DEVICE FOR ROUTING JUMPERS FROM A RACEWAY

Inventors: Stephen J. Weinert, Arlington, TX (US); Edward C. Granger, Torrington, CT (US); Michael L. Yeilding, Fremont, CA (US)

Correspondence Address:
BROOKS KUSHMAN P.C.
1000 TOWN CENTER
TWENTY-SECOND FLOOR
SOUTHFIELD, MI 48075 (US)

Assignee: SBC Knowledge Ventures, L.P., Reno, NV

Filed: Mar. 31, 2006

ABSTRACT
A device includes a conduit which is connectable to a jumper raceway. The conduit includes a hollow body having two opened ends. A permanently formed opening runs along the conduit body between the conduit body ends for the conduit body to receive a jumper from the raceway.
DEVICE FOR ROUTING JUMPERS FROM A RACEWAY

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE DISCLOSURE

[0002] 1. Field of the Disclosure

[0003] The present disclosure generally relates to mechanisms for routing and supporting fiber optic jumpers.

[0004] 2. Background Art

[0005] Fiber optic troughs or raceways carry and route fiber optic cables such as fiber optic jumpers. The raceways are typically located overhead and horizontally extend over the location of fiber optic equipment such as distribution frames and bays in a facility. The raceways are generally top-opening metal or plastic troughs similar in configuration to rain gutters. Jumpers placed inside the raceways run along the raceways from point-to-point. The raceways protect the jumpers from damage while permitting access for modification, maintenance, connection, and repair.

[0006] Jumpers exit the raceways to connect with fiber optic equipment located beneath the raceways. Jumpers exit from raceways by extending over side walls of the raceways. At these raceway exit points, the jumpers are exposed and, as a result, are susceptible to damage. Further, at these raceway exit points, the jumpers are susceptible to being bent beyond a minimum curvature radius. Jumpers should not be bent in a radius of less than 1.5 inches. Thus, routing devices at raceway exit points for routing jumpers are required to cover and enclose the jumpers from exposure and to guide and support the jumpers from bending and crimping.

[0007] In the past, a raceway was installed as a complete horizontal route lacking the ability to provide waterfall or reroute raceway exit point features for the jumpers to established paths. The raceway was cut-out at a raceway exit point in order to provide an opening for jumpers to exit the raceway. Typically, a new raceway component portion or junction was then inserted in place of the cut-out. Then, appropriate tie-down components such as screw-downs and snap-lock pieces would be used to assemble the new raceway component portion to the raceway. This method is considered dangerous for the jumpers already in place in the raceway. Further, the costs to insert raceway component junctions were compounded with the requirement of providing additional strength members to hold up the horizontal raceway that had been cleaved into two segments at raceway exit points.

[0008] Routing devices such as exit troughs have been used for raceways. Exit troughs provide raceway exit points without cutting-out the raceways thereby keeping the raceways intact. Exit troughs permit the interconnection of square vertical troughs to route a relatively large number of jumpers from the raceways to fiber optic equipment. Exit troughs typically have detachable covers that are lifted to place jumpers from the raceway onto the exit troughs. The covers and the exit troughs enclose the jumpers for protection.

[0009] A problem with such exit troughs is that they are typically configured to route a relatively large number of jumpers from a raceway exit point to fiber optic equipment at a given location. Frequently, it is desirable to route a smaller number of jumpers from many different raceway exit points to fiber optic equipment at many different locations. Another problem with such exit troughs is the detachable covers required for enclosing the jumpers. The covers are opened each time jumpers are placed in the exit troughs. As such, the covers could become permanently detached or lost from the exit troughs.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present disclosure is pointed out with particular in the appended claims. However, other features of the present disclosure will become more apparent, and the present disclosure will be best understood by referring to the following detailed description in conjunction with the accompanying drawings in which:

[0011] FIG. 1 illustrates a side view of an adjustable routing device for routing fiber optic jumpers from a raceway in accordance with an embodiment of the present disclosure;

