发明名称

图像显示系统、图像显示装置及图像显示方法

摘要

本发明涉及图像显示系统、图像显示装置及图像显示方法，用于在将从多个图像供给装置发送来的图像显示装置显示到共有画面上的图像显示系统中，提高画面显示内容的变更操作的便利性。图像显示系统（1000）具备多个图像供给装置（100a～100d）和图像显示装置（200）。图像显示装置（200）通过将投射屏幕（SC）分割成一个或多个画面区域，能够同时显示各图像供给装置提供的图像。各图像供给装置（100a～100d）将各用户能够对图像显示装置的显示进行操作的显示窗口（300）显示于显示面板部（160），并将位于显示窗口（300）的显示部（160）的显示图像作为供给图像提供图像显示装置（200）
1. 一种图像显示系统，其特征在于，具有使多个用户视觉确认共用的图像的单一共用画面，并具备；

多个图像供给装置，该图像供给装置具有图像显示部，和利用上述图像显示部中显示的图像生成供给图像并向外部发送的图像发送部；以及

图像显示装置，其将上述共用画面分割成一个或多个画面区域，能够将由上述多个图像供给装置分别供给的上述图像显示装置显示至上述一个或多个画面区域中；

上述多个图像供给装置分别在上述图像显示装置上显示用户能够对上述共用画面中的显示状态进行操作的共用画面操作用图像，并且，将除了上述共用画面操作用图像的上述图像显示部的显示图像，作为上述供给图像发送给上述图像显示装置；

上述图像显示装置根据上述多个图像供给装置每一个中的由上述用户借助上述共用画面操作用图像进行的操作，变更上述共用画面的显示状态。

2. 根据权利要求1所述的图像显示系统，其特征在于，

上述共用画面操作用图像包括具有分割布局框的布局图像，所述分割布局框用于表示上述共用画面中的上述一个或多个画面区域的构成；

上述分割布局框可以通过上述用户在上述共用画面操作用图像上的操作而变更，

上述图像显示装置根据上述分割布局框的变更，来变更显示上述共用画面中的上述一个或多个画面区域的构成。

3. 根据权利要求2所述的图像显示系统，其特征在于，

对于上述图像显示装置而言，当上述用户在上述共用画面操作用图像上，

(i) 进行了向上述布局框内的区域拖动上述分割布局框的边界的操作时，生成新的分割布局框；

(ii) 进行了向上述布局图像的外侧拖动存在于上述分割布局框彼此之间的边界的操作时，消去上述分割布局框。

4. 根据权利要求2或3所述的图像显示系统，其特征在于，

上述共用画面操作用图像具有一览显示识别图像的识别图像一览区域，所述识别图像用于分别识别从上述多个图像供给装置供给的上述供给图像；

上述图像显示装置在上述共用画面操作用图像上的上述识别图像一览区域中，显示通过上述用户所选择的上述识别图像进行识别的上述供给图像。

5. 根据权利要求4所述的图像显示系统，其特征在于，

在上述用户将从上述识别图像一览区域选择出的上述识别图像拖放到上述分割布局框内时，上述图像显示装置将通过上述识别图像进行识别的上述供给图像，显示到与被拖放了上述识别图像的上述分割布局框对应的上述共用画面中的画面区域。

6. 根据权利要求4或5所述的图像显示系统，其特征在于，

在上述用户将从上述识别图像一览区域选择出的上述识别图像拖放到与上述分割布局框内的外周缘靠近的位置时，上述图像供给装置在与上述靠近的位置对应的区域中，生成通过上述识别图像进行识别的上述供给图像用的新的分割布局框；

上述图像显示装置在上述共用画面的与上述新的分割布局框对应的画面区域中，显示通过上述识别图像进行识别的上述供给图像。

7. 根据权利要求1～6中任意一项所述的图像显示系统，其特征在于，
权利要求书

上述共用画面操作装置包括用于对上述共用画面中的分割数进行切换的切换转变图像。

上述图像显示装置将上述共用画面以上述用户通过上述切换转变图像指定的分割数进行分割。

8. 一种图像显示系统的图像显示方法，其特征在于，该图像显示系统能够将从多个图像供给装置分别供给的供给图像，借助图像显示装置显示到被分割成一个或多个画面区域的单一共用画面上，该图像显示方法具备下述步骤：

(a) 在上述多个图像供给装置各自的图像显示部上，显示用户用于对上述共用画面的分割状态进行操作的共用画面操作用图像；

(b) 在上述多个图像供给装置的每一个中，使用除了上述共用画面操作用图像的显示于上述图像显示部的图像，生成上述供给图像，并提供给上述图像显示装置；和

(c) 在上述图像显示装置中，根据上述多个图像供给装置每一个中的由上述用户借助上述共用画面操作用图像进行的操作，变更上述共用画面的显示状态。

9. 一种图像显示装置，其特征在于，能够将来自多个图像供给装置的供给图像，显示到使多个用户视觉确认共用的图像的单一共用画面上，所述图像供给装置具有图像显示部，并且利用在上述图像显示部中显示的图像来生成上述供给图像并向上向外发送的图像发送部，

该图像显示装置根据用户借助上述多个图像供给装置各自的上述图像显示部中显示的共用画面操作用图像进行的操作，变更上述共用画面的显示状态，并且，

将上述共用画面分割成一个或多个画面区域，显示除了上述共用画面操作用图像的上述图像显示部的显示图像。
图像显示系统、图像显示装置及图像显示方法

技术领域
[0001] 本发明涉及将由多个图像供给装置供给的各图像显示成单一的共用画面的图像显示系统。

背景技术
[0002] 在演示或会议等中，有时使用能够将多个参加者各自所操作的个人电脑等终端的显示画面，显示成所有参加者能够视觉确认的单一共用画面的图像显示系统。在下述专利文献1中，提出了一种将投影画面分割成多个图像区域，将从多个图像生成装置发送给图像投影装置的各图像分别布局到各个分割图像区域中，同时进行投影的技术（专利文献1等）。

[0003] 另外，在演示或会议中，通常因发表者或发言者轮流接替等使得参加者的任务方法性地更换。因此，在将各参加者的终端的显示画面分割显示成共用画面时，为了实现有效的演示或辩论的灵活化，优选能够有效地进行共用画面的布局的变更操作。但是，目前为止尚未针对提高这种图像显示系统的便利性作出充分的研究。

[0004] 专利文献1：WO2005/088602 号公报
[0005] 专利文献2：日本专利第 4010198 号公报

发明内容
[0006] 本发明的目的在于，提供一种在将从多个图像供给装置发送来的供给图像布局成共用画面来进行显示的图像显示系统中，提高画面显示内容的变更操作的便利性的技术。

[0007] 本发明为了解决上述课题的至少一部分而提出，能够作为以下方式或应用例实现。

[0008] ['应用例1']

[0009] 一种图像显示系统，具有使多个用户视觉确认共用的图像的单一共用画面，并具备：多个图像供给装置，该图像供给装置具有图像显示部、和利用上述图像显示部中显示的图像生成供给图像并对外部发送的图像发送部；以及图像显示装置，其将上述共用画面分割成一个或多个画面区域，能够将上述多个图像供给装置分别供给的上述供给图像显示到上述一个或多个画面区域；

[0010] 上述多个图像供给装置分别在上述图像显示部上显示用户能够操作上述共用画面中的显示状态的共用画面操作用图像，并且将除了上述共用画面操作用图像的上述图像显示部的显示图像，作为上述供给图像发送给上述图像显示装置；

[0011] 上述图像显示装置根据上述多个图像供给装置的每一个中的由上述用户借助上述共用画面操作用图像进行的操作，变更上述共用画面的显示状态。

[0012] 根据该图像显示系统，能够使各图像供给装置的用户分别借助共用画面操作用图像，变更共用画面的显示内容。因此，由于各用户能够任意变更共用画面的显示内容，所以对各用户而言提高了便利性。而且，共用画面中显示有利用各图像供给装置中的显示图像
而生成的供给图像，但该供给图像中不包括共用画面操作用图像。因此，各用户能够在共用画面中仅显示所期望的图像，从而对各用户而言进一步提高了便利性。

【0014】根据应用例 1 所述的图像显示系统，上述共用画面操作用图像包括具有分割布局框的布局图像，所述分割布局框用于表示上述共用画面中的上述一个或多个画面区域的构成；

【0015】上述分割布局框可以通过上述用户在上述共用画面操作用图像上的操作而变更；

【0016】上述图像显示装置根据上述分割布局框的变更，来变更显示上述共用画面中的上述一个或多个画面区域的构成。

【0017】根据该图像显示系统，由于各用户能够任意变更共用画面的画面构成，所以对各用户而言提高了便利性。

【0018】根据应用例 2 所述的图像显示系统，对于上述图像显示装置而言，当上述用户在上述共用画面操作用图像上，(i) 进行了将上述分割布局框的边缘向上述布局框内的区域拖动的操作时，生成新的分割布局框；(ii) 进行了将存在于上述分割布局框彼此之间的边界向上述布局图像的外侧拖动的操作时，消去上述分割布局框。

【0020】根据该图像显示系统，各用户通过在共用画面操作用图像上拖动分割布局框的边界，能够增加或减少分割布局框。因此，各用户能够任意变更共用画面的显示布局，对各用户而言提高了便利性。

【0021】根据应用例 4 所述的图像显示系统，上述共用画面操作用图像具有一览显示识别图像的识别图像一览区域，所述识别图像用于分别识别从上述多个图像供给装置供给的上述供给图像。

