(54) 发明名称
一种基于电磁力的霍普金森拉压杆应力波加载平台

(57) 摘要
发明公开了一种基于电磁力的霍普金森拉压杆应力波加载平台，应力波加载平台包括金属台座、调节机构、加载装置三部分；金属台座为各部件提供支撑，调节机构由丝杠、枪托平台和弧形压板组成，加载装置通过弧形压板固定在枪托平台上，且能承受较大的轴向作用力。丝杠旋入金属台座产生预紧力，实现加载装置的高度调节；丝杠顶端球面与枪托平台底部凹槽贴合，实现加载装置的俯仰、左右旋转调节功能。加载装置在轴向上背对背安装两种加载线圈，配合调节机构实现加载线圈快速调换功能。加载线圈的电极与电缆采用双螺柱平面接触连接方式，增加电极与电缆间的接触面积和连接强度，有效地避免高压放电打火，提高了加载设备安全性能。
1. 一种基于电磁力的霍普金森拉压杆应变波加载平台，其特征在于：包括金属台座、调节机构、加载装置；金属台座为各部件提供支撑，加载装置与调节机构位于金属台座上面，调节机构控制加载装置的高度升降、俯仰、左右旋转调节；

所述加载装置包括凸台、锥形放大器、次级线圈、导向轴、小加载线圈、小绝缘套、小金属座、弧形压板、大金属座、加载线圈，小加载线圈与大加载线圈结构相同，加载线圈与次级线圈、锥形放大器通过导向轴分别固定在小金属底座和大金属底座上，导向轴一端有凸台，两个金属底座背对背同轴安装，两个加载线圈外层分别包裹小绝缘套和大绝缘套，加载线圈的阳极竖直放置，阳极方向指向线圈圆心，加载线圈的阴极方向指向线圈圆心，且与阳极之间周向夹角为84°，电极从绝缘套层外伸40mm，与电缆采用双螺孔平面接触连接；

所述调节机构包括丝杠、手轮、压缩弹簧、枪托平台、弧形压板，枪托平台位于金属台上面，所述枪托平台底部为矩形平板，上部梯形凸块中间有弧形凹槽，矩形平板四角处开有四个相同的弧形长槽孔，弧形长槽孔的曲率中心为枪托平台形心，弧形长槽孔依枪托平台形心相互对称，限制枪托平台的转动轨迹；加载装置通过弧形压板固定在枪托平台上；所述丝杠顶端为球面形，底端固定有手轮，丝杠与金属台中间部位的螺孔配合，丝杠顶端与枪托平台底部凹槽接触，实现加载装置的高度升降、俯仰、左右旋转调节；

所述金属台座由金属台、立柱和压缩弹簧组成，金属台底部四个角处有内凹平槽，立柱嵌入在金属台底部平槽内通过螺栓固定，立柱地脚固定在地基上，金属台中间部位的螺孔两侧设有凹槽，凹槽处放置压缩弹簧，螺孔中心与两侧的凹槽中心位于金属台轴线上。

2. 根据权利要求1所述的基于电磁力的霍普金森拉压杆应变波加载平台，其特征在于：所述小绝缘套与所述大绝缘套采用尼龙材料。

3. 根据权利要求1所述的基于电磁力的霍普金森拉压杆应变波加载平台，其特征在于：所述小金属座与所述大金属座为抗磁化材料加工成型。
说明书

一种基于电磁力的霍普金森拉压杆应力波加载平台

技术领域
[0001] 本发明属于材料动态力学性能测试技术领域，具体地说，涉及一种基于电磁力的霍普金森拉压杆应力波加载平台。

背景技术
[0002] 工程应用中，材料变形的应变率因材料工作环境的复杂性而存在着较大的差异，不同应变率范围内材料的力学行为往往不同，由此需要对不同应变率范围内材料的力学行为进行研究。在高应变率下霍普金森压杆和拉杆技术被广泛应用于材料的力学性能测试中，该技术的原理是：将短试样置于两根压杆之间，利用加速质量块、短杆的撞击产生加速脉冲对试样进行加载，同时通过粘贴在射杆、透射杆上的应变片记录脉冲信号，利用脉冲信号推算出材料的力学性能。目前在分离式霍普金森压杆实验装置中产生入射波的普遍方式是通过气枪将撞击杆高速发射，与入射杆同轴撞击产生入射脉冲，这种加载方式存在很多缺陷。