[0012] FIG. 2 illustrates a frontal view of the adjustable routing device shown in FIG. 1;

[0013] FIG. 3 illustrates a top view of the adjustable routing device shown in FIG. 1;

[0014] FIG. 4 illustrates a side view of the connector for connecting the adjustable routing device to a raceway;

[0015] FIG. 5 illustrates an end view of the connector along the line 4-4 in FIG. 4;

[0016] FIG. 6 illustrates an end view of the connector along the line 5-5 in FIG. 4;

[0017] FIG. 7 illustrates a side view of the connection made by the connector between the adjustable routing device and a raceway; and

[0018] FIG. 8 illustrates an exploded perspective view of the fiber optic jumper conduits of the adjustable routing device.

DETAILED DESCRIPTION OF THE DISCLOSURE

[0019] The present disclosure discloses an embodiment of a conduit which is connectable to a raceway. The conduit has a hollow body having two opened ends. A permanently formed opening runs along the conduit body between the conduit body ends for the conduit body to receive a jumper from the raceway.

[0020] The present disclosure discloses another embodiment of a conduit which is connectable to a raceway. The conduit includes a hollow body having two opened ends.
The conduit body includes two side walls which are separated from one another between the conduit body ends. The conduit body receives a jumper from the raceway upon the jumper being inserted through the conduit body separation into the conduit body.

[0021] The present disclosure discloses an assembly having at least two conduits connected to one another with one of the conduits being connectable to a raceway containing jumpers. Each conduit includes a slit for receiving a jumper from the raceway. The conduits have horizontal and vertical orientations which maintain a minimum jumper bend radius such that a jumper received by the conduit follows the horizontal and vertical orientations of the conduit while having the minimum jumper bend radius.

[0022] A routing device for routing fiber optic jumpers from fiber optic jumper raceways in accordance with the present disclosure has many advantages. In general, the routing device receives jumpers from a raceway and transitions the jumpers to relatively small, compartmentalized feeder routes and then to respective fiber optic equipment bays and relay racks. As such, the routing device is configured to permit a relatively small amount of jumpers to be routed at raceway exit points from the raceway to fiber optic equipment. Accordingly, the amount of jumpers routed by the routing device to the fiber optic equipment is a more realistic amount suitable to the requirements of fiber optic equipment.

[0023] The routing device quickly snaps to the lip of a raceway. The routing device permits jumpers from the raceway to be quickly inserted through a slit or slot in top and exterior sides of the routing device in order to be routed through the routing device. The routing device encloses jumpers once the jumpers are inserted into the routing device through the slit. As such, the routing device does not have a detachable cover that is opened each time jumpers are inserted into the routing device.

[0024] The routing device generally represents a small form type fall-in for jumpers which can be installed "on-the-fly" without the need for engineering the placement in advance. In addition, with the slit openings on the routing device for receiving jumpers, the placement of jumpers for circuit activity is done relatively easy without the need to remove, open, and keep up with a detachable cover.

[0025] The routing device provides a simple and inexpensive means of providing a raceway exit outlet for jumpers over the side of a raceway without requiring any modification to the raceway itself. The routing device is easily movable, adaptable to different raceway sizes and configurations, and provides necessary support and bend restrictions to the jumpers. As a result, the routing device is useable with any standardized raceway manufactured in either steel or plastic molded variants.

[0026] The routing device generally includes a set of interconnected fiber optic jumper conduits and a vertical support stabilizer. The conduits include an adjustable hood or trumpet bell conduit, a curved neck conduit, and a vertical body conduit. The conduits have slits for receiving jumpers at any one time. The slits on the conduits are in alignment with one another to enable a small amount of jumpers to be inserted into the conduits in one insertion motion. The conduits enclose jumpers upon the jumpers being inserted into the conduits through the slits.