【0023】上述图像显示装置在上述共用画面操作用图像上的上述识别图像一览区域中，显示通过上述用户所选择的上述识别图像进行识别的上述供给图像。

【0024】根据该图像显示系统，各用户能够通过在共用画面操作用图像上的识别图像一览区域中，任意选择表示供给图像的识别图像，从而在共用画面中显示该供给图像。因此，各用户能够任意变更共用画面的显示状态，对各用户而言提高了便利性。

【0025】根据应用例 5 所述的图像显示系统，在上述用户将从上述识别图像一览区域选择出的上述识别图像拖放到上述分割布局框内时，上述图像显示装置将通过上述识别图像进行识别的上述供给图像，显示到与被拖放了上述识别图像的上述分割布局框对应的上述共用画面中的画面区域。

【0027】根据该图像显示系统，各用户通过在共用画面操作用图像上拖放表示各供给图像的识别图像，能够变更共用画面中的各供给图像的布局。因此，各用户能够任意变更共用画面的显示布局，对各用户而言提高了便利性。

【0028】根据应用例 6 所述的图像显示系统，在上述用户将从上述识别图像一览区域
览区域选择出的上述识别图像拖放到与上述分割布局框的外周缘靠近的位置时，上述图像
供给装置在与上述靠近的位置对应的区域中，生成通过上述识别图像进行识别的上述供
给图像用的新的分割布局框；
[0030] 上述图像显示装置在上述共用画面的与上述新的分割布局框对应的画面区域中，
显示通过上述识别图像进行识别的上述供给图像。
[0031] 根据该图像显示系统，各用户通过在共用画面操作用图像上拖放表示供给图像的
识别图像，能够在共用画面中生成该供给图像用的分割布局框。因此，各用户能够任意变更
共用画面的显示布局，对各用户而言提高了便利性。
[0032] [应用例 7]
[0033] 根据应用例 1 ～应用例 6 中任意一项所述的图像显示系统，上述共用画面操作用
图像包括用于对上述共用画面中的分割数进行切换的切换改变图像，
[0034] 上述图像显示装置将上述共用画面以上述用户通过上述切换改变图像指定的分
割数进行分割。
[0035] 根据该图像显示系统，各用户通过操作共用画面操作用图像上的切换改变图像，
能够在共用画面中增减分割布局框。因此，各用户能够任意变更共用画面的显示布局，对各
用户而言提高了便利性。
[0036] [应用例 8]
[0037] 一种图像显示系统的图像显示方法，该图像显示系统能够将从多个图像供给装置
分别供给的供给图像，借助图像显示装置显示到被分割成一个或多个画面区域的单一共用
画面上，该图像显示方法具备下述步骤：
[0038] (a) 在上述多个图像供给装置各自的图像显示部上，显示用户用于对上述共用画
面的分割状态进行操作的共用画面操作用图像；
[0039] (b) 在上述多个图像供给装置的每一个中，使用除了上述共用画面操作用图像
的显示于上述图像显示部的图像，生成上述供给图像，并提供给上述图像显示装置；和
[0040] (c) 在上述图像显示装置中，根据上述多个图像供给装置每一个中的由上述用户
借助上述共用画面操作用图像进行的操作，变更上述共用画面的显示状态。
[0041] 根据该图像显示方法，各图像供给装置的用户能够分别借助共用画面操作用图像
来变更共用画面的显示内容。因此，各用户能够任意变更共用画面的显示内容，从而对各用
户而言提高了便利性。而且，虽然在共用画面中显示有利用各图像供给装置中的显示图像
而生成的供给图像，但在该供给图像中不包括共用画面操作用图像。因此，各用户能够在共
用画面中仅显示所期望的图像，从而对各用户而言提高了便利性。
[0042] [应用例 9]
[0043] 一种图像显示装置，能够将来自多个图像供给装置的供给图像，显示到使多个用
户视觉确认共用的图像的单一共用画面上，所述图像供给装置具有图像显示部，和利用在
上述图像显示部中显示的图像生成上述供给图像并向外部发送的图像发送部，
[0044] 该图像显示装置根据用户借助上述多个图像供给装置各自的上述图像显示部中
显示的共用画面操作用图像进行的操作，变更上述共用画面的显示状态，并且，将上述共用
画面分割成一个或多个画面区域，显示除了上述共用画面操作用图像的上述图像显示部
的显示图像。
根据该图像显示装置，共用画面上显示的图像中不包括共用画面操作用图像。因此，各用户能够在共用画面中仅显示所期望的图像，从而对各用户而言进一步提高了便利性。

另外，本发明能够以各种方式实现，例如能够以图像显示系统（图像显示装置）及图像显示方法，用于实现该方法或系统的功能的计算机程序，记录有该计算机程序的记录介质等方式实现。

附图说明
图 1 是表示图像显示系统的构成的概略图。
图 2 是表示图像供给装置的内部构成的框图。
图 3 是表示图像显示装置的内部构成的框图。
图 4 是用于对确立各图像供给装置与图像显示装置之间的连接所需的交换进行说明的说明图。
图 5(A) 是表示桌面画面的图，(B) 是表示操作窗口的图。
图 6 是表示由显示到投射屏幕的等候图像的图。
图 7(A) 是表示图像显示装置正向投射屏幕投射供给图像的状态的图，(B) 是表示操作窗口的图。
图 8(A) 是表示图像显示装置正向投射屏幕投射供给图像的状态的图，(B) 是表示操作窗口的图。
图 9(A) 是表示图像显示装置正向投射屏幕投射供给图像的状态的图，(B) 是表示操作窗口的图。
图 10 是用于对受理了显示布局的变更操作时的各图像供给装置与图像显示装置之间的交换进行说明的说明图。
图 11(A) 是表示以单画面显示模式进行显示时的操作窗口的图。(B) 是表示以双画面显示模式进行显示时的操作窗口的图。(C) 是表示以四画面显示模式进行显示时的操作窗口的图。
图 12(A1)、(A2) 是用于对双画面显示模式时，第二图像供给装置 100b 与图像显示装置 200 连接时的显示布局的变化进行说明的图。(B1)、(B2) 是用于对四画面显示模式时，第二至第四图像供给装置 100b ～ 100d 与图像显示装置 200 依次连接时的显示布局的变化进行说明的图。
图 13(A)、(B) 是用于对通过操作窗口中的显示模式切换键的第一键，从双画面显示模式切换成单画面显示模式时的变更操作进行说明的图。(C) 是进行由通过指示器 341 点击了第一键 321 时，以单画面显示模式的状态显示第二图像供给装置 100b 的供给图像 501b 的图。
图 14(A) 是表示四画面显示模式时的操作窗口 300 的图。(B) 是表示通过指示器 341 按下了操作窗口 300 的第一键 321 时，切换成单画面显示模式的图。(C) ～ (E) 是表示每当进而通过指示器 341 点击第一键 321，而以优先级高的顺序显示供给图像 501b ～ 501d 的图。
图 15(A1) 是表示所有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接，在
说明书

双画面显示模式的一方的布局框内显示供给图像 501b，另一方的布局框为非显示状态时的操作窗口 300 的图。A2 是表示进而通过指示器 341 按下第一键 321 而切换成单画面显示模式时的操作窗口 300 的图。B1 是表示在所有的图像供给装置 100a～100d 与图像显示装置 200 连接的状态下，单画面显示模式的布局框为非显示状态时的操作窗口 300 的图。B2 是表示通过指示器 341 按下第一键 321 而切换成单画面显示模式时，显示优先级最高的第一图像供给装置 100a 的供给图像 501a 的图。

[0062] 图 16 (A1) 是表示所有的图像供给装置 100a～100d 与图像显示装置 200 连接，在四画面显示模式的布局框中同时显示所有的供给图像 501a～501d 时的操作窗口 300 的图。A2 是表示进而通过指示器 341 按下了第二键 322 时，切换成双画面显示模式，使得供给图像 501a, 501b 被横向并排同时布局显示的图。B1 是表示所有的图像供给装置 100a～100d 与图像显示装置 200 连接，在四画面显示模式的布局框中同时显示所有的供给图像 501b～501d 时的操作窗口 300 的图。B2 是表示当进而通过指示器 341 按下第二键 322 时，切换成双画面显示模式的图。

[0063] 图 17 (A1) 是表示在所有的图像供给装置 100a～100d 与图像显示装置 200 连接的状态下，以单画面显示模式显示了供给图像 501a 时的操作窗口 300 的图。A2 是表示进而通过指示器 341 按下了第三键 323 时切换成四画面显示模式，所有的供给图像 501a～501d 被同时布局显示的图。B1 是表示第一和第二图像供给装置 100a, 100b 与图像显示装置 200 连接，以双画面显示模式同时显示了 2 个供给图像 501a, 501b 时的操作窗口 300 的图。B2 是表示进而通过指示器 341 按下第三键 323 时切换成四画面显示模式的图。

[0064] 图 18 (A1), (B1) 分别是表示第一图像供给装置 100a 与图像显示装置 200 连接，以单画面显示模式显示了供给图像 501a 时的操作窗口 300 的图。A2, (B2) 分别是表示通过拖动滑动块 (slider) 342 将显示布局的模式切换成双画面显示模式的图。

[0065] 图 19 (A1), (B1) 分别是表示第一图像供给装置 100a 与图像显示装置 200 连接，以双画面显示模式显示了供给图像 501a 时的操作窗口 300 的图。A2, (B2) 分别是表示通过拖动滑动块 342 将显示布局的模式切换成双画面显示模式的图。

[0066] 图 20 (A1), (B1) 分别是表示两个图像供给装置 100a, 100b 与图像显示装置 200 连接，以双画面显示模式显示了各个供给图像 501a, 501b 时的操作窗口 300 的图。A2, (B2) 分别是表示通过拖动滑动块 342 拖动将显示布局的模式切换成单画面显示模式的图。

