发明名称

季磷盐改性聚丙烯腈纤维抗菌材料及其制备方法

摘要

本发明公开了一种季磷盐改性聚丙烯腈纤维抗菌材料及其制备方法，属聚丙烯酰改性材料领域。本发明以Na型聚丙烯腈纤维为载体，采用离子交换法，将含不同碳链长度的三苯基溴化铵中除去阴离子的部分交换至聚丙烯腈纤维上制得季磷盐改性聚丙烯腈纤维抗菌材料。该材料将季磷盐的抗菌效果和聚丙烯腈纤维的优良机械与纺织性能相结合，使两者的优点都得到充分发挥，达到高效、快速、永久的抗菌目的。本发明制备方法工艺简单，操作简便，而且对环境友好，能广泛应用于各种抗菌功能纺织品的开发及各种工业、民用水的杀菌消毒。
1. 一种季鏻盐改性聚丙烯酸抗菌材料，其特征在于：含有以下化学结构单元：

![化学结构式]

其中 R' 为 Cl-20 烷基，Ph 为苯基。

2. 如权利要求 1 所述的季鏻盐改性聚丙烯酸抗菌材料，其特征在于：R' 优选甲基、己基或十二烷基。

3. 制备如权利要求 1 所述季鏻盐改性聚丙烯酸抗菌材料的方法，其特征在于：通过以下步骤实现：

1) 在反应釜中加入水合肼和聚丙烯酸纤维，密闭抽真空或冲氮气，加热升温反应，反应结束后自然降至室温；然后在反应釜中加入 NaOH 溶液，密闭反应釜，加热升温，经水洗干燥得到 Na 型离交换纤维；

2) 将含溴离子的不同碳链长度的季鏻盐加入到蒸馏水中，搅拌溶解；

3) 将 Na 型聚丙烯酸纤维加入到季鏻盐液体中，使纤维充分溶胀，在 30℃～60℃震荡，进行离子交换；

4) 将所得产物用蒸馏水洗涤至无溴离子存在，经干燥，得到季鏻盐改性聚丙烯酸纤维材料；

所述的季鏻盐的化学式为：\(P^{+} Ph_3 R' X \)；其中 Ph 为苯基；R' 为 Cl-20 烷基；X 为 Br^- 或 Cl^-。

4. 根据权利要求 3 所述的制备季鏻盐改性聚丙烯酸抗菌材料的方法，其特征在于：所述的季鏻盐优选甲基三苯基溴化季鏻、己基三苯基溴化季鏻或十二烷基三苯基溴化季鏻。
季铵盐改性聚丙烯腈纤维抗菌材料及其制备方法

技术领域
[0001] 本发明涉及一种季铵盐改性聚丙烯腈抗菌材料及制备方法，属聚丙烯腈改性材料领域。

背景技术
[0002] 随着生活质量的提高，人们对服装、卫生用品、日用品、食品包装等耐用消费品的抗菌性有了较高的要求。另外，在公共场所使用抗菌产品，可以有效地抑制细菌的生长，防止细菌的传播和感染。目前，抗菌材料的需求日益增长，抗菌材料的研究也越来越多地受到关注，更多安全、高效、廉价的抗菌剂和抗菌产品被开发出来。

[0004] 目前，国内外报道的有关非水溶性季铵盐杀菌剂的方法有：US6261538, US6013275, CN98120488.0, CN98124442.4, CN200610124120.8 等。其中，CN200610124120.8 所述杀菌剂的制备方法是将聚苯乙烯树脂、凝胶型树脂或大孔型树脂与脂肪族或芳香族三级磷和溶剂混合后进行反应，然后分离产物，得到季铵盐型树脂。但是，以上杀菌剂在合成中使用有机高分子树脂作为载体，成本较高，在生产过程中使用有机溶剂，用量过大容易造成环境污染。此外，长期使用后该树脂易老化。CN 200810023393.2 提供了以硅胶类无机材料为载体，利用硅烷偶联剂，表面接枝氨基——季铵盐或者季铵——季铵盐官能团，制得水不溶性杀菌剂，对水中的异氧菌具有优异的杀菌活性，可重复使用，广泛应用于各种工业及民用等流体介质的杀菌消毒及抗菌材料的制备。CN200910308045.4 将小分子季铵盐通过十二烷基硫酸钠的作用结合到壳聚糖表面，制备了壳聚糖季铵盐衍生物，与壳聚糖季铵盐相比具有更高的抑菌杀菌能力，可作为一种新抗菌材料能广泛用于组织工程、生物医药等领域。但目前尚未见关于季铵盐改性聚丙烯腈纤维抗菌材料的研究报道。

