发明专利申请公开说明书

[21] 申请号 03811093.8

[43] 公开日 2005年8月10日

[22] 申请日 2003.3.20 [21] 申请号 03811093.8
[30] 优先权

[87] 国际公布 WO2003/080049 英 2003.10.2

[85] 进入国家阶段日期 2004.11.16

[71] 申请人 细胞基因公司
 地址 美国新泽西州

[72] 发明人 P•H•谢菲尔 G•W•穆勒
 H•-W•满 C•葛

[74] 专利代理机构 中国专利代理(香港)有限公司
 代理人 段晓玲

[54] 发明名称 (+)–2–[(1–(3–乙氧基–4–甲氧基苯基)–2–甲磺酰基乙基)]–4
–乙酰氨基异吲哚啉–1,3–二酮；
使用方法及其组合物

[57] 摘要
本发明涉及立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-
乙酰氨基异吲哚啉-1,3-二酮(基本上不含其(-)异构体)及其前药、代谢物、多晶型物、盐、溶剂化合物、水合物和笼形化合物。本发明也涉及2-
[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的
(+)-对映异构体的使用方法和包含该化合物的药用组合物。所述方法包括治疗和/或预防可通过降低
TNF-α水平或抑制PDE4而改善的病症的方法。
1. 一种抑制 TNF-α生成的方法，所述方法包括将产生 TNF-α的细胞与有效量的立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形包合物接触。

2. 一种抑制 PDE4 活性的方法，所述方法包括将 PDE4 与有效量的立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形包合物接触。

3. 权利要求 1 或 2 的方法，其中所述接触是在哺乳动物细胞中进行。

4. 权利要求 3 的方法，其中所述细胞是人细胞。

5. 一种治疗或预防患者的可通过降低 TNF-α水平而改善的疾病或病症的方法，所述方法包括给予需要这些治疗或预防的患者治疗或预防有效量的立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形包合物。

6. 一种治疗或预防癌的方法，所述方法包括给予需要这些治疗或预防的患者治疗或预防有效量的立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形包合物。

7. 权利要求 5 或 6 的方法，所述方法还包括给予需要这些治疗或预防的患者治疗或预防有效量的烷基化剂、氟芥、JNK 抑制剂、抗生素、抗肿瘤药、丙烯酰甲基胺、磷酸烷基酯、亚硝基脲、三氟乙烯、叶酸类似物、嘧啶类似物、嘌呤类似物、长春花生物碱、表鬼臼毒素、拓扑异构酶抑制剂或抗癌疫苗。
8. 权利要求6的方法，其中所述癌为实体癌。

9. 权利要求6的方法，其中所述癌为血液性肿瘤。

10. 权利要求6的方法，其中所述癌为多发性骨髓瘤、急性白血病、成淋巴细胞性白血病、骨髓性白血病、淋巴细胞性白血病或髓性白血病。

11. 权利要求8的方法，其中所述实体癌为乳癌、结肠癌、直肠癌、结肠直肠癌、肾癌或神经胶质瘤。

12. 权利要求5或6的方法，其中所述患者为哺乳动物。

13. 权利要求5或6的方法，其中所述立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基甲基]-4-乙酰氨基异吲哚啉-1,3-二酮是经胃肠外、经皮、粘膜、鼻、口颊、舌下或口给药。

14. 权利要求13的方法，其中所述立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基甲基]-4-乙酰氨基异吲哚啉-1,3-二酮是经口给药。

15. 权利要求14的方法，其中所述立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基甲基]-4-乙酰氨基异吲哚啉-1,3-二酮是以片剂或胶囊剂形式经口给药。

16. 权利要求15的方法，其中所述治疗或预防有效量约为每天1mg-1000mg。

17. 权利要求16的方法，其中所述治疗或预防有效量约为每天5mg-500mg。

18. 权利要求17的方法，其中所述治疗或预防有效量约为每天10mg-200mg。

19. 一种治疗或预防患者的可通过抑制PDE4而改善的疾病或病症的方法，所述方法包括给予需要这些治疗或预防的患者治疗或预防有效量的立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基甲基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物。
20. 一种治疗或预防抑郁症、哮喘、炎症、皮炎、银屑病、特异性皮炎、接触性皮炎、类风湿性关节炎、骨关节炎、慢性阻塞性肺病、慢性肺炎、肠炎、节段性回肠炎、白塞病或结肠炎的方法，所述方法包括给予这些治疗或预防的患者治疗或预防有效量的立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药物可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物。

21. 一种控制细胞内cAMP水平的方法，所述方法包括将细胞与有效量的立体异构体纯的(-)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药物可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物接触。

22. 一种治疗或预防患者MDS的方法，所述方法包括给予这些治疗或预防的患者治疗或预防有效量的立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药物可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物。

23. 一种治疗或预防患者MPD的方法，所述方法包括给予这些治疗或预防的患者治疗或预防有效量的立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药物可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物。

24. 一种治疗或预防患者的复杂性区域性疾病综合征的方法，所述方法包括给予这些治疗或预防的患者治疗或预防有效量的立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药物可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物。

25. 权利要求19或20的方法，所述方法还包括给予这些治疗或预防的患者治疗或预防有效量的抗组胺药、抗炎药、非甾体抗炎
26. 权利要求 19 的方法，其中所述疾病或病症为哮喘、过敏性鼻炎、炎症或慢性肺炎。

27. 权利要求 19 的方法，其中所述疾病或病症为慢性阻塞性肺病。

28. 权利要求 19 或 20 的方法，其中所述患者为哺乳动物。

29. 权利要求 19 或 20 的方法，其中所述立体异构体纯的(+)2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮经胃肠外、经皮、粘膜、鼻、口腔、舌下或口给药。

30. 权利要求 29 的方法，其中所述立体异构体纯的(+)2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮是经口给药。

31. 权利要求 30 的方法，其中所述立体异构体纯的(+)2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮是以片剂或胶囊剂形式经口给药。

32. 权利要求 19 或 20 的方法，其中所述治疗或预防有效量约每天 1mg-1000mg。

33. 权利要求 32 的方法，其中所述治疗或预防有效量约每天 5mg-500mg。

34. 权利要求 33 的方法，其中所述治疗或预防有效量约每天 10mg-200mg。

35. 一种药用组合物，所述组合物包含立体异构体纯的(+)2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药学可接受的多晶型物、前药、盐、溶剂合物、水合物或包晶形合物，以及药学可接受的载体、赋形剂或稀释剂。

36. 权利要求 35 的药用组合物，所述药用组合物适合经胃肠外、经皮、粘膜、鼻、口腔、舌下或口给药患者。

37. 权利要求 36 的药用组合物，所述药用组合物适合经口给予患
者。

38. 权利要求 30 的药用组合物，其中所述立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的量为 1mg-1000mg。

39. 权利要求 38 的药用组合物，其中所述立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的量为 5mg-500mg。

40. 权利要求 39 的药用组合物，其中所述立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的量为 10mg-200mg。

41. 一种单位剂型，所述剂型包含立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药学可接受的前药、盐、溶剂合物、水合物或笼形化合物；以及药学可接受的载体、赋形剂或稀释剂。

42. 权利要求 41 的剂型，所述剂型适合经胃肠外、经皮、粘膜、鼻、口颊、舌下或口给予患者。

43. 权利要求 42 的剂型，所述剂型为胶囊剂或片剂。

44. 权利要求 43 的剂型，所述剂型为气雾剂。

45. 权利要求 41 的剂型，其中所述立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的量约为 1mg-1000mg。

46. 权利要求 45 的剂型，其中所述立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的量约为 5mg-500mg。

47. 权利要求 46 的剂型，其中所述立体异构体纯的(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的量约为 10mg-200mg。

48. 基本不含其(-)异构体的立体异构体纯的(+)-2-[1-(3-乙氧基-4-
甲氧基苯基]-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形包合物。

49. 一种制备 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的立体异构体纯的对映异构体的方法，所述方法包括以下步骤：

(a) 将 1-(3-乙氧基-4-甲氧基-苯基)-2-甲磺酰基-乙胺与手性氨基酸在足以生成 1-(3-乙氧基-4-甲氧基-苯基)-2-甲磺酰基-乙胺手性氨基酸盐的条件下反应；并

(b) 将 1-(3-乙氧基-4-甲氧基-苯基)-2-甲磺酰基-乙胺手性氨基酸盐与 N-(1,3-二氯代-1, 3-二氢-异苯并呋喃-4-基)-乙酰胺在足以生成终产物的条件下反应。

50. 权利要求 49 的方法，其中所述手性氨基酸为以下各氨基酸的 L 异构体：丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸、缬氨酸、鸟氨酸、4-氨基丁酸、2-氨基异丁酸、3-氨基丙酸、鸟氨酸、正亮氨酸、正缬氨酸、羟基脯氨酸、肌氨酸、瓜氨酸、磷基丙氨酸、叔丁基甘氨酸、叔丁基丙氨酸、苯基甘氨酸、环己基丙氨酸或 N-乙酰基-亮氨酸。

51. 权利要求 50 的方法，其中所述手性氨基酸为 N-乙酰基-L-亮氨酸。

52. 一种(S)-2-(3-乙氧基-4-甲氧基苯基)-1-(甲磺酰基)-乙-2-基胺的立体异构体纯的盐。

53. 权利要求 52 的立体异构体纯的盐，所述盐为手性氨基酸盐。

54. 权利要求 53 的立体异构体纯的盐，所述盐为以下各氨基酸的 L 异构体的盐：丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸、缬氨酸、鸟氨酸、4-氨基丁酸、2-氨基异丁酸、3-氨基丙酸、鸟氨酸、正亮氨酸、正缬氨酸、羟基脯氨酸、肌氨酸、瓜氨酸、磷基丙氨酸、叔丁基甘氨酸、叔丁基丙氨酸、苯基甘氨酸、环己基丙氨酸或 N-乙酰基-亮氨酸。
氨基酸、鸟氨酸、4-氨基丁酸、2-氨基异丁酸、3-氨基丙酸、鸟氨酸、正亮氨酸、正缬氨酸、羟基脯氨酸、肌氨酸、瓜氨酸、磺基丙氨酸、叔丁基甘氨酸、叔丁基丙氨酸、苯基甘氨酸、环己基丙氨酸或N-乙酰基-亮氨酸。

55. 权利要求54的立体异构体纯的盐，所述盐为(S)-2-(3-乙氧基-4-甲氧基苯基)-1-(甲磺酰基)-乙-2-基胺N-乙酰基-L-亮氨酸盐。
说明 书

(+)-2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-
-4-乙酰氨基异吲哚啉-1,3-二酮：使用方法及其组合物

1. 发明领域

本发明涉及 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的(+)对映异构体的使用方法和包含该化合物的组合物。

2. 发明背景

肿瘤坏死因子-α(TNF-α)是一种主要由单核吞噬细胞应答免疫刺激物时释放的细胞因子。TNF-α能够促进例如分化、募集、增殖和蛋白质降解等大多数细胞过程。在低水平下，TNF-α具有防止传染物、肿瘤和组织损伤的保护作用。但 TNF-α还在许多疾病中起作用。当给予哺乳动物或人 TNF-α 时，TNF-α会引起或加重炎症、发烧、心血管作用、出血、凝固以及与急性感染和休克期出现的那些反应相类似的急性反应。在许多疾病和病症都涉及到提高的或无调节的 TNF-α 生成，例如癌，如实体瘤和血液性肿瘤；心脏病，如充血性心力衰竭；以及病毒感染、遗传疾病、炎性疾病、变应性疾病和自身免疫疾病。

环腺苷酸(cAMP)也在许多疾病和病症中起作用，例如但不限于哮喘、炎症以及其它病症(Lowe 和 Cheng, Drugs of the Future, 17 (9) 期:799-807 页, 1992 年)。已表明，炎性白细胞中 cAMP 水平的提高抑制了它们的活化以及随后包括 TNF-α 和 NF-κB 的炎症介质的释放。cAMP 水平提高也会导致呼吸道平滑肌的松弛。

认为 cAMP 失活的主要细胞机制是由于被称为环核苷酸磷酸二酯酶(PDE)的一族同功酶破坏了 cAMP (Beavo 和 Reitsnyder, Trends in Pharm., 11 期:150-155 页, 1990 年)。已知有 11 个 PDE 家族成员。现
已证实，如抑制 PDE IV 型对抑制炎症介质的释放和呼吸道平滑肌松弛都特别有效 (Vergheese 等, Journal of Pharmacology and Experimental Therapeutics, 272(3):1313-1320 页, 1995 年)。因此，特异性抑制 PDE4 (PDE IV)的化合物，可抑制炎症，促进呼吸道平滑肌松弛，而且具有很少的不需要的例如心血管或抗血小板作用等副作用。在可接受的治疗剂量下，目前使用的 PDE4 抑制剂缺乏选择性。

癌是一种特别具有破坏性的疾病，并且血液中 TNF-α 水平的提高，预示存在患有癌症以及癌症扩散的危险。通常，癌细胞不能在健康主体的循环系统中存活，其中一个原因在于血管内壁充当中了癌细胞外渗的屏障。但是体外实验已表明，细胞因子水平提高可充分地促进癌细胞粘附在内皮上。一种解释是，例如 TNF-α 等细胞因子刺激被称为 ELAM-1 的细胞表面受体(内皮细胞-白细胞粘着分子)的生物合成和表达。ELAM-1 是被称为 LEC-CAMs (包括 LECAM-1 和 GMP-140)的钙-依赖性细胞粘着受体家族中的一员。在炎症反应过程中，内皮细胞上的 ELAM-1 起白细胞“归巢受体”的作用。近来研究表明，内皮细胞上的 ELAM-1 能介导促进结肠癌细胞粘附在用细胞因子处理的内皮上(Rice 等, 1989 年, Science, 246:1303-1306 页)。