[0067] 图 21 (A1), (B1) 分别是表示两个图像供给装置 100a, 100b 与图像显示装置 200 连接，以双画面显示模式显示了各个供给图像 501a, 501b 时的操作窗口 300 的图。A2, (B2) 分别是表示通过拖动滑动块 342 将显示布局的模式切换成单画面显示模式的图。

[0068] 图 22 (A1), (B1) 分别是表示所有的图像供给装置 100a～100d 与图像显示装置 200 连接，在四画面显示模式下显示了各个供给图像 501a～501d 时的操作窗口 300 的图。A2, (B2) 分别是表示通过拖动滑动块 342 将显示布局的模式切换成双画面显示模式的图。

[0069] 图 23 (A1), (B1) 分别是表示第一图像供给装置 100a 或第四图像供给装置 100d 从图 22 (A1), (B1) 中所说明的状态退出时的状态图。A2, (B2) 分别是表示通过拖动滑动块 342 将显示布局的模式切换成双画面显示模式的图。

[0070] 图 24 (A1), (B1) 分别是表示所有的图像供给装置 100a～100d 与图像显示装置
200 连接，在四画面显示模式下显示了各个供给图像 501a ～ 501d 时的操作窗口 300 的图。
(A2)、(B2) 分别是表示通过拖动滑动块 342 将显示布局的模式切换成单画面显示模式的图。

【0071】图 25(A1) 是表示在所有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接
的状态下，通过双画面显示模式显示了供给图像 501a,501b 时的操作窗口 300 的图。(A2)
是表示在操作窗口 300 的屏幕图像 310 上通过指示器 341 指定了供给图像 501a 并对其双
击时，切换成单画面显示模式，所选择的供给图像 501a 被放大显示的图。(B1) 是表示在所
有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接的状态下，通过四画面显示模式
显示了供给图像 501a,501b 时的操作窗口 300 的图。(B2) 是表示在操作窗口 300 的屏幕图
像 310 上通过指示器 341 指定了供给图像 501a 并对其双击时，切换成单画面显示模式，所
选择的供给图像 501a 被放大显示的图。

【0072】图 26(A1) 是表示在所有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接
的状态下，通过双画面显示模式显示了供给图像 501a,501b 时的操作窗口 300 的图。(A2)
是表示若用指示器 341 双击了 ID 图像显示区域 330 中所显示的 ID 图像 331a～331d 中的
供给图像缩略图 332a，则切换成单画面显示模式，来自第一图像供给装置 100a 的供给图
像 501a 被放大显示的图。(B1) 是表示在所有的图像供给装置 100a ～ 100d 与图像显示装
置 200 连接的状态下，通过四画面显示模式显示了供给图像 501a,501b 时的操作窗口 300 的
图。(B2) 是表示若用指示器 341 双击了 ID 图像显示区域 330 中所显示的 ID 图像 331a～
331d 中的供给图像缩略图 332a，则投射屏幕 SC 切换成单画面显示模式，放大显示来自第一
图像供给装置 100a 的供给图像 501a 的图。

【0073】图 27(A1) 是表示在所有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接
的状态下，通过单画面显示模式显示了供给图像 501a 时的操作窗口 300 的图。(A2) 是表
示通过指示器 341 双击了供给图像缩略图 332b 时，替代供给图像 501a 而显示来自第二图
像供给装置 100b 的供给图像 501b 的图。(B1) 是表示在所有的图像供给装置 100a ～ 100d
与图像显示装置 200 连接的状态下，在单画面显示模式下不显示图像时的操作窗口 300 的
图。(B2) 是表示通过指示器 341 双击了供给图像缩略图 332b 时，显示来自第二图像供给装
置 100b 的供给图像 501b 的图。

【0074】图 28(A) 是表示在所有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接
的状态下，通过单画面显示模式显示了供给图像 501a 时的操作窗口 300 的图。(B)、(C) 是表
示若通过指示器 341 将供给图像缩略图 332b 拖放到屏幕图像 310 上，则替代供给图像 501a
而显示供给图像 501b 的图。

【0075】图 29(A1)、(B1) 是表示所有的图像供给装置 100a ～ 100d 与图像显示装置 200
连接，在双画面显示模式下的两个布局框中均不显示图像的状态时的操作窗口 300 的图。
(A2) 是表示若通过指示器 341 将供给图像缩略图 332b 拖放到屏幕图像 310 中左侧的布局
框内，则在左侧的布局框中显示供给图像 501b 的图。(B2) 是表示若通过指示器 341 将供给
图像缩略图 332b 拖放到屏幕图像 310 中右侧的布局框内，则在右侧的布局框中显示供给图
像 501b 的图。

【0076】图 30(A1) 是表示所有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接，在
四画面显示模式下，仅右侧下段的布局框内为非显示状态时的操作窗口 300 的图。(A2) 是
表示若通过指示器 341 将与处于非显示状态的供给台 501d 对应的供给图像缩略图 332d 拖放到非显示状态的布局框内，则在该布局框内显示来自第四图像供给装置 100d 的供给图像 501d 的图。(B1) 是表示所有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接，在四画面显示模式下所有供给的图像 501a ～ 501d 被显示到投射屏幕 SC 时的操作窗口 300 的图。(B2) 是表示若通过指示器 341 将供给图像缩略图 332d 拖放到显示了来自第三图像供给装置 100c 的供给图像 501c 的布局框内，则供给图像 501c 的显示位置与供给图像 501d 的显示位置互换的图。

【0077】图 31 (A) 是表示所有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接，在单画面显示模式下供给图像 501a 被显示在投射屏幕 SC 时的操作窗口 300 的图。(B1) 是表示通过指示器 341 将与第三图像供给装置 100b 的供给图像 501b 对应的供给图像缩略图 332b 拖放到屏幕图像 310 上的比较中央的区域 CA 内时，以单画面显示模式的状态替换所显示的供给图像的图。(B2) 是表示当拖放到靠近屏幕图像 310 比较左侧的外周端的区域 LA 时，切换为双画面显示模式的图。(B3) 是表示当拖放到靠近屏幕图像 310 比较右侧的外周端的区域 RA 时，切换为双画面显示模式的图。

【0078】图 32 (A) 是表示所有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接，在双画面显示模式下供给图像 501a, 501b 被显示在投射屏幕 SC 时的操作窗口 300 的图。(B1) 是表示当通过指示器 341 将供给图像缩略图 332c 拖放到屏幕图像 310 上比较中央的区域 CA 内时，以双画面显示模式的状态在被拖放的布局框内显示与供给图像缩略图 332c 对应的供给图像 501c 的图。(B2) 是表示当将供给图像缩略图 332c 拖放到靠近屏幕图像 310 比较上侧的外周端的区域 UA 时，切换成四画面显示模式的图。(B3) 是表示当将供给图像缩略图 332c 拖放到靠近屏幕图像 310 比较下侧的外周端的区域 DA 时，切换成四画面显示模式的图。

【0079】图中：1000…图像显示系统；100a～100d…图像供给装置；101a～101d…桌面画面；110…CPU；130…VRAM；140…RAM；150…操作部；160…显示部；170…无线LAN/IF；180…总线；200…图像显示装置；210…CPU；220…EEPROM；230…RAM；240…VRAM；250…操作部；260…图像显示部；270…光学系统；280…无线LAN/IF；290…总线；300…操作窗口；310…屏幕图像；320…显示模式切换键；321…第一键；322…第二键；323…第三键；330…ID图像显示区域；331a～331d…ID图像；332a～332d…供给图像缩略图；333a…用户识别用图像；341…指示器；342…滑动块；400…等候图像；501a～501d…供给图像；CA、LA、RA、UA、DA…区域；M1…图像捕捉模块；M2…供给图像生成模块；M3…通信控制模块；M4…用户接口模块；M21…图像取得模块；M22…显示布局控制模块；M23…显示图像生成模块；M24…显示图像输出模块；M25…更新信息生成模块；M26…通信控制模块；P1…图像供给程序；P20…控制程序；SC…投射屏幕。

具体实施方式

【0080】A. 实施例：

【0081】图 1 是表示作为本发明的一个实施例的图像显示系统的构成的概略图。该图像显示系统 1000 具备：4个图像供给装置 100a～100d、图像显示装置 200 和投射屏幕 SC。4个
图像显示装置 100a～100d 分别能够借助局域网（LAN）与图像显示装置 200 连接。各图像显示装置 100a～100d 在建立了与图像显示装置 200 之间的连接之后，将用自身所显示的桌面图像等显示图像而生成的供给图像发送给图像显示装置 200。图像显示装置 200 能够将由各图像供给装置 100a～100d 供给来的图像，分割布局到投射屏幕 SC 上，来同时进行显示。

图 2 表示第一图像供给装置 100a 的内部构成的框图。需要说明的是，由于其他第二至第四图像供给装置 100b～100d 的内部构成也一样，所以省略了其图示及说明。

第一图像供给装置 100a 例如能够由搭载了 Windows（注册商标）作为操作系统和个人电或笔记本电脑构成。具体而言，第一图像供给装置 100a 具备：中央处理装置（CPU）110、硬盘驱动器（HD）120、插画用存储器（VRAM）130、随机存储器（RAM）140。而且，第一图像供给装置 100a 还具备驱动部 150、显示部 160 和无线 LAN 接口（IF）170。上述各构成要素 110～170 借助总线 180 彼此连接。

CPU110 是执行各种运算处理的逻辑电路，将 HD120 等外部存储装置中存储的程序或模块在作为主存储装置的 RAM140 中展开并执行。RAM140 是易失性存储器，暂时存储 CPU110 的运算结果，向图像显示装置 200 供给的供给图像数据等。VRAM130 是用于展开根据数据而描画的显示图像的数据，并对其实时缓存的存储器，一般能够由 RAM140 进行高速的数据读写。