发明内容
[0005] 本发明的目的在于提供一种高效、快速、永久杀菌效果的新型季铵盐改性聚丙烯腈抗菌材料及其制备方法。

[0006] 为实现本发明目的，本发明提供的季铵盐改性聚丙烯腈抗菌材料其化学结构单元如下所示：

3
其中 R' 为 C1-20 烷基，Ph 为苯基。所述的 C1-20 烷基优选甲基、乙基或十二烷基。

[0007] 其制备方法通过如下步骤实现：

1) 在反应釜中加入水合肼和聚丙烯胺纤维，密闭抽真空或冲氮气，加热升温反应，反应结束后自然降至室温。然后在反应釜中加入 NaOH 溶液，密闭反应釜，加热升温，经水洗干燥得到 Na 型离子交换纤维；

2) 将含溴离子的不同碳链长度的季磷盐加入到蒸馏水中，搅拌溶解；其中季磷盐的浓度优选 0.01~0.1M；

3) 将 Na 型聚丙烯胺纤维加入到季磷盐液体中，使纤维充分溶胀，在 30℃~60℃震荡，进行离子交换。

[0008] 4) 将所得产物用蒸馏水洗涤至无溴离子存在，经干燥，得到季磷盐改性聚丙烯胺纤维材料。

[0009] 溴离子可以用 0.1mol/L 的 AgNO₃ 检验其是否存在。

[0010] 所述的季磷盐的化学式为 :P'Ph,R'R'X；其中 Ph 为苯基；R' 为 C1-20 烷基；X 为 Br⁻ 或 Cl⁻。

[0011] 所述的季磷盐优选甲基三苯基溴化磷、乙基三苯基溴化磷或十二烷基三苯基溴化磷。

[0012] 所述季磷盐改性聚丙烯胺纤维材料用于抗菌材料。

[0013] 本发明的有益效果是：

利用 Na 型聚丙烯胺纤维的活性基团羧酸钠，采用离子交换法，将含不同碳链长度的三苯基溴化磷中除去溴离子的部分交换至聚丙烯胺纤维上，得到一种新型的具有高效、快速、永久杀菌效果的纤维状材料。其工艺简单，操作简便，节约能耗，且对环境友好。应用于抗菌功能纺织品的开发及各种工业、民用水的杀菌消毒。

附图说明

[0014] 图 1 是本发明实施例 1-3 的红外光谱图；图中 1 是 Na 型聚丙烯胺纤维的红外曲线，2 是实施例 1 制备的抗菌材料的红外曲线，3 是实施例 2 制备的抗菌材料的红外曲线，4 是实施例 3 制备的抗菌材料的红外曲线。

具体实施方式

[0015] 下面结合实施例及附图对本发明作进一步详细的描述，但本发明的实施方式不限于此。

[0016] 实施例 1：

(1) 在反应釜中加入水合肼和聚丙烯胺纤维，密闭抽真空或冲氮气，加热升温反应，反应结束后自然降至室温，控制纤维增重率。然后在反应釜中加入 NaOH 溶液，密闭反应釜，加
热升温，经水洗干燥得到Na型离子交换纤维。

[0017] 2.5022g苯基三苯基溴化鎘(0.07mol/L)，溶于100mL蒸馏水中，搅拌完全溶解；加入0.5gNa型聚丙烯纤维，50℃振荡反应8h，使纤维充分溶胀，所得产物用蒸馏水洗涤至无溴离子存在(用0.1mol/L的AgNO₃检验)，干燥至恒重。改性后抗菌纤维的重量为0.638g，苯基三苯基溴的含量为3.02%。

[0018] 对样品进行红外光谱分析，结果如图1所示，与曲线1的Na型聚丙烯纤维比较，曲线2中新增了几处特征吸收峰，1116cm⁻¹为P-Ph键的弯曲振动吸收峰，901cm⁻¹为苯环的环形振动吸收峰，749cm⁻¹，719cm⁻¹和690cm⁻¹为C-P键伸缩振动吸收峰，510cm⁻¹为苯环上C-H键的变形振动的吸收峰。上述红外光谱中新增的特征吸收峰表明，季鎓盐胶合剂已成功接枝到聚丙烯纤维上。

[0019] 实施例2：

Na型聚丙烯纤维的制备如实施例1。

[0020] 称取0.8526g苯基三苯基溴化鎘(0.02mol/L)，溶于100mL蒸馏水中，搅拌完全溶解；加入0.5gNa型聚丙烯纤维，30℃振荡反应6h，使纤维充分溶胀，所得产物用蒸馏水洗涤至无溴离子存在(用0.1mol/L的AgNO₃检验)，干燥至恒重。改性后抗菌纤维的重量为0.620g，苯基三苯基溴的含量为2.11%。

[0021] 对样品进行红外光谱分析，结果如图1所示，与曲线1的Na型聚丙烯纤维比较，曲线3中(同曲线4)新增了几处特征吸收峰，1113cm⁻¹和996cm⁻¹为P-Ph键的弯曲振动吸收峰，725cm⁻¹和691cm⁻¹为C-P键伸缩振动吸收峰，534cm⁻¹和509cm⁻¹为苯环上C-H键的变形振动的吸收峰。上述红外光谱特征表明，季鎓盐胶合剂已成功接枝到聚丙烯纤维上。