例如关节炎、相关的关节炎病症(例如骨关节炎和类风湿性关节炎)、肠炎(例如阶段性回肠炎和溃疡性结肠炎)、脓毒病、银屑病、特异性皮炎、接触性皮炎和慢性阻塞性肺病、慢性肺炎等炎性疾病也是普遍的疑难疾病。在炎症反应中，TNF-α 起关键作用，将它们的拮抗剂给予炎性疾病动物模型，可阻断慢性和急性反应。

病毒感染、遗传性疾病、炎性疾病、变应性疾病以及自身免疫疾病都涉及到提高或无调节的 TNF-α 生成。这些疾病实例包括但不限于: HIV(人体免疫缺陷病毒); 肝炎; 成人呼吸窘迫综合征; 骨吸收病; 慢性阻塞性肺病; 慢性肺炎; 哮喘; 皮炎; 囊样纤维化; 败血症性休克; 脓毒症; 内毒素性休克; 血液动力性休克; 脓毒病综合征; 局部缺血后再灌注损伤; 脑膜炎; 银屑病; 纤维变性疾病; 恶病质; 移植

可阻断包括 TNF-α 的某些细胞因子的活性或抑制其生成的药物，将是有用的治疗剂。已经证明，许多小分子抑制剂能够治疗或预防涉及 TNF-α 的炎性疾病(参考 Lowe 的综述，1998 年，Exp. Opin. Ther. Patents，8 期：1309-1332 页)。这一类分子是美国专利 6,020,358 号描述的取代的苯乙基砜类化合物。
3. 发明概述

本发明涉及使用取代的苯乙基硫化合物的衍异构体及其药学可接受的盐、水合物、溶剂合物、笼形化合物、前药和多晶型物治疗疾病和病症的方法，以及降低哺乳动物的细胞因子及其前体水平的方法。本发明也涉及包含2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的一种对映异构体和药学可接受的载体的药用组合物。本发明还涉及基本上不含其它对映异构体的2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的一种对映异构体。

本发明特别涉及2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的(+)对映异构体。与其消旋体2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮相比，认为该化合物具有提高的效能和其它优点。

本发明包括2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的(+)对映异构体在治疗或预防哺乳动物的可通过抑制TNF-α的生成而改善的疾病或病症中的用途。在某个实施方案中，所述治疗包括降低或消除副作用。这些病症包括但不限于癌，包括但不限于头部癌、甲状腺癌、颈癌、眼癌、皮肤癌、口腔癌、咽喉癌、食道癌、胸癌、骨癌、血癌、骨髓癌、肺癌、结肠癌、乙状结肠癌、直肠癌、胃癌、前列腺癌、乳癌、卵巢癌、肾癌、肝癌、胰腺癌、脑癌、肠癌、心脏病、肾上腺癌、皮下组织癌、淋巴结癌、心脏癌，及其它组合。可用所述方法治疗的具体癌有发性骨髓瘤、恶性黑素瘤、恶性神经胶质瘤、白血病和实体瘤。

本发明也包括2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的(+)对映异构体治疗或预防以上疾病的用途，所述心脏病包括但不限于充血性心力衰竭、心肌病、肺水肿、内毒素介导的脓毒性休克、急性病毒性心肌炎、心脏移位排斥和心肌梗塞。
本发明也包括 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的(+)对映异构体。在治疗上可用于抑制 PDE4而改善疾病或病症中的用途。例如，本发明的化合物和组合物可用于治疗或预防病毒感染、遗传疾病、炎症疾病、变应性疾病和自身免疫疾病。这些疾病实例包括但不限于：HIV；肝炎；成人呼吸窘迫综合征；骨吸收病；慢性阻塞性肺病；慢性肺炎；皮炎；炎症皮肤病，特异性皮炎，囊性纤维变性；败血症性休克；脓毒症；内毒素性休克；血液动力性休克；脓毒症综合征；局部缺血后的再灌注损伤；脑膜炎；银屑病；纤维变性疾病；恶性病；包括移植患者宿主疾病的移值排斥；自身免疫病；类风湿性脊椎炎；关节炎病症，例如类风湿性关节炎和骨关节炎；骨质疏松症；节段性回肠炎；溃疡性结肠炎；肠炎；多发性硬化病；系统性红斑狼疮；麻风病中的麻风性结节性红斑(ENL)；辐射损伤；哮喘和含氧量高的人体损伤。

在另一个实施方案中，2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的立体异构体纯(+)对映异构体也可用于治疗或预防微生物感染或微生物感染综合征(包括但不限于细菌感染、真菌感染、疟疾、分支杆菌感染和 HIV 引起的机会感染)。

本发明还包括包含 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的一种对映异构体及其药学可接受的多晶型物、前药、盐、水合物、微形结合物和溶剂合物的药用组合物和单剂量型。

在一单独的实施方案中，本发明包括 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的(+)对映异构体。

在一个进一步的实施方案中，本发明包括一种制备 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的立体异构体纯对映异构体的方法，所述方法包括以下步骤：将 1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基-乙胺与手性氨基酸反应，然后将第一步的反应产物与 N-(1,3-二氧化-1,3-二氢-异苯并吲哚-4-基)-乙酰胺反应。
一个相关的实施方案中，本发明包括 1- (3-乙氧基-4-甲氧基苯基)-2-甲磺酰基-乙胺的手性盐。

3.1.附图简述

图 1. 举例说明 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的(+)对映异构体的制备。

图 2. 举例说明本发明的对映异构体对在有知觉的白鼬的肺上 LPS-诱导的中性白细胞增多症的效果。

3.2.定义

本文使用的术语“化合物 A”是指当使用色谱柱为 150 mm × 4.6 mm Ultron Chiral ES-OVS 手性 HPLC 柱(Agilent Technology)，洗脱液为
15:85 的乙醇: 20mM KH₂PO₄ (pH 为 3.5)，观测波长为 240 nm 时，HPLC 柱在约 25.4 分钟洗脱出的立体异构体纯的 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮。化合物 A 的 ¹H NMR 波谱数据基本如下：

δ(CDCl₃): 1.47 (t, 3H), 2.26 (s, 3H), 2.87 (s, 3H), 3.68-3.75 (dd, 1H), 3.85 (s, 3H), 4.07-4.15 (q, 2H), 4.51-4.61 (dd, 1H), 5.84-5.90 (dd, 1H), 6.82-7.77 (m, 6H), 9.46 (s, 1H).

化合物 A 的 ¹³C NMR 波谱数据基本如下：

δ(DMSO-d₆): 14.66, 24.92, 41.61, 48.53, 54.46, 55.91, 64.51, 111.44, 112.40, 115.10, 118.20, 120.28, 124.94, 129.22, 131.02, 136.09, 137.60, 148.62, 149.74, 167.46, 169.14, 169.48。

溶于甲醇的化合物 A 也使平面偏振光向(+)方向偏转。

不受理论限制，认为化合物 A 为 S-{2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮}，其结构如下：
本文使用的术语“患者”，是指哺乳动物，特别是指人。

本文使用的术语“药学可接受的盐”，是指由药学可接受的无毒的酸或碱（包括无机酸和碱以及有机酸和碱）制得的盐。适合的本发明的化合物的药学可接受的盐包括由铝、钙、锂、镁、钾、钠和锌制备的金属盐或由以下有机碱制备的有机盐：赖氨酸、N,N'-亚基乙二胺、氯普鲁卡因、胆碱、二乙醇胺、乙二胺、丙胺（N-甲基葡萄糖胺）和普鲁卡因。合适的无毒酸包括但不限于以下无机酸和有机酸：例如乙酸、苯甲酸、邻苯二甲酸、苯磺酸、苯甲酸、樟脑磺酸、柠檬酸、乙烯磺酸、甲酸、富马酸、糠酸、半乳糖磷酸、葡糖酸、乙糖酸、谷氨酸、乙醇酸、氢溴酸、盐酸、羟乙磷酸、乳酸、马来酸、苹果酸、扁桃酸、甲磺酸、粘酸、硝酸、扑酸、泛酸、苯乙酸、磷酸、丙酸、水杨酸、硬脂酸、琥珀酸、对氨基苯磺酸、硫酸、酒石酸和对甲苯磺酸。特别是盐酸、氢溴酸、磷酸、硫酸和甲磺酸等无毒酸。因此，特别的盐的实例有盐酸盐和甲磺酸盐。

除非另外说明，否则本文使用的术语“前药”意指通过水解、氧化或生物环境（体内或体外）下的其它反应，能够提供该化合物的化合物衍生物。前药的实例包括但不限于化合物 A 的衍生物和代谢物，该
物质包括可生物水解部分，例如可生物水解的酰胺、可生物水解的酯、可生物水解的氨基甲酸酯、可生物水解的羧酸酯、可生物水解的酰脲和可生物水解的磷酸酯类似物。前药一般可通过例如 1 Burger's Medicinal Chemistry and Drug Discovery (Manfred E. Wolff 编辑，第 5 版，1995 年)第 172-178 页、949-982 页中描述的那些熟知方法制备。

除非另外说明，否则本文使用的术语“可生物水解的酰胺”、“可生物水解的酯”、“可生物水解的氨基甲酸酯”、“可生物水解的羧酸酯”、“可生物水解的酰脲”、“可生物水解的磷酸酯”等指某一化合物的酰胺、酯、氨基甲酸酯、羧酸酯、酰脲或磷酸酯，这些可生物水解部分：1) 不影响所述化合物的生物活性，但可赋予化合物有利的体内特性，例如吸收、持续作用或发挥作用；或 2) 没有生物活性，但能在体内转化为生物活性。可生物水解的酯的实例包括但不限于低级烷基酯、烷氧基酸酯、烷基酰氨基烷基酯和胆碱酯。可生物水解的酰胺的实例包括但不限于低级烷基酰胺、α-氨基酰胺、烷氧基酰胺和烷氨基烷基酰胺。可生物水解的氨基甲酸酯的实例包括但不限于低级烷基酰胺、取代的乙二胺、氨基酸、羟基烷基胺、杂环胺和杂芳胺以及聚醚胺。

除非另外说明，否则本文使用的术语“立体异构体纯”意指包含化合物的一种立体异构体并且基本上不含该化合物的其它立体异构体的组合物。例如，具有一个手性中心的化合物的立体异构体纯的组合物基本上不含所述化合物的相应立体异构体。具有两个手性中心的化合物的立体异构体纯的组合物基本上不含所述化合物的其它非对映异构体。立体异构体纯的化合物一般包含约大于 80％重量的所述化合物的一种立体异构体和约少于 20％重量的所述化合物的其它立体异构体，更优选约大于 90％重量的所述化合物的一种立体异构体和约少于 10％重量的所述化合物的其它立体异构体，甚至更优选约大于 95％重量的所述化合物的一种立体异构体和约少于 5％重量的所述化合物的其它立体异构体，最优选约大于 97％重量的所述化合物的一种立体异构体。
构体和约少于3%重量的所述化合物的其它立体异构体。

除非另外说明，否则本文使用的术语“对映异构体纯”意指具有一个手性中心的化合物的立体异构体纯组合物。

本文使用的术语“副作用”包括但不限于：胃肠、肾和肝毒性，白血球减少，由于例如血小板减少导致的出血时间延长，妊娠延长，恶心，呕吐，嗜睡，无力，头晕，致畸，锥体束外症状，静坐不能，包括心血管功能失调的心脏毒性，炎症，男性性功能障碍和血清肝酶水平的提高。术语“胃肠道毒性”包括但不限于胃肠溃疡和糜烂。术语“肾毒性”包括但不限于例如乳头状坏死和慢性间质性肾炎的病症。

除非另外说明，否则本文使用的术语“减少或消除副反应”意指降低一种或多种本文中定义的副反应的严重性。

应该注意，如果描述的结构和给出该结构的名称之间存在偏差，描述的结构具有更大的权重。另外，如果没有用如粗线或虚线说明结构或结构部分的立体化学特性，所述结构或结构部分被解释为包括其所有的立体异构体。

4. 发明详述

本发明涉及立体异构体纯的化合物 A，化合物 A 为 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的一种对映异构体，基本上不含其它的异构体。本发明还涉及立体异构体纯的化合物 A 的新使用方法和包含立体异构体纯的化合物 A 的组合物。例如，本发明包括化合物 A 在体内和体外的用途以及将化合物 A 加至用于治疗和预防多种疾病和病症的药用组合物和单位剂型中。通过降低 TNF-α 的水平或抑制 PDE4 而得以改善的疾病和病症，为本领域所熟知，并在本文中进行了描述。本发明的具体方法降低或消除与作为 TNF-α 抑制剂使用的化合物有关的副作用。本发明的其它具体方法降低或消除与外消旋的 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮的使用有关的副反应。
本发明的具体方法包括治疗或预防包括但不限于实体瘤癌、血液衍生的癌及炎性疾病等疾病和病症的方法。

本发明的包含化合物A或其药学可接受的多晶型物、前药、盐、笼形化合物、溶剂合物或水合物的药物和剂型可用于本发明的方法中。

不受理论限制，相信化合物A可抑制TNF-α生成。因此，本发明的第一个实施方案涉及一种抑制NF-α生成的方法，所述方法包括以下步骤：将有效量的立体异构体纯的化合物A或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形化合物与表现出TNF-α生成反常的细胞接触。在一个特别的实施方案中，本发明涉及一种抑制TNF-α生成的方法，所述方法包括以下步骤：将有效量的立体异构体纯的化合物A或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物与表现出TNF-α生成反常的哺乳动物细胞接触。

本发明也涉及一种治疗或预防患者的可通过降低TNF-α水平而改善的病症的方法，所述方法包括给予需要这些治疗或预防的患者治疗或预防有效量的立体异构体纯的化合物A，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物。

本发明的另一个实施方案涉及一种治疗或预防患者的癌(包括但不限于实体瘤、血液性肿瘤、白血病，特别是多发性骨髓瘤)的方法，所述方法包括给予需要这些治疗或预防的患者治疗有效量的立体异构体纯的化合物A，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物；特别是其中所述患者为哺乳动物。

在另一个实施方案中，本发明涉及一种抑制PDE4的方法，所述方法包括以下步骤：将有效量的立体异构体纯的化合物A，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物与PDE4接触。