操作部 150 是对来自第一图像供给装置 100a 的用户、即参加者的操作进行受理的接口，例如由键盘、触摸板、鼠标等构成。显示部 160 例如由液晶显示器构成，根据 VRAM130 中保持的内容显示图像。无线 LAN/IF170 是用于通过无线方式将第一图像供给装置 100a 和外部设备连接起来的接口。第一图像供给装置 100a 借助无线 LAN/IF170 与图像显示装置 200 交换信号。

HD120 中存储有图像供给程序 P1。图像供给程序 P1 生成并发送向图像显示装置 200 供给的供给图像数据，并且向作为用户的参加者提供用于对投射屏幕 SC 的显示状态进行变更操作的接口。图像供给程序 P1 具有：图像捕捉模块 M1、供给图像生成模块 M2、通信控制模块 M3 和用户接口模块 M4。

图像捕捉模块 M1 捕捉显示部 160 的显示图像。即，图像捕捉模块 M1 从 VRAM130 取得显示部 160 上显示的图像的数据。供给图像生成模块 M2 利用图像捕捉模块 M1 取得的图像数据，生成用于向图像显示装置 200 供给的供给图像数据。具体的供给图像数据的内容及其生成方法将在后面进行说明。

通信控制模块 M3 通过控制无线 LAN/IF170，来控制与图像显示装置 200 之间的通信。具体而言，通信控制模块 M3 取得图像显示装置 200 的机信息，建立与图像显示装置 200 之间的连接。这里，“图像显示装置 200 的机信息”中包括：用于确定图像显示装置 200 的识别信息、用于与图像显示装置 200 的图像再生特性相关的信息（例如显示的最大分辨率、色彩曲线（color profile）等）。而且，通信控制模块 M3 将供给图像生成模块 M2 生
成的供给图像数据发送给图像显示装置 200。
[0091] 用户接口模块 M4 在显示部 160 上显示用户接口用的图像、即操作窗口（后述）、
借助接口窗口来受理用户的指示。用户接口模块 M4 所受理的用户的指示，被通信控制模块
M3 发送给图像显示装置 200。而且，用户接口模块 M4 取得由图像显示装置 200 发出的操作
窗口的更新信息（后述），并且重新操作窗口的显示内容。
[0092] 图 3 是表示图像显示装置 200 的内部构成的框图。图像显示装置 200 是投影机，具备
CPU210、作为非易失性存储器的 EEPROM220、RAM230、VRAM240、操作部 250、图像显示部
260、光学系统 270 和无线 LAN/IF280。上述各构成部 210～280 借助总线 290 彼此相连。
CPU210 是执行各种运算处理的逻辑电路，将 EEPROM220 中存储的程序或模块在
RAM230 展开并执行。RAM230 暂时存储 CPU210 的运算结果。VRAM240 暂时缓存根据显示用
图像数据而生成的描画数据（例如以位图方式配置的像素值的数据）。操作部 250 由操作键、
触摸屏等构成，受理以投射图像的变焦、聚焦为代表的显示状态的调整等与图像显示装
置 200 相关的各种操作。
[0093] 图像显示部 260 根据 VRAM240 中存储的描画数据，利用液晶面板、数字微镜器件
(DMD) 来调制从 RGB 光源射出的光，生成投射用的图像。光学系统 270 由多个透镜构成，通
过图像显示部 260 对所生成的图像进行调整尺寸或焦点，并投射到投射屏幕 SC。无线 LAN/IF280
是用于通过无线方式将图像显示装置 200 和外部设备连接起来的接口。图像显示装置 200
通过无线 LAN/IF280 与各图像供给装置 100a～100d 交换信号。
[0094] EEPROM220 中存储用于控制图像显示装置 200 的控制程序 P20。控制程序 P20
具有：图像取得模块 M21、显示布局控制模块 M22、显示图像生成模块 M23、显示图像输出模块
M24、更新信息生成模块 M25 和通信控制模块 M26。
[0095] 图像取得模块 M21 取得由各图像供给装置 100a～100d 供给的供给图像数据。显
示布局控制模块 M22 根据由各图像供给装置 100a～100d 发送的用户的指示，对供给图像
在投射屏幕 SC 上的布局显示的设定进行变更。显示图像生成模块 M23 根据由显示布局控
制模块 M22 对布局显示的设定，生成由各图像供给装置 100a～100d 供给的供给图像进
行了布局的投射用图像数据（显示用图像数据）。显示图像输出模块 M24 根据显示用图像
数据生成描画数据，并将其存储到 VRAM240 中。
[0096] 更新信息生成模块 M25 生成用于在各图像供给装置 100a～100d 中更新操作窗口
的显示内容的更新信息。通信控制模块 M26 通过控制无线 LAN/IF280，来控制与各图像供给
装置 100a～100d 之间的通信。具体而言，通信控制模块 M26 执行机型信息的发送等用于
建立通信路径的处理、供给图像的接收、更新信息的发送等。
[0097] 图 4 是用于对建立各图像供给装置 100a～100d 与图像显示装置 200 之间的连接
所需的交换进行说明的时序图。在该图中，没有按各图像供给装置 100a～100d 的每一个
来区别各图像供给装置 100a～100d 的处理顺序，而面向纸面在右侧一连串地进行了图示。
首先，对第一图像供给装置 100a 最初与图像显示装置 200 连接时的交换处理进行说明。其
中，在附图中，面向纸面在左侧以时间序列表示了投射屏幕 SC 的显示图像的迁移，面向纸
面在右侧以时间序列表示了第一图像供给装置 100a 的显示画面的迁移。
[0098] 在图像显示装置 200 未与任意一个图像供给装置 100a～100d 连接的状态下，投
射屏幕 SC 上显示对起动图像供给程序 P1 来开始供给图像进行催促的信息。这里，例如若
会议的参加者在第一图像供给装置 100a 中启动了图像供给程序 P1, 则第一图像供给装置 100a 的通信控制模块 M3 检索能够连接的图像显示装置 200 并请求其机型信息（步骤 [1]）。通信控制模块 M3 在得到图像显示装置 200 的响应之前，一直显示正在对能够与显示部 160 连接的图像显示装置进行检索的信息。

若收到来自第一图像供给装置 100a 的请求，则图像显示装置 200 的通信控制模块 M2 以其发出响应，并根据来自第一图像供给装置 100a 的请求发送机型信息（步骤 [2]）。需要说明的是，此时，图像显示装置 200 在投射屏幕 SC 上显示正在建立与第一图像供给装置 100a 的连接的信息。

若第一图像供给装置 100a 的通信控制模块 M3 取得了机型信息，则将机型信息中包含的与图像显示装置 200 的图像再生特性相匹配的信息发送给图像生成模块 M2。供给图像生成模块 M2 开始以基于被发送的信息的标准来生成图像的准备，而且，通信控制模块 M3 进行用于发送供给图像的设定、准备（步骤 [3]）。并且，此时用户接口模块 M4 在显示部 160 上显示操作窗口。

图 5 是用于对操作窗口进行说明的说明图。图 5(A) 是显示显示有操作窗口 300 第一图像供给装置 100a 中的显示部 160 的显示范围的图。在该实例中，显示有桌面画面 101a，在桌面画面 101a 上除了操作窗口 300 之外，还显示有壁纸、桌面图标、任务栏等。另外，即使在第一图像供给装置 100a 上显示的显示条件等应用环境的画面的情况下，当启动操作窗口 300 时，也在该应用环境的画面中显示操作窗口 300。

图 5(B) 是仅放大显示了操作窗口 300 的图。操作窗口 300 具有屏幕图像 310 和显示模式切换键 320。屏幕图像 310 是投射屏幕 SC 的显示图像被缩小后的图像。在屏幕图像 310 中，根据图像显示装置 200 和与其连接的各图像供给装置 100a～100d 之间的通信，实时反映出射屏幕 SC 的显示内容。需要说明的是，由于在该时刻，投射屏幕 SC 上没有显示来自外部的供给图像，所以在图中通过对屏幕图像 310 施加阴影线，来表示投射屏幕 SC 处于非显示状态。

显示模式切换键 320 是用户能够借助操作部 150 进行操作的部件，是用于对投射屏幕 SC 中的供给图像的显示布局的模式进行切换的键。显示模式切换键 320 具有与显示布局的模式对应的三个键 321、322、323。关于显示模式切换键 320 及显示布局的模式的详细内容将在后文进行说明。

操作窗口 300 中还设置有 ID 图像显示区域 330（用虚线表示），该 ID 图像显示区域 330 用于一览显示对与图像显示区域 320 连接的图像供给装置进行识别用的 ID 图像。ID 图像是在各图像供给装置 100a～100d 中由用户接口模块 M4 生成的图像。ID 图像包括：作为图像供给图像的缩略图图像的图像供给图像缩略图。关于显示模式切换键 320 及显示布局的模式的详细内容将在后文进行说明。

供给图像缩略图是在各图像供给装置 100a～100d，通过缩小向图像显示装置 200 供给的图像生成的图像。其中，供给图像缩略图被定期发送给图像显示装置 200，图像显示装置 200 将接收到的给供给图像缩略图，作为操作窗口 300 的更新信息发送给所有连接的图像供给装置。由此，操作窗口 300 的供给图像缩略图与供给图像的显示内容同步。用户识别用图像是基于用户预先设定的用户标识、用户名等用户信息，在各图像供给装置 100a～100d 中生成的图像。在附图中，作为第一图像供给装置 100a 的 ID 图像
331a，在ID图像显示区域330显示了供给图像缩略图332a，并对登录了第一图像供给装置100a的参加者（称为“用户a”）进行表示的用户识别用图像333a。