[0003] 发明专利CN103926138中公开了一种基于电磁力的霍普金森拉压杆应力波发生器及实验方法，该发生器以电磁脉冲装置代替气枪作为霍普金森压杆实验中的加载设备，通过调节放电电压实现加载应力波幅值和脉冲宽度的精确控制，提高实验稳定性。实际应用中，霍普金森拉压杆实验要求加载设备与应力波入射杆同轴，应力波加载前需要进行设备同轴调节，但由于该发生器采用电磁脉冲为主要结构，加载设备无法实现高度、俯仰、左右旋转调节，不便与实验操作。同时，当实验加载应力波幅值较大时，加载设备需承受较大的后坐力，该加载装置容易产生晃动，带来实验误差。此外，该发生器需要采用高压瞬时放电进行工作，工作电压一般为1000V至4000V，放电电缆与放电线圈接头容易发生打火。

发明内容
[0004] 为了避免现有技术存在的不足，本发明提出一种基于电磁力的霍普金森拉压杆应力波加载平台：应力波加载装置可实现其升降、俯仰、左右旋转，提高实验系统的稳定性，同时可避免高压打火，提高加载设备的安全性能。

[0005] 本发明解决其技术问题所采用的技术方案是：包括金属台座、调节机构、加载装置；金属台座为各部件提供支撑，加载装置与调节机构位于金属台座上面，调节机构控制加载装置的高低升降、俯仰、左右旋转调节；

[0006] 所述加载装置包括凸台、锥形放大器、次级线圈、导向轴，小加载线圈、小绝缘套、小金属块、弧形压板，大金属块，大加载线圈，小加载线圈与大加载线圈结构相同，加载线圈与次级线圈、锥形放大器与导向轴分别固定在小金属底座和大金属底座上，导向轴一端有凸台，两个金属底座背对背同轴安装，两个加载线圈外层分别包裹小绝缘套和大绝缘套，加载线圈的阳极竖直放置，阳极方向指向线圈圆心，加载线圈的阴极方向指向线圈圆心，且与阳极之间周向夹角为84°，电极从绝缘套层外伸10mm，与电缆采用双螺孔平面接触连接；

[0007] 所述调节机构包括丝杆、手轮、压缩弹簧，枪托平台，弧形压板，枪托平台位于金属
台面上，所述枪托平台底部为矩形平板，上部梯形凸块中间有弧形凹槽，矩形平板四角处开
有四个相同的弧形长槽孔，弧形长槽孔的曲率中心为枪托台体形心，弧形长槽孔依枪托平
台形心相互对称，限制枪托平台的旋转传动；加载装置通过弧形压板固定在枪托平台上，所
述丝杠顶端为球面部分，底端固定有手轮，丝杆与金属台中间部位的螺杆配合，丝杠顶端与枪
托平台底部凹槽接触，实现加载装置的高度升降，俯仰，左右旋转调节。

[0008] 所述金属台座由金属台、立柱和压缩弹簧组成，金属台底部四个角处有内凹平槽，
立柱嵌入在金属台座上部平面内通过螺栓固定，立柱底脚固定在地基上，金属台中间部位的
螺杆两侧设有凹槽，凹槽处放置压缩弹簧，螺杆中心与两侧的凹槽中心位于金属台轴线上。

[0009] 所述小绝缘套与所述大绝缘套采用尼龙材料。

[0010] 所述小金属座与所述大金属座为抗磁化材料加工成型。

[0011] 有益效果

[0012] 本发明提出的一种基于电磁力的霍普金森拉压杆应变波加载平台；应变波加载平
台包括金属台座、调节机构、加载装置；金属台座为各部件提供支撑，金属台座通过地脚螺
栓固定在地基上，避免加载装置后坐力过大产生失稳，保证实验过程中加载平台工作的
稳定性。调节机构由丝杆、枪托平台和弧形压板组成，加载装置通过弧形压板固定在枪托平
台上，且能承受较大的轴向作用力。丝杆旋入金属台座产生顶推力，实现加载装置的高度
升降调节，丝杆顶端球面与枪托平台底端凹槽贴合，实现加载装置的俯仰，左右旋转调节功
能。加载装置在轴向上背对背安装两种大小加载线圈，配合调节机构实现加载线圈快速调
换功能。加载线圈的电极与电缆采用双螺柱平面接触连接，增加电极与电缆间的接触面积
和连接强度，有效地避免高压放电打火，提高了加载设备安全性能。