[0027] The hood conduit connects with one end of the neck conduit to be positioned over the raceway in order to receive jumpers from the raceway when the routing device is mounted to the raceway. The hood conduit is rotatably and telescopically connected to the neck conduit in order to adjust in x, y, and z directions relative to the raceway. The body conduit connects to the other end of the neck conduit.

[0028] A connector spring mounts the body conduit to the raceway in order to mount the routing device to the raceway. A middle portion of the connector preferably is configured to act as a fulcrum in order to allow tilting of the routing device relative to the raceway.

[0029] In operation, jumpers from the raceway are inserted into the slits of the conduits to be enclosed and routed by the conduits. The conduits route the jumpers from the raceway such that the jumpers traverse from the hood conduit to the neck conduit to the body conduit. The jumpers then exit from the body conduit in order to connect with fiber optic equipment. Of course, the conduits also route jumpers from the fiber optic equipment to the raceway. In this case, the jumpers traverse from the fiber optic equipment to the body conduit to the neck conduit to the hood conduit. The jumpers then exit from the hood conduit into the raceway.

[0030] The conduits are configured to route jumpers between horizontal and vertical orientations. That is, the raceway is horizontally oriented and the jumpers are vertically routed from this horizontal orientation down to the fiber optic equipment beneath the raceway. To this end, the hood and neck conduits function to transition the jumpers between horizontal and vertical orientations. The hood and neck conduits have bend radii sufficient large enough to maintain the minimum bend radius of the jumpers. The body conduit is generally straight and, consequently, does not bend the routed jumpers. Accordingly, in either path between the raceway and the fiber optic equipment, the conduits route the jumpers such that the jumpers maintain the minimum bend radius.

[0031] The support stabilizer connects with the body conduit. The support stabilizer has snap and/or hook-and-loop fastener attachments for smaller tube containment systems. The tube containment systems mounted to the support stabilizer receive and route the jumpers between the routing device and the fiber distribution equipment.

[0032] Designing a FIG. 1, a side view of an adjustable routing device 10 for routing fiber optic jumpers 12 from a fiber optic raceway 14 in accordance with an embodiment of the present disclosure is shown. Routing device 10 generally includes a series of conduits including an adjustable hood or trumpet conduit 16, a curved neck conduit 18, and a vertical body conduit 20. Routing device 10 further includes a vertical support stabilizer 22.

[0033] Hood, neck, and body conduits 16, 18, 20 interconnect with one another to form a routing conduit assembly for routing jumpers 12 between raceway 14 and fiber optic equipment 24. The routing conduit assembly transitions jumpers 12 between horizontal and vertical orientations while maintaining the minimum bend radius requirement for the jumpers. Hood, neck, and body conduits 16, 18, 20 have slits for receiving jumpers 12 at any one time. Hood, neck, and body conduits 16, 18, 20 have slits for receiving jumpers 12 at any one time. Hood, neck, and body conduits 16, 18, 20 have slits for receiving jumpers 12 at any one time. Hood, neck, and body conduits 16, 18, 20 enclose jumpers 12 upon these jumpers being inserted into the conduits through the slits. Jumpers 12 inserted in hood, neck, and body conduits 16, 18, 20 run into/out of hood conduit 16 through neck conduit 18 and out of body conduit 20.

[0034] A first end 26 of hood conduit 16 connects with a first end 28 of neck conduit 18. A second end 30 of hood
conduit 16 is positioned over raceway 14 to receive jumpers 12 from the raceway when routing device 10 is mounted to the raceway. First hood conduit end 26 is rotatably and telescopically connected to first neck conduit end 28 in order to enable hood conduit 16 to be adjustable in x, y, and z directions relative to raceway 14. A first end 32 of body conduit 20 connects to a second end 34 of neck conduit 18 using adhesive, bolts, and the like.

