42, (115)</td>
<td>0.39, (112)</td>
<td>0.38, (110)</td>
<td>0.54, (110)</td>
<td>0.47, (108)</td>
<td>0.41, (106)</td>
</tr>
<tr>
<td>Kalvon paksuus mil (μm)</td>
<td>2.45 (62,2)</td>
<td>2.49 (63,2)</td>
<td>2.88 (73,2)</td>
<td>2.49 (63,2)</td>
<td>2.51 (63,8)</td>
<td>2.84 (72,1)</td>
</tr>
<tr>
<td>Sameus, %</td>
<td>4.4</td>
<td>9.9</td>
<td>9.0</td>
<td>15.0</td>
<td>18.7</td>
<td>16.3</td>
</tr>
<tr>
<td>Kiilto, H.U.</td>
<td>78.7</td>
<td>59.5</td>
<td>62.8</td>
<td>47.9</td>
<td>43.9</td>
<td>48.1</td>
</tr>
<tr>
<td>Kutistumis-% MD/TP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 °Cissa</td>
<td>17/37</td>
<td>18/36</td>
<td>31/42</td>
<td>22/40</td>
<td>22/35</td>
<td>27/36</td>
</tr>
<tr>
<td>80 °Cissa</td>
<td>10/24</td>
<td>11/24</td>
<td>17/28</td>
<td>13/26</td>
<td>10/19</td>
<td>13/20</td>
</tr>
<tr>
<td>Dynaaminen puhkasmi-2 (Kg.cm/mil) nen</td>
<td>1.91</td>
<td>1.55</td>
<td>1.94</td>
<td>1.88</td>
<td>1.52</td>
<td>1.36</td>
</tr>
<tr>
<td>O₂-järäoisyys (cm²/m²/24 h/atm)</td>
<td>15.3</td>
<td>11.5</td>
<td>11.6</td>
<td>14.4</td>
<td>14.5</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Näytteen 18 tapauksessa hapen estokerroksen toimivan ydinkerroksen koostumus oli 80 % EVAL H101-tyyppin EVOH:ta ja 20 % nailon 1539:ää; toisen ja kolmannen liimakerroksen koostumus oli 52,5 % Attane XU 61509.32 VLDPE, 30 % Plexar 3779-liima ja 17,5 % DQDA 6833-tyyppin EVA.
Näytteet 19-23 ovat keksinnön suoritusmuotoja. Näissä kalvoissa 1. - 5. kerroksen paksuus yksikössä mil (sekä prosentuaalinen osuus kalvon kokonaispaksuudesta) olivat seuraavat:

19- 0,079 mil = 2,0 μm (3), 0,079 mil = 2,0 μm (3), 0,079 mil = 2,0 μm (3), 1,719 mil = n. 43,7 μm (65,1), 0,676 mil = n. 17,2 μm (25,9)
20- 0,095 mil = 2,4 μm (3), 0,095 mil = 2,4 μm (3), 0,095 mil = 2,4 μm (3), 2,064 mil = 52,4 μm (65,1), 0,821 mil = n. 20,9 μm (25,9)
21- 0,078 mil = n. 2,0 μm (3), 0,078 mil = n. 2,0 μm (3), 0,078 mil = n. 2,0 μm (3), 1,680 mil = n. 42,7 μm (65,1), 0,668 mil = n. 17,0 μm (25,9)
22- 0,077 mil = n. 2,0 μm (3), 0,077 mil = n. 2,0 μm (3), 0,077 mil = n. 2,0 μm (3), 1,660 mil = n. 42,2 μm (65,1), 0,660 mil = n. 16,8 μm (25,9)
23- 0,082 mil = n. 2,1 μm (3), 0,082 mil = n. 2,1 μm (3), 0,082 mil = n. 2,1 μm (3), 1,77 mil = n. 45,0 μm (65,1), 0,704 mil = n. 17,9 μm (25,9).

Hapen estokerroksena toimivan ydinkerroksen koostumus oli 20 % nailon 1539 ja 80 % EVAL H101-tyypin EVOH (näytteet 19-21), 80 % H103-tyypin EVOH (näyte 22) ja 80 % Soarnol 3808-tyypin EVOH (näyte 23), ja niiden jokaisen keskimääräinen sulamispiste oli 179 °C.

Toisen ja kolmannen liimavälierkerroksen koostumus oli 52,5 % VLDPE, 30 % liimaa ja 17,5 % EVA. VLDPE oli Attane XU 61509.32 (näytteet 19-21), DEFD 1192 (näyte 22) ja Attane XU 61520.01 (näyte 23). Liima oli Plexar 3779 (näytteet 19-21) ja Plexar 3741 (näytteet 22 ja 23). EVA oli DQDA 6833 kaikissa näytteissä. Keskimääräiset sulavirrat (yksikössä g/10 min.) olivat seuraavat: 0,46 (näytteet 19-21), 0,62 (näyte 22) ja 0,89 (näyte 23). Keskimääräinen sulamispiste (yksikössä °C) oli 116 °C kaikissa näytteissä 19-23.
Tämän esimerkin 4 koesarjassa neljännellä ja viidennellä ulkokerroksella keskimääräiset sulavirrat (yksikössä g/10 min.) olivat seuraavat: 0,4 (näyte 19), 0,55 (näyte 20), 0,71 (näyte 21), 0,21 (näyte 22) ja 0,71 (näyte 23). Kunkin näytteen 19-23 keskimääräinen sulamispiste (yksikössä °C) oli 115 °C.

Edellä esitetyn perusteella todetaan, että keksinnön suoritusmuotoja olevissa näytteissä 19-21 ja 23 toisella ja kolmannella liimavälikerroksella sekä neljännellä ja viidennellä ulkokerroksella on olennaisesti sama keskimääräinen sulamispiste, joka on pienempi kuin (ensimmäisen) ydinkerroksen sulamispiste.
<table>
<thead>
<tr>
<th>VLDPE-tyyppi</th>
<th>Attane 61512.21</th>
<th>Attane 61509.32 (50%), Attane 61512.21 (50%)</th>
<th>Attane 4001</th>
<th>Union Carbide 1192</th>
<th>Attane XU61520.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Näyte No. 18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Kalvon paksuus mil. (μm)</td>
<td>2.64 (67,0)</td>
<td>3.17 (80,5)</td>
<td>2.58 (65,5)</td>
<td>2.55 (64,8)</td>
<td>2.72 (69,1)</td>
</tr>
<tr>
<td>Ulkokerroksen sulavirta (g/10 min)/ (s.p. °C)</td>
<td>0.40/(115)</td>
<td>0.55/(115)</td>
<td>0.71/(115)</td>
<td>0.21/(115)</td>
<td>0.71/(115)</td>
</tr>
<tr>
<td>Veto- ljuusuus (psi MD/TD) N/cm²</td>
<td>10,200/7033</td>
<td>9,200/6343</td>
<td>10,500/7240</td>
<td>10,100/6964</td>
<td>9,400/6481</td>
</tr>
<tr>
<td></td>
<td>10,800/7447</td>
<td>9,800/6757</td>
<td>12,000/8274</td>
<td>8,000/5516</td>
<td>8,900/6137</td>
</tr>
<tr>
<td>Venymis-% (MD/TD)</td>
<td>208/143</td>
<td>180/144</td>
<td>211/104</td>
<td>235/176</td>
<td>221/198</td>
</tr>
<tr>
<td>Kutistumis-% MD/TD</td>
<td>15/39</td>
<td>29/42</td>
<td>25/35</td>
<td>28/41</td>
<td>34/41</td>
</tr>
<tr>
<td>90 °C:ssa</td>
<td>9/26</td>
<td>18/31</td>
<td>15/21</td>
<td>17/30</td>
<td>20/31</td>
</tr>
<tr>
<td>80 °C:ssa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0₂-läpätisyys (cm³/m²/24 h/atm)</td>
<td>13.0</td>
<td>13.9</td>
<td>11.9</td>
<td>13.2</td>
<td>9.1</td>
</tr>
</tbody>
</table>