[0106] 在显示了操作窗口300之后，第一图像显示装置100a的通信控制模块M3将连接设定用数据发送给图像显示装置200（图4的步骤[4]）。这里，“连接设定用数据”中包括：用于建立通信路径的信息、图像显示装置200用于识别第一图像显示装置100a的信息及上述的ID图像等。取得了连接用信息的图像显示装置200的通信控制模块M26，在RAM230上确保第一图像供给装置100a用的存储区域（步骤[5]）。

[0107] 接着，图像显示装置200的显示布局控制模块M22，判定是否有用于对来自新连接的第一图像供给装置100a的供给图像进行显示的图像显示区域（布局框）的空闲（步骤[6]）。这里，由于图像显示装置200上仅连接有第一图像供给装置100a，所以显示布局控制模块M22将投射屏幕SC整个面设定为第一图像供给装置100a用的布局框。

[0108] 随后，图像显示装置200的通信控制模块M26，在投射屏幕SC显示包括正在取得投射用图像数据的信息的等候图像（步骤[7]）。接着，向第一图像供给装置100a发送供给图像的发送开始请求（步骤[8]）。

[0109] 图6是表示在步骤[7]～[8]中投射屏幕SC上显示的等候图像的图。该等候图像400中不仅显示有上述信息，还显示有请求了发送供给图像的装置的ID图像。在附图中，显示了第一图像供给装置100a的ID图像331a。

[0111] 若在投射屏幕SC上显示了供给图像，则图像显示装置200的更新信息生成模块M25根据显示图像生成模块M23生成的显示用图像数据，生成屏幕图像310的图像数据。然后，将该屏幕图像310的图像数据作为对第一图像供给装置100a的更新信息发送给第一图像供给装置100a（步骤[12]）。

[0112] 第一图像供给装置100a的用户接口模块M4使用接收到的更新信息，来更新操作窗口300（图5(b)）的屏幕图像310（步骤[13]）。由此，投射屏幕SC的显示图像和操作窗口300的屏幕图像310同步。

[0113] 图7(A)是表示图像显示装置200将来自第一图像供给装置100a的供给图像501a，投射到投射屏幕SC的状态的图。在投射屏幕SC上，以散布于整个面的方式显示了供给图像501a。在本说明书书中，将一张供给图像如此散布于投射屏幕SC整体的显示布局的模式，称为“单画面显示模式”。其中，在本实施例的图像显示装置200中，默认设定了该单画面显示模式。

[0114] 这里，在第一图像供给装置100a的显示部160上显示了操作窗口300，但在投射屏幕SC上显示的供给图像501a中没有显示操作窗口300。这是因为第一图像供给装置100a中，以不包括操作窗口300的形式生成了供给图像501a。具体而言，在图像捕捉模块M1捕捉显示部160的显示图像时，将操作窗口300分层窗口化（layer window）。然后，透过操作窗口300来捕捉操作窗口300以外的显示图像。供给图像生成模块M2使用该捕捉图像，生成供给图像501a。

[0115] 这样，在本实施例的图像显示系统1000中，不在投射屏幕SC上显示操作窗口300。
由此，能够避免在投射屏幕 SC 上用户所准备的资料图像被操作窗口 300 遮挡，提高了图像显示系统 100 的便利性。

[0116] 图 7 (B) 是将第一图像显示装置 100a 中显示的操作窗口 300 大显示的图。图 7 (B) 除了操作窗口 300 的屏幕图像 310 的内容发生变更之外，与图 5 (B) 大致相同。屏幕图像 310 通过由图像显示装置 200 发送的更新信息与投射屏幕 SC 的显示图像同步。

[0117] 图 8 (A) 是用于说明在第一图像显示装置 100a 的基础上，将第二图像显示装置 100b 与图像显示装置 200 之间连接之后的状态的图。图 8 (A) 除了追加了第二图像显示装置 100b 这点以外，与图 7 (A) 大致相同。在该例子中，第二图像显示装置 100b 中显示有操作窗口 300 以及桌画面 101b。其中，将操作第二图像显示装置 100b 的参加者称为“用户 b”。

[0119] 图 8 (B) 是表示第一和第二图像显示装置 100a、100b 中显示的被更新后的操作窗口 300 的图。图 8 (B) 除了追加了第二图像显示装置 100b 的 ID 图像 331b 这点以外，与图 7 (B) 大致相同。若建立了第二图像显示装置 100b 与图像显示装置 200 之间的连接，则操作窗口 300 中被追加显示第二图像显示装置 100b 的 ID 图像 331b。由此，第一图像显示装置 100a 的用户 a 能够知道作为新的其他参加者的用户 b 借助第二图像显示装置 100b 登录了图像显示装置 200。

[0120] 图 9 (A) 是用于对进而将第三和第四图像显示装置 100c、100d 分别与图像显示装置 200 连接之后的状态进行说明的图。图 9 (A) 除了追加了第三和第四图像显示装置 100c、100d 这点以外，与图 8 (A) 大致相同。在该例子中，第三和第四图像显示装置 100c、100d 分别显示有操作窗口 300 以及桌面画面 101c、101d。其中，以下将操作第三和第四图像显示装置 100c、100d 的参加者分别称为“用户 c”及“用户 d”。需要说明的是，由于投射屏幕 SC 保持单画面显示模式的设定，所以在投射屏幕 SC 上一直仅显示供给图像 501a。

[0121] 图 9 (B) 是表示建立了第三和第四图像显示装置 100c、100d 分别与图像显示装置 200 之间的连接之后的各图像显示装置 100a ～ 100d 中显示的操作窗口 300 的图。图 9 (B) 除了追加了第三和第四图像显示装置 100c、100d 的 ID 图像 331c、331d 这点以外，与图 8 (B) 大致相同。这样，在本实施例的图像显示系统 1000 中，以各图像显示装置 100a ～ 100d 与图像显示装置 200 连接的顺序，向 ID 图像显示区域 330 不断追加显示各 ID 图像 331a ～ 331d。其中，在本实施例的图像显示系统 1000 中，以该连接顺序对各图像显示装置 100a ～ 100d 赋予优先级。

[0122] 这里，如上所述，在本实施例的图像显示系统 1000 中，通过在各图像显示装置 100a ～ 100d 中对操作窗口 300 进行操作，能够变更投射屏幕 SC 上的供给图像的显示布局。通过操作该操作窗口 300 进行的显示布局的变更操作，能够在投射屏幕 SC 上同时显示与图
像显示装置 200 连接的各图像供给装置 100a ～ 100d 所供给的各供给图像。

[0123] 图 10 是用于经由操作窗口 300 受理了投射屏幕 SC 的显示布局的变更操作时，各图像供给装置 100a ～ 100d 与图像显示装置 200 之间的交换处理进行说明的时序图。其中，在图 10 中，没有按各图像供给装置 100a ～ 100d 的每一个区别各图像供给装置 100a ～ 100d 的处理顺序，而向纸面在右侧一连串地进行了图示。

[0124] 若各图像供给装置 100a ～ 100d 的用户接口模块 M4 受理了经由操作窗口 300 的用户操作 (步骤 [20])，则将该用户的操作内容向图像显示装置 200 发送 (步骤 [21])。收到了该操作内容的图像显示装置 200 的显示布局控制模块 M22 根据该操作内容，变更投射屏幕 SC 的显示布局的设定 (步骤 [22])。另外，此时显示布局控制模块 M22 也可以根据需要而进行供给图像的发送请求。然后，显示图像生成模块 M23 根据新的显示布局的设定，使用来自各图像供给装置 100a ～ 100d 的供给图像来生成显示图像数据。

[0125] 在显示布局的变更被反映到投射屏幕 SC 上之后，更新信息生成模块 M25 基于投射屏幕 SC 的显示图像数据，生成屏幕图像 310 的图像数据。然后，将屏幕图像 310 的图像数据作为更新信息，发送给各图像供给装置 100a ～ 100d (步骤 [23])。在各图像供给装置 100a ～ 100d 中，使用该更新信息对操作窗口 300 的屏幕图像 310 进行更新，使屏幕图像 310 的内容与投射屏幕 SC 的显示内容同步 (步骤 [24])。

[0126] 这样，根据本实施例的图像显示系统 1000，如果已与图像显示装置 200 连接，则通过各图像供给装置 100a ～ 100d 中任意一个均能够变更投射屏幕 SC 的显示布局。由此，提高了图像显示系统 1000 的便利性。

[0127] 下面，对经由操作窗口 300 进行的显示布局的变更操作具体说明。其中，如上所述，在本实施例的图像显示系统 1000 中，操作窗口 300 的屏幕图像 310 的显示内容与投射屏幕 SC 的显示内容同步。因此，以下的说明中，屏幕图像 310 的显示内容变更了的情况下，投射屏幕 SC 的显示内容也同样地变更。

[0128] 图 11 (A) ～ (C) 是用于对通过操作窗口 300 的显示模式切换键 320 来切换投射屏幕 SC 上的显示布局模式进行说明的说明图。这里，为了便于说明，设想只有用户 a 操作的第一图像供给装置 100a 与图像显示装置 200 连接的状态。其中，在图 11 (B)、(C) 中图示了用户能够借助操作部 150 而使其在桌面画面上任意移动的指示器 341。

[0129] 图 11 (A) 表示第一图像供给装置 100a 与图像显示装置 200 连接，在投射屏幕 SC 上以单画面显示模式显示了供给图像 501a 时的操作窗口 300，其与图 7 (A) 大致相同。此时，显示模式切换键 320 处于第一键 321 被按下状态。这样，在第一键 321 被按下时，投射屏幕 SC 被设定成单画面显示模式。