在另一个实施方案中，本发明涉及一种控制细胞内cAMP水平的
方法，所述方法包括以下步骤：将有效量的立体异构体纯的化合物A，
或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物
或笼形合物与细胞接触。本文使用的术语“控制cAMP水平”包括
防止或降低细胞内的环腺苷酸(cAMP)破坏率或提高细胞内的环腺苷
酸水平，其中所述细胞优选为哺乳动物细胞，更优选人细胞。在一种
特别的方法中，同没有与本发明的化合物接触的对照细胞的破坏率相
比，cAMP破坏率降低约10、25、50、100、200或500%。

本发明的另一个实施方案涉及一种治疗或预防患者的可通过抑
制PDE4而改善的疾病或病症的方法，所述方法包括给予需要这些治
疗或预防的患者治疗或预防有效量的立体异构体纯的化合物A，或其
药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼
形合物。通过抑制PDE4而改善的病症包括但不限于哮喘、炎症(例
如由于再灌注导致的炎症)、慢性或急性阻塞性肺病、慢性或急性肺
炎、肠炎、节段性回肠炎、白塞病(Bechet's)或结肠炎。

本发明的再一个实施方案涉及一种治疗或预防患者的以下疾病
或病症的方法：抑郁症、哮喘、炎症(例如接触性皮炎、特异性皮炎、
银屑病、类风湿性关节炎、骨关节炎、炎性皮肤病、由于再灌注导致
的炎症)、慢性或急性阻塞性肺病、慢性或急性肺炎、肠炎、节段性回
肠炎、白塞病或结肠炎，所述方法包括给予需要这些治疗或预防的患
者治疗或预防有效量的立体异构体纯的化合物A，或其药学可接受的
前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形合物；特
别是其中所述患者为哺乳动物。

本发明的一个单独的实施方案包括治疗或预防骨髓增生异常综
合征(MDS)的方法，所述方法包括给予需要这些治疗或预防的患者治
疗或预防有效量的立体异构体纯的化合物A，或其药学可接受的盐、
溶剂合物、水合物、立体异构体、笼形合物或前药。MDS意指不同
种类的造血干细胞病症。MDS的特征在于由于无效的血细胞生成，导
致形态和成熟缺陷(骨髓细胞生成障碍)的细胞骨髓，外周血液中血细

本发明的一个单独的实施方案包括治疗或预防骨髓增殖性疾病 (MPD) 的方法, 所述方法包括给予需要这些治疗或预防的患者治疗或预防有效量的立体异构体纯的化合物 A, 其其药学可接受的盐、溶剂结合物、水合物、立体异构体、笼形复合物或前药。骨髓增殖性疾病 (MPD) 是指以造血干细胞系异常为特征的一类病症。参见, 例如 Current Medical Diagnosis & Treatment, 499 页(37 版, Tierney 等编著, Appleton & Lange, 1998 年)。

本发明也包括一种治疗、预防或处理复合性区域性疼痛综合征的方法, 所述方法包括给予需要这些治疗、预防或处理的患者治疗或预防有效量的立体异构体纯的化合物 A, 其其药学可接受的盐、溶剂结合物、水合物、立体异构体、笼形复合物或前药。在一个具体的实施方案中, 在可直接降低或消除患者的复合性区域性疼痛综合征的症状的手术或理疗前、期间或后给药。

在本发明的特别方法中, 立体异构体纯的化合物 A 其其药学可接受的多晶型物、前药、盐、溶剂结合物、水合物或笼形复合物与至少一种其它治疗剂联合给药。其它治疗剂实例包括但不限于抗癌药、抗炎药、抗组胺药和解充血药。

4.1. 合成和制备

采用美国专利第 6,020,358 号描述的方法, 可容易地制备外消旋的 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-乙酰氨基异吲哚啉-1,3-二酮, 该专利通过引用而结合至本文中。

通过本领域已有技术, 可自其外消旋化合物中分离出化合物 A。实例包括但不限于手性盐的形成、手性以及高效液相色谱 “HPLC” 的使用和手性盐的形成和结晶。参见, 例如 Jacques, J. 等, Enantiomers,

在一个具体的方法中，化合物 A 可由 3-乙酰氨基邻苯二甲酸酐和 (S)-2-(3-乙氧基-4-甲氧基苯基)-1-(甲磺酰基)-乙-2-基胺合成。 (S)-2-(3-乙氧基-4-甲氧基苯基)-1-(甲磺酰基)-乙-2-基胺的手性氨基酸盐包括但不限于与以下氨基酸的 L 异构体成的盐：丙氨酸，精氨酸，天冬酰胺，天冬氨酸，半胱氨酸，谷氨酰胺，谷氨酸，甘氨酸，组氨酸，异亮氨酸，亮氨酸，赖氨酸，蛋氨酸，苯丙氨酸，脯氨酸，丝氨酸，苏氨酸，色氨酸，酪氨酸，缬氨酸，鸟氨酸，4-氨基丁酸，2-氨基异丁酸，3-氨基丙酸，鸟氨酸，正亮氨酸，正缬氨酸，羟基脯氨酸，肌氨酸，瓜氨酸，磺基精氨酸，叔丁基甘氨酸，叔丁基丙氨酸，苯基甘氨酸，环己基丙氨酸和 N-乙酰基-亮氨酸。一种具体的手性氨基酸盐为 (S)-2-(3-乙氧基-4-甲氧基苯基)-1-(甲磺酰基)-乙-2-基胺-N-乙酰基-L-亮氨酸盐，其在甲醇中分解为 2-(3-乙氧基-4-甲氧基苯基)-1-(甲磺酰基)-乙-2-基胺和 N-乙酰基-L-亮氨酸。

4.2. 治疗方法

本发明包括治疗和预防患者的可通过降低 TNF-α 水平而改善的疾病或病症的方法，所述方法包括给予需要这些治疗或预防的患者治疗有效量的立体异构体纯的化合物 A，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼形化合物。

通过抑制 TNF-α 而改善的病症包括但不限于：心脏病，例如充血性心力衰竭，心肌病，肺水肿，内毒素-调节的败血症性休克，急性坏死性心肌炎，心脏移植排斥，和心脏梗塞；实体瘤，包括但不限于肉瘤，癌，纤维肉瘤，粘液肉瘤，脂肪瘤，软骨肉瘤，骨原性肉瘤，骨
索瘤，血管肉瘤，内皮肉瘤，淋巴管肉瘤，淋巴管内皮肉瘤，滑膜瘤，间皮瘤，尤因瘤，平滑肌肉瘤，横纹肌肉瘤，结肠癌，胰腺癌，乳癌，卵巢癌，前列腺癌，鳞状上皮细胞癌，基底细胞癌，腺癌，汗腺癌，皮脂腺癌，乳头状癌，乳头状腺癌，囊腺癌，髓样癌，支气管癌，肾细胞癌，肝细胞癌，胆管癌，绒毛膜癌，精原细胞癌，胚胎性癌，维尔姆斯癌，宫颈癌，睾丸癌，小细胞肺癌，膀胱癌，上皮癌，神经胶质瘤，星形细胞瘤，成神经管细胞瘤，颅咽管瘤，室管膜瘤，卡波济肉瘤，松果体瘤，成血管细胞瘤，听神经瘤，少突神经胶质细胞瘤，menangioma，黑瘤，成神经细胞瘤和成视网膜细胞瘤；

和血液性肿瘤，包括但不限于急性成淋巴细胞性白血病 “ALL”， B-细胞急性成淋巴细胞性白血病，T-细胞急性成淋巴细胞性白血病，急性髓细胞性白血病 “AML”，急性单核细胞性白血病 “APL”，急性单核细胞性白血病，急性红白血病(erythroleukemic leukemia)，急性成巨核细胞性白血病，急性骨髓单核细胞性白血病，急性非淋巴细胞性白血病，急性未分化性白血病，慢性粒细胞性白血病 “CML”，慢性淋巴细胞性白血病 “CLL”，毛细胞白血病，多发性骨髓瘤以及急性和慢性白血病，例如成淋巴细胞性、骨髓性、淋巴细胞性和髓细胞性白血病。

本发明具体的方法还包括给予其它治疗剂 (即除化合物 A 外的治疗剂)，其它治疗剂实例包括但不限于：抗癌药，例如但不限于烷基化剂、氮芥、氮丙啶、甲基蜜胺、磺酸烷基酯、亚硝基脲、三氮烯、叶酸类似物、嘧啶类似物、嘌呤类似物、长春花生物碱、表鬼臼毒素、抗生素、拓扑异构酶抑制剂和抗癌疫苗。