1 Kahdessa ulkokerroksessa sekoitteen koostumus oli 70,6 % VLDPE, 25 % EVA (10 % VA) ja 4,4 % käsittelyn apuainetta.
Kuten aikaisemmin on selitetty, toinen ja kolmas liimakerros ovat kaksi tai kolme komponenttia käsitettävää sekoitetta, jossa on noin 35-80 % VLDPE:tä. Näillä kerroksilla täytyy olla vähäinen sulavirta sellaisen liimakerroksen aikaansaamiseksi, jonka liimakerroksen lujuus on riittävä siten, että kalvo kestää venytystä korotetussa lämpötilassa tapahtuvan kaksiakselisen suuntaamisen aikana. Tästä samasta syystä toisella ja kolmannella kerroksella täytyy olla vähäinen keskimääräinen sulavirta. Koska VLDPE on tyyppisesti liimakerroksen vahvin aineosaa, niin vähintään noin 35 % VLDPE:tä tarvitaan tähän kerrokseen, jotta kerros kykenisi suorituumaan sille tarkoitetusta tehtävästä. Toisaalta yli 80 % oleva VLDPE:n osuus tarkoittaa sitä, että liimakomponentin osuus on alle 20 % koko sekoitteesta, joka on riittävän määrä ajatellen ydinkerroksen ja ulkokerrosten välisen liimaamistehätävän toteuttamista. Edullisessa suoritusmuodossa, jossa nämä seikat on otettu huomioon, VLDPE:n osuus on noin 45-60 % toisesta ja kolmannesta liimavälierroksesta.

Esimerkki 5

On todettu, että näissä viisi kerrosta käsiteltävissä kalvoissa voi esiintyä jännitysviivoja, joita ei voida hyväksyä optisesti. Niiden läsnäolo (tai puuttuminen) riippuu suoraan näissä kerroksissa käytetyn liiman tyyppistä. Näyte 28, jossa oli muutamia jännitysviivoja, oli juuri ja juuri hyväksytävä ja sen liimakerrokset sisälsivät 30 % tuotetta Plexar 3779, joka on LLDPE-pohjainen, maleinihapon anhydridillä muokattu sekapolymeri (sulavirta 0,81). Näyte 29 oli hyvin samankaltainen kuin näyte 28, ainoan eron ollessa se, että siinä oli käytetty yhtön Dow tyyppiä 61509.32 olevaa VLDPE: tä liima- ja ulkoker-

28 - 0,085 mil = n. 2,2 \(\mu m \) (3,0), 0,085 mil = n. 2,2 \(\mu m \) (3), 0,085 mil = n. 2,2 \(\mu m \) (3,0), 1,933 mil = n. 49,1 \(\mu m \) (65,1), 0,730 mil = 18,5 \(\mu m \) (25,9)
29 - 0,077 mil = n. 2,0 \(\mu m \), (3,0), 0,077 mil = n. 2,0 \(\mu m \) (3,0), 0,077 mil = n. 2,0 \(\mu m \) (3,0), 1,673 mil = n. 42,5 \(\mu m \) (65,1), 0,665 mil = n. 16,9 \(\mu m \) (25,9)
30 - 0,089 mil = n. 2,3 \(\mu m \) (3,0), 0,089 mil = n. 2,3 \(\mu m \) (3,0), 0,089 mil = n. 2,3 \(\mu m \) (3,0), 1,933 mil = n. 49,1 \(\mu m \) (65,1), 0,769 mil = 19,5 \(\mu m \) (25,9)

Näytteissä 24-32 hapen estokerroksena toimivan ydinkerroksen koostumus oli 80 % EVAL H101-tyyppinen EVOH ja 20 % 1539-tyypipinen nailing, keskimääräisen sulamispisteen ollessa 179 °C.

Näyte 24 käsitti tuotetta Adamer 500 liimana; Taulukossa E tämä materiaali on luonnehdittu LLDPE-pohjaiseksi, maleiinihapa-
pon anhydridillä muokatuksi sekapolymeeriksi, jolla on suhteellisen suuri eli 2,0 oleva sulavirta. Tästä suuresta arvosasta johtuen kalvossa oli olennainen lukumäärä jännitysviivoja, ja se olisi optisesti sopimatonta keksinnön mukaiselle kalvolle aiottuun käyttöön. Sitä vastoin muutoin samankaltaisella, tuotetulla Plexar 3741, joka on polyteeniin perustuvaa, muokattua anhydridiliimaa (sulavirta 1,5), sisältävällä kalvolla, kuten näytteellä 31, oli hyvät optiset ominaisuudet. Näin ollen, jotta tällainen polyteenipohjainen liima olisi käyttökelpoista tässä keksinnössä, sen sulavirran tulisi olla noin 1,7 g/10 min. Tämä takaa sen, että liima on riittävän lujaa suuntaamistoimenpiteen aikana kalvon ylläpitämiseksi. Suuremmat sulavirrat eivät kestä tätä rasitusta nähä olosuhteissa. Tästä samasta syystä keksinnön mukaisessa kalvossa käytettävällä liimakerrossekoitteella on oltava vähäinen keskimääräinen sulavirta.

Näytteessä 25 käytetyn liimakerroksen koostumus oli 70 % Surlyn 1650 ja 30 % Plexar 106; viimeksimainittu on EVA-pohjainen, maleiinhapon anhydridiä sisältävä sekapolymeeri, jonka sulavirta on 1,2. Kalvossa oli olennainen lukumäärä jännitysviivoja, johtuen todennäköisesti sekä EVA-pohjaisen liiman että liimakerroksen suhteellisen suuresta sulavirrasta, joten se on optisesti sopimatonta tuoreen punaisen lihan pakkaamiseksi. Näyte 26 sisälsi myös liimakomponenttina 30 % tuotetta Plexar 106, ja siinä käytettiä EVA-perustalla oli suhteellisen suuri sulavirta (1,2). Tässä näytteessä oli epäasianmukainen lukumäärä jännitysviivoja.

Näyte 27 sisälsi liimana 30 % tuotetta Bynel CXA 3048, joka on luonnehdittu taulukossa E EVA-pohjaiseksi terpolymeeriksi, jonka sulavirta on 0,9. Huolimatta siitä, että tällä liimakerroksella oli pieni sulavirta ja vähäinen sulavirta, kalvossa oli olennainen lukumäärä jännitysviivoja koneen suunnassa.

