(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 102329276 B
(45) 授权公告日 2013.09.25

(21) 申请号 201110303358.8
(22) 申请日 2011.09.30
(73) 专利权人 浙江新赛科药业有限公司
地址 312369 浙江省绍兴市上虞市杭州湾上虞工业园区纬五路33号
(72) 发明人 李洪武 郭拥政 杨和军 孟惠彪 李海波 肖俊
(74) 专利代理机构 杭州天勤知识产权代理有限公司 33224
代理人 胡红娟
(51) Int. Cl.
C07D 257/04 (2006.01)
(56) 对比文件
CN 101817795 A, 2010.09.01, 全文。
CN 101367772 A, 2009.02.18, 实施例1和2。
CN 1317485 A, 2001.10.17, 全文。
WO 2007088558 A2, 2007.08.09, 全文。
CN 101768128 A, 2010.07.07, 摘要及权利要求

(54) 发明名称
一种缬沙坦母液的回收方法

(57) 摘要
本发明公开了一种缬沙坦母液的回收方法，包括步骤：(1) 将缬沙坦母液回收溶剂后得到油状物，加入酯溶剂溶解油状物，再冷却结晶，分离出固体，经干燥得到晶体；(2) 将步骤(1) 中的晶体用酯溶剂溶解，降温后加入缬沙坦晶体，继续降温析晶，分离出固体，经干燥得到缬沙坦。该方法操作简单，回收产品质量好，回收过程使用单一溶剂，且可回收套用，成本低，适于工业化生产。
1. 一种缬沙坦母液的回收方法，包括步骤：

（1）将缬沙坦母液回收溶剂后得到油状物，加入酯溶剂溶解油状物，再冷却结晶，分离出固体，经干燥得到粗品；所述的缬沙坦母液中缬沙坦手性异构体的质量百分含量为15%-40%；

（2）将步骤（1）中的粗品用酯溶剂溶解，降温后加入缬沙坦晶种，继续降温析晶，分离出固体，经干燥得到缬沙坦；

步骤（1）中，所述的油状物与酯溶剂的质量比为1:2-6；
步骤（2）中，所述的粗品与酯溶剂的质量比为1:6-12；降温至25℃至35℃后加入缬沙坦晶种；所述的缬沙坦晶种的纯度为100%，缬沙坦手性异构体未检出；继续降温至-1℃至1℃析晶，加入缬沙坦晶种后析晶的时间为8小时-20小时；

所述的酯溶剂为乙酸乙酯、乙酸正丙酯、乙酸异丙酯、乙酸正丁酯、乙酸异丁酯中的一种或两种以上。

2. 根据权利要求1所述的缬沙坦母液的回收方法，其特征在于，步骤（1）中，所述的油状物与酯溶剂的质量比为1:2-3；
或者，步骤（2）中，所述的粗品与酯溶剂的质量比为1:9-11。

3. 根据权利要求1所述的缬沙坦母液的回收方法，其特征在于，所述的缬沙坦晶种保证至少10分钟晶种未被溶解。
一种缬沙坦母液的回收方法

技术领域
[0001] 本发明属于药物化学领域，具体涉及一种缬沙坦母液的回收方法。

背景技术
[0002] 缬沙坦（化学名为：N-（1-戊酰基）-N-[4-（2-（1H-四氮唑-5-基）苯基）-L-缬氨酸）可用于各种类型高血压，并对心脑肾有较好的保护作用。心肌梗塞、心力衰竭、蛋白尿、糖尿病等高血压病人可做为常规使用，可与利尿剂（如氢氯噻嗪）联合使用。缬沙坦的结构式如下：

[0003]

[0004] 缬沙坦是一种手性的药物，目前，缬沙坦的生产厂家较多，但生产工艺都是以手性原料为起始原料通过一系列反应最终得到缬沙坦，此反应过程，在反应过程中，或多或少都会产生一部分手性异构体，所以，必须通过精制才能获得质量合格的缬沙坦。为了降低成本，提高收益率，一般都从精制母液中回收出一部分缬沙坦，但这一过程中，手性异构体会越来越多。目前，对于缬沙坦的手性异构体质量百分含量在10%以上的母液，没有合适的方法能从中回收出合格的缬沙坦。所以，许多缬沙坦的生产厂家将手性异构体含量较高的缬沙坦母液当作废料处理。此举不仅浪费资源，同时也不利于环保，与国家所提倡的循环经济相违背。

[0005] 为此，有必要开发一种缬沙坦母液的回收方法，尤其是含缬沙坦手性异构体较高的缬沙坦母液的回收方法，以满足工业生产的需要。

发明内容
[0006] 本发明提供了一种操作简便，适于工业化生产的缬沙坦母液的回收方法，回收得到的缬沙坦，纯度≥99.7%，手性异构体的含量≤0.5%，收率≥40%。

[0007] 一种缬沙坦母液的回收方法，包括步骤：

[0008] （1）将缬沙坦母液回收溶剂后得到油状物，加入酯溶剂溶解油状物，再冷却结晶，分离出固体，经干燥得到粗品；

[0009] （2）将步骤（1）中的粗品用酯溶剂溶液，降温后加入缬沙坦晶种，继续降温析晶，分离出固体，经干燥得到缬沙坦。
所述的缩合物液液液中缩合物手性异构体的质量百分含量优选为 15% - 40%，进一步优选为 15% - 30%。