具体的其它治疗剂包括但不限于：阿西维辛；阿柔比星；盐酸阿考达唑；阿克罗宁；阿多来新；阿地白介素；六甲蜜胺；安波霉素；醋酸阿美薏醌；氨鲁米特；安吖啶；阿那曲唑；安曲霉素；门冬酰胺酶；曲林霉素；阿扎胞苷；阿扎替喷；阿佐霉素；巴马司他；苯佐替派；比卡鲁胺；盐酸比生群；甲磺酸双萘法德；比折来新；硫酸博来
霉素；布喹那钠；溴匹立明；白消安；放线菌素C；卡普睾酮；卡醋胺；卡贝替胺；卡铂；卡莫司汀；盐酸卡莫司汀；卡折来新；西地芬戈；苯丁酸氮芥；西罗霉素；锡铂；克拉屈滨；甲磺酸克立那托；环磷酰胺；阿糖胞苷；达卡巴嗪；放线菌素D；盐酸柔红霉素；地西他滨；右奥马铂；地扎呱宁；甲磺酸地扎呱宁；地呲酮；多西他塞；多柔比星；盐酸多柔比星；曲洛昔芬；柠檬酸曲洛昔芬；丙酸曲他雄酮；达佐伟霉素；依达曲沙；盐酸依氟鸟氨酸；依沙芦星；恩洛铂；恩普氮脂；依匹哌啶；盐酸表柔比星；尼布洛唑；盐酸依索比星；雌莫司汀；雌莫司汀磷酸酯钠；依他硝唑；依托泊苷；磷酸依托泊苷；氟苯乙嘧胺；盐酸法氯唑；法扎拉滨；芬维A胺；氟尿苷；磷酸氟达拉滨；氟尿嘧啶；氟西他滨；磷酸酸毗酮；福司克星钠；吉西他滨；盐酸吉西他滨；羟基脲；盐酸依达比星；异环磷酰胺；伊莫福新；白介素II(包括重组白介素II，或rIL2)，干扰素α-2a；干扰素α-2b；干扰素α-n1；干扰素α-n3；干扰素β-1a；干扰素γ-1b；异丙铂；盐酸依立替康；醋酸兰瑞肽；来曲唑；醋酸亮丙瑞林；盐酸利阿唑；洛美曲索钠；洛莫司汀；盐酸洛索蒽醌；马索罗酚；美坦生；盐酸氮芥；醋酸甲地孕酮；醋酸美仑孕酮；美法仑；美诺立尔；硫嘌呤；甲氨蝶呤；甲氨蝶呤钠；氟苯尼啶；美妥替哌；米丁度胺；米托卡星；丝裂红素；米托舒林；米托马星；丝裂霉素；米托司培；米托坦；盐酸米托蒽醌；麦考酚酸；诺考达唑；诺加霉素；奥马铂；奥昔舒仑；紫杉醇；培门冬酶；培利霉素；奈莫司汀；硫酸布洛霉素；培磷酰胺；吡泊溴烷；哌泊舒凡；盐酸吡罗蒽酮；普卡霉素；普洛美坦；卟啉姆钠；泊非霉素；泼尼莫司汀；盐酸丙卡巴肼；嗦罗霉素；盐酸噻罗霉素；吡唑呋林；利波碘苷；罗谷亚胺；沙芬戈；盐酸沙芬戈；司莫司汀；辛曲泰；磷乙酰天冬氨酸钠；司帕霉素；盐酸锗螺胺；螺莫司汀；螺铂；链黑霉素；链佐星；磺氯苯脲；他利霉素；替可加兰钠；替加氟；盐酸替洛蒽醌；替莫泊芬；替尼泊苷；替罗昔隆；睾内酯；硫咪嘌呤；硫鸟嘌呤；塞替派；噻唑呋林；替拉扎明；枸橼酸托瑞米芬；醋酸曲托龙；磷酸曲西立滨；三甲曲
沙；三甲曲沙葡萄糖醛酸酯；曲普瑞林；盐酸妥布霉素；乌拉莫司汀；
乌瑞替嗪；伐普肽；维替泊芬；硫酸长春碱；硫酸长春新碱；长春地
辛；硫酸长春地辛；硫酸长春匹定；硫酸长春甘酯；硫酸长春罗辛；酒石
酸长春瑞滨；硫酸长春罗定；硫酸长春利定；伏氯唑；折尼铂；净司他汀；
盐酸佐柔比星。其它抗癌药包括但不限于：20-表-1,25-二羟基维生素
D3；5-乙炔基尿嘧啶；阿比替龙；阿柔比星；酰基富烯；adecypenol；
阿多来新；阿地白介素；ALL-TK 拮抗剂；六甲胺胺；氨莫司汀；amidox；
氯磷汀；氯甲乙酰丙酸；氯柔比星；安吖啶；阿那格雷；阿那曲唑；
穿心莲内酯；血管生成抑制剂；拮抗剂 D；拮抗剂 G；antarelix；
anti-dorsalizing 形态发生蛋白质-1；抗雄激素药；前列腺癌药；抗雌激
素药；抗瘤酮；反义寡核苷酸；甘氨酸阿非迪霉素；凋亡基因调节剂；
凋亡调节剂；脱嘌呤核酸；阿拉伯-CDP-DL-PTBA；精氨酸脱氨酶；
asulacrine；阿他美坦；阿莫司汀；axinastatin 1；axinastatin 2；axinastatin
3；阿扎司琼；阿扎霉素；重组氯酸酯；浆果赤霉素 III 衍生物；balanol；
巴马司他；BCR/ABL 拮抗剂；benzochlorins；benzoylstaurosporine；β
-内酰胺衍生物；β -alethine；β -clamycin B；桦木酸；bFGF 抑制剂；
比卡鲁胺；比生群；二吖丙啶基精胺；双氯法德；bistratene A；比折
来新；breflate；溴匹立明；布度钛；丁基硫堇硫氧胺 (buthionine
sulfoximine)；卡泊三醇；钙磷酸蛋白 C (calphostin C)；喜树碱衍生物；
金丝雀痘 IL-2 (canarypox IL-2)；卡培他滨；carboxamide-amino-triazole；
carboxyamidotriazole；CaRest M3；CARN 700；软骨衍生的抑制剂；
卡折来新；酪蛋白激酶抑制剂 (ICOS)；粟精胺；杀菌肽 B；西曲瑞克；
chlorins；氯代喹啉类磺胺药物；西卡前列腺；顺式-卟啉；克拉曲滨；
氯米芬类似物；克霉唑；collismycin A；collismycin B；考布他汀 A4；
combretastatin 类似物；conagenin；crambescidin 816；克立那托；克来
普拓索 8 (cryptophycin 8)；克来普拓索 A 衍生物；curacin A；
cyclopentanthraquinones；cycloplatam；cypemycin；阿糖胞苷苷酸酯；
溶细胞因子；cytostatin；达昔单抗；地西他滨；dehydrodidemnin B；
地洛瑞林；地塞米松；右异环磷酸胺(dexifosfamide)；右雷佐生；右维拉帕米；地叮酸；didemnin B；didox；diethylorspermine；二氢-5-氮杂胞嘧啶核苷；二氢紫松醇注射液；9-；dioxamycin；联苯螺莫司汀；多西他赛；二十二烷醇；多拉司琼；去氧氟尿苷；屈洛昔芬；屈大麻酚；duocarmycin SA；依布硒；依考莫司汀；依地福新；依决洛单抗；依氯鸟氨酸；硫香烯；乙嘧替氟；表柔比星；依立雄胺；雌莫司汀类似物；雌激素激动剂；雌激素拮抗剂；依他硝唑；磷酸依托泊苷；依西美坦；法侃唑；法拉拉滨；芬维 A 胺；非格司亭；非那雄胺；flavopiridol；氟卓斯汀；fluasterone；氟达拉滨；fluorodaunorunicin hydrochloride；
福酚美克；福美坦；福司曲星；福莫司汀；钆替沙林；硝酸镓；加洛他滨；加尼瑞克；明胺酶抑制剂；吉西他滨；谷胱甘肽抑制剂；hepsulfam；heregulin；环六亚甲基二乙酰胺；金丝桃素；伊班膦酸；伊达比星；艾多昔芬；伊决孟酚；伊莫福新；伊洛马司他；咪唑叮啶酮(imidazoacridones)；咪唑莫特；免疫刺激肽；胰岛素样生长激素-1受体抑制剂；干扰素激动剂；干扰素；白介素；碘苄胍；碘代阿霉素；依波米醇；4-；伊罗普拉；伊索拉定；isobengazole；isohomohalicondrin B；依他司琼；jasplakinolide；kahalalide F；lamellarin-N triacetate；兰瑞肽；leinamycin；米格司亭；硫酸香菇多糖；leptolstatin；来曲唑；白血病抑制因子；白细胞α干扰素；亮丙立德+雌激素+孕酮；亮丙瑞林；左旋咪唑；利阿唑；线形聚胺类似物；亲脂性双糖肽；亲脂性铂化合物；lissoclacinamide 7；洛铂；蚯蚓磷脂；洛美曲索；氮丁达明；洛索蒽醌；洛伐他汀；洛索立宾；勒托替康；lutetium texapliyrin；lysofylline；溶菌肽；美培新；mannostatin A；马立马司他；马索罗酚；maspin；基质裂解蛋白抑制剂；间质金属蛋白酶抑制剂；美诺立尔；麦尔巴隆(merbarone)；美替瑞林；蛋氨酶；甲氧氯普胺；MIF 抑制剂；米非司酮；米替福新；米立司亭；错配的双链 RNA；米托胍腙；二溴卫矛醇；丝裂霉素类似物；米托萘胺；mitotoxin 成纤维细胞生长因子-saporin；米托蒽醌；莫法罗汀；莫法司亭；单克隆抗体，人绒促性素；
单磷酸脂质 A+分枝杆菌细胞壁 sk；莫哌达醇；多发性抗药基因抑制剂；基于多发性肿瘤抑制剂 I 的治疗剂；芥子抗癌药；印度洋海锦 B；分枝杆菌细胞壁提取液；myriaporone；N-乙酰基硫胺。N-取代的苯甲酰胺；那法瑞林；nagrestip；纳洛酮+喷他佐辛；napavin；naphterpin；那托司亭；萘达铂；奈莫柔比星；奈立磷酸；中性肽链内切酶；尼鲁米特；nisamycin；氧化氮调节剂；氧化氮抗氧剂；nitrulyn；O6-苄基鸟嘌呤；奥曲肽；okiconeone；低聚核苷酸；奥那司酮；昂丹司琼；昂丹司琼；oracin；口服细胞因子诱导剂；奥马铂；奥沙特隆；奥沙利铂；oxaunomycin；紫杉醇；紫杉醇类似物；紫杉醇衍生物；palauamine；palmitoylrhizoxin；帕米膦酸；人参炔三醇；帕诺米芬；parabactin；帕折普汀；培门冬酶；培得星；戊聚糖多硫酸钠；喷他依丁；pentrozole；全氟溴烷；培磷酰胺；紫苏子醇；phenazinomycin；乙酸苯脂；磷酸酶抑制剂；picibanil；盐酸毛果芸香碱；叱柔比星；叱曲克辛；placetin A；placetin B；纤溶酶原激活物抑制剂；铂络合物；铂化合物；铂-三胺络合物；卟吩姆钠；泊非霉素；泼尼松；丙基二吖啶酮；前列腺素 J2；蛋白酶体抑制剂；基于蛋白质 A 的免疫调节剂；蛋白激酶 C 抑制剂；蛋白激酶 C 抑制剂；microalgal；蛋白质酪氨酸磷酸酶抑制剂；嘌呤核苷磷酸化酶抑制剂；红霉素；叱咤咻叮啶；叱咤氧化的(pyridoxylated)血红蛋白聚氧化乙烯醇合物；raf 原癌基因拮抗剂；雷替曲塞；雷莫司琼；ras 原癌基因法尼基蛋白质转移酶抑制剂；ras 原癌基因抑制剂；ras 原癌基因-GAP 抑制剂；脱甲基硫替普汀；铼 Re 186 依替膦酸；根霉素；核酶；RII 维胺酯(retinamide)；罗谷亚胺；rohitukine；罗莫肽；罗喹美克；rubiginone Bl；ruboxyl；沙芬戈；saintopin；SarCNU；sarcophytol A；沙格司亭；Sdi 1 类似物；司莫司汀；衰老衍生的抑制剂 1；有意义低聚核苷酸；信号转导抑制剂；信号转导调节剂；单链抗原结合蛋白质；西佐喃；索布佐生；硼卡钠；苯乙酸钠；solverol；生长调节素结合蛋白质；索纳明；膦门冬酸；spicamycin D；螺莫司汀；splenopentin；海绵素 1(spongistatin)；角沙胺；干细胞抑制剂；干细胞
分裂抑制剂；stipiamide；基质裂解素抑制剂；sulfinosine；超活性的血管活性肠肽拮抗剂；suradista；苏拉明；八氮吲哚三醇；合成的糖胺聚糖；他莫司汀；甲磺化他莫昔芬；牛磺莫司汀；他扎罗汀；替可加兰钠；替加氟；tellurapyrillium；端粒末端转移酶抑制剂；替莫泊芬；替莫唑胺；替尼泊苷；tetrachlorodecaoxide；tetrazomine；thaliblastine；噻可拉林；血小板生成素；血小板生成素类似物；胸腺法新；胸腺生成素受体激动剂；胸腺曲南；促甲状腺激素；tin ethyl etiopurpurin；替拉扎明；二氟二茂钛；topsentin；托瑞米芬；全能干细胞因子；翻译抑制剂；维 A 酸；三乙酰基尿嘧啶核苷；曲西立滨；三甲由沙；曲普瑞林；托烷司琼；妥罗雄腺；酪氨酸激酶抑制剂；tyrhostins；UBC 抑制剂；乌苯美司；尿生殖窦衍生的生长抑制因子；尿激酶受体拮抗剂；伐普肽；variolin B；载体系统，红细胞基因治疗药；维拉雷琐；veramine；verdins；维替泊芬；长春瑞滨；vinxaltine；vitaxin；伏氯唑；扎诺特隆；折尼铂；亚苄维 C；和托司他汀酯。

本发明进一步包括一种治疗或预防患者的可通过抑制 PDE4 而改善的疾病或病症的方法，所述方法包括给予需要这些治疗或预防的患者治疗有效量的立体异构体纯的化合物 A，或其药学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或笼型化合物。通过抑制 PDE4 而改善的病症包括但不限于：哮喘，炎症，慢性或急性阻塞性肺病，慢性或急性阻塞性肺炎，肠炎，节段性回肠炎，白塞病，结肠炎，溃疡性结肠炎和关节炎或由于再灌注引起的炎症。在一个优选的实施方案中，待治疗或预防的疾病或病症为慢性阻塞性肺病。

本发明的具体方法可包括给予一种例如但不限于抗炎药、抗组胺药和解充血药的其它治疗剂。这些其它治疗剂的实例包括但不限于：抗组胺药，包括但不限于氨基乙醇、乙二胺、哌嗪和吩嗪嗪；抗炎药；非甾体抗炎药 (NSAIDS)，包括但不限于阿司匹林、水杨酸盐(酯)、乙酰氨基酚、吲哚美辛、舒林酸、依托度酸、fenamates、托美丁、酮咯酸、双氯芬酸、布洛芬、萘普生、非诺洛芬、酮洛芬、氟比洛芬、嗯
丙嗪、吲哚普安、美洛昔康、吲哚美辛衍生物；和甾体化合物，包括
但不限于皮质类固醇和肾上腺皮质类固醇。

本发明的具体方法消除或降低药物-药物相互作用和其它与用于
治疗这些病症的治疗剂(包括外消旋的取代苯乙基砜)有关的副作用。
不受任何理论的限制，相比外消旋的 2-[1-(3-乙氧基-4-甲氧基苯基)-2-
甲磺酰氧基乙基]-4-乙酰氨基異吲哚啉-1,3-二酮，立体异构体纯的化合物
A 可进一步提供全面提高的治疗有效性或治疗指数。例如在某些情况
下，给予较少量的所述药物可获得相同的治疗效果。

如上所述，本发明的活性化合物(即化合物 A)可用于治疗或预防
宽范围的疾病和病症。但是，在对疾病或病症进行急性或长期治疗时，
根据所述疾病或病症的性质和严重性，以及活性组分的给药途径，本
发明的特定活性组分的治疗或预防剂量大小将发生变化。根据年龄、
体重和个体患者反应的不同，剂量、或许给药次数也将变化。对这些
因素进行充分的考虑后，本领域技术人员可容易地选择合适的给药
方法。对于本文描述的病症，一般推荐每日剂量范围约为 1 mg-1000
mg，单剂量给药，每天 1 次，优选每日分次给药。更具体地讲，将每
日剂量平均分开，分两次给药。具体地讲，每日剂量范围应约为
5mg-500mg，更具体地讲，每天约为 10mg-200mg。具体地讲，每日剂
量可给予 5mg、10mg、15mg、20mg、25mg、50mg 或 100mg 的剂型。
在治疗患者时，应从较低的剂量开始治疗，或许每天约 1mg-25mg，如
果需要，可增加至每天约达 200mg-1000mg，根据患者的全身反应，可
以单剂量给药也可分次给药。同样，每日剂量可为 0.01mg/kg-
100mg/kg。

在某些病例中，可能需要使用超出本文公开的剂量范围的活性组
分，这对本领域普通技术人员来讲，是显而易见的。此外应注意，在
结合个体患者的反应后，临床医师或主治医师将知道如何和何时中
止、调节或终止治疗。

本文使用的术语“治疗有效量”、“预防有效量”和“治疗或预
4.3. 药用组合物

本发明包括包含化合物 A 或其药学可接受的多晶型物、前药、盐、溶剂合物、水合物或微形合物的药用组合物和单位剂型。本发明的

4.3.1. 单个剂型可适用于经口服、粘膜(包括直肠、鼻或阴道)、胃肠外(包括

4.3.2. 皮下、肌肉、一次性大剂量注射、动脉或静脉)、舌下、经皮、口颊或

4.3.3. 局部给药。

本发明的药用组合物和剂型包含立体异构体纯的化合物 A 或其药

学可接受的前药、代谢物、多晶型物、盐、溶剂合物、水合物或微形

合物。本发明的药用组合物和剂型一般也包含一种或多种药学可接

受的赋形剂。

该实施方案包含的一种特殊药用组合物包含立体异构体纯的化

合物 A，或其药学可接受的多晶型物、前药、盐、溶剂合物、水合物

或微形合物，和至少一种其它治疗剂。其它治疗剂的实例包括但不限于上述 4.2. 部分列出的那些抗癌药物和抗炎药物。

本发明的单位剂型适用于经口、粘膜(例如鼻、舌下、阴道、口颊

或直肠)、胃肠外(例如皮下、静脉、一次性大剂量注射、肌肉或动脉)或经皮给予患者。剂型的实例包括但不限于：片剂；胶囊形片剂；胶

囊剂，例如软的弹性明胶胶囊剂；扁囊剂；锭剂(troches)；锭剂

(lozenges)；分散剂；栓剂；软膏剂；糊剂(泥敷剂)；泥膏剂；散剂；

敷料；乳膏剂；膏药；溶液剂；贴剂；气雾剂(例如鼻喷雾剂或吸入剂)；
凝胶剂；适用于经口或经粘膜给予患者的液体剂型，包括混悬剂(例如
水性或非水性混悬剂、水包油型乳剂或油包水型液体乳剂)，溶液剂，
和赋剂；适用于经胃肠外给予患者的液体剂型；和可重新构建以提供
适用于经胃肠外给予患者的液体剂型的无菌固体剂型(例如结晶或无
定形固体)。