[0130] 图 11 (B) 是表示用户 a 通过指示器 341 按下了显示模式切换键 320 的第二键 322 时的操作窗口 300 的图。若第二键 322 被按下，则投射屏幕 SC 被分成为左右两部分，供给图像 501a 被显示在画面左侧的布局框内。以下，将具有如此被分割成两个布局框的显示布局模式称为 “双画面显示模式”。

[0131] 图 11 (C) 是表示用户 a 通过指示器 341 按下了显示模式切换键 320 的第三键 323 时的操作窗口 300 的图。若第三键 323 被按下，则投射屏幕 SC 被纵横分割成四部分，供给图像 501a 被显示在画面左侧的铺设布局内。以下，将具有投射屏幕 SC 被纵横四分割的布局框的显示布局模式称为 “四画面显示模式” 这样，通过分别按下显示模式切换键 320
的第一至第三键 321～323，能够将投射屏幕 SC 的显示布局切换成单画面显示模式、双画面显示模式、四画面显示模式。

[0132] 图 12(A1)、(A2)是用于在图 11(B)中所说明的双画面显示模式时，用户 b 操作的第二图像供给装置 100b 与图像显示装置 200 连接时的显示布局的变化进行说明的图。其中，图 12(A1)与图 11(B)大致相同。

[0133] 在双画面显示模式时，若第二图像供给装置 100b 与图像显示装置 200 连接，则与图 8 中说明的情况不同，投射屏幕 SC 中存在未显示图像的布局框。因此，根据图 4 的步骤 [6] 以后的处理顺序，在投射屏幕 SC 上左右布局地显示第一和第二图像供给装置 100a、100b 各自的供给图像 501a、501b（图 12(A2)）。而且，在操作窗口 300 的 ID 图像显示区域 330 中追加显示第二图像供给装置 100b 的 ID 图像 331b。

[0134] 图 12(B1)、(B2)是用于在图 11(C)的四画面显示模式时，第二至第四图像供给装置 100b～100d 依次与图像显示装置 200 连接时的显示布局的变化进行说明的图。其中，图 12(B1)与图 11(C)大致相同。该情况下，根据图 4 的步骤 [6] 以后的处理顺序，在投射屏幕 SC 空白的布局框内，以图 12(B2)的箭头所示的顺序布局第二至第四图像供给装置 100b～100d 的供给图像 501b～501d。

[0135] 图 13～图 17 是用于说明通过显示模式切换键 320 进行投射屏幕 SC 的显示内容的变更操作的图。图 13(A)示意地表示了第一和第二图像供给装置 100a、100b 与图像显示装置 200 连接，各个供给图像 501a、501b 通过四画面显示模式被显示于投射屏幕 SC 时的操作窗口 300。

[0136] 处于该状态时，若通过指示器 341 按下操作窗口 300 的第一键 321，则投射屏幕 SC 被切换成单画面显示模式（图 13(B)）。然后，在投射屏幕 SC 中显示最前与图像显示装置 200 连接的第一优先级的第一图像供给装置 100a 的供给图像 501a。然后，若进一步通过指示器 341 点击第一键 321，则在投射屏幕 SC 上以单画面显示模式的状态显示第二图像供给装置 100b 的供给图像 501b（图 13(C)）。需要说明的是，之后每当通过指示器 341 点击第一键 321 时，供给图像 501a、501b 可以被互相替换地显示。

[0137] 图 14(A)示意地表示了所有的图像供给装置 100a～100d 与图像显示装置 200 连接，各自的供给图像 501a～501d 通过四画面显示模式被显示于投射屏幕 SC 时的操作窗口 300。在处于该状态时，若通过指示器 341 按下操作窗口 300 的第一键 321，则投射屏幕 SC 被切换成单画面显示模式（图 14(B)）。而且，在投射屏幕 SC 上显示最先与图像显示装置 200 连接的第一图像供给装置 100a 的供给图像 501a。然后，每进一步通过指示器 341 点击第一键 321 时，便以优先级高的顺序在投射屏幕 SC 不断显示供给图像 501b～501d（图 14(C)～图 14(E)）。其中，当在处于图 14(E)的显示状态时进而点击第一键 321 时，可以返回到图 14(B)的显示状态。

[0138] 图 15(A1)示意地表示了所有的图像供给装置 100a～100d 与图像显示装置 200 连接，在双画面显示模式的一方的布局框内显示供给图像 501b，另一方的布局框为非显示状态时的操作窗口 300。其中，用于生成显示状态的操作方法将在后面进行说明。此时，若通过指示器 341 按下第一键 321 而切换成单画面显示模式，则已经显示的供给图像 501b 重新布局于整个画面来进行显示（图 15(A2)）。

[0139] 图 15(B1)示意地表示了在所有的图像供给装置 100a～100d 与图像显示装置 200
连接的状态下，单画面显示模式的投射屏幕 SC 为非显示状态时的操作窗口 300。其中，用于设为这种显示状态的操作方法将在后面进行说明。此时，若通过指示器 341 按下第一键 321 而切换成单画面显示模式，则显示优先权最高的第一图像显示装置 100a 的供给图像 501a（图 15(B2)）。

[0140] 图 16(A1) 示意地表示了所有的图像供给装置 100a～100d 与图像显示装置 200 连接，在四画面显示模式的投射屏幕 SC 上同时显示了所有的供给图像 501a～501d 时的操作窗口 300。此时，若通过指示器 341 按下第二键 322，则投射屏幕 SC 被切换成双画面显示模式，横向并列地同时布局显示供给图像 501a、501b（图 16(A2)）。另外，之后每当点击第二键 322 时，可以按照优先级从高到低的顺序，在一张一张地变化的同时以两张为一组来显示各供给图像 501a～501d。

[0141] 图 16(B1) 除了只有第一图像供给装置 100a 的供给图像 501a 为非显示状态这一点以外，与图 16(A1) 大致相同。其中，在本实施例的图像显示系统 1000 中，若在与图像显示装置 200 连接的状态下，使图像供给装置处于睡眠状态，则在投射屏幕 SC 上，该图像供给装置的供给图像成为非显示。而且，可以按照用户的指示，随意使请求图像成为非显示。

[0142] 在该状态下，若通过指示器 341 按下第二键 322，则投射屏幕 SC 被切换成双画面显示模式（图 16(B2)）。而且，在不处于非显示状态的图像供给装置 100b～100d 当中，显示优先权高的第二和第三图像供给装置 100b、100c 的供给图像 501b、501c。另外，之后每当点击第二键 322 时，可以按照优先级从高到低的顺序逐张变化地显示供给图像 501b、501c、501d。

[0143] 图 17(A1) 示意地表示了在所有的图像供给装置 100a～100d 与图像显示装置 200 连接的状态下，在投射屏幕 SC 上以单画面显示模式显示了供给图像 501a 时的操作窗口 300。此时，若通过指示器 341 按下第三键 323，则投射屏幕 SC 被切换成四画面显示模式，所有的供给图像 501a～501d 被同时布局显示（图 17(A2)）。其中，供给图像 501a～501d 按照优先级的顺序被布局。

[0144] 图 17(B1) 示意地表示了第一和第二图像供给装置 100a、100b 与图像显示装置 200 连接，以双画面显示模式在投射屏幕 SC 上同时显示了两个供给图像 501a、501b 时的操作窗口 300。此时，若通过指示器 341 按下第三键 323，则投射屏幕 SC 被切换成四画面显示模式。而且，两个供给图像 501a、501b 分别布局显示于上侧的横向排列的两个布局框内（图 17(B2)）。此时，投射屏幕 SC 的下侧的布局框成为空闲显示区域。因此，当处于该显示状态下，来自最新与图像显示装置 200 连接的图像供给装置的供给图像被显示在这些布局框内（图 4 的步骤 [6] 以后的处理）。

[0145] 在本实施例的图像显示系统 1000 的操作窗口 300 中，除了基于上述显示模式切换键 320 的操作以外，还能够通过以下说明的操作来变更投射屏幕 SC 的显示内容。

[0146] 图 18～图 24 是用于对通过滑动块 342 实施投射屏幕 SC 的显示内容的变更操作进行说明的图。图 18(A1)、(B1) 分别表示了第一图像供给装置 100a 与图像显示装置 200 连接，在投射屏幕 SC 上以单画面显示模式显示了供给图像 501a 时的操作窗口 300。图 18(A1)、(B1) 除了分别替代指示器 341 而图示了滑动块 342 这点以外，与图 10(A) 大致相同。

[0147] 这里，在本实施例的各图像供给装置 100a～100d 中，若在操作窗口 300 中使指示
器 341 在屏幕图像 310 的布局框的边界上（或线上）移动，则指示器 341 被切换成滑动块 342。图 18(A1) 是滑动块 342 被显示在屏幕图像 310 的右侧的外端的状态，图 18(B1) 是滑动块 342 被显示在屏幕图像 310 的左侧的外端的状态。

[0148] 指示器 341 在单画面显示模式下，使滑动块 342 显示在屏幕图像 310 的右侧的外端或左侧的外端，直接向屏幕图像 310 的中央拖动滑动块 342。于是，投射屏幕 SC 被切换成双画面显示模式，将之前所显示的供给图像 501a 显示到滑动块 342 被拖动的方向侧的布局框内（图 18(A2)、(B2)）。而且，显示模式切换键 320 成为替代第一键 321 而显示第二键 322 被按下的状态。

[0149] 这样，在本实施例的图像显示系统中，通过拖动滑动块 342，能够切换显示布局的模式。其中，在通过滑动块 342 切换显示布局的模式时，给与显示器对应，显示模式切换键 320 的状态也被切换。