A connector 36 spring mounts body conduit 20 to raceway 14 in order to mount routing device 10 to the raceway. A middle portion 38 of connector 36 acts as a fulcrum to allow a tilting adjustment of routing device 10 relative to raceway 14. Connector 36 generally has a key at one end for being inserted into a key slot of body conduit 20 in order to connect with the body conduit. Connector 36 generally has a snap or the like at its other end to snap to or leverage over raceway 14 in order to connect with the raceway.

Jumpers 12 from raceway 14 are inserted into the slits of hood, neck, and body conduits 16, 18, 20 in order to be enclosed and routed by the conduits. Hood, neck, and body conduits 16, 18, 20 route jumpers 12 from raceway 14 such that the routed jumpers traverse from the hood conduit to the neck conduit to the body conduit and are positioned over raceway 14 in order to connect with the fiber optic equipment 24. Hood, neck, and body conduits 16, 18, 20 also route jumpers 12 from fiber optic equipment 24 to raceway 14. In this case, jumpers 12 traverse from fiber optic equipment 24 to body conduit 20 to neck conduit 18 to hood conduit 16. Jumpers 12 then exit from hood conduit 16 into raceway 14.

Hood, neck, and body conduits 16, 18, 20 are configured to route jumpers 12 between horizontal and vertical orientations. Hood, neck, and body conduits 16, 18, 20 transition jumpers from a horizontal orientation in raceway 14 vertically down to fiber optic equipment 24 beneath the raceway. Hood and neck conduits 16, 18 transition jumpers 12 between horizontal and vertical orientations whereas body conduit 20 maintains a vertical orientation of the jumpers. Hood and neck conduits 16, 18 have bend radii sufficiently large enough to maintain the minimum bend radius of jumpers 12. In particular, neck conduit 18 which transitions jumpers between horizontal and vertical orientations is configured to have a bend radius of at least 1.5 inches. Accordingly, in either path between raceway 14 and fiber optic equipment 24, hood, neck, and body conduits 16, 18, 20 maintain the minimum bend radius.

Support stabilizer 22 connects with body conduit 20 using adhesive, bolts, and the like. Support stabilizer 22 provides for snap-in and/or hook-and-loop fastener attachments for smaller fiber optic jumper tube containers 40. Tube containers 40 mounted to support stabilizer 22 receive and route jumpers 12 between routing device 10 and fiber distribution equipment 24. As such, jumpers 12 feed from body conduit 20 into a top end of a tubular container 40. These jumpers 12 then feed out from a bottom end of tubular container 40 to fiber optic equipment 24. Likewise, jumpers 12 feed from fiber optic equipment 24 to the bottom end of tubular container 40. These jumpers 12 then feed out from the top end of tubular container 40 to body conduit 20.

Referring now to FIG. 2, with continual reference to FIG. 1, a frontal view of adjustable routing device 10 is shown. Again, routing device 10 connects with raceway 14 in order to position hood 16 for receiving jumpers 12 from the raceway. In order to provide a proper posture for receiving jumpers 12 from raceway 14, hood conduit 16 connects with neck conduit 18 such that the hood conduit is rotatably and telescopically movable relative to the raceway. The proper posture enables jumpers 12 to maintain a minimum bend radius when entering and exiting hood conduit 16. As such, hood conduit 16 is adjustable to conform to different raceway configurations.

Hood conduit 16 represents the front end of routing device 10 and is an entry point for receiving jumpers 12 from raceway 14. As described, hood conduit 16 is adjustable to match any unique adjustments required when jumper routing moves from horizontal raceway 14 to the "waterfall route" provided by routing device 10. Hood conduit 16 ratchets up to two inches on x, y, and z axes in order to adjust its position relative to raceway 14. In any position, hood conduit 16 (like neck conduit 18) maintains the minimum bend radius for jumpers 12 at all times without any kinks or abbreviated bend radii.