本发明的剂型的组成、形状和类型一般将根据它们的用途而变
化。例如，用于炎症或相关病症的治疗时，相比长期治疗的剂型，急
性治疗的剂型可包含更多的一种或多种所述活性组分。类似的，用于
治疗同样的疾病或病症时，经胃肠外给药的剂型比口服剂型包含的一
种或多种所述活性组分的量少。本发明包括的具体剂型的各个方面均
不相同，这对本领域的技术人员来说是显而易见的。参见，例如“Remi-
ngton’s Pharmaceutical Sciences”，18版，Mack 出版，Easton PA (1990
年)。

药用组合物和剂型一般包括一种或多种赋形剂。药剂学领域技术
人员熟知合适的赋形剂，本文所提供的合适的赋形剂的实例并不限于
此。一种特殊的赋形剂是否适合加至药用组合物或剂型中，将根据本
领域熟知的多种因素，包括但不限于将所述剂型给予患者的途径等确
定。例如，口服剂型如片剂可包含不适用于胃肠外给药剂型的赋形剂。
特殊赋形剂的适用性也可根据所述剂型中的具体活性组分确定。

本发明的不含乳糖的组合物可包含本领域熟知的各种赋形剂，以
及列在例如美国药典(USP) SP (XXI)/NF (XVI)中的赋形剂。不含乳糖
的组合物一般包括活性组分、药学相容并且药学可接受量的粘合剂/填
充剂和润滑剂。优选的不含乳糖的剂型包含活性组分、微晶纤维素、
预胶化淀粉和硬脂酸镁。

本发明进一步包括包含活性组分的无水药用组合物和剂型，因为
水可使一些化合物容易分解。例如，为了确定例如有效期或制剂的长
期稳定性的性质，在药学领域广泛接受加入水(例如 5%)作为模拟长期
储存的方法。参见，例如 Jens T. Carstensen, Drug Stability: Principles &
Practice，2版，Marcel Dekker，纽约，纽约，1995 年，379-80 页。实
际上，水和热可加速一些化合物的分解。由于在制剂生产、处理、包
装、储存、运输以及使用的过程中，经常遇到水分和/或湿度问题，因此，水分对于制剂的影响非常显著。

使用无水或含水量低的组分并在低水分或低湿度的环境中，可制备本发明的无水药物组合物和剂型。如果在生产、包装和/或储存过程中需要经常接触水分和/或湿度，则优选包含乳糖和至少一种活性组分(包括伯胺或仲胺)的药用组合物和剂型是无水的。

无水药物组合物的制造和储存应该保持其无水性质。相应地，优选无水组合物使用已知可防水的材料包装，以便它们可用合适的规定的药剂盒包装。合适的包装实例包括但不限于密封箱、塑料、单剂量容器(例如管瓶)、泡罩包装和对开包装。

本发明进一步包括含有一种或多种可降低活性组分解速率的化合物的药用组合物和剂型。本文中称为“稳定剂”的这些化合物包括但不限于抗氧化剂，如抗坏血酸、pH缓冲剂或盐缓冲剂。

同赋形剂的量和种类一样，剂型中活性组分的量和具体种类可根据例如但不限于给予患者的途径等因素的不同而变化。但是本发明的代表性剂型包含化合物 A，或其药学可接受的盐、溶剂组合、包衣组合、水合物、多晶型物或前药，每日剂量范围约为 1mg-1000mg，在早晨单剂量给药，每天一次，但优选每天分次给药，与食物一起给药。更具体地讲，将每日剂量平均分开，每天分几次给药。具体地讲，每日剂量范围约为 5mg-500mg；更具体地讲，每天约为 10mg-200mg。在治疗患者时，应自每天约 1mg-25mg 的较低剂量开始治疗，并且如果需要，可将每日剂量增加至最高约 200mg-1000mg，根据患者的全身反应，可单剂量给药，也可以分次给药。25

4.3.1. 口服剂型

适用于口服给药的本发明的药用组合物可以为离散的剂型，例如但不限于片剂(例如咀嚼片)、胶囊形片剂、胶囊剂和液体制剂(例如调味的糖浆剂)。这些剂型包含预先确定量的活性组分，并且可以通过本
领域技术人员熟知的药剂学方法制备。主要参见 Remington's Pharmaceutical Sciences，18版，Mack 出版，Easton PA (1990 年)。

按照常规药学配混技术，将活性组分与至少一种赋形剂充分混匀，制备本发明的代表性口服剂型。根据给药需要的剂型形式，赋形剂可为各种各样的形式。例如，适用于液体口服剂型或气雾剂的赋形剂包括但不限于水、二元醇、油、醇、矫味剂、防腐剂和着色剂。适用于固体口服剂型(例如散剂、片剂、胶囊剂和胶囊片剂)的赋形剂实例包括但不限于淀粉、糖、微晶纤维素、稀释剂、造粒剂、润滑剂、粘合剂和崩解剂。

由于给药方便，片剂和胶囊剂为最常用的其中使用固体赋形剂的口服剂型。如果需要，可通过标准的水或非水技术对片剂包衣。可通过任何药剂学方法制备这些剂型。药用组合物和剂型一般按以下方法制备：将活性组分与液体载体、细粒固体载体或两者充分混匀，然后在需要时可将产品制成所需要的形式。

例如，可通过压缩和模压制备片剂。压缩片可通过将自由流动形式(如粉末或颗粒形式)的活性组分(任选与赋形剂混合)在合适的机器中压缩制备。模压片可通过将液体稀释剂润湿的粉状化合物的混合物在合适的机器中模压制备。

可用于本发明的口服剂型的赋形剂的实例包括但不限于粘合剂、填充剂、崩解剂和润滑剂。适用于药用组合物和剂型的粘合剂包括但不限于：玉米淀粉、马铃薯淀粉或其它淀粉，明胶，天然和合成的树脂(如阿拉伯胶)，藻酸钠、藻酸、其他藻酸盐，粉状黄芪胶，瓜尔胶，纤维素及其衍生物(例如乙基纤维素、醋酸纤维素、羧甲基纤维素钠、羧甲基纤维素钙)，聚乙烯吡咯烷酮，甲基纤维素，预胶化淀粉，羟丙基甲基纤维素(例如 2208 号、2906 号、2910 号)，微晶纤维素，及其混合物。

适用于本文公开的药用组合物和剂型的填充剂的实例包括但不限于：滑石粉，碳酸钙(例如颗粒或粉末)，微晶纤维素，粉状纤维素，
葡萄糖结合剂，高岭土，甘露醇，硅酸，山梨醇，淀粉，预胶化淀粉，
及其混合物。本发明的药用组合物中的粘合剂或填充剂一般占所述药
用组合物或剂型的约 50%-99%重量。

适合形式的微晶纤维素包括但不限于：以 AVICEL-PH-101、
AVICEL-PH-103 AVICEL RC-581、AVICEL-PH-105（来自 FMC
Corporation, American Viscose Division, Avicel Sales, Marcus Hook, PA)
出售的商品，及其混合物。具体的粘合剂以 AVICEL RC-581 出售的
微晶纤维素和羧甲基纤维素钠的混合物。合适的无水或低含水量的赋
形剂或添加剂包括 AVICEL-PH-103Tm 和 Starch 1500 LM。

当暴露在含水环境中时，用于本发明的组合物的崩解剂可使片剂
崩解。含有太多崩解剂的片会在储存时崩解，而含有太少崩解剂的那
些片则不能以需要的速率崩解或不能在需要的条件下崩解。因此，应
该使用足量(既不多也不太少，不会改变所述活性组分的释放)的崩
解剂制备本发明的固体口服剂型。崩解剂的用量根据剂型不同而变
化，对本领域的普通技术人员来说，这很容易理解。药用组合物一般
包含约 0.5-15%重量、具体为约 1%-5%重量的崩解剂。

可用于本发明的药用组合物和剂型的崩解剂包括但不限于：琼脂，
羧酸，碳酸钙，微晶纤维素，交联羧甲基纤维素钠，交聚维酮，
聚乙烯醇，淀粉羟乙酸钠，马铃薯或木薯淀粉、预胶化淀粉，其他
淀粉，粘土，其它纤维素，树胶，及其混合物。

可用于本发明的药用组合物和剂型的润滑剂包括但不限于：硬脂
酸钙，硬脂酸镁，矿物油，轻质矿物油，甘油，山梨醇，甘露醇，聚
乙二醇，其它二元醇，硬脂酸，十二烷基硫酸钠，滑石粉，氢化植物
油(例如花生油、棉籽油、向日葵油、芝麻油、橄榄油、玉米油和大豆
油)，硬脂酸锌，油酸乙酯，月桂酸乙酯，琼脂，及其混合物。另外的
润滑剂包括：例如硅酸盐硅胶(AEROSIL 200, W. R. Grace Co. of
Baltimore, MD 生产), 合成二氧化硅的凝固气溶胶(Plano, TX 的 Degussa
Co.销售), CAB-O-SIL (Cabot Co. of Boston MA 出售的一种热性二氧化
硅产品)，及其混合物。如果使用，润滑剂的量一般约少于它们所加入的药用组合物或剂型的1%重量。

4.3.2. 缓释剂型

本发明的活性组分可按照本领域普通技术人员熟知的控制方法或释放装置给药。实例包括但不限于以下美国专利描述的那些方法或装置：3,845,770；3,916,899；3,536,809；3,598,123；和4,008,719，5,674,533；5,059,595；5,591,767；5,120,548；5,073,543；5,639,476，5,354,556以及5,733,566。这些专利通过引用而结合至本文中。这些剂型可用以使一种或多种活性组分缓慢或受控地释放，其中采用例如羟丙基甲基纤维素、其它聚合物骨架、凝胶、渗透膜、渗透系统、多层包衣、微丸、脂质体、微球或其组合来提供符合需要的可变比例的释放曲线。对于本发明的活性组分，可容易地选择使用合适的本领域普通技术人员熟知的控制制剂(包括本文所描述的那些制剂)。因此，本发明包括适用于口服给药的单位剂型，例如但不限于适用于控制的制剂、胶囊剂、软胶囊和胶囊形片剂。

所有控制药物的一个共同目的是相对其非控制制剂具有更好的治疗效果。最佳设计的控制制剂在治疗中的应用应达到的理想效果，是在最短的时间内，使用最少量的药物治愈或控制病症。控制制剂的优点有延长药物活性、减少给药次数以及提高患者的依从性。另外，控制制剂可用来影响起效时间或例如血药浓度等其他性质，并因此影响副(不良)作用的发生。

大多数的控制制剂被设计成为具有如下的释放特征：开始释放能迅速产生所希望的治疗效果的药量(活性组分)，然后在延长的时间内，逐渐并连续释放其它药量来维持预防或治疗作用。为维持体内的药物浓度稳定，药物必须以一定的速率从剂型中释放出来，以弥补被代谢并从机体排泄出的药量。活性组分的控制可受到包括但不限于pH、温度、酶、水或其它生理条件或化合物等各种条件的刺激。
4.3.3 胃肠外剂型

可经包括但不限于皮下、静脉(包括一次性能剂注射)、肌肉和动脉的各种途径，将胃肠外剂型给予患者。由于它们的给药一般避开污染物的自然防御，因此优选胃肠外剂型为无菌或给予患者前可进行灭菌。胃肠外剂型的实例包括但不限于注射液、溶于或悬浮在药学可接受的载体中的注射用干品、注射混悬剂和乳剂。

本领域技术人员熟知可适用于本发明的胃肠外剂型的合适的载体，实例包括但不限于：注射用水(USP); 水载体，例如但不限于氯化钠注射液，林格氏注射液，葡萄糖注射液，葡萄糖和氯化钠注射液和乳酸林格氏注射液；水可混溶的载体，例如但不限于乙醇，聚乙二醇和聚丙二醇；和非水载体，例如但不限于玉米油，棉籽油，花生油，芝麻油，油酸乙酯，肉豆蔻酸异丙酯，和苯甲酸苄酯。

也可将能提高本文公开的一种或多种活性组分的溶解度的化合物加至本发明的胃肠外剂型中。

4.3.4 经皮、局部和粘膜剂型

本发明的经皮、局部和粘膜剂型，包括但不限于眼用溶液剂、喷雾剂、气雾剂、乳膏剂、洗剂、软膏剂、凝胶剂、溶液剂、乳剂、混悬剂或本领域技术人员熟知的其它剂型。参见，例如 Remington’s Pharmaceutical Sciences, 16 版和 18 版, Mack 出版, Easton PA (1980 年 &1990 年); 和 Introduction to Pharmaceutical Dosage Forms, 4 版, Lea & Febiger, 费城(1985 年)。适用于治疗口腔粘膜组织的剂型可配制成漱口剂或口凝胶剂。此外，经皮剂型包括“贮藏库型”或“骨架型”贴剂，可施用于皮肤并可使用一段具体时间，以便使需要量的活性组分渗入皮肤。

可用于提供本发明所包括的经皮、局部和粘膜剂型的合适的赋形剂(例如载体和稀释剂)和其他材料为药学领域技术人员所熟知，并依据给定药用组合物或剂型将要施用的特定组织而定。考虑到该因素,
使用无毒并且药学可接受的代表性赋形剂(包括但不限于水、丙酮、乙醇、乙二醇、丙二醇、1,3-丁二醇、肉豆蔻酸异丙酯、棕榈酸异丙酯、矿物油及其混合物)制备洗剂、酊剂、乳膏剂、乳剂、凝胶剂或软膏剂。如果需要，也可将增湿剂或保湿剂加至药用组合物和剂型中。这些助组分的实例在本领域是熟知的。参见，例如 Remington's Pharmaceutical Sciences, 16 版和 18 版，Mack 出版, Easton PA (1980 年和 1990 年)。