Näyte 30 sisälsi liimana 30 % tuotetta Plexar 169; tämä sekapolymeeri on pienitiheyksiseen polyteeniin perustuvaa, maleiinhapon anhydridillä muokattua materiaalia, jonka sulavirta
on 2,5 (katso taulukko E). Näytteessä todettiin olennainen lukumäärä jännitysviiwoja koneen suunnassa, joten se ei sovel- lu oheisen keksinnön mukaiseen käyttöön. Tämä johtui liiman suhteellisen suuresta sulavirrasta, minkä seurauksena ydinker- ros ei venynyt tasaisesti suuntaamisen aikana.

Näyte 32 sisälsi liimana 30% tuotetta Orevac 18302; tämä on EVA-pohjainen terpolymeri, jonka sulavirta on 0,8 (katso taulukko E). Huolimatta tästä suhteellisen pienestä sulavirrasta, jonka seurauksena toisella ja kolmannella liimakerroksella on vähäinen keskimääräinen sulavirta sekä hyvät optiset ominaisuudet, tämä kalvo oli epätyydyttävä kerrosten välisen huonon tarttuvuuden seurauksena. Kuten jäljempanä esimerkissä 38 on osoitettu, tämän ongelman välttämiseksi tässä keksin- nössä käytökelpoisten EVA-pohjaisten liimojen sulavirran on oltava äärimmäisen pieni, eli vähemmän kuin noin 0,5 g/10 min.

Näytteessä 31, joka on keksinnön suoritusmuoto, keskimääräiset sulamispisteet pienenevät vähitellen siirryttäessä ydinkerrok- sesta toiseen ja kolmanteen liimavälikerrokseen ja edelleen neljänteen ja viidenteen ulkokerrokseen. Näiden kukin näyt- teen liimakerroksilla on vähäinen sulavirta, ja niillä kulla- kin on vähintään 30% oleva vapaa kutistuvuus 90 °C:n lämpöti- lassa poikkisuunnassa.
Taulukko J
Liimakerrossekoitteet

<table>
<thead>
<tr>
<th>Näyte No.</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLDPE-tyyppi kansa ulkokorrissa</td>
<td>UCC (1192)</td>
<td>UCC (1192)</td>
<td>(UCC 1192)</td>
<td>(UCC 1192)</td>
</tr>
<tr>
<td>Liimakerrokset: koostumus</td>
<td>60% Admer 500/40% EVA (10% VA)</td>
<td>70% Surlin 1650(3)/30% Plexar 106(8)</td>
<td>70% sekoite1 / 30% Plexar 106(8)</td>
<td>70% sekoite1 / 30% CXA 3046(6)</td>
</tr>
<tr>
<td>Keskim. sulavirta (g/10 min)</td>
<td>1.0</td>
<td>1.5</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>Painotettu keskim. s.p.(°C)</td>
<td>112</td>
<td>95</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Kalvon paksuus mil (µm)</td>
<td>2.83 (71,9)</td>
<td>2.67 (67,8)</td>
<td>2.75 (70,0)</td>
<td>2.84 (72,1)</td>
</tr>
<tr>
<td>Kutistuvuus, % 90 °C:ssa MD/TD</td>
<td>14/38</td>
<td>20/40</td>
<td>21/39</td>
<td>20/38</td>
</tr>
<tr>
<td>Optiset ominaisuudet (näköhav.)</td>
<td>Viivoja (2)</td>
<td>Viivoja (2)</td>
<td>Viivoja (2)</td>
<td>Viivoja (2)</td>
</tr>
</tbody>
</table>

1 Näytteissä 26, 27, 28, 29, 31 ja 32 liimakerroksen koostumus on 49 % VLDPE, 17 % EVA, 30 % liimaa ja 4 % käsittelyn apuaainetta.
2 Jännitysviivoja koneen suunnassa.
3 Surlin 1650 on sinkki-ionomeeri, jonka sulavirta on 1,6 ja sulamispiste 94 °C, ja jota markkinoi DuPont Chemical Company.
Taulukko J (jatkoa)

<table>
<thead>
<tr>
<th>Näyte No.</th>
<th>28(9)</th>
<th>29(9)</th>
<th>30</th>
<th>31(9)</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLDPE-tyyppi kahtessa ulkokersesssa</td>
<td>UCC (1192)</td>
<td>Dow (61509.32)</td>
<td>UCC (1192)</td>
<td>UCC (1192)</td>
<td>UCC (1192)</td>
</tr>
<tr>
<td>Liimakerroksen Koostumus</td>
<td>70% sekoite 1 30% Plexar 3779</td>
<td>70% sekoite 1 30% Plexar 3779</td>
<td>70% EVA (10% VA) 30% Plexar 169</td>
<td>70% sekoite 1 30% Orevac 18302(7)</td>
<td></td>
</tr>
<tr>
<td>Keskim. sulavirta (g/10 min)</td>
<td>0.31</td>
<td>0.52</td>
<td>0.51</td>
<td>0.38</td>
<td>0.31</td>
</tr>
<tr>
<td>Keskim. s.p. (°C)</td>
<td>117</td>
<td>117</td>
<td>105</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Kalvon paksuus</td>
<td>2.82</td>
<td>2.53</td>
<td>2.61</td>
<td>1.98</td>
<td>2.97</td>
</tr>
<tr>
<td>Kutistuvuus, % 90°C:ssa MD/ID</td>
<td>21/39</td>
<td>20/34</td>
<td>22/38</td>
<td>28/36</td>
<td>18/35</td>
</tr>
<tr>
<td>Optiset omin. (näköhavainto ja mitattu)</td>
<td>muutama (2) viiva</td>
<td>hyvä ulkonäkö; ei viivoja</td>
<td>ei viivoja; sameus 8,5% kiillo 65 HU</td>
<td>ei viivoja; sameus 7,2% kiillo 70 HU</td>
<td></td>
</tr>
</tbody>
</table>

- Tässä kalvossa kerrosten välinen tarttuvuus oli huono verrattuna tämän taulukon muihin kalvoihin, joten kalvoa ei voitu hyväksytä.
- CXA 3048 on EVA-pohjainen liima, taulukon E perusteella.
- Orevac 18302 on EVA-pohjainen liima, jonka sulavirta on 0,8, taulukon E perusteella.
- Plexar 106 on EVA-pohjainen liima, jonka sulavirta on 1,2 taulukon E perusteella.
- Keksinnön suoritusmuoto.
Esimerkki 6

Edellä kuvatuissa keksinnön mukaisissa suoritusmuodoissa kutistuvuus oli tyyppisesti noin 31 % koneen suunnassa ja noin 39 % poikkisuunnassa, kumpikin 90 °C:ssa mitattuina. Tämä kutistuvuus on tyydyttävä useimpia tuoreen lihan pakkaussovelluksia ajatellen, mutta toivottavasti olisi päästä vieläkin suurempaan kutistuvuuteen oheisen viisikerroksisen kalvon tietyjä lopullisia käyttösovelluksia ajatellen.