附图说明

[0013] 下面结合附图和实施方式对本发明一种基于电磁力的霍普金森拉压杆应变波加载平
台作进一步详细说明。

[0014] 图1为本发明基于电磁力的霍普金森拉压杆应变波加载平台示意图。

[0015] 图2为本发明的加载装置剖视图。

[0016] 图3为本发明基于电磁力的霍普金森拉压杆应变波加载平台侧视图。

[0017] 图4为本发明的金属台座侧视图。

[0018] 图5为本发明的调节机构侧视图。

[0019] 图6为本发明的加载装置侧视图。

[0020] 图7为本发明的加载线圈电极示意图。

[0021] 图8为本发明的丝杆示意图。

[0022] 图中：

14. 金属台 15. 立柱 16. 丝杆 17. 手轮

具体实施方式

[0024] 本实施例是一种基于电磁力的霍普金森拉压杆应变波加载平台。
【0026】本实施例对放电电缆与加载线圈套接采用双螺栓平面接触连接方式，加载线圈电极上开有两个Φ6圆孔，圆孔轴线间距为15mm。电极连接放电电缆时，先用洗砂将电极表层打磨，除去铜片表面氧化层和吸附杂质，放电电缆套合电极后用两个M6的铜质六角螺栓穿过电极孔进行固定，双螺栓平面接触连接方式增加了电极和放电电缆间的接触面积和连接强度，避免高压放电打火。

【0027】本实施例中，调节机构包括丝杠16、手轮17、压缩弹簧13，枪托平台12、弧形压板8，枪托平台12位于金属台14上面，枪托平台12底部为矩形平板，上部梯形凸块中间有弧形凹槽，矩形平板四角处开有四个相同的弧形长槽孔，弧形长槽孔的曲率中心为枪托平台形心，弧形长槽孔依枪托平台12形心相互对称，限制枪托平台的旋转轨迹，加载装置位于枪托平台上，通过弧形压板8与枪托平台固定安装。丝杠16一端为球面，底端固定有手轮17，丝杠16与金属台14中间部位螺母配合，丝杠16一端与枪托平台12底部凹槽接触，弧形压板8通过两侧螺孔和螺栓将加载装置固定在枪托平台12上，保持加载装置与调节结构的一致性。丝杠16一端为球面贴合枪托平台12底面中心凹槽，实现枪托平台12的旋转及俯仰功能，枪托平台旋转180°实现加载线圈调换。丝杠16旋入金属台座中心螺纹孔中，旋转丝杠对枪托平台产生顶推力，实现加载装置升降调节。手轮17最大外径为80mm，通过销钉固定在丝杠一端，手轮表面进行滚花加工，方便操作人员进行作业。

【0028】金属台座由金属台14、立柱15和压缩弹簧13组成，金属台14底部四个角处有内凹平槽，立柱15嵌入在金属台14底部平槽内通过螺栓固定连接，立柱15通过地脚螺栓固定在地基上，金属台14中心螺孔两侧开有凹槽，凹槽处放置压缩弹簧13，螺孔中心与两侧的凹槽中心位于金属台轴线上。金属台座通过地脚螺栓固定，限制加载装置后坐力过大产生失稳，提高整个设备稳定性。在金属台的M40螺孔的两侧开有Φ28深20mm凹槽，凹槽处放置两根自由状态下长为52mm，弹性系数为10N/mm的压缩弹簧13。调节高度前，枪托平台12与金属台14完全接触，弹簧压缩至30mm，竖直向上产生220N的弹力，抵消枪托平台12与加载装置一部分重力，操作人员旋转丝杠更加省力。枪托平台12安装在金属台座上方，通过金属台座下方四颗螺栓与枪托平台四角处四颗螺栓上下夹紧固定，通过控制上下八颗螺栓的松紧度，
实现枪托平台的俯仰调节。

【0030】操作过程：

【0031】步骤一、加载平台固定；

【0032】先将金属台座与枪托平台固定连接，通过地脚螺栓将金属台座固定在水平地基面上，再将加载装置通过弧形压板固定在枪托平台上，完成加载平台的安装。

【0033】步骤二、加载平台升降、俯仰、左右倾角调节；

【0034】霍普金森拉压杆实验中，要求加载装置与应力波入射杆同轴，应力波加载前需要进行设备同轴调节。松开金属台下方和枪托平台四角上螺栓，操作人员旋转金属台座下方的手腕调节高度位置，通过螺母锁紧丝杠，完成高度调节。通过丝杠旋转枪托平台至所需的角度，完成左右倾角的调节。旋紧金属台下方和枪托平台四角上八颗螺栓，若需平台向前倾斜，将加载装置前方处于金属台下方的两颗的螺栓拧松，并将枪托平台相对应的两个角上的螺栓拧紧即可实现。

【0035】步骤三，连接放电电缆；

【0036】用纱纸对电极表层打磨，除去铜片表面的氧化层和吸附杂质，放电电缆贴合电极后用两颗M6钢质六角螺栓穿过电极孔，另一侧加上垫片，用铜质螺母拧紧固定；禁止放电电缆交叉放置，保持电缆间的距离。

【0037】步骤四，应力波加载实验；

【0038】设备同轴度调整完成后，设置实验所需充电电压，待电容充满电后对加载线圈放电，完成应力波加载。