根据待治疗的具体组织，辅加组分可在使用本发明的活性组分治疗前、后或联合使用。例如，渗透增强剂可用于帮助将活性组分释放至组织中。合适的渗透增强剂包括但不限于：丙酮；各种醇，例如乙醇，油醇和四氢糠醇；烷基亚砜，例如二甲亚砜；二甲基乙酰胺；二甲基甲酰胺；聚乙二醇；吡咯烷酮，例如聚乙烯吡咯烷酮；Kollidon 级(聚乙烯吡咯烷酮(Povidone)、聚乙烯吡咯烷酮(Polyvidone))；尿素；和各种水溶性或水溶性糖酯，例如吐温 80 (聚山梨醇酯 80) 和司盘 60 (脱水山梨醇单硬脂酸酯)。

调节药用组合物、剂型或药用组合物或剂型施用的组织的 pH，可提高一种或多种活性组分的释放度。类似的，调节溶剂载体的极性、其离子强度或张力，可以提高释放度。也可将如硬脂酸酯(盐)的化合物加至药用组合物或剂型中，改善一种或多种活性组分的亲水性或亲脂性，从而提高释放度。在这方面，硬脂酸盐可用作所述制备的类脂载体、乳化剂或表面活性剂，并用作释放增强剂或渗透增强剂。所述活性组分的各种盐、水合物或溶剂合物可用于进一步调节最终组合物的性质。

4.3.5. 药剂盒

通常优选本发明的活性组分不同时或不通过相同的途径给予患者。因此，本发明包括药剂盒，当临床医师使用时，所述药剂盒可使适当量的活性组分对患者的给药简单化。
本发明的代表性药剂盒包含化合物 A，或其药学可接受的盐、溶剂合物、水合物、设定的化合物、水合的盐或前药的单倍剂型。第二种活性组分的单倍剂型。第二种活性组分的实例包括但不限于上述
4.2 部分列举的那些组分。

本发明的药剂盒可进一步包含用于活性组分给药的装置。这些装置的实例包括但不限于注射器、点滴袋、眼罩和吸入器。

本发明的药剂盒可进一步包含可用于给予一种或多种活性组分的药学可接受的载体。例如，如果活性组分为固体形式，需必须重新构建以便经胃肠外给药，则所述药剂盒可包括适当载体的密封容器，其中所述活性组分可溶解形成适用于经胃肠外给药的无颗粒的无菌溶液。药学可接受载体的实例包括但不限于：注射用水(USP); 水载体，例如但不限于氯化钠注射液，林格氏注射液，葡萄糖注射液，葡萄糖和氯化钠注射液，和乳酸林格氏注射液; 水可混溶的载体，例如但不限于乙醇，聚乙二醇和聚丙二醇; 和非水载体，例如但不限于玉米油，棉籽油，花生油，芝麻油，油酸乙酯，肉豆蔻酸异丙酯和苯甲酸苄酯。

5. 实施例

5.1 实施例 1: 2-[1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-
乙酰氨基异吲哚啉-1,3-二酮的合成

将搅拌下的 1-(3-乙氧基-4-甲氧基苯基)-2-甲磺酰基乙胺(1.0g, 3.7
毫摩尔)和 3-乙酰氨基邻苯二甲酸酐(751mg, 3.66 毫摩尔)的乙酸(20ml)
溶液加热回流 15 小时。真空下除去溶剂，得到油状物。通过色谱法分离得到的油，得到产物(1.0g，收率 59%)，呈黄色固体，mp:144℃。

\[^1H \text{NMR (CDCl}_3 \text{) 51.47 (t, J=7.0 Hz, 3H, CH}_3 \text{), 2.26} \]
\[(s, 3H, CH}_3 \text{), 2.88 (s,3H, CH}_3 \text{), 3.75 (dd, J=4.4, 14.3 Hz, 1H, CHH}_3 \text{), 3.85 (s, 3H, CH}_3 \text{), 4.11} \]
\[(q, J= 7 Hz, 2H, CH}_2 \text{), 5.87 (dd, J=4.3, 10.5 Hz, 1H, NCH), 6.82-6.86 (m, 1H, Ar),} \)
\[7.09-7.11 (m, 2H, Ar), 7.47 (d, J= 7 Hz, 1H, Ar), 7.64 (t, J= 8 Hz, 1H, Ar), 8.74 (d, J= 8} \]
\[Hz, 1H, Ar), 9.49 (br s, 1H, NH); ^13C \text{NMR (CDCl}_3 \text{) 314.61, 24.85, 41.54, 48.44, 54.34,} \]
\[55.85, 64.43, 111.37, 112.34, 115.04, 118.11, 120.21, 124.85, 129.17, 130.96, 136.01,} \]
\[137.52, 148.54, 149.65, 167.38, 169.09, 169.40;} \]
C$_{22}$H$_{24}$NO$_7$S 计算值: C, 57.38; H, 5.25; N, 6.08。实测值: C, 57.31; H, 5.34; N, 5.83。

5.2 实施例 2: (+) 2-[(1-(3-乙酰氨基-4-甲氧基苯基)-2-甲磺酰基乙基)-4-乙酰氨基]异吲哚啉-1,3-二酮的合成

3-氨基邻苯二甲酸的制备

在氮气氛下，将硝酸(10%, 2.5g)、3-硝基邻苯二甲酸(75.0g, 355毫摩尔)和乙醇(1.5L)加至2.5L的帕尔氢化器中。将氯气通入反应容器内，至压力达到55psi。振荡该混合物13小时，并维持氯气压力在50-55psi之间。排除氯气，并用氮气清洗混合物3次。通过Celite硅藻土床过滤悬浮液，并用甲醇洗涤。真空下浓缩滤液。将得到的固体再用乙醚打浆，并通过真空过滤进行分离。将固体真空干燥至恒重，得到54g (收率84%) 的3-氨基邻苯二甲酸，呈黄色固体。

1H-NMR (DMSO-d6) δ: 3.17 (s, 2H), 6.67 (d, 1H), 6.82 (d, 1H), 7.17 (t, 1H), 8-10 (brs, 2H).

13C-NMR (DMSO-d6) δ: 112.00, 115.32, 118.20, 131.28, 135.86, 148.82, 169.15, 170.09。

3-乙酰氨基邻苯二甲酸酐的制备

向装有机械搅拌器、温度计和冷凝器的1L三颈圆底烧瓶中加入3-氨基邻苯二甲酸(108g, 596毫摩尔)和乙酸酐(550mL)。将反应混合物加热回流3小时，然后冷却至环境温度，再于0-5°C下冷却1小时。真空过滤收集结晶固体，并用乙醚洗涤。在环境温度下将固体真空干燥至恒重，得到75g (收率61%)的3-乙酰氨基邻苯二甲酸酐，呈白色固体。

1H-NMR (CDCl$_3$) δ: 2.21 (s, 3H), 7.76 (d, 1H), 7.94 (t, 1H), 8.42 (d, 1H), 9.84 (s, 1H)。
2-(3-乙氨基-4-甲氧基苯基)-1-(甲磺酰基)-乙-2-基胺的拆分

向装有机械搅拌器、温度计和冷却器的 3L 三颈圆底烧瓶中加入
2-(3-乙氨基-4-甲氧基苯基)-1-(甲磺酰基)-乙-2-基胺(137.0g，500 毫摩尔)、N-乙酰基-L-亮氨酸(52g，300 毫摩尔)和甲醇(1.0L)。搅拌下将浆状
物加热回流 1 小时。然后在搅拌下，将浆状物冷却至环境温度，并在
环境温度下继续搅拌 3 小时。过滤浆状物并用甲醇(250mL)洗涤。将固
体晾干，然后在环境温度下真空干燥至恒重，得到 109.5g 粗品(85.8% ee
(对映异构体过量)，收率 98%)。将粗品固体(55.0g)和甲醇(440mL)一起
回流 1 小时，然后冷却至室温，并在环境温度下再搅拌 3 小时。过滤
浆状物，用甲醇(200mL)洗涤滤饼。将固体晾干，然后在 30℃下真空
干燥至恒重，得到 49.6g (回收率 90%) 的(S)-2-(3-乙氨基-4-甲氧基苯
基)-1-(甲磺酰基)-乙-2-基胺-N-乙酰基-L-亮氨酸盐(98.4% ee)。

手性 HPLC (乙醇:20mM KH₂PO₄=1:99，pH 为 7.0，安捷伦公司的
Ultrion ES-OVS 手性柱，150mm × 4.6mm，流速为 0.5mL/min，检测波
长为 240nm)：18.4 分钟(S 型异构体，99.2%)，25.5 分钟(R 型异构体，
0.8%)。

化合物 A 的制备

向装有机械搅拌器、温度计和冷却器的 500ml 三颈圆底烧瓶中加
入(S)-2-(3-乙氨基-4-甲氧基苯基)-1-(甲磺酰基)-乙-2-基胺-N-乙酰基-L-
亮氨酸盐(25g，56 毫摩尔，98% ee)、3-乙酰氨基苯甲二甲酸酐(12.1g，
58.8 毫摩尔)和冰醋酸(250mL)。将反应混合物回流过夜，然后冷却至 50
℃以下。真空下除去溶剂，然后将残余物溶于乙酸乙酯。用水(250mL
× 2)、饱和碳酸氢钠水溶液(250mL × 2)、盐水(250mL × 2)洗涤得到的溶
液，并用硫酸钠干燥。真空下蒸发除去溶剂，残余物用含有乙醇(150mL)
和丙酮(75mL)的二元溶剂重结晶。真空过滤分离出固体，并用乙醇
(100mL × 2)洗涤。60℃下将产品真空干燥至恒重，得到 19.4g (收率 75%)
的 S-{2-[1-(3-乙氨基-4-甲氧基苯基)-2-甲磺酰基乙基]-4-氨基异吲哚啉

39
-1,3-二酮(98% ee)。

手性HPLC (乙醇:20mM KH₂PO₄=15:85, pH 为 3.5, 安捷伦公司的 Ultron ES-OVS 手性柱, 150mm × 4.6mm, 流速为 0.4mL/min, 检测波长为 240nm)：25.4 分钟(S 型异构体, 98.7%), 29.5 分钟(R 型异构体, 1.2%)。

\(^{1}H\)-NMR

\((CDCl_{3})\) \(\delta\): 1.47 (t, 3H), 2.26 (s, 3H), 2.87 (s, 3H), 3.68-3.75 (dd, 1H), 3.85 (s, 3H), 4.07-4.15 (q, 2H), 4.51-4.61 (dd, 1H), 5.84-5.90 (dd, 1H), 6.82-8.77 (m, 6H), 9.46 (s, 1H). \(^{13}C\)-NMR (DMSO-d6) \(\delta\): 14.66, 24.92, 41.61, 48.53, 54.46, 55.91, 64.51, 111.44, 112.40, 115.10, 118.20, 120.28, 124.94, 129.22, 131.02, 136.09, 137.60, 148.62, 149.74, 167.46, 169.14, 169.48.

5.3. 实施例 3: TNF-α抑制

人全血 LPS-诱导 TNF-α的测定

化合物抑制 LPS-诱导人全血 TNF-α生成的能力主要通过下述测定人 PBMC 中脂多糖(LPS)-诱导肿瘤坏死因子-α(TNF-α) 的方法进行评价，但使用新鲜提取的全血代替 PBMC (George Muller 等, 1999 年, Bioorganic & Medicinal Chemistry Letters, 9 期:1625-1630 页)。人全血 LPS-诱导 TNF-α 的 IC₅₀ 为 294 nM。

小鼠 LPS-诱导血清 TNF-α的抑制

按照以前描述的方法 (Corral 等, 1996 年, Mol. Med, 2 期:506-515 页), 用所述动物模型测试化合物。小鼠 LPS-诱导血清 TNF-α的抑制 (ED₅₀, mg/kg, p.o.) = 0.05。

LPS-诱导 TNF-α的生成

脂多糖(LPS) 是一种由大肠杆菌(E. coli) 的格兰氏阴性菌产生的内毒素，LPS 可诱导产生包括 TNF-α 在内的多种促炎细胞因子。在外周血单核细胞(PBMC) 中，应答 LPS 产生的 TNF-α 起源于单核细胞，
约占总 PBMC 的 5-20%。按照前述方法(Muller 等，1996 年，J. Med Chem.，39 期：3238 页)，测定化合物抑制 LPS-诱导人 PBMC 的 TNF-α 生的能力。通过 Ficoll Hypaque (Pharmacia, Piscataway, NJ, USA) 密度离心法，从正常供血者获得 PBMC。将细胞置于 RPMI (Life Technologies, Grand Island, 美国纽约) 中培养，补加 10% AB ± 型人血清(Gemini Bio-products, Woodland, CA, USA)、2 mM L-谷酰胺、100 U/ml 青霉素和 100 μ g/ml 链霉素(Life Technologies)。

PBMC (2 × 10⁵ 细胞) 平铺于 96-孔平底 Costar 组织培养板(Corning, 纽约, USA)，一式三份。用加或不加化合物的 100 ng/ml 的 LPS (Sigma, St. Louis, MO, USA) 刺激细胞。将化合物(Celgene Corp., Warren, NJ, USA) 溶于 DMSO (Sigma) 中，临用前，在培养基中立即进行进一步的稀释。在全部样品中，DMSO 终浓度均为 0.25%。在 LPS 刺激 1 小时前，将化合物加至细胞中。在 37°C、5% 的二氧化碳条件下培养细胞 18-20 小时，然后收集上清液，用培养基稀释，并通过 ELISA (Endogen, Boston, MA, USA) 测定 TNF-α 浓度。LPS-诱导 TNF-α 的 IC₅₀ = 77 nM。