Tämä on mahdollista käyttämällä erilaisia termoplastisia polymereereja joko vain yhdessä ulkokerroksessa tai molemmissa ulkokerroksissa, mikä nähdään keksinnön mukaisen kalvon kahdesta suoritusmuodosta, joiden kutistuvuus on suuri. Näissä taulukossa K kuvatuissa kokeissa käytettiin neljää kalvoa. Näytteet 33-35 ovat keksinnön suoritusmuotoja, joissa on samanlainen hapen estokerroksena toimiva ydinkerros, jonka koostumus on 80 % EVAL H 103-tyyppistä EVOH:ta ja 20 % nailon 1539-tyyppiä. Ydinkeroksessa käytetyn polymeerisekoitteen keskimääräinen sulamispiste oli 164 °C. Näytteissä 33 ja 34 toinen ja kolmas liimavälikerros ovat samanlaiset, ja näyte 35 on hyvin samankaltainen. Niiden keskimääräinen sulavirta oli 0,61 g/10 min ja niiden keskimääräinen sulamispiste oli 116 °C.

oleva sulamispiste oli vähemmän kuin niiden vieressä sijaitse-vien välikerrosten vastaava, 116 °C oleva arvo. 1.-5. kerroksen paksuus yksikössä mil (ja prosentuaalinen osuus kalvon kokonaispaksuudesta) olivat seuraavat: 0,08 (3)/0,08 (3)/0,08 (3)/ 1,64 (63)/0,73 (28) (0,08 mil = 0,2 μm; 1,64 mil = 41,7 μm; 0,73 mil = 18,5 μm). Näin ollen edullisessa lämpökutistuvassa suoritusmuodossa vähintään joko neljäs tai viides ulkoros käsitteää sekoitetta, joka sisältää noin 40-60 % VLDPE, noin 5-20 paino-% plastomeerista eteeni-alfa-olefiini-sekapoly-meeria ja noin 20-40 paino-% eteeni-vinyyliaisetaattia, jossa vinyyliaisetaattipitoisuus on noin 7-15 paino-%.

Näytteessä 35 neljäs ulkoros (josta tulisi tästä kalvosta tehdyn pussin sisäkerros) oli 100 % Surlyn 1706-ionomeeria, jonka valmistaja on DuPont Company, ja viides ulkoros (josta tulisi pussin ulkoros) oli samanlainen kuin tavalliseen tapaan kutistuvan kalvon (jonka keskimääräinen sulamispiste on 110 °C) ulkororokset. Taulukosta K nähdään, että tällä kalvolla on myös olennaisesti suuremmat kutistuvuusominaisuudet kuin tavalliseen tapaan kutistuvalla näyteellä 33. Sen opti-set ominaisuudet olivat jopa paremmat kuin näyteellä 34, mutta dynaaminen puhkeamislujuus oli huonompi. Koska neljänneen ulkoriskon keskimääräinen sulamispiste oli 81 °C, se oli pienempi kuin toisen välikerroksen vastaava, 103 °C oleva arvo. 1.-5. kerroksen paksuus yksikössä mil (ja sen prosentuaalinen osuus kalvon kokonaispaksuudesta) olivat seuraavat: 0,09 (3)/0,09 (3)/0,09 (3)/1,83 (63)/0,81 (28) (0,09 mil = 2,3 μm; 1,83 mil = 46,5 μm; 0,81 mil = 20,6 μm). Kalvon kokonaispak-suus oli 2,9 mil (noin 73,7 μm).

Vertailun vuoksi, näyte 36 oli kilpailukykyinen, kuusikerro-sinen lämpökutistuvu kalvo, jossa oli EVOH-ydinkerros. Tämä kalvo oli W.R. Grace-tyyppinen BB4-E, jota on ehdotettu tuoreen punaisen lihan pakkaamiseen. Taulukosta K nähdään, että keksinnön suoritusmuotoa olevien näytteiden 34 ja 35 lämpökuti-tstuvuus on vähintään yhtä hyvä tai jopa parempi kuin tällä kilpailukykyisellä kalvolla, mikä pätee myös dynaamisen puhkeamislujuuden arvoihin.
Eräässä keksinnön mukaisessa edullisessa, voimakkaasti kutistuvassa suoritusmuodossa on neljäs ja viides ulkokerro, jotka on tehty sekoitteesta, joka sisältää noin 42-46 paino-% hyvin pienitiheyksistä polyeteneiä, jonka tiheys on noin 0,912, noin 34-38 paino-% eteeni-vinyyliasetaattia, jossa vinyyliasetaattipitoisuus on noin 10 %, ja noin 13-17 paino-% eteeni-alfaoleifiini-plastomeeria, jonka tiheys on noin 0,88, sulavirta noin 1,4 g/10 min ja sulamispiste noin 71 °C.

Eräässä toisessa keksinnön mukaisessa edullisessa, voimakkaasti kutistuvassa suoritusmuodossa neljäs ulkokerro käsittää ionomeeria vähintään yhtenä komponenttinaan. Tämä ulkokerro voi käsittää esimerkiksi EVA:n ja ionomeerin sekoitetta, tai kuten näytteessä 36, neljäs kerros voi käsittää 100 % ionomeeria.
Taulukko K
Voimakkaasti kutistuvat kalvokoostumukset

<table>
<thead>
<tr>
<th>Kalvon tyyppi</th>
<th>Näyte No.</th>
<th>Koostumus</th>
<th>Kalvon paksuus mil (μm)</th>
<th>Vetolujusse psi MD/TD (N/cm²)</th>
<th>Kutistumis-% 90°C:ssa</th>
<th>Kutistumis-% 80°C:ssa</th>
<th>Impulssissaumausalue, volttia</th>
<th>Sameus, %</th>
<th>Kiilto, Ru-yksikköä</th>
<th>Dynaaminen puhkeaminen (Kg-cm)</th>
<th>O₂-läpäisevyys, cm³/m²/24 h/atm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33</td>
<td>Ulkokerrokset: 70.6% VLDPE (UCC 1192), 25.0% EVA (UCC 6833), 4.4% käsittelyn apuainetta</td>
<td>2.6 (66,0)</td>
<td>8500/7500 (5861/5171)</td>
<td>31/39</td>
<td>18/27</td>
<td>36-50</td>
<td>7.0</td>
<td>73</td>
<td>3.5</td>
<td>21.7</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Ulkokerrokset: 44.3% VLDPE (Dow XU61520.01), 36.3% EVA (UCC 6833), 15.0% Tafmer 1085 (3), 4.4% käsittelyn apuainetta</td>
<td>2.6 (66,0)</td>
<td>10000/9700 (6895/6688)</td>
<td>41/47</td>
<td>23/33</td>
<td>32-42</td>
<td>5.4</td>
<td>80</td>
<td>6.2</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Viides ulkokerroks samanlainen kuin näytteessä 33. Neljäs ulkokeros 100% Surlyn 1706 -ionomeeria (2)</td>
<td>2.9 (73,7)</td>
<td>10000/9500 (6895/6550)</td>
<td>44/57</td>
<td>33/43</td>
<td>36-50</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>EVA/Adh/EVOH/Adh/EVA/PE</td>
<td>2.6 (66,0)</td>
<td>5100/4700 (3516/3241)</td>
<td>36/46</td>
<td></td>
<td>35-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W.R. Grace-tyypin
BB4-E-kalvo
Huomautuksia taulukkoon K

1 Kaikkien keksinnön mukaisten kalvojen ydinkerros oli samanlainen (80 % H103-tyyppistä EVOH:ta, 20 % 1539-tyyppistä nailonia), kuten taulukossa F on esitetty näytteelle 3. Näytteissä 33 ja 34 toisen ja kolmannen liimavälikerroksen koostumus oli 52,5 % 61509.32-tyyppinen VLDPE, 17,5 % 6833-tyyppinen EVA ja 30 % Plexar 3741-tyyppinen liima, koostumuksen ollessa hyvin samankaltainen kuin näytteessä 31 (taulukko J). Näytteessä 35 liimakerrosten koostumus oli 52,5 % 1192-tyyppinen VLDPE, 17,5 % 6833-tyyppinen EVA ja 30 % Plexar 3779-tyyppinen liima, koostumuksen ollessa hyvin samankaltainen kuin näytteessä 29 (taulukko J).