Support stabilizer 22 which connects with body conduit 20 generally provides for tube and hose routing to fiber optic equipment bays and relay racks 24. Tubular containers 40 connect to support stabilizer 22. To this end, support stabilizer 22 includes receptacles for receiving snaps of tubular containers 40. In this case, the snap of a tubular container 40 snaps into a receptacle on support stabilizer 22 in order for the tubular container to be connected to the support stabilizer. Alternatively or additionally, support stabilizer 22 and tubular containers 40 include hook-and-loop fastener receiving means for being connected to one another.

Tubular containers 40 mount to support stabilizer 22 in order to route jumpers 12 between routing device 10 and fiber optic equipment 24. A tubular container 40 is preferably formed of a plurality of interconnected tubular segments 42, 44, 46. Tubular segments 42, 44, 46 interconnect with one another using latching arrangements and the like. As shown in FIG. 2, tubular segment 42 mounts to support stabilizer 22 and tubular segment 46 connects with fiber optic equipment 24. Tubular segment 46 connects with surfaces of fiber optic equipment 24 using telephone adhesive, screw-in bolts, etc. As a result, tubular container 40 directly routes jumpers 12 between routing device 10 and fiber optic equipment 24. Tubular container 40 encloses and protects jumpers 12 routed between routing device 10 and fiber optic equipment 24.

In general, support stabilizer 22 is a vertical support stabilizer or rear-stabilizer component which aligns and secures other fiber protection tubing and materials of various sizes and configurations (such as tubular containers 40) once the transition from horizontal raceway 14 has occurred. Support stabilizer 22 adheres to the back of body conduit 20 in order to provide both stability while providing the ability for three-axis movement due to the requirements of earthquake areas. The three-axis movement enables tubular containers 40 and jumpers 12 placed therein to have some play or movement in response to earthquake vibrations or other like disruptions.
once the operator pressure has been removed in order to
house jumpers 12 therein. Jumpers 12 placed inside a tubular
segment run longitudinally into one end of the tubular
segment and out the other end of the tubular segment.

[0045] The tubular segments are made of supportive ma-
terials such as plastic and provide protection to jumpers 12
encased therein while allowing the jumpers to move or slide
freely in relation to one another. Each tubular segment is
malleable to permit slight bending in order to avoid any rigid
stress tearing or ripping motions while maintaining the
minimum bend radius required for jumpers 12.

[0046] Referring now to FIG. 3, with continual reference
to FIGS. 1 and 2, a top view of adjustable routing device 10
is shown. As shown in FIG. 3, hood conduit 16 is positioned
over the top edge of a side wall 48 of raceway 14 in order
to provide raceway entry and exit points for jumpers 12.
Hood conduit 16 is positioned over raceway 14 such that
it does not come into direct physical contact with raceway 14
(best shown in FIG. 1).

[0047] Referring now to FIG. 4, with continual reference
to FIG. 1, a side view of connector 36 for connecting
adjustable routing device 10 to raceway 14 is shown. Con-
nectors 36 spring mounts body conduit 20 to raceway 14 in
order to mount the routing device to the raceway. Connector
36 includes two support portions 50, 52 connected by a
middle portion 38. Support portion 50 connects with body
conduit 20 and support portion 52 connects with raceway 14.
Middle portion 38 acts as a fulcrum to allow support portion
50 to be tilted relative to support portion 52. Consequently,
a tilting adjustment of routing device 10 relative to raceway
14 is available by tilting support portion 50 relative to
support portion 52. Middle portion 38 may include rotatable
knob mechanisms and the like configured to lock and unlock
middle portion 38 and, consequently, lock and unlock sup-
port portions 50, 52 in place.

[0048] As shown in FIGS. 4, 5 and 7, support portion 50
has a key 54 at its end. Key 54 inserts into a key slot of body
conduit 20 in order to connect connector 36 to the body
conduit. As shown in FIGS. 5, 6, and 7, support portion 52
has a snap 56 at its end. Snap 56 snaps into a lip 58 of
raceway 14 in order to connect connector 36 to the raceway.
Alternatively, support portion 52 has a U-clip or the like at
its end. This is useful if raceway 14 lacks lip 58. In this case,
the U-clip leverages on the top edge of side wall 48 of
raceway 14 in order to connect with the raceway.