[0022] 实施例3：

Na型聚丙烯纤维的制备如实施例1。

[0023] 称取5.1043g十二烷基三苯基溴化鎘(0.1mol/L)，溶于100mL蒸馏水中，搅拌完全溶解；加入0.5gNa型聚丙烯纤维，60℃振荡反应4h，使纤维充分溶胀，所得产物用蒸馏水洗涤至无溴离子存在(用0.1mol/L的AgNO₃检验)，干燥至恒重。改性后抗菌纤维的重量为0.85g，十二烷基三苯基溴的含量为5.03%。

[0024] 对样品进行红外光谱分析，结果如图1所示，与曲线1为Na型聚丙烯纤维比较，曲线4中(同曲线3)新增了几处特征吸收峰，1113cm⁻¹和996cm⁻¹为P-Ph键的弯曲振动吸收峰，725cm⁻¹和691cm⁻¹为C-P键伸缩振动吸收峰，534cm⁻¹和509cm⁻¹为苯环上C-H键的变形振动的吸收峰。上述红外光谱特征表明，季鎓盐胶合剂已成功接枝到聚丙烯纤维上。此外，随着碳链长度的增加，2925cm⁻¹和2855cm⁻¹处的甲基峰愈加明显。

[0025] 应用例1

抗菌性能的评定：

本发明实施例制得的季鎓盐改性聚丙烯纤维抗菌材料在评定时，采用WS/T 367-2012消毒技术规范中的振荡烧瓶法，选用具有代表性的革兰氏阴性菌致病性大肠杆菌(Escherichia coli)和革兰氏阳性菌金黄色葡萄球菌(Staphylococcus aureus)。具体操作如下：活化大肠杆菌和金黄色葡萄球菌，称取一定质量季鎓盐改性聚丙烯纤维材料(含磷量为5%)于20mL新鲜无菌的培养肉汤培养基中，再分别加入100uL活化后的大肠杆菌和金黄色葡萄球菌溶液，37℃，160rpm振荡培养一定时间，取出1ml菌液，12000rpm离心2min，“
搜集菌体，用无菌的生理盐水清洗菌体 2~3 次，并稀释成 10^{-1}、10^{-2}、10^{-3}、10^{-4}、10^{-5}、10^{-6} 的菌
悬液，分别取 10^{-4}、10^{-5}、10^{-6} 的菌悬液 100uL 于无菌的营养琼脂培养基中，用无菌的涂布棒
将其涂匀，37℃倒平板培养 16~24h。采用平皿计数法计算存活菌落数和抑菌率，结果如表 1
和表 2 所示。

<table>
<thead>
<tr>
<th>材料</th>
<th>作用前菌落数 (cfu)</th>
<th>作用 24h 后菌落数 (cfu)</th>
<th>杀菌率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>1.35×10^8</td>
<td>1.30×10^7</td>
<td>90.370</td>
</tr>
<tr>
<td>实施例 2</td>
<td>1.42×10^8</td>
<td>1.00×10^7</td>
<td>99.930</td>
</tr>
<tr>
<td>实施例 3</td>
<td>1.21×10^8</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Na 型聚丙烯</td>
<td>1.60×10^8</td>
<td>1.58×10^7</td>
<td>---</td>
</tr>
<tr>
<td>空白对照</td>
<td>1.56×10^8</td>
<td>1.52×10^7</td>
<td>---</td>
</tr>
</tbody>
</table>

表 2 本发明季磷盐改性聚丙烯腈纤维材料对金黄色葡萄球菌的抗菌性能评定结果

<table>
<thead>
<tr>
<th>实验组</th>
<th>作用前菌落数 (cfu)</th>
<th>作用 24h 后菌落数 (cfu)</th>
<th>杀菌率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>2.36×10^8</td>
<td>7.5×10^5</td>
<td>99.682</td>
</tr>
<tr>
<td>实施例 2</td>
<td>2.82×10^8</td>
<td>9.2×10^5</td>
<td>99.967</td>
</tr>
<tr>
<td>实施例 3</td>
<td>3.03×10^8</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Na 型聚丙烯</td>
<td>2.98×10^8</td>
<td>3.03×10^7</td>
<td>---</td>
</tr>
<tr>
<td>空白对照</td>
<td>3.00×10^8</td>
<td>2.81×10^7</td>
<td>---</td>
</tr>
</tbody>
</table>

本发明所涉及的季磷盐改性聚丙烯腈纤维材料对金黄色葡萄球菌的抗菌效果比对致病
性大肠杆菌优异，并随着季磷盐碳链长度的增加，抗菌效果增强，且含 12 个碳原子链的季
磷盐改性的纤维的杀菌率在 15min 对两种致病菌亦可达到 100%。
图 1