2 Surlyn 1706 on sinkki-ionomeeri, jonka sulavirta on 0,7 ja sulamispiste 81 °C, ja jonka valmistaja on DuPont Company.

3 Tafmer 1085 on plastomeerityyppinen eteeni-alfa-olefiini, jonka tiheys on 0,88, sulavirta 1,4 (g/10 min.) ja sulamispiste 71 °C, ja jonka valmistaja on Mitsui Petrochemicals Ltd.
Esimerkki 7

Taulukon L vertailusta nähdään, että kutistumisen, dynaamisen puhkeamisen ja hapen läpäisykyvyn perusteella keksinnön mukaiset viisikerroksiset kalvot ovat vähintään verrannollisia vinylideenikloridisekopolymeerin tyyppisiin, kolmikerroksisiin, kaksiakselisesti suunnattuihin, lämpökutistuviin kalvoihin, jollaisia käytetään nykyään tuoreen lihan pakkaamiseen. Ne ovat samoin vähintäänkin verrannollisia teknikkaan nykytason mukaisiin, kaupallisesti saataviin, monikerroksisiin EVOH- tyyppisiin kalvoihin.
<table>
<thead>
<tr>
<th>Näytteen nimitys</th>
<th>Hyvin luja MA Saran</th>
<th>Voimakkaasti kutistuva MA Saran</th>
<th>Tavanomaisesti kutistuva keksinnön suoritusmuoto</th>
<th>Voimakkaasti kutistuva keksinnön suoritusmuoto</th>
<th>Kilpailukykyinen EVOH No. 1</th>
<th>Kilpailukykyinen EVOH No. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalvon paksuus mil (μm)</td>
<td>2.1 (53.3)</td>
<td>2.3 (58.4)</td>
<td>2.6 (66.0)</td>
<td>2.6 (66.0)</td>
<td>2.6 (66.0)</td>
<td>2.3 (58.4)</td>
</tr>
<tr>
<td>Kutistumis-%, MD/TD 90 °C:ssa</td>
<td>25/34</td>
<td>38/48</td>
<td>31/39</td>
<td>41/47</td>
<td>36/46</td>
<td>38/38</td>
</tr>
<tr>
<td></td>
<td>80 °C:ssa</td>
<td>19/30</td>
<td>18/27</td>
<td>23/33</td>
<td>19/35</td>
<td>30/33</td>
</tr>
<tr>
<td>Dynaaminen puhkeaminen (Kg/cm)</td>
<td>5.1</td>
<td>4.5</td>
<td>3.5</td>
<td>6.2</td>
<td>1.8</td>
<td>2.8</td>
</tr>
<tr>
<td>O₂-läpäisevyys (cm³/m²/24 h/atm)</td>
<td>18.6</td>
<td>18.6</td>
<td>21.7</td>
<td>20.1</td>
<td>17.0</td>
<td>12.4</td>
</tr>
</tbody>
</table>

1 Koostumus painosta: ulkokerrokset: 70,6 % VLDPE, 25,0 % EVA, 4,4 % käsittelyn apuainetta, yhden ulkokerroksen paksuuden ollessa 1,64 mil (noin 41,7 μm) ja toisen ulkokerroksen paksuuden ollessa 0,72 mil (noin 18,3 μm), hapen estokerroksen saatamivat ydinkerroksen koostumus on 80 % EVOH (38 % eteeniä, sulavirta 8,4), 20 % nailon 6,66, paksuus 0,08 mil (noin 2,0 μm), ja kahden välikerroksen paksuus on kulloinkin 0,08 mil (noin μm) ja niiden koostumus on 52,5 % VLDPE, 17,3 % EVA ja 30,0 % LLDPE (hekseeni)-pohjainen, maleinihapon anhydridilla muokattu liima, sulavirta 0,8.

2 Koostumus on kuvattu Taulukossa J, näyteelle 34.
Tässä esimerkissä valmistettiin viisikerroksiset kalvot käytäen toisen ja kolmannen liimakerroksen sekoitteissa 10 paino-% vinyylisetaattia sisältävään eteeni-vinyylisetaattisekapolymeriin (EVA) perustuvaa muokattua anhydridiilimaan, jonka sulavirta on noin 0,25 g/10 min. (Quantum:in PPX 5075), sekoitteen sisältäessä toisena komponenttina pelkästään VLDPE:tä (näyte 39), tai käyttäen sitä EVA:aa (erillinen aineosaa ja VLDPE:tä sisältävää kolmen komponentin sekoitteessa (näyte 38). Näiden kalvojen optiset ja fysi kaaliset ominaisuudet määritettiin ja niitä verrattiin sellaiseen viisikerroksen kalvoon, joka erosi ainoastaan siinä suhteessa, että siinä oli käytetty LLDPE-pohjaista muokattua anhydridiilimaan (näyte 37). Näiden kaikkien kalvojen liimakerroksilla on vähäinen keskimääräinen sulavirta.

Erityisemmin, näytteiden 37, 38 ja 39 paksuus oli kulloonkin noin 2,6 mil (noin 66,0 μm) ja niissä kussakin oli hapen esto kerroksena toimiva ydinkerros, jonka koostumus oli 80 % EVAL H103-tyyppi EVOH ja 20 % 1539-tyyppin nailing 6,66. Näissä näytteissä neljännäinen ulkokerroksen koostumus oli 75 % DEFD 1192-tyyppin VLDPE ja 25 % DQDA 6833-tyyppin EVA. Näissä näytteissä viidennen ulkokerroksen koostumus oli 70,6 % DEFD 1192-tyyppiin VLDPE, 25 % DQDA 6833-tyyppin EVA ja 4,4 % käsitellyn apuainet. Näytteissä 37 ja 38 liimakerros sisälsi 52,5 % 61509.32-tyyppin VLDPE:tä, 30 % liimakomponenttia ja 17,5 % DQDA 6833-tyyppin EVA:aa. Näytteessä 37 liima oli edellä kuvattu Plexar 3779, jonka sulavirta oli 0,8 (katso taulukko E). Näytteessä 38 liima oli Quantum:in EVA-pohjainen Plexar PPX 5075-tyyppi (sulavirta 0,25). Näytteessä 39 liimakerros oli kaksikomponenttinen sekoite, jonka koostumus oli 75 % 61509.32-tyyppin VLDPE ja 25 % edellä kuvattu Quantum PPX 5075-tyyppin liimaa. Näissä näytteissä ydinkerros muodosti noin 3 % kalvon paksuudesta ja samoin toinen ja kolmas liimakerros muodostivat kulloonkin noin 3 % kalvon paksuudesta. Neljäs kerros (sisäkerros) muodosti noin 63 % ja viides kerros (ulkokerros) muodosti noin 28 % kalvon paksuudesta.
Näiden kalvojen fysikaaliset tunnusomaiset piirteet on koottu taulukkoon M ja niiden fysikaaliset ominaisuudet on koottu taulukkoon N.