[0049] As described, connector 36 mounts routing device
10 to raceway 14. For additional support of routing device
10, neck conduit 18 includes an eyebolt 59 (shown in FIG. 1)
for receiving a support cable. The support cable mounts to
the facility ceiling in which routing device 10 and raceway
14 are located in order to support the weight of the routing
device. In this configuration, support portion 50 is still able
to tilt relative to support portion 52 at middle portion 50 in
order to tilt routing device 10 relative to raceway 14.

[0050] Referring now to FIG. 8, an exploded perspective
view of hood, neck, and body conduits 16, 18, 20 of
adjustable routing device 10 is shown. The view shown in
FIG. 8 is along the back and exposed side of conduits 16, 18,
20. As described above, conduits 16, 18, 20 include respective
slits or slots 60, 62, 64 for receiving jumpers 12. Slits
60, 62, 64 are located on the back and exposed side of
ducts 16, 18, 20. Slits 60, 62, 64 generally provide an
opening for jumpers 12 to be inserted into conduits 16, 18,
20 without having to have fiber optic jumper connectors of
the jumpers be inserted through the ends of the conduits.

[0051] Jumpers 12 are inserted into conduits 16, 18, 20
through the respective slits 60, 62, 64 at any one time. Slits
60, 62, 64 are in alignment with one another to enable a
small amount of jumpers 12 to be inserted into conduits 16,
18, 20 in one insertion motion. Slit 60 of hood conduit 16
maintains alignment with slit 62 of neck conduit 18 as the
position of the hood conduit is adjusted in x, y, and z
positions. Conduits 16, 18, 20 enclose jumpers 12 upon
the jumpers being inserted into the conduits through slits 60, 62,
64.

[0052] The illustrations of embodiments described herein
are intended to provide a general understanding of the
structure of various embodiments, and they are not intended
to serve as a complete description of all the elements and
features of methods and apparatuses that might make use of
the structures described herein. Many other embodiments
will be apparent to those of skill in the art upon reviewing
the above description. Other embodiments may be used and
derived therefrom, such that structural and logical substitu-
tions and changes may be made without departing from the
scope of this disclosure. The Figures are merely represen-
tational and may not be drawn to scale. Certain proportions
thereof may be exaggerated, while others may be mini-
mized. Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense.

[0053] Such embodiments of the inventive subject matter
can be referred to herein, individually and/or collectively,
by the term “invention” merely for convenience and without
intending to voluntarily limit the scope of this application
to any single invention or inventive concept if more than one
is in fact disclosed. Thus, although specific embodiments
have been illustrated and described herein, it should be
appreciated that any arrangement calculated to achieve the
same purpose may be substituted for the specific embodi-
ments shown. This disclosure is intended to cover any and all
adaptations or variations of various embodiments. Com-
binations of the above embodiments, and other embodi-
ments not specifically described herein, will be apparent
to those of skill in the art upon reviewing the above descrip-
tion.

[0054] The Abstract of the Disclosure is provided to comply
with 37 C.F.R. §1.72(b), requiring an abstract that
will allow the reader to quickly ascertain the nature of the
technical disclosure. It is submitted with the understanding
that it will not be used to interpret or limit the scope or
meaning of the claims. In addition, in the foregoing Detailed
Description, it can be seen that various features are grouped
together in a single embodiment for the purpose of stream-
lining the disclosure. This method of disclosure is not to be
interpreted as reflecting an intention that the claimed
embodiments require more features than are expressly recited
in each claim. Rather, as the following claims reflect,
inventive subject matter lies in less than all features of a
single disclosed embodiment. Thus the following claims are
hereby incorporated into the Detailed Description, with each
claim standing on its own as a separate embodiment.