[0150] 这里，由于图像显示装置 200 上仅连接有第一图像供给装置 100a，所以另一方的布局框成为非显示状态。另外，在图像显示装置 200 连接有两个以上的图像供给装置时，可以在两个布局框内按照优先级来显示这些供给图像。

[0152] 图 20(A1)、(B1) 分别表示了两个图像供给装置 100a、100b 与图像显示装置 200 连接，各自从供给图像 501a、501b 以双画面显示模式显示于投射屏幕 SC 时的操作窗口 300。当处于该显示状态时，使滑动块 342 显示于屏幕图像 310 中央的布局框上。当从左侧（图 20(A1) 的虚线箭头的方向）或者右侧（图 20(B1) 的虚线箭头的方向）拖动滑动块 342。在向左侧拖动了滑动块 342 时，投射屏幕 SC 被切换成单画面显示模式，显示在右侧的布局框内的供给图像 501b 被显示于整个面（图 20(A2)）。另一方面，在向右侧拖动了滑动块 342 时，投射屏幕 SC 被切换成单画面显示模式，并且显示在左侧的布局框内的供给图像 501a 被显示于整个面（图 20(B2)）。

[0153] 图 21(A1)、(B1) 除了滑动块 342 的显示位置不同这一点以外，分别与图 20(A1)、(B1) 大致相同。在图 21(A1) 中，滑动块 342 位于屏幕图像 310 的上侧的外端，在图 21(B1) 中，滑动块 342 位于屏幕图像 310 的下侧的外端。在该显示状态下，若向屏幕图像 310 的纵向的中央拖动滑动块 342，则投射屏幕 SC 被从双画面显示模式切换成四画面显示模式。更具体而言，在从屏幕图像 310 的下侧向上侧拖动了滑动块 342 时（图 21(A1)），切换成四画面显示模式。而且，原本显示的两张供给图像 501a、501b 分别被显示于下侧的两个布局框中（图 21(A2)）。另一方面，在从屏幕图像 310 的上侧向下侧拖动了滑动块 342 时（图 21(B1)），切换成四画面显示模式，两张供给图像 501a、501b 分别被显示于上侧的两个布局框中（图 21(B2)）。另外，在图像显示装置 200 上连接有 3 个以上图像供给装置的情况下，可以在剩余的布局框中追加显示处于未显示状态的供给图像。

[0154] 图 22(A1)、(B1) 分别表示了所有的图像供给装置 100a ～ 100d 与图像显示装置 200 连接，在四画面显示模式下显示了各自的供给图像 501a ～ 501d 的操作窗口 300。该显示状态下，在图 22(A1) 中，从将屏幕图像 310 上下分割的布局框的边界向下侧拖动滑
动块 342。于是，投射屏幕 SC 被切换成双画面显示模式，在四画面显示模式下显示于上侧的布局框内的两张供给图像 501a、501b 承担原样被继续显示（图 22(A2)）。另一方面，在图 22(B1) 中，从将屏幕图像 310 上下分割的布局框的边缘上向上侧拖动滑动块 342。于是，投射屏幕 SC 被切换成双画面显示模式，在四画面显示模式下显示于下侧的布局框内的两张供给图像 501c、501d 承担原样被继续显示（图 22(B2)）。

[0155] 图 23(A1)、(B1) 分别表示了第一图像供给装置 100a 或第四个图像供给装置 100d 从图 22(A1)、(B1) 中说明的状态退出时的状态。即，在图 23(A1) 中，第一图像供给装置 100a 的 ID 图像 331a 消失，在图 23(B1) 中，第四图像供给装置 100d 的 ID 图像 331d 消失。在该状态下，若执行与图 22(A1)、(B1) 中说明的操作同样的滑动块 342 的操作，则投射屏幕 SC 被切换成双画面显示模式，滑动块 342 被拖动的方向侧的布局框被删除。而且，在投射屏幕 SC 的一方的布局框内，显示供给图像 501b 或供给图像 501c，在另一方的布局框内成为不显示图像的状态（图 23(A2)、(B2)）。

[0156] 图 24(A1) 表示了所有的图像供给装置 100a～100d 与图像显示装置 200 连接，在四画面显示模式下显示了各自的供给图像 501a～501d 时的操作窗口 300。此时，使滑动块 342 显示在屏幕图像 310 的上侧的外周端，并拖动到下侧的外周端。于是，投射屏幕 SC 被切换成单画面显示模式，所有的供给图像 501a～501d 成为非显示（图 24(A2)）。另外，在四画面显示模式下将滑动块 342 从屏幕图像 310 的左侧或右侧的外周端，拖动到相反侧的外周端的情况下也同样（图 24(B1)、(B2)）。

[0158] 这里，在操作窗口 300 的屏幕图像 310 上，通过指示器 341 指定并双击供给图像 501a。于是，投射屏幕 SC 被切换成单画面显示模式，所选择的供给图像 501a 被放大显示（图 25(A2)）。在四画面显示模式下指定并双击供给图像 501a 的情况也同样（图 25(B1)、(B2)）。这样，在本实施例的图像显示系统 1000 中，能够在投射屏幕 SC 上，从分割布局的多个供给图像中任意选择一张，将其放大显示于整个面。

[0159] 图 26、27 是用于说明通过使用了指示器 341 的 ID 图像选择，进行投射屏幕 SC 的显示状态的变更操作的图。图 26(A1) 除了利用指示器 341 选择的图像不同这点以外，与图 25(A1) 大致相同。在图 26(A1) 中，从显示在 ID 图像显示区域 330 的 ID 图像 331a～331d 中选择了供给图像缩略图 332a。若利用指示器 341 双击供给图像缩略图 332a，则投射屏幕 SC 被切换成单画面显示模式，来自第一图像供给装置 100a 的供给图像 501a 被放大显示（图 26(A2)）。在四画面显示模式下双击供给图像缩略图 332a 的情况也同样（图 26(B1)、(B2)）。

[0160] 图 27(A1) 除了在单画面显示模式下显示供给图像 501a 这点，和通过指示器 341 选择了供给图像缩略图 332b 这点以外，与图 26(A1) 相同。当以单画面显示模式在投射屏幕 SC 上仅显示了供给图像 501a 时，利用指示器 341 双击供给图像缩略图 332b。于是，在投射屏幕 SC 上，替代供给图像 501a 而显示来自第二图像供给装置 100b 的供给图像 501b（图
27(A2))。其中，在投射屏幕 SC 处于非显示状态时，通过指示器 341 双击了供给图像缩略图 332b 的情况也同样（图 27(B1)、(B2))。

【0161】另外，也可以通过替代供给图像缩略图而双击用户识别用像，来变更投射屏幕 SC 的显示状态。这样，在本实施例的图像显示系统 1000 中，能够从显示在操作窗口 300 的 ID 图像任意选择图像供给装置，使来自该图像供给装置的供给图像在投射屏幕 SC 上显示于整个面。

【0162】图 28～图 30 是用于说明通过使用了指示器 341 的 ID 图像的拖放，进行投射屏幕 SC 的显示状态的变更操作的图。图 28(A) 与图 27(A1) 大致相同。在图 28(A) 的显示状态时，通过指示器 341 将供给图像缩略图 332b 拖放到屏幕图像 310 上（图 28(B)）。于是，在投射屏幕 SC 上，取代供给图像 501a 而显示供给图像 501b（图 28(C)）。其中，在本实施例的图像显示系统 1000 中，根据释放供给图像缩略图 332b 的位置来执行显示布局模式的切换，详细内容将在后面进行说明。

【0163】图 29(A1) 表示了所有的图像供给装置 100a～100d 与图像显示装置 200 连接，双画面显示模式下的两个布局框中均没有显示图像的状态时的操作窗口 300。此时，通过指示器 341 将供给图像缩略图 332b 拖放到屏幕图像 310 中左侧的布局框内。于是，在投射屏幕 SC 的左侧的布局框中显示供给图像 501b（图 29(A2)）。另一方面，当通过指示器 341 将供给图像缩略图 332b 拖放到右侧的布局框内时（图 29(B1)），在投射屏幕 SC 的右侧的布局框内显示供给图像 501b（图 29(B2)）。另外，在作为供给图像缩略图的释放位置的布局框内已经显示有来自其他图像供给装置的供给图像的情况下，可以对供给图像进行替换。

【0164】图 30(A1) 表示了所有的图像供给装置 100a～100d 与图像显示装置 200 连接，在四画面显示模式下仅右侧下段的布局框内为非显示状态时的操作窗口 300。其中，在投射屏幕 SC 中显示有三张供给图像 501a～501c。此时，通过指示器 341 将与处于非显示状态的供给图像 501d 对应的供给图像缩略图 332d 向非显示状态的布局框内拖动。于是，在该布局框内显示有来自第四图像供给装置 100d 的供给图像 501d（图 30(A2)）。

【0165】图 30(B1) 表示了所有的图像供给装置 100a～100d 与图像显示装置 200 连接，在四画面显示模式下所有的供给图像 501a～501d 被显示于投射屏幕 SC 时的操作窗口 300。此时，例如通过指示器 341 将供给图像缩略图 332d 向显示有来自第三图像供给装置 100c 的供给图像 501c 的布局框内拖动。于是，供给图像 501c 的显示位置与供给图像 501d 的显示位置被互换（图 30(B2)）。

【0166】这样，在本实施例的图像显示系统 1000 中，通过在操作窗口 300 中将 ID 图像拖放到屏幕图像 310 上的布局框内，能够将来自该 ID 图像所表示的图像供给装置的供给图像显示到该布局框内。这里，在本实施例的图像显示系统 1000 中，通过进而利用指示器 341 对 ID 图像拖放，能够切换显示布局的模式。以下将对其具体方法进行说明。