Taulukko M

EVA-pohjaisen liimakalvon tunnusomaiset piirteet

<table>
<thead>
<tr>
<th>Liimatyyppi (sulavirta)</th>
<th>Hapen esto-kerroksen paksuus (mil (μm))</th>
<th>Kerrosten painotettu keskim. sp. (°C)</th>
<th>Kerrosten keskim. sulavirta 1/2/3/4/5</th>
<th>Liimakerroksen koost.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Näyte no. váirta g/10 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 LLDPE (0,8)</td>
<td>0,8 (20,3)</td>
<td></td>
<td></td>
<td>52,5% VLDPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30% liimaa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17,5% EVA</td>
</tr>
<tr>
<td>38 EVA (0,25)</td>
<td>0,8 (20,3)</td>
<td></td>
<td></td>
<td>52,5% VLDPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30% liimaa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17,5% EVA</td>
</tr>
<tr>
<td>39 EVA (0,25)</td>
<td>0,8 (20,3)</td>
<td></td>
<td></td>
<td>75% VLDPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25% liimaa</td>
</tr>
</tbody>
</table>
Taulukko N
EVA-pohjaisen liimakalvon ominaisuudet

<table>
<thead>
<tr>
<th>Kalvotyyppi</th>
<th>LLDPE-pohjainen liima</th>
<th>EVA-pohjainen liima¹⁾</th>
<th>EVA-pohjainen liima²⁾</th>
</tr>
</thead>
<tbody>
<tr>
<td>Näyte no.</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>Kalvon paksuus mil (µm)</td>
<td>2,97 (75,4)</td>
<td>2,47 (62,7)</td>
<td>2,72 (69,1)</td>
</tr>
<tr>
<td>Vetoljuus, psi MD/TD (N/cm²)</td>
<td>8600/7900 (5929/5447)</td>
<td>8700/8200 (5999/5654)</td>
<td>8500/8300 (5861/5723)</td>
</tr>
<tr>
<td>Murtovenymä (RM) MD/TD</td>
<td>287/161</td>
<td>221/151</td>
<td>219/165</td>
</tr>
<tr>
<td>Kutistumis-% 90 °C:ssa</td>
<td>18/35</td>
<td>32/38</td>
<td>33/44</td>
</tr>
<tr>
<td>80 °C:ssa MD/TD</td>
<td>-</td>
<td>18/32</td>
<td>20/32</td>
</tr>
<tr>
<td>Dynaaminen puhkeaminen, cm/kg/mil</td>
<td>1,7</td>
<td>1,6</td>
<td>1,7</td>
</tr>
<tr>
<td>Sameus, %</td>
<td>8,5</td>
<td>5,3</td>
<td>5,4</td>
</tr>
<tr>
<td>Kiilto, HU-yksikköä</td>
<td>65,4</td>
<td>77,9</td>
<td>78,8</td>
</tr>
<tr>
<td>O₂-läpäisevyys cm³/m²/24 h/atm</td>
<td>9,8</td>
<td>12,2</td>
<td>10,8</td>
</tr>
</tbody>
</table>

(1) Liimakerros sisälsi myös VLDPE:stä
(2) Liimakerros sisälsi myös VLDPE:stä ja EV:stä.

Näytteestä 38 nähdään, että keksinnön mukaisissa viisikerroksisissa kalvoissa oli liimakerros, joissa liimana on EVA-pohjainen muokattu anhydridityyppi, jolla on hyvin pieni sulavirta, eli pienempi kuin noin 0,5 g/10 min. Lisäksi näytteissä 38 ja 39 kolmas liimakerros voi käsitellä joko VLDPE:stä ja liimaa sisältävää kaksikomponenttista sekoitetta tai VLDPE:stä, EVA:aa ja liimaa sisältävää kolmikomponenttista sekoitetta, EVA:n muodostaessa korkeintaan noin 25 % liimakerroksen kokonaispainosta, ja sen sulavirran ollessa vähäinen. Tässä kolme kompo-
nentia sisältävissä sekoitteessa EVA-pitoisuus ei saisi olla suurempi kuin noin 40 %, koska suurempan EVA-pitoisuuksien tapauksessa liimakerroksen lujus ei ole riittävä kalvon ylläpitämiseksi suuntaamislosoluhteissa, kuten aikaisemmin on selitetty.

Taulukot M ja N osoittavat, että EVA-pohjaiset liimanäytteet 38 ja 39 olivat yhtä hyviä kuin LLDPE-liimaa sisältävä näyte 37 fysikaalisen lujuuden, tutkimuuden ja hapen läpäisevyyden suhteen, ja niiden optiset ominaisuudet katsottiin hyviksi. Näiden näytteiden, jossa käytetyn liiman sulavirto oli 0,25, optiset ominaisuudet ovat olennaisesti paremmat kuin niillä kalvoilla, joissa on käytetty sellaista EVA-pohjasta liimaa, jonka sulavirto on olennaisesti tätä suurempi, ja joita ovat mm. näytteet 25 ja 26 (EVA-liiman sulavirto 1,2) ja näyte 27 (EVA-terpolymeeriin perustuvaa liima, jonka sulavirto on 0,9). Näissä kaikissa kalvoissa oli viivoja. Mahdollinen selitys on se, että liimapohjana toimiva EVA on heikompaa kuin polyyetheni ja sillä on pienempi sulamispiste, joten sellaista EVA:aan perustuvaa liimaa, jonka sulavirto on pienempi (vähemmän kuin noin 0,5) kuin polyyethenein perustuvan liiman (sulavirto vähemmän kuin noin 1) tapauksessa, on käytettävä samaan, kalvoa tukevaan lujuuteen pääsemiseksi niin, että kalvo kestäää vetetyäviä voimia.

Näin ollen edullisen EVA-pohjaisen liiman sulavirtoa on noin 0,25 g/10 min ja sen vinyylisetaattipitoisuus on noin 10 paino-%.