步骤 (1) 中，所述的油状物与酯溶剂的质量比为 1 : 2-6，可得到纯度为 85% 以上的粗品；进一步优选为 1 : 2-3，可得到纯度为 90% 以上的粗品。

步骤 (2) 中，所述的酯与酯溶剂的体积比为 1 : 1-3，进一步优选为 1 : 1-2，进一步优选为 1 : 9-11。

采用酯溶剂溶解油状物或者粗品时，需加热，加热的温度以能溶解油状物或者粗品为准，一般加热至 50°C 至 55°C 即可达到目的。

从回收的产品质量上考虑，步骤 (2) 中，优选低温至 25°C 至 35°C 后加入缩合物晶体，进一步优选低温至 20°C 后加入缩合物晶体。

步骤 (2) 中，优选继续低温至 -1°C 至 1°C（进一步优选 0°C）析晶。

降温的方法多种多样，可采用本领域常用的降温方法，如冷冻降温；将步骤 (1) 中的粗品用乙酸乙酯溶解后，置于 -5°C 至 5°C（优选 0°C）的冷库中完成降温。

所述的缩合物晶体的纯度 100%，缩合物手性异构体未检出。

所述的缩合物晶体最要保证至少 10 分钟晶体未被溶解，以保证的保证晶体的诱导效果。

步骤 (2) 中，加入缩合物晶体后析晶的时间优选为 8 小时 -20 小时，进一步优选为 8-10 小时，以保证的保证回收产品的质量。

所述的酯溶剂可选用酯类溶剂，优选乙酸乙酯、乙酸正丙酯、乙酸异丙酯、乙酸正丁酯、乙酸异丁酯中的一种，进一步优选乙酸乙酯。

本发明具有如下优点：

1）回收方法操作简单，回收产品质量好，回收得到的缩合物，纯度 ≥ 99.7%，手性异构体的含量 ≤ 0.5%，收率 ≥ 40%。

2）回收过程使用单一溶剂，且可回收套用。

总之，本发明开发了一种缩合物液液液手性异构体的的缩合物晶液液液经济又合理的回收方法，此方法可以变废为宝，降低生产成本，同时也有利于环保，与国家所提倡的循环经济相适应，适于工业化生产。

具体实施方式

以下实施例是为了对本发明的进一步说明，不应将其视为对本发明的限制。

实施例 1 缩合物粗品的制备

以 4- 水甲基 -2”- 氧基联苯为原料与 L- 缬氨酸甲酯熔合，再经戊酰化、环合和水解制备缩合物，然后经过精制得到缩合物，剩余的料液作为缩合物母液，缩合物母液中缩合物手性异构体的质量百分含量为 40%。将缩合物母液于 52°C 减压蒸除溶剂得油状物，加入为油状物质量 2 倍量的乙酸乙酯，于 52°C 下溶解油状物，待油状物溶解后，降至室温，再置
于0℃环境下析晶15小时。抽滤，得白色固体，干燥后得粗品。粗品的色谱纯度为94%，摩尔收率为80%。

【0029】实施例2 绵沙坦粗品的制备

【0030】以4-溴甲基-2’-氨基联苯为原料与L-缬氨酸甲酯缩合，再经戊酰化、环合和水解制备绵沙坦，然后经过精制得到绵沙坦，剩余的斜液为绵沙坦母液，绵沙坦母液中绵沙坦手性异构体的质量百分含量为30%。将绵沙坦母液于52℃减压蒸除溶剂得油状物，加入为油状物质量3倍量的乙酸乙酯，于52℃下溶解油状物，待油状物溶解后，降至室温，再置于0℃环境下析晶15小时。抽滤，得白色固体，干燥后得粗品。粗品的色谱纯度为96%，摩尔收率为70%。

【0031】实施例3 绵沙坦精品的制备

【0032】将实施例1所得粗品100g用粗品质量9倍量（900g）的乙酸乙酯于50℃溶解，降至30℃后，分散加入绵沙坦晶种（纯度100%，绵沙坦手性异构体未检出）0.2g，保证10分钟晶种未被溶解，置于0℃环境中，析晶8小时，离心，所得精制品经干燥得绵沙坦60g。绵沙坦的纯度为99.8%，手性异构体的含量为0.38%，摩尔收率为60%。

【0033】实施例4 绵沙坦精品的制备

【0034】将实施例2所得粗品100g用粗品质量11倍量（1100g）的乙酸乙酯于50℃溶解，降至30℃后，分散加入绵沙坦晶种（纯度100%，绵沙坦手性异构体未检出）0.2g，保证10分钟晶种未被溶解，置于0℃环境中，析晶8小时，离心，所得精制品经干燥得绵沙坦50g。绵沙坦的纯度为99.83%，手性异构体的含量为0.32%，摩尔收率为50%。