What is claimed is:

1. A device comprising:

(a) a conduit connectable to a raceway, wherein the conduit
has a hollow body having two opened ends, wherein a
permanently formed opening runs along the conduit
body between the conduit body ends for the conduit
body to receive a jumper from the raceway,
2. The device of claim 1 wherein:
 the conduit body has multiple sides, wherein the opening runs along one of the conduit body sides.

3. The device of claim 1 wherein:
 the conduit body is cylindrical shaped and has one side, wherein the opening runs along the one conduit body side.

4. The device of claim 1 wherein a jumper in the raceway has a first end, a second end, and a body connected between the jumper ends, wherein:
 the opening enables the conduit body to receive a jumper from the raceway upon the jumper body being inserted through the opening without either jumper end being received by the conduit body.

5. The device of claim 4 wherein:
 the jumper body is radially inserted through the opening for receipt by the conduit body.

6. The device of claim 1 wherein the conduit is a first conduit, the device further comprising:
 a second conduit connected to the first conduit, wherein the second conduit has a different orientation than the first conduit, wherein the second conduit includes a hollow body having two opened ends, wherein a permanently formed opening runs along the second conduit body between the second conduit body ends for the second conduit body to receive the jumper.

7. The device of claim 6 wherein:
 the opening running along the first conduit body and the opening running along the second conduit body are aligned with one another.

8. The device of claim 6 wherein:
 the orientations of the first and second conduit bodies maintain a minimum jumper bend radius, wherein the radius of any bending of the portion of the jumper received by the first and second conduit bodies and which follows the orientations of the first and second conduit bodies is at least greater than the minimum jumper bend radius.

9. The device of claim 1 wherein:
 the conduit is connectable to the raceway without requiring modification of the raceway.

10. A device comprising:
 a conduit connectable to a raceway, wherein the conduit includes a hollow body having two opened ends, wherein the conduit body includes two side walls which are separated from one another between the conduit body ends, wherein the conduit body receives a jumper from the raceway upon the jumper being inserted through the conduit body separation into the conduit body.

11. The device of claim 10 wherein a jumper in the raceway has a first end, a second end, and a body connected between the jumper ends, wherein:

12. The device of claim 10 wherein:
 the conduit body includes horizontal and vertical orientations, wherein the portion of the jumper received by the conduit body is transitioned by the conduit body through the horizontal and vertical orientations of the conduit body.

13. The device of claim 10 wherein the conduit is a first conduit the device further comprising:
 a second conduit connected to the first conduit, wherein the second conduit has a different orientation than the first conduit, wherein the second conduit includes a hollow body having two opened ends, wherein the jumper from the raceway is received by the second conduit body upon the jumper being inserted through the second conduit body separation into the second conduit body.

14. The device of claim 10 wherein:
 the conduit is connectable to the raceway without requiring modification of the raceway.

15. An assembly comprising:
 at least two conduits connected to one another with one of the conduits being connectable to a raceway containing jumpers, wherein each conduit includes a slit for receiving a jumper from the raceway, wherein the conduits have horizontal and vertical orientations which maintain a minimum jumper bend radius such that a jumper received by the conduit follows the horizontal and vertical orientations of the conduit while having the minimum jumper bend radius.

16. The assembly of claim 15 wherein:
 the one of the conduits is connectable to the raceway without requiring modification of the raceway.

17. The assembly of claim 15 wherein:
 the slits are configured to enable the conduits to receive a jumper from the raceway without either end of the jumper being received by the conduits.

18. The assembly of claim 15 wherein:
 the conduits receive a jumper from the raceway upon the jumper being radially inserted into the conduits through the slits.

19. The assembly of claim 15 wherein:
 the slits run axially along the conduits.

20. The assembly of claim 15 wherein:
 the slits run along the longitudinally along the conduits.

* * * * *