Keksinnön muut muokkaukset ovat ilmeisiä alan asiantuntijalle, ja näiden kaikkien muokkausten katsotaan kuuluvan oheisen, seuraavissa patenttivaatimuksissa määriteltyyn keksinnön puitteisiin.
Patenttivaatimuksset

1. Kaksiakselisesti venytetty ja suunnattu, lämpökutistuva monikerroksinen kalvo, joka on valmistettu kaksoiskuplamenetelmällä ja jossa on vähintään viisi kerrosta, tunnetaan siitä, että nämä ovat:

(a) hapen estokerroksena toimiva ydinkerros, joka käsittää polymeerisekoitetta, joka sisältää noin 70-85 paino-% eteeni-vinyylialkoholi-sekapolymeeria (EVOH) ja noin 15-30 paino-% nailon 6,66-sekapolymeeria, EVOH:n sulamispisteen ollessa noin 162-178 °C ja sen käsittäessä noin 36-44 mooli-% eteeniä, ja jolla polymeerisekoitteella on suhteellisen suuri keskimääräinen sulamispiste, ydinkerroksen paksuuden ollessa noin 0,05-0,1 mil (noin 1,3-2,5 μm) ja sen toimessa hapen estokerroksena siten, että happea siirtyy kalvon läpi vähemmän kuin noin 35 cm³/m² 24 tunnissa;

(b) toinen ja kolmas liimavälicherros, jotka ovat tarttuneet suoraan ydinkerroksen vastakkaisille puolille, ja jotka käsittelivät kulloonkin sekoitetta, joka sisältää noin 35-80 paino-% hyvin pienihiksistä polyleeniläja noin 20-40 paino-% joko polyleeniiin perustuvaa muokattua anhydridiliimaa, jonka sulavirta on vähemmän kuin noin 1,7 g/10 min., tai eteeni-vinyylialisetaatti-pohjaista muokattua anhydridiliimaa, jonka sulavirta on vähemmän kuin noin 0,5 g/10 min., ja joka sekoite sisältää noin 0-40 paino-% eteeni-vinyylialisetaattia, jonka sulavirta on vähäinen, ja jossa vinyylialisetaattipitoisuus on noin 7-15 paino-%, ja jonka sekoitteen keskimääräinen sulavirta on vähäinen ja jolla on myös suhteellisen pieni keskimääräinen sulamispiste, joka on ydinkerroksessa käytetyn polymeerisekoitteen sulamispisteen alapuolella, tämän toisen ja kolmannen liimavälicherroksen muodostaessa kulloonkin noin 2,5-5 % kalvon kokonaispaksuudesta;

(c) itseensä kuumasaumautuva neljäs ulkokerro, joka on tarttunut suoraan toisen liimavälicherroksen yhdelle puolelle, ja joka käsittää termoplastista polymeeria, jossa eteeni-vinyylili-
asetaatti-pitoisuus on noin 0-45 paino-%, ja jolla on vähäinen sulavirta ja myös suhteellisen pieni sulamispiste, joka on ydinkerrokssessa käytetyn polymeerisekoitteen sulamispisteen alapuolelta, tämän neljännellä ulkokerroksen muodostaessa noin 40-70 % kalvon kokonaispaksuudesta; sekä

(d) kulutusta kestää viides ulkokerro, joka on tarttunut suoraan kolmannen liimavälikerroksen yhdelle puolelle, ja joka käsittää termoplastista polymeeria, jossa eteeni-vinyyliasettaatti-pitoisuus on noin 0-45 paino-%, ja jolla on vähäinen sulavirta ja myös suhteellisen pieni sulamispiste, joka on ydinkerrokssessa käytetyn polymeerisekoitteen sulamispisteen alapuolelta, tämän viidennen ulkokerroksen muodostaessa noin 20-35 % kalvon kokonaispaksuudesta;

(e) vähintään joko neljännellä tai viidennellä ulkokerroksen sulamispisteen vähintään noin 105 °C, ja

(f) tällä kalvolla on vähintään 30 % oleva vapaa kutistuvuus 90 °C:ssa poikkipuumaassa ja sen kokonaispaksuus on noin 1,5-3,5 mil (noin 38,1-88,9 μm).

2. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että viides ulkokerro on täysin samanlainen kuin neljäs ulkokerro.

3. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että sekä neljäs että viides ulkokerro käsittävät polymeerisekoitetta, joka sisältää noin 60-75 paino-% hyvin pienitiheyksistä polyetyeniä ja noin 25-40 paino-% eteeni-vinyyliasetaattia.

4. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että joko neljäs tai viides ulkokerro käsittää sekoitetta, joka sisältää noin 40-60 paino-% hyvin pienitiheyksistä polyetyeniä, noin 5-20 paino-% plastomeerista eteeni-alfa-olefini-sekopolymeeria ja noin 20-40 paino-% eteeni-vinyyliasetaattia, jonka vinyyliasetaattipitoisuus on noin 7-15 paino-%.
5. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että EVOH sisältää noin 38 mooli-% eteeniä ja sen sula-virta on noin 8 g/10 min.

6. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että liima on lineaariseen, pienitiheyksiseen polyetee-niin perustuvaa, maleiinhapon anhydridillä muokattua materi-aalia.

7. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että hyvin pienitiheyksinen polyeteni muodostaa noin 45-60 paino-% toisesta ja kolmannesta liimavälikerroksesta.

10. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että toinen ja kolmas liimakerros käsitävät sekoitet-ta, joka sisältää noin 48-55 paino-% hyvin pienitiheyksistä polyeteniä, jonka sulavirta on vähäinen, noin 15-22 paino-% eteeni-vinyyliaisetaattia, jonka sulavirta on noin 0,25 g/10 min ja vinyyliaisetaattipitoisuus 10 %, sekä noin 25-35 paino-% pienitiheyksiseen polyeteniin perustuvaa, maleiinhapon anhydridillä muokattua liimaa.

11. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että toisessa ja kolmannessa liimavälikerroksessa läsnäoleva muokattu anhydridiliima perustuu eteeni-vinyyliaiset-aattiin, jonka sulavirta on noin 0,25 g/10 min, ja jossa eteeni-vinyyliaisetaatissa vinyyliaisetaattipitoisuus on noin 10 paino-%.
12. Patenttivaatimuksen 5 mukainen kalvo, tunnettu siitä, että liiman sulavirta on vähäinen.

13. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että kalvoa on säteilytetty 1-10 MR olevalla säteilyannoksella.

15. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että sekä neljäs että viides ulkokerros käsittävät sekoitetta, joka sisältää noin 65-72 paino-% hyvin pienitiheyksistä polyeettiä, jonka tiheys on noin 0,912 ja jonka sulavirta on noin 0,19 g/10 min., ja noin 22-28 paino-% eteeni-vinyyliasioattia, jossa vinyyliasioattipitoisuus on noin 10 %.

16. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että sekä neljäs että viides ulkokerros käsittävät sekoitetta, joka sisältää noin 42-46 paino-% hyvin pienitiheyksistä polyeettiä, jonka tiheys on noin 0,912, noin 34-38 paino-% eteeni-vinyyliasioattia, jossa vinyyliasioattipitoisuus on noin 10 %, sekä noin 13-17 paino-% eteeni-alfa-olefini-plastomeeria, jonka tiheys on noin 0,80 ja jonka sulavirta on noin 1,4 g/10 min ja jonka sulamispiste on noin 71 °C.

17. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että neljäs ulkokerros sisältää ionomeeria.

18. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että sen vapaa kutistuvuus on vähintään 20 % 90 °C:ssa, koneen suunnassa.