IL-1 β-诱导 TNF-α 的生成

在炎性疾病的过程中，通常是细胞因子 IL-1β 而不是细菌衍生的 LPS 刺激 TNF-α 生成。按照上述 LPS-诱导 TNF-α 生成的方法，测定化合物抑制 IL-1 β-诱导人 PBMC TNF-α 的生成的能力。但 PBMC 是通过 Ficoll-Paque Plus (Amersham Pharmacia, Piscataway, NJ, USA) 离心，从源自细胞单位(Source leukocyte unit) (Sera-Tec Biologicals, North Brunswick, NJ, USA) 中分离得到，以 3 × 10⁵ 细胞/孔的密度，将 PBMC 平铺于 96-孔组织培养板中的包含 10% 的热灭活的胎牛血清 (Hyclone)、2 mM L-谷酰胺、100 U/ml 青霉素和 100mg/ml 链霉素(完全培养基) 的 RPMI-1640 培养基(BioWhittaker, Walkersville, 美国马里兰州) 中，在 37°C、5% 的二氧化碳条件下，在湿润的培养箱中，分别用浓度为 10、2、0.4、0.08、0.016、0.0032、0.00064 和 0 μ M 的化合物
(DMSO 终浓度为 0.1%), 一式两份预处理 1 小时，然后用 50ng/ml 的重组人 IL-1β (Endogen)刺激 18 小时。IL-1β诱导 TNF-α 的 IC₅₀ = 83 nM。

5.4. 实施例 4: PDE 选择性

PDE1、2、3、5 和 6 酶的测定

PDE7 酶的测定

PDE7 是一种主要在 T 细胞表达并存在于骨骼肌中的 cAMP-选择性 PDE。通过 PDE7 抑制，可调节 T 细胞衍生的例如 IL-2 和 IFN-γ 的细胞因子。采用先前描述的脂离子交替换色谱法 (Bloom 和 Beavo, 1996 年, Proc. Natl. Acad. Sci. USA, 93 期:14188-14192 页)，将 Hut78 人 T 细胞纯化得到 PDE7，同下表 1 中对 PDE4 的描述，在 10nM 的 cAMP 存在下，测试化合物抗 PDE7 制备的活性。
<table>
<thead>
<tr>
<th>表1.</th>
<th>外消旋化合物</th>
<th>化合物 A</th>
<th>化合物 B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE 抑制</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDE4 IC₅₀(来自 U937 细胞)(nM)</td>
<td>81.8</td>
<td>73.5</td>
<td>611</td>
</tr>
<tr>
<td>PDE1 (%抑制，10 μM)</td>
<td>9%</td>
<td>23%</td>
<td>27%</td>
</tr>
<tr>
<td>PDE2 (%抑制，10 μM)</td>
<td>19%</td>
<td>6%</td>
<td>10%</td>
</tr>
<tr>
<td>PDE3 (%抑制，10 μM)</td>
<td>21%</td>
<td>20%</td>
<td>31%</td>
</tr>
<tr>
<td>PDE5 (%抑制，10 μM)</td>
<td>3%</td>
<td>3%</td>
<td>-9%</td>
</tr>
<tr>
<td>PDE6 (%抑制，10 μM)</td>
<td>ND</td>
<td>-6%</td>
<td>10%</td>
</tr>
<tr>
<td>PDE7 IC₅₀(nM)</td>
<td>22110</td>
<td>20500</td>
<td>ND</td>
</tr>
</tbody>
</table>

根据以上数据的 PDE 特异性比值(*倍数)

<table>
<thead>
<tr>
<th></th>
<th>外消旋化合物</th>
<th>化合物 A</th>
<th>化合物 B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE4/PDE1</td>
<td>>2700</td>
<td>>500</td>
<td>>50</td>
</tr>
<tr>
<td>PDE4/PDE2</td>
<td>>800</td>
<td>>10000</td>
<td>>260</td>
</tr>
<tr>
<td>PDE4/PDE3</td>
<td>>670</td>
<td>>1200</td>
<td>>45</td>
</tr>
<tr>
<td>PDE4/PDE5</td>
<td>>12000</td>
<td>>30000</td>
<td>>39000</td>
</tr>
<tr>
<td>PDE4/PDE6</td>
<td>ND</td>
<td>>40000</td>
<td>>250</td>
</tr>
<tr>
<td>PDE7 IC₅₀/PDE4 IC₅₀</td>
<td>270</td>
<td>279</td>
<td>ND</td>
</tr>
</tbody>
</table>

*化合物 B 为化合物 A 的对映异构体。

5.5. 实施例 5：PDE4 抑制

PDE4 (由 U937 细胞衍生)酶的测定

按照前述凝胶过滤层析法(Muller 等, 1998 年, *Bioorg. & Med Chem Lett*, 8 期: 2669-2674 页), 将 U937 人单核细胞纯化得到 PDE4 酶。30℃下在的 50 mM Tris-HCl (pH 为 7.5)、5 mM MgCl₂、1 μM cAMP、10 nM [³H]-cAMP 中，进行磷酸二酯酶反应 30 分钟，然后通过煮沸终止，用
1mg/ml 的蛇毒处理，并按照前述方法(Muller 等, 1998 年, Bioorg. & Med Chem Lett, 8 期:2669-2674 页), 用 AG-IXS 离子交换树脂(BioRad)分离。
反应消耗的有效底物在 15% 以下。结果列在表 1 中。

5.6. 实施例 6: 人 T 细胞的测定

SEB 诱导 IL-2 和 IFN-γ 的生成

葡萄球菌肠毒素 B (SEB) 是革兰氏阳性菌 - 金黄色葡萄球菌 (Staphylococcus aureus) 衍生的超级抗原。SEB 提供了一种对 T 细胞表达的特殊 T 细胞受体 Vβ 链具有特异性的方便的生理刺激。按照上述方法, 将人 PBMC (由约 50% 的 T 细胞组成) 从源自白细胞单位分离, 并以 3 x 10^5 细胞/孔的浓度, 平铺在 96 孔组织培养板的完全培养基中, 在 37℃、5% 的二氧化碳条件下, 在湿润的培养箱中, 分别用浓度为 10、2、0.4、0.08、0.016、0.0032、0.00064 和 0 μM 的化合物 (DMSO 终浓度为 0.1%), 一式两份预处理 1 小时, 然后用 100ng/ml 的 SEB (Sigma Chemical Co., St. Louis, MO, USA) 刺激 18 小时。通过 ELISA (R & D Systems, Minneapolis, MN, USA) 测定 IL-2 和 IFN-γ 的浓度。IL-2 的 IC50 = 291nM, IFN-γ 的 IC50 = 46nM。

5.7. 实施例 6: cAMP 升高的测定

PGE2 诱导 cAMP 升高

将前列腺素 E2 (PGE2) 结合至单核细胞、T 细胞和其他白细胞上的前列腺素受体上, 随后提高了细胞内 cAMP 的水平, 导致抑制了细胞应答。PGE2 和 PDE4 抑制剂的结合协同升高了这些类型的细胞内的 cAMP 水平, 而且在 PGE2 存在下, PDE4 抑制剂引起的 PBMC 内的 cAMP 水平升高与这些 PDE4 抑制剂的抑制活性成正比。通过以下方法测定人 PBMC 的细胞内的 cAMP: 按上述方法分离 PBMC, 并以 1 x 10^6 细胞/孔的浓度平铺在 96 孔培养板的 RPMI-1640 培养基中, 在 37℃、5% 的二氧化碳条件下, 在湿润的培养箱中, 分别用浓度为 100、
10、1、0.1、0.01 和 0 μM 的化合物（DMSO 终浓度为 2%），一式两份
预处理细胞 1 小时。然后用 PGE2 (10 μM) (Sigma) 刺激 1 小时。用 HCl
（终浓度为 0.1N）溶解细胞，以便抑制磷酸二酯酶的活性，然后将培养
板置于 -20°C 下冷冻。使用 cAMP (低 pH) 免疫测定试剂盒 (R & D
Systems) 测定生成的 cAMP。消旋体的 PBMC cAMP EC50 为 3.09 μM，
化合物 A 的 PBMC cAMP EC50 为 1.58 μM。

按以下方法测定人嗜中性粒细胞内的 cAMP 的升高：通过 Ficoll-
Paque Plus (Amersham Pharmacia) 离心，将 PBMC 从源白细胞 (Sera-Tec
Biologicals) 中分离。将得到的红细胞/多形核细胞 (PMN) 粒状沉淀物再
悬浮在 Hank's 平衡盐溶液 (BioWhittaker) 中，并与相同体积的溶于 0.9%
生理盐水的 3% 的右旋糖酐 T-500 (Amersham Pharmacia) 混合。

将红细胞沉降 20 分钟，然后分离 PMN，并在 4°C 下以 120 rpm 的
转速离心 8 分钟。将剩余的红细胞溶解在冷的 0.2% 的生理盐水中 30
秒，并加入相同体积的 1.6% 的生理盐水，将这些细胞复原至等渗。在
4°C 下以 1200 rpm 的转速 离心 PMN 8 分钟，然后再悬浮在 RPMI-1640
中，并按照上述 PBMC 测定方法，测定 cAMP 的升高。使用 FACSCalibur
(Becton Dickinson, San Jose, CA, USA) 的流式细胞计测定，结果表明
PMN 约为 74% CD18/CD11b+/71% CD16+/CD9+ 的嗜中性粒细胞。结果
列入表 2 中。

fMLF-诱导 LTB4 的生成

N-甲酰基-蛋氨酸-亮氨酸-苯丙氨酸 (fMLF) 是一种细菌衍生肽，其
激活嗜中性粒细胞迅速地脱粒、迁移、粘附至内皮细胞上，并释放白
三烯 LTB4 (一种花生四烯酸的代谢产物并且其自身为一种嗜中性粒细
胞化学诱引剂)。按照前述方法 (Hatzelmann 和 Schudt, 2001 年, J. Pharm.
Exp. ther., 297 期:267-279 页) 和下面的改进方法，测试化合物阻断
fMLF-诱导的嗜中性 LTB4 的生成的能力。按照上述方法分离嗜中性粒
细胞，并再悬浮在无钙或镁的含有 10mM HEPES (pH 为 7.2) 的磷酸盐
缓冲盐水(BioWhittaker)中，然后以 1.7×10^6 细胞/孔的浓度，平铺在 96 孔培养板中。在 37℃、5%的二氧化碳条件下，用 $50 \mu m$ 的硫柳汞(Sigma)/l mM CaCl$_2$/l mM MgCl$_2$ 处理细胞 15 分钟，然后分别用浓度为 1000、200、40、8、1.6、0.32、0.064 和 0 nM 的化合物(DMSO 终浓度为 0.01%)一式两份处理 10 分钟。用 1 μm 的 fMLF 刺激嗜中性粒细胞 30 分钟，然后加入甲醇(终浓度为 20%)溶解，并在干冰/异丙醇浴中冷冻 10 分钟。在-70°C 保存溶胞产物，直至通过竞争性 LTB4 ELISA (R & D Systems) 测定 LTB4 的含量。结果如表 2 所示。

酵母聚糖-诱导 IL-8 的生成

将酵母聚糖 A 或热灭活的酿酒酵母(Saccharomyces cerevisiae)结合至嗜中性粒细胞表面的 Mac-1 粘着分子上，并引发吞噬、细胞活化和 IL-8 生成。按照前述方法(Au 等，1998 年，Brit. J. Pharm. 123 期:1260-1266 页)和下面的改进方法测定酵母聚糖诱导的 IL-8 生成。按上述方法纯化人嗜中性粒细胞，以 3×10^5 细胞/孔的浓度，平铺在 96 孔组织培养板的完全培养基中，在 37℃、5%的二氧化碳条件下，用浓度分别为 10、2、0.4、0.08、0.016、0.0032、0.00064 和 0 μM 的化合物(DMSO 终浓度为 0.1%)，一式两份处理 1 小时。然后用未调理的、煮沸过的酵母聚糖 A (Sigma)以 2.5×10^5 颗粒/孔的浓度刺激嗜中性粒细胞 18 小时。收获上清液，并通过 ELISA (R & D Systems) 测试 IL-8。结果如表 2 所示。

fMLF-诱导 CD18/CD11b 的表达

按照前述方法(Derian 等，1995 年，J. Immunol., 154 期:308-317 页)并作如下改动，测定在嗜中性粒细胞上表达的 CD18/CD11b (Mac-1)。按上述方法分离嗜中性粒细胞，然后以 1×10^6 细胞/ml 的浓度重悬浮在完全培养基中，并在 37℃、5%的二氧化碳条件下，用浓度分别为 10、1、0.1、0.01 和 0 μM 的化合物(DMSO 终浓度为 0.1%)，一式两
份预处理 10 分钟，然后用 30nM fMLF 刺激细胞 30 分钟，并冷却至 4℃。用兔 IgG (Jackson ImmunoResearch Labs, West Grove, PA, USA) (10 μg/l x 10^6 细胞)处理细胞以阻断 Fc 受体。用 CD18-FITC 和 CD11b-PE (Becton Dickinson) 染色，并通过 FACScalibur 上的流式细胞计进行分析。从全部样品中扣除无刺激存在时的 CD18/CD11b 表达(平均荧光)，得到抑制曲线，并计算 IC_{50} 值。结果如表 2 所示。

fMLF-诱导在 HUVEC 上的粘着

按照前述方法(Derian 等，1995 年，J. Immunol., 154 期:308-317页)并作如下改动，将人脐静脉内皮细胞(HUVEC)用作嗜中性粒细胞粘着的底物。HUVEC 细胞来自 Anthrogenesis (Cedar Knolls, NJ, USA)，并且嗜中性粒细胞不经过细胞分裂抑制 B 处理。用浓度分别为 10、1、0.1、0.01 和 0 μM 的化合物(DMSO 终浓度为 0.1%)，一式两份处理细胞 10 分钟，然后用 500 nM fMLF 刺激 30 分钟，并在用 FLX800 板式阅读器(Bio-Tek Instruments, Winooski, VT, USA)测定荧光前，用 PBS 洗涤两次。结果如表 2 所示。