【0035】实施例5 绵沙坦精品的制备

【0036】将实施例2所得粗品100g用粗品质量9倍量（900g）的乙酸乙酯于50℃溶解，降至30℃后，分散加入绵沙坦晶种（纯度100%，绵沙坦手性异构体未检出）0.2g，保证10分钟晶种未被溶解，置于0℃环境中，析晶15小时，离心，所得精制品经干燥得绵沙坦62g。绵沙坦的纯度为99.70%，手性异构体的含量为0.48%，摩尔收率为62%。

【0037】实施例6 绵沙坦精品的制备

【0038】以4-溴甲基-2’-氨基联苯为原料与L-缬氨酸甲酯缩合，再经戊酰化、环合和水解制备绵沙坦，然后经过精制得到绵沙坦，剩余的斜液为绵沙坦母液，绵沙坦母液中绵沙坦手性异构体的质量百分含量为15%。将绵沙坦母液于52℃减压蒸除溶剂得油状物，加入为油状物质量6倍量的乙酸正丙酯，于50℃下溶解油状物，待油状物溶解后，降至室温，再置于-1℃环境下析晶10小时。抽滤，得白色固体，干燥后得粗品。粗品的色谱纯度为95%，摩尔收率为75%。

【0039】将所得粗品100g用粗品质量6倍量（600g）的乙酸正丙酯于50℃溶解，降至35℃后，分散加入绵沙坦晶种（纯度100%，绵沙坦手性异构体未检出）0.2g，保证10分钟晶种未被溶解，置于-1℃环境中，析晶20小时，离心，所得精制品经干燥得绵沙坦63g。绵沙坦的纯度为99.7%，手性异构体的含量为0.49%，摩尔收率为63%。

【0040】实施例7 绵沙坦精品的制备

【0041】以4-溴甲基-2’-氨基联苯为原料与L-缬氨酸甲酯缩合，再经戊酰化、环合和水解制备绵沙坦，然后经过精制得到绵沙坦，剩余的斜液为绵沙坦母液，绵沙坦母液中绵沙坦手性异构体的质量百分含量为15%。将绵沙坦母液于52℃减压蒸除溶剂得油状物，加入
为油状物质量 3 倍量的乙酸异丁酯，于 55℃下溶解油状物，待油状物溶解后，降至室温，再
置于 -1℃环境下析晶 12 小时。抽滤，得白色固体，干燥后得粗品。粗品的色谱纯度为 95％，
摩尔收率为 75％。

[0042] 将所得粗品 100g 用粗品质量 10 倍量（1000g）的乙酸异丁酯于 55℃溶解，降至
25℃后，分散加入醚沙坦晶体（纯度 100%，醚沙坦手性异构体未检出）0.2g，保证 10 分钟
晶种未被溶解，置于 1℃环境中，析晶 10 小时，离心，所得精制品经干燥得醚沙坦 58g。醚沙
坦的纯度为 99.78％，手性异构体的含量为 0.40％，摩尔收率为 58％。

[0043] 实施例 8 醚沙坦精晶的制备

[0044] 以 4-溴甲基-2'-氨基联苯为原料与 L-缬氨酸甲酯缩合，再经戊酰化、环合和水
解制备醚沙坦，然后经过精制得到醚沙坦，剩余的料液作为醚沙坦母液，醚沙坦母液中醚沙
坦手性异构体的质量百分含量为 35％。将醚沙坦母液压于 52℃减压蒸除溶剂得油状物，加入
为油状物质量 5 倍量的乙酸正丁酯，于 53℃下溶解油状物，待油状物溶解后，降至室温，再
置于 0℃环境下析晶 15 小时。抽滤，得白色固体，干燥后得粗品。粗品的色谱纯度为 88％，
摩尔收率为 79％。

[0045] 将所得粗品 100g 用粗品质量 12 倍量（1200g）的乙酸正丁酯于 53℃溶解，降至
30℃后，分散加入醚沙坦晶体（纯度 100％，醚沙坦手性异构体未检出）0.2g，保证 10 分钟
晶种未被溶解，置于 0℃环境中，析晶 15 小时，离心，所得精制品经干燥得醚沙坦 65g。醚沙
坦的纯度为 99.7％，手性异构体的含量为 0.5％，摩尔收率为 65％。

[0046] 本发明有关杂质（或纯度）和手性异构体含量的检测方法为现有技术，即 HPLC
法，具体如下：

[0047] 1. 有关杂质检测的色谱条件

[0048] 流动相：水-乙腈-冰乙酸（500：500：1，体积比）

[0049] 色谱柱：（L1）Nucleosil 100-5，20cm×3.0mm，5μm；

[0050] 检测波长：225nm

[0051] 流速：0.6ml/min

[0052] 柱温：25℃

[0053] 进样量：10μl。

[0054] 2. 手性异构体检测的色谱条件

[0055] 流动相：正己烷-异丙醇-三氟乙酸（85：15：0.1，体积比）

[0056] 色谱柱：L40，Kromasil 5-cellucoat，250×4.6mm

[0057] 检测波长：230nm

[0058] 流速：0.8ml/min

[0059] 柱温：25℃

[0060] 进样量：10μl。