【0167】图 31～图 32 是用于说明通过使用了指示器 341 的 ID 图像拖放，来进行投射屏幕 SC 的显示模式的切换操作的图。图 31(A) 表示了所有的图像供给装置 100a～100d 与图像显示装置 200 连接，供给图像 501a 以单画面显示模式显示于投射屏幕 SC 时的操作窗口 300。其中，在图 31(A) 中，为便于说明，通过对屏幕图像 310 附加阴影线，将屏幕图像 310 沿左右方向区分为三个图像区域 LA、CA、RA。

【0168】当处于图 31(A) 的显示状态时，如在图 28 中说明那样，通过指示器 341 将与第二
另一方面，在将供给图像缩略图 332b 拖放到靠近屏幕图像 310 中比较左侧的外周端的区域 LA 时，投射屏幕 SC 被切换成双画面显示模式。而且，来自第二图像供给装置 100b 的供给图像 501b 被显示于左侧的布局框内，原来显示的来自第一图像供给装置 100a 的供给图像 501a 被显示于右侧的布局框内（图 31(B2)）。在将供给图像缩略图 332b 释放到靠近屏幕图像 310 中比较右侧的外周端的区域 RA 时，投射屏幕 SC 也被切换成双画面显示模式。而且，来自第二图像供给装置 100b 的供给图像 501b 被显示于右侧的布局框内，原来显示的来自第一图像供给装置 100a 的供给图像 501a 被显示于左侧的布局框内（图 31(B3)）。图 32(A) 表示了所有的图像供给装置 100a～100d 与显示装置 200 连接，供给图像 501a、501b 在双画面显示模式下显示于投射屏幕 SC 时的操作窗口 300。其中，在图 32(A) 中，通过对屏幕图像 310 附加阴影线，将屏幕图像 310 沿上下方向划分成三个图像区域 UA、CA、BA。

在处于图 32(A) 的显示状态时，通过指示器 341 将供给图像缩略图 332c 向屏幕图像 310 上拖放。此时，例如在将供给图像缩略图 332c 释放到屏幕图像 310 中比较中央的区域 CA 内时，以双画面显示模式的状态，在所释放的布局框内显示与供给图像缩略图 332c 对应的供给图像 501c（图 32(B1)）。

另一方面，在将供给图像缩略图 332c 释放到靠近屏幕图像 310 中比较上侧的外周端的区域 UA 时，投射屏幕 SC 被切换成四画面显示模式。这里，在供给图像缩略图 332c 被释放到左侧的布局框内的情况下，供给图像 501c 显示于左侧上段的布局框内。在供给图像缩略图 332c 被释放到右侧的布局框内的情况下，供给图像 501c 显示于右侧上段的布局框内。原来显示的来自第一和第二图像供给装置 100a、100b 的供给图像 501a、501b 分别显示于下段的两个布局框内（图 32(B2)）。

并且，在将供给图像缩略图 332c 释放到靠近屏幕图像 310 中比较下侧的外周端的区域 DA 时，投射屏幕 SC 也被切换成四画面显示模式。而且，在供给图像缩略图 332c 被释放到左侧的布局框内的情况下，供给图像 501c 显示于左侧下段的布局框内。在供给图像缩略图 332c 被释放到右侧的布局框内的情况下，供给图像 501c 显示于右侧下段的布局框内。原来显示的来自第一和第二图像供给装置 100a、100b 的供给图像 501a、501b 分别显示于上段的两个布局框内（图 32(B3)）。

这样，根据本实施例的图像显示系统 1000，能够将来自 4 个图像供给装置 100a～100d 的供给图像 501a～501d 在共用的投射屏幕 SC 上分隔布局，同时进行显示。而且，虽然显示在各图像供给装置 100a～100d 的显示部 160 中，但借助未被显示在投射屏幕 SC 上的操作窗口 300，各用户能够任意操作投射屏幕 SC 上的显示状态。这样，可提供在会议或演示等中各参加者能够有效地进行发送等新的便利性。

B. 变形例：

另外，本发明不局限于上述的实施例和实施方式，在不脱离其主旨的范围内，能够以各种方式实施，例如还能够实现以下的变形。
[0177] B1. 变形例 1：

在上述实施例中，可以将通过硬件实现的构成的一部分替换成软件，也可以反过来，将通过软件实现的构成的一部分替换成硬件。例如，可以将图像供给程序 P1 的功能的一部分硬件化。

[0179] B2. 变形例 2：

[0180] 在上述实施例中，4 个图像供给装置 100a ～ 100d 与图像显示装置 200 连接。但图像显示装置 200 与图像供给装置 100a 还可以进而连接多个图像供给装置。

[0181] B3. 变形例 3：

在上述实施例中，图像显示装置 200 具有：将投射屏幕 SC 纵向分割成两部分的双画面显示模式，和纵横二分割的四画面显示模式等分割布局的显示模式。但是，图像显示装置 200 也可以具有更多分割布局的显示模式。例如，可以具有将投射屏幕纵向或横向分割成三部分的显示模式，或分割成多个布局框的显示模式。

[0183] B4. 变形例 4：

[0184] 在上述实施例中，图像显示装置 200 所具有的分割布局的显示模式以相同的大小构成了各布局框。但是，也可以以不同的大小构成投射屏幕 SC 的各布局框。各用户能够借助操作窗口 300 任意改变这些布局框的大小。

[0185] B5. 变形例 5：

[0186] 在上述实施例中，图像显示装置 200 向所连接的各图像供给装置 100a ～ 100d 发送用于使操作窗口 300 的显示内容同步的更新信息等，作为图像显示系统 1000 中的服务器发挥功能。但是，图像显示装置 200 也可以不发送操作窗口 300 的更新信息。例如，可以由最初与图像显示装置 200 连接的图像供给装置发送用于使各图像显示装置 200 的操作窗口 300 同步的更新信息。

[0187] B6. 变形例 6：

[0188] 在上述实施例中，以与图像显示装置 200 连接的顺序，对各图像供给装置 100a ～ 100d 赋予了从高到低的优先级。但是，也可以以其他的顺序赋予各图像供给装置 100a ～ 100d 的优先级。例如，各图像供给装置 100a ～ 100d 的优先级可以预先设定，也可以由用户任意设定、变更。另外，可以不对各图像供给装置 100a ～ 100d 赋予上述的优先级。不过，在对投射屏幕 SC 上的各供给图像的布局进行控制方面，优选对各图像供给装置 100a ～ 100d 赋予优先级。

[0189] B7. 变形例 7：

[0190] 在上述实施例中，各图像供给装置 100a ～ 100d 被去掉操作窗口 300 的自身的显示图像，作为各供给图像 501a ～ 501d 发送给图像显示装置 200。但是，各图像供给装置 100a ～ 100d 也可以仅将应用软件的窗口等，显示图像的任意区域供给给图像显示装置 200。各供给图像 501a ～ 501d 只要利用显示图像生成即可。

[0191] B8. 变形例 8：

[0192] 上述实施例中，在操作窗口 300 中设定了 ID 图像显示区域 330，但也可以省略 ID 图像显示区域 330。因为 ID 图像显示区域 330 用于显示一个显示显示供给图像的区域发挥作用，所以上为了提高作为参加者的用户的便利性，优选设置 ID 图像显示区域 330。另外，在上述实施例中，操作窗口 300 中设置有显示模式切换键 320，但也可以省略显示模式切换
键 320。而且，可以在操作窗口 300 中显示用于对显示方式与显示模式切换键 320 不同的显示模式进行切换的图标。

【0193】B9. 变形例 9：

【0194】在上述实施例中，屏幕图像 310 的显示内容与投射屏幕 SC 的显示内容同步。但是，也可以在屏幕图像 310 中反映投射屏幕 SC 的全部显示内容，还可以在屏幕图像 310 中仅反映投射屏幕 SC 上的供给图像的显示布局。即，可以在屏幕图像 310 中仅显示投射屏幕 SC 的布局框。

【0195】B10. 变形例 10：

【0196】上述实施例中，在新连接了图像供给装置的情况下，当布局框没有空余时，不显示该图像供给装置的供给图像。图 4 的步骤 [6]。但是，在新连接了图像供给装置的情况下，当布局框没有空余时，也可以自动切换显示模式，生成布局框，即时显示该供给图像。

【0197】B11. 变形例 11：

【0198】在上述实施例中，也可以通过利用指示器 341 将操作窗口 300 的屏幕图像 310 中显示的供给图像 501a ～ 501d 向其他的布局框拖动，来变更各供给图像 501a ～ 501d 的显示位置。

【0199】B12. 变形例 12：

【0200】在上述实施例中，图像显示装置 200 构成为向投射屏幕 SC 投射图像的投影仪。但是，图像显示装置 200 也可以不是投影仪，而例如是在液晶显示器，有机 EL 显示器等中生成图像的图像显示装置。

【0201】B13. 变形例 13：

【0202】在上述实施例中，图像供给装置 100a ～ 100d 由个人电脑构成，但图像供给装置 100a ～ 100d 也可以不由个人电脑构成。而且，即使在图像供给装置 100a ～ 100d 由个人电脑构成的情况下，所搭载的操作系统也可以不是 Windows（注册商标）。不过，图像供给装置 100a ～ 100d 优选具有能够从显示图像捕捉除了操作窗口 300 之后的图像的功能。

【0203】B14. 变形例 14：

【0204】在上述实施例中，各图像供给装置 100a ～ 100d 与图像显示装置 200 通过无线方式彼此连接，但是各图像供给装置 100a ～ 100d 与图像显示装置 200 也可以通过有线方式连接。
图3
图 5
图 6
图16
图 24
图 25