19. Patenttivaatimuksen 1 mukainen kalvo, tunnettu siitä, että sen vapaa kutistuvuus on vähintään 35 % sekä koneen suunnassa että poikkisuunnassa.
Patentkrav

1. En biaxialt tänjd och orienterad värmekrympbar, flerskiktad film, som är framställd med en dubbelbubbelmetod och som består av minst fem skikt, kännetecknad av att de utgörs av:

(a) ett kärnskikt, som verkar som syrespärrskikt och som omfattar en polymerblandning, som innehåller c:a 70-85 viktprocent etenylalkoholkopolymer (EVOH) och c:a 15-30 viktprocent nylon 6,66-kopolymer, varvid smältpunkten för EVOH är c:a 162-178 °C och den omfattar c:a 36-44 molprocent eten, och varvid polymerblandningen har ett relativt högt smältpunktstmedeltal, och varvid kärnskiktets tjocklek är c:a 0,05-0,1 tusendedelstum (eng. mil) (c:a 1,3-2,5 μm) och varvid den verkar som syrespärrskikt så, att det genom filmen överförs mindre än c:a 35 cm³/m² syre på 24 timmar;

(b) ett andra och ett tredje mellanliggande limskikt direkt häftande vid kärnskiktets motstålda sidor och som från fall till fall omfattar en blandning innehållande c:a 35-80 viktprocent polyeten med mycket låg täthet och c:a 20-40 viktprocent antingen polyetenbaserat anhydridlim med en småstström som understiger c:a 1,7 g/10 min., eller eten-vinyl-acetat-baserat bearbetat anhydridlim med en småstström som understiger c:a 0,5 g/10 min., varvid blandningen innehåller c:a 0-40 viktprocent eten-vinylacetat med låg småstström och har en vinylacetathalt om c:a 7-15 viktprocent och blandningens småstströmsmedeltal är lågt liksom dess småstpunktstmedeltal, vilket understiger småstpunkten hos den polymerblandning som används för kärnskiktet, varvid dessa andra och tredje mellanliggande limskikt från fall till fall utgör c:a 2,5-5 % av filmens totala tjocklek;

(c) ett fjärde ytskikt, som vid värmeförsegling häftar vid sig själv, direkt häftande vid en sida av det andra mellanliggande limskiktet, och som omfattar termoplastiska polymerer med en eten-vinyl-acetat-halt om c:a 0-45 vikt-
procent och en låg smålstöm samt också relativt låg smålst-
punkt som understiger smålstomkten hos den polymerblanding
som används för kärnskiktet, varvid detta fjärde ytskikt
bildar c:a 40-70 % av filmens totala tjocklek; samt

(d) ett slitstarkt femte ytskikt direkt häftande vid en sida
av det tredje mellanliggande limskiktet, och som omfattar
termoplastiska polymerer med en eten-vinyl-acetat-halt om c:a
0-45 viktprocent och en låg smålstöm samt också relativt
låg smålstomknt som understiger smålstomkten hos den polymer-
blanding som används för kärnskiktet, varvid detta femte
ytskikt bildar c:a 20-35 % av filmens totala tjocklek;

(e) varvid smålstomkten hos antingen det fjärde eller det
femte ytskiktet är minst c:a 105 °C, och

(f) den fria krympbarheten i tvärriktningen hos denna film är
minst 30 % vid 90°C och filmens totala tjocklek är c:a 1,5-
3,5 tusendedelstum (mil) (c:a 38,1-88,9 μm).

2. Film enligt patentkravet 1, känetecknad av att det
femte ytskiktet är exakt likadant som det fjärde ytskiktet.

3. Film enligt patentkravet 1, känetecknad av att såväl
det fjärde som det femte ytskiktet omfattar en polymer-
blandning innehållande c:a 60-75 viktprocent polyeten med
mycket låg täthet och c:a 25-40 viktprocent etenvinylacetat.

4. Film enligt patentkravet 1, känetecknad av att antingen
det fjärde eller det femte ytskiktet omfattar en blandning
inneållande c:a 40-60 viktprocent polyeten med mycket låg
täthet, c:a 5-20 viktprocent plastomert eten-alfa-olefin-
kopolymer och c:a 20-40 viktprocent eten-vinylacetat
med en vinylacetathalt om c:a 7-15 viktprocent.

5. Film enligt patentkravet 1, känetecknad av att EVOH
inneåller c:a 38 molprocent eten och att dess smålstöm är
c:a 8 g/10min.
6. Film enligt patentkravet 1, kännetecknad av att limmet är ett på linjär polyeten med låg tätthet baserat ämne bearbetat med maleinsyra-anhydrid.

7. Film enligt patentkravet 1, kännetecknad av att c:a 45-60 viktprocent av det andra och tredje mellanliggande limskiktet utgörs av polyeten med mycket låg tätthet.

8. Film enligt patentkravet 1, kännetecknad av att c:a 25-35 viktprocent av det andra och det tredje mellanliggande limskiktet utgörs av bearbetat anhydridlim.

9. Film enligt patentkravet 1, kännetecknad av att c:a 10-20 viktprocent av det andra och det tredje mellanliggande limskiktet utgörs av eten-vinylacetat.

11. Film enligt patentkravet 1, kännetecknad av att det bearbetade anhydridlimmet, som förekommer i det andra och det tredje mellanliggande limskiktet, är baserat på eten-vinylacetat med en småttström om c:a 0,25 g/10 min, och där vinylacetathalten hos eten-vinylacetatet är c:a 10 viktprocent.

12. Film enligt patentkravet 5, kännetecknad av att limmet har låg småttström.

13. Film enligt patentkravet 1, kännetecknad av att filmen bestrålats med en stråldos om c:a 1-10 MR.
14. Film enligt patentkravet 1, kännetecknad av att kärnskiktet omfattar en blandning innehållande c:a 78-82 viktprocent EVOH och c:a 12-18 viktprocent nylon 6,66.

15. Film enligt patentkravet 1, kännetecknad av att såväl det fjärde som det femte ytskiktet omfattar en blandning innehållande c:a 65-72 viktprocent polyeten med mycket låg täthet med en täthet om c:a 0,912 och med en smålström om c:a 0,19 g/10 min, och c:a 22-28 viktprocent eten-vinylacetat med en vinylacetathalt om c:a 10 %.

16. Film enligt patentkravet 1, kännetecknad av att såväl det fjärde som det femte ytskiktet omfattar en blandning innehållande c:a 42-46 viktprocent polyeten med mycket låg täthet med en täthet om c:a 0,912, c:a 34-38 viktprocent eten-vinylacetat med en vinylacetathalt om c:a 10 %, samt c:a 13-17 viktprocent eten-alfa-olefin-plastomer med en täthet om c:a 0,80 och med en smålström om c:a 1,4 g/10 min och en smålpunkt om c:a 71 °C.

17. Film enligt patentkravet 1, kännetecknad av att det fjärde ytskiktet innehåller jonomer.

18. Film enligt patentkravet 1, kännetecknad av att dess fria krympbarhet i maskinriktningen är minst 20 % vid 90 °C.

19. Film enligt patentkravet 1, kännetecknad av att dess fria krympbarhet såväl i maskinriktningen som i tvärrriktningen är minst 35 %.