表 2

<table>
<thead>
<tr>
<th>人嗜中性粒细胞测定 (全部数值均以 nM 计)</th>
<th>外消旋化合物</th>
<th>化合物 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGE_{2}-诱导 cAMP 的 EC_{50}</td>
<td>12589</td>
<td>4570</td>
</tr>
<tr>
<td>fMLF-诱导 LTB4 的 IC_{50}</td>
<td>20.1</td>
<td>2.48</td>
</tr>
<tr>
<td>酵母聚糖-诱导的 IL-8 的 IC_{50}</td>
<td>ND</td>
<td>94</td>
</tr>
<tr>
<td>fMLF-诱导 CD18 表达的 IC_{50}</td>
<td>ND</td>
<td>390</td>
</tr>
<tr>
<td>fMLF-诱导 CD11b 表达的 IC_{50}</td>
<td>ND</td>
<td>74</td>
</tr>
<tr>
<td>fMLF-诱导粘着在 HUVEC 上的 IC_{50}</td>
<td>ND</td>
<td>150</td>
</tr>
</tbody>
</table>
5.8. 实施例 8：水溶解性

在 pH 为 7.4 的缓冲水溶液中测定平衡溶解度。pH 为 7.4 的缓冲溶液通过用 10 N 的 NaOH 将 0.07 M 的 NaH₂PO₄ 溶液的 pH 调节至 7.4 制备。该溶液的离子强度为 0.15。将至少 1mg 的粉末与 1ml 的缓冲液混合，制备浓度大于 1mg/ml 的混合物。将这些样品摇荡超过 2 小时，并在室温下放置过夜。然后通过先用样品饱和的 0.45 μm 的尼龙注射器过滤器过滤样品。从滤液中连续取样两次。在 50%甲醇中制备的标准溶液作参考，通过 HPLC 测定溶液。化合物 A 的溶解度比外消旋混合物大 3.5 倍。测定的溶解度结果为：化合物 A = 0.012mg/ml；外消旋混合物 = 0.0034mg/ml。

5.9. 实施例 8：LPS 诱导的肺中性白细胞增多症的白鼬模型

当通过口服途径给药时，有意识的白鼬模型用于研究 PDE4 抑制剂的抗炎、催吐和行为作用。根据这些实验，可确定各 PDE4 抑制剂的治疗指数(TI)。TI 值通过引起催吐发作和行为改变的阈剂量除以抗炎剂量(抑制 LPS-诱导的中性白细胞增多症 50% 的剂量)计算。

动物饲养

雄白鼬(Mustela Pulorius Euro，体重 1-2 kg)。白鼬由 Bury Green Farm 或 Misay Consultancy 提供。白鼬运来后，先在饲养室适应环境至少 7 天时间。食物包括可随意喂的粒状 SDS 饲料 C，以及每周喂 3 次的 Whiskers 猫食物。水为用巴氏法灭菌的动物级饮用水，并且每天更换。

PDE4 抑制剂给药

PDE4 抑制剂经口服给药，初始剂量为 1-10mg/kg，但以后增加至 30mg/kg，以便确定 TI 是否为 10 或更高，和/或以较低的剂量确定抑制中性白细胞增多症 50% 的最小剂量。晚上禁止喂白鼬，但允许自由
饮水。通过经喉的后面进入食管的 15cm 的定量针筒，将 PDE4 抑制剂或载体经口途径给予该动物。给药后，将白鼬送回配 Nperspex 有机玻璃室的饲养笼中，以便观察。并且白鼬可自由饮水。给药后，连续观察白鼬，并记录任何呕吐或行为的改变。口服给药 60-90 分钟后，允许白鼬进食。

暴露在 LPS 中

口服化合物或对照载体 30 分钟后，将白鼬置于密封的 Perspex 有机玻璃容器中，并暴露在 LPS (100 μm/ml)气雾中 10 分钟。通过喷雾器(DeVilbiss, USA)产生 LPS 气雾，并直接喷入所述 Perspex 有机玻璃暴露室中。暴露 10 分钟后，将白鼬送回饲养笼，并允许自由进水，并在稍后阶段，允许进食。口服给药后，连续观察至少 2.5 小时，并记录呕吐发作和行为改变。

支气管肺泡灌洗

暴露在 LPS 中 6 小时后，经腹腔给予过量的戊巴比妥钠，将白鼬处死。然后在气管插聚丙烯管，并用 20ml 肝素化(10 单位/ml)的磷酸盐缓冲溶液(PBS)灌洗肺两次。

血样/组织切除

经胸前心脏穿刺，将末端血样(10 ml)切除。以 2500rpm 的转速将血样离心 15 分钟，除去血浆并置于-20℃下保存。为分析化合物含量，也将脑切除，并置于-20℃下冷冻。

细胞计数

以 1500rpm 的转速，将支气管肺泡灌洗(BAL)的样品离心 15 分钟。然后除去上清液，并将得到的细胞颗粒状物重悬浮在 1ml 的 PBS 中。制备重悬浮液的细胞涂片，并用 Leishmans 着色剂染色，以便细
胞分类计数。通过余下的重悬浮样品确定细胞总数。基于此，可确定 BAL 中嗜中性粒细胞的总数。

参数测定

1. LPS 诱导的肺中性白细胞增多症的抑制%。
2. 催吐发作—记录的呕吐和干呕次数。
3. 行为改变—记录以下行为结果：流涎，气促，抓嘴，体位变平，协调不能，拱背和倒行。通过应用严重度级别(轻微，中度和严重)对其中任一行为改变进行半数定量。
4. 用发现的未引起催吐发作的最大剂量, 除以抑制肺中性白细胞增多症 50%或以上的最低剂量计算 TI。

化合物 A 对 LPS-在有意识的白鼬的肺中诱导的中性白细胞增多症的作用，如图 1 所示。

呕吐和行为改变

白鼬经口服给予 PDE4 后，观察至少 2 小时，并记录催吐发作(呕吐和干呕)和行为变化。

预先口服给予相应载体 (丙酮/cremophor/蒸馏水) 的白鼬, 没有观察到催吐发作(呕吐和干呕)。发现有少数对照处理的白鼬(7/22)出现轻度的行为改变(舔唇和倒行)。

化合物 A (0.1-3 mg/kg, 口服) 没有引起催吐发作(呕吐和干呕)。只观察到一些分级为轻度的行为改变(体位变平，舔唇和倒行)。当剂量为 10 mg/kg 时，发现有 2/6 的白鼬出现干呕(不是直接呕吐)，同时观察到流涎和行为改变(记为轻度或中度)。在实验的最高剂量(30mg/kg) 时，观察到 3/4 的白鼬有中度到显著的呕吐，并有显著的行为改变。表 III 中总结了这些数据。
表 III. 有意识的白鼠：口服给予化合物 A 后的催吐发作和行为

<table>
<thead>
<tr>
<th>处理/剂型 (mg/kg)</th>
<th>呕吐</th>
<th>干呕</th>
<th>流涎</th>
<th>气促</th>
<th>抓嘴</th>
<th>体位变平</th>
<th>协调</th>
<th>舔唇</th>
<th>倒行</th>
</tr>
</thead>
<tbody>
<tr>
<td>载体(丙酮/cremophor/蒸馏水)</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>轻度(6/22)</td>
<td>轻度(7/22)</td>
</tr>
<tr>
<td>化合物 A (0.1 mg/kg)</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>轻度(2/5)</td>
<td>无</td>
<td>轻度(4/5)</td>
<td>轻度(3/5)</td>
</tr>
<tr>
<td>化合物 A (0.3 mg/kg)</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>轻度(2/6)</td>
<td>无</td>
<td>轻度(3/6)</td>
<td>轻度(4/6)</td>
</tr>
<tr>
<td>化合物 A (1.0 mg/kg)</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>轻度(2/6)</td>
<td>无</td>
<td>轻度(6/6)</td>
<td>轻度(4/6)</td>
</tr>
<tr>
<td>化合物 A (3.0 mg/kg)</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>轻度(1/8)</td>
<td>显著</td>
<td>无</td>
<td>轻度(2/8)</td>
</tr>
<tr>
<td>化合物 A (10 mg/kg)</td>
<td>无</td>
<td>轻度(2/6)</td>
<td>轻度(1/6)</td>
<td>无</td>
<td>轻度(1/6)</td>
<td>显著(1/6)</td>
<td>显著</td>
<td>无</td>
<td>中度(5/6)</td>
</tr>
</tbody>
</table>

给药后，观察白鼠长达 3 小时。括号内的数字是指出现反应的白鼠数目。每组的白鼠数目为 4-22。

治疗指数计算

根据这些实验，用诱导催吐发作的阈剂量除去抑制肺中性白细胞增多症的 ED_{50}，可确定每种化合物的治疗指数(TI)。TI 计算结果总结在表 IV 中。化合物 A 的 TI 为 12，在 1 mg/kg 的抗炎剂量下，不会引起催吐发作。
表 IV. 抑制 LPS-诱导的肺中性白细胞增多症的有效剂量 (ED_{50})、诱导呕吐以及根据这些数据计算的治疗指数的总结。

<table>
<thead>
<tr>
<th>化合物</th>
<th>LPS 诱导的中性白细胞增多症的抑制 (ED_{50} mg/kg)</th>
<th>催吐阈剂量 (mg/kg)</th>
<th>治疗指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>化合物 A</td>
<td>0.8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

5.10. 实施例 9: 200mg 剂量的胶囊

表 V 举例说明了 200mg 化合物 A 的单位剂量的批处方和单剂量处方，即约 40% 重量，0 号胶囊填充。

表 V. 200mg 胶囊处方

<table>
<thead>
<tr>
<th>原料</th>
<th>%重量</th>
<th>数量 (mg/片)</th>
<th>数量 (kg/批)</th>
</tr>
</thead>
<tbody>
<tr>
<td>化合物 A</td>
<td>40.0%</td>
<td>200 mg</td>
<td>16.80 kg</td>
</tr>
<tr>
<td>凡例化玉米淀粉，NF5</td>
<td>9.5%</td>
<td>297.5 mg</td>
<td>24.99 kg</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>0.5%</td>
<td>2.5 mg</td>
<td>0.21 kg</td>
</tr>
<tr>
<td>总共</td>
<td>100.0%</td>
<td>500 mg</td>
<td>42.00 kg</td>
</tr>
</tbody>
</table>

将预胶化淀粉 (SPRESS B-820) 和化合物 A 组分过 710 μm 筛，然后放于带有插入挡板的扩散式混合器中，混合 15 分钟。将硬脂酸镁过 210 μm 筛，并加至所述扩散式混合器中。使用 Dosator 型胶囊填充机，用 0 号胶囊充满混合物，每粒胶囊为 500 mg (每批 8400 粒胶囊)。

5.11. 实施例 10: 100 mg 口服剂型

表 VI 举例说明了包含 100 mg 化合物 A 的批处方和单位剂量处方。
表 VI. 100 mg 片处方

<table>
<thead>
<tr>
<th>原料</th>
<th>%重量</th>
<th>数量(mg/片)</th>
<th>数量(kg/批)</th>
</tr>
</thead>
<tbody>
<tr>
<td>化合物 A</td>
<td>40%</td>
<td>100.00</td>
<td>20.00</td>
</tr>
<tr>
<td>微晶纤维素, NF</td>
<td>53.5%</td>
<td>133.75</td>
<td>26.75</td>
</tr>
<tr>
<td>Pluronic F-68</td>
<td>4.0%</td>
<td>10.00</td>
<td>2.00</td>
</tr>
<tr>
<td>表面活性剂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 型交联羧甲纤维素钠, NF</td>
<td>2.0%</td>
<td>5.00</td>
<td>1.00</td>
</tr>
<tr>
<td>硬脂酸镁, NF</td>
<td>0.5%</td>
<td>1.25</td>
<td>0.25</td>
</tr>
<tr>
<td>总共</td>
<td>100.0%</td>
<td>250.00 mg</td>
<td>50.00 kg</td>
</tr>
</tbody>
</table>

将微晶纤维素、交联羧甲纤维素钠和化合物 A 组分过 30 目筛(约 430 μ-655 μ)。将 Pluronic F-68® (KS. Lenexa 的 RH Biosciences, Inc. 生产)表面活性剂过 20 目筛(约 457 μ-1041 μ)。将 Pluronic F-68® 表面活性剂和 0.5 kg 交联羧甲纤维素钠加至 16 夸脱的双锥滚动式混合机中，并混合约 5 分钟，将混合物转移到 3 立方英尺的双锥滚动式混合机中，加入微晶纤维素，并混合约 5 分钟。加入沙利度胺，再混合 25 分钟。该预混物经在出料口挂接锤式粉碎机的干式压辊造粒机制粒，然后再返回前述摇摆式混合机中。将剩余的交联羧甲纤维素钠和硬脂酸镁加至滚动式混合机中，并混合约 3 分钟，最终混合物用旋转式压片机压片，片重为 250 mg/片(每批 200,000 片)。

5.12. 实施例 11：气雾剂剂型

将化合物 A 和 12.6 kg 的三氯一氟甲烷在配备高剪切混合机的密封不锈钢容器中混合，制备浓缩液。混合进行约 20 分钟。将所述浓缩液与平衡量的抛射剂，在温度控制在 21℃-27℃、压力控制在 2.8-4.0 bar 的批量生产罐中，混合制备批量悬浮液。使用具有一计量阀的 17 ml 气雾剂容器，其被设计为可提供 100 次本发明的组合物的吸入量。每
只容器含有以下组分：

<table>
<thead>
<tr>
<th>化合物</th>
<th>重量（g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>化合物 A</td>
<td>0.0120 g</td>
</tr>
<tr>
<td>三氯一氟甲烷</td>
<td>1.6939 g</td>
</tr>
<tr>
<td>二氟二氯甲烷</td>
<td>3.7175 g</td>
</tr>
<tr>
<td>二氟四氯乙烷</td>
<td>1.5766 g</td>
</tr>
<tr>
<td>总共</td>
<td>7.0000 g</td>
</tr>
</tbody>
</table>

虽然已采用具体的实施方案对本发明作出描述，但是对于本领域技术人员来说，各种可能的变更和修改是显而易见的，没有偏离本发明权利要求书所限定的宗旨和范围。这些修改也将落入附加的权利要求书的范围。
图 1
图 2