发明名称
挤出用模具和方法

摘要
本发明涉及一种适合用于热塑性硫化弹性体的挤出，特别是包含热塑性硫化弹性体的多种材料的共挤的模具。该模具包括储料口模板、通孔口模板、和轮廊口模板。通过将本发明的模具用于挤出，由于料流池内通孔的设计，挤出料流被很好地控制和平衡，因而挤出制品能获得很好的表面特性，例如良好的表面光滑度，并且能避免挤出过程中不想要的效果，例如边缘撕裂，扭曲，模具胡须和银线等现象。
权利要求书

1. 一种适合用于挤出成型的模具，包括：

储料口模板 (10)，其包括储料口模板料流池 (15)、与所述储料口模板料流池 (15) 相连通的料流槽 (12)、和贯穿所述储料口模板 (10) 并用在一侧从挤出机机头接收挤出料并转移至另一侧的所述料流槽 (12) 的通孔 (11)，所述储料口模板料流池 (15) 和料流槽 (12) 设置在储料口模板的同一个表面内；

通孔口模板 (20)，其在模具使用中与所述储料口模板 (10) 相邻设置，并包括至少一个通孔口模板料流池 (22) 和多个从所述通孔口模板 (20) 的一侧贯穿至另一侧，连通所述储料口模板料流池 (15) 与所述通孔口模板料流池 (22) 的通孔口模板通孔 (21)，所述通孔口模板料流池 (22) 设置在通孔口模板 (20) 的表面内；

轮廓口模板 (40)，其在模具使用中与所述通孔口模板 (20) 相邻设置，并包括用于形成目标轮廓的轮廓口模板料流通道 (41)，所述轮廓口模板料流通道 (41) 从所述轮廓口模板 (40) 的一侧贯穿至另一侧并与所述通孔口模板料流池 (22) 相连通。

2. 如权利要求1所述的模具，进一步包括：

分隔口模板 (30)，其在模具使用中设置在所述通孔口模板 (20) 和所述轮廓口模板 (40) 之间，并包括分隔口模板料流通道 (31) 和至少一个沿挤出料的流动方向设置于所述分隔口模板料流通道 (31) 内的分隔壁 (32)，所述分隔口模板料流通道 (31) 从所述分隔口模板 (30) 的一侧贯穿至另一侧，并与所述通孔口模板料流池 (22) 和所述轮廓口模板料流通道 (41) 相连通。

3. 如权利要求2所述的模具，其特征在于，所述分隔壁 (32) 设置在所述分隔口模板料流通道 (31) 中对应于目标轮廓的不同形状的两个部分的相交处的位置。

4. 如权利要求2或3所述的模具，其特征在于，所述分隔壁 (32) 的厚度为 0.01mm-3mm。

5. 如权利要求2, 3 或 4 所述的模具，其特征在于，所述分隔口模板料流通道 (31) 的出口的尺寸为目标轮廓尺寸的 1-5 倍。

6. 如权利要求1-5中任一项所述的模具，其特征在于，所述储料口模板 (10) 包括至少一个通所述料流槽 (12) 至所述储料口模板料流池 (15) 的料支流槽 (13)。

7. 如权利要求1-6中任一项所述的模具，其特征在于，所述储料口模板 (10) 包括设置在所述料流槽 (12) 上和/或所述料支流槽 (13) 上的凸块 (14)。

8. 如权利要求1-7中任一项所述的模具，其特征在于，所述至少一个通孔口模板通孔 (21) 具有可以调节的直径。

9. 如权利要求1-8中任一项所述的模具，其特征在于，所述通孔口模板料流池 (22) 的开口的尺寸为目标轮廓尺寸的 1-10 倍。

10. 如权利要求1-9中任一项所述的模具，其特征在于，所述轮廓口模板料流通道 (41) 的出口的尺寸为目标轮廓尺寸的 1-3 倍。

11. 如权利要求1所述的模具，其进一步适合于共挤成型，包括：

第一储料口模板 (10) 和至少一个第二储料口模板 (10’)，每一个储料口模板 (10, 10’) 包括储料口模板料流池 (15, 15’), 与所述储料口模板料流池 (15, 15’) 相连通的料流槽 (12, 12’), 和贯穿所述储料口模板 (10, 10’) 并用来在一侧从挤出机机头接收挤出料并转移至另一侧的所述料流槽 (12, 12’) 的储料口模板通孔 (11, 11’), 所述储料口模板料流池 (15, 15’) 和料流槽 (12, 12’) 设置在储料口模板 (10, 10’) 的同一个表面内；
权利要求书

第一通孔口模板 (20) 和至少一个第二通孔口模板 (20’), 其在模具使用中分别与所述第一储料口模板 (10) 和所述第二储料口模板 (10’) 相邻设置, 每一个通孔口模板 (20, 20’) 包括通孔口模板料流程 (22, 22’) 和多个从所述通孔口模板 (20, 20’) 的一侧贯穿至另一侧, 连通所述储料口模板料流程 (15, 15’) 与所述通孔口模板料流程 (22, 22’) 的通孔口模板孔 (21, 21’), 所述通孔口模板料流程 (22, 22’) 设置在通孔口模板 (20, 20’) 的表面内；和

轮廓口模板 (40), 其在模具使用中与所述第一分通孔口模板 (20) 和至少一个第二通孔口模板 (20’) 相邻设置, 并且用于形成目标轮廓的轮廓口模板料流程 (41), 所述轮廓口模板料流程 (41) 从所述轮廓口模板 (40) 的一侧贯穿至另一侧并与所述第一通孔口模板料流程 (22) 和所述至少一个第二通孔口模板料流程 (22’) 相连通。

12. 如权利要求 11 所述的模具, 其进一步包括:

第一分隔口模板 (30) 和至少一个第二分隔口模板 (30’), 它们在模具的使用中分别设置在所述第一通孔口模板 (20) 和所述第二通孔口模板 (20’) 与所述轮廓口模板 (40) 之间和所述第一通孔口模板 (20) 与所述轮廓口模板 (40) 之间, 每一个分隔口模板 (30, 30’) 包括分隔口模板料流程 (31, 31’, 31”) 和至少一个沿出料的流动方向设置于所述分隔口模板料流程 (31, 31’, 31”) 内的分隔板 (32, 32’, 32”), 所述分隔口模板料流程 (31, 31’) 从所述分隔口模板 (30, 30’) 的一侧贯穿至另一侧并与所述通孔口模板料流程 (22, 22’) 和轮廓口模板料流程 (41) 相连通。

13. 一种挤出成型方法, 依次包括步骤:

a) 在带有模芯的挤出机中形成挤出料;

b) 传送上述挤出料使其从所述模具的储料口模板的一侧流入到设置在另一侧的料流程中;

c) 传送上述挤出料使其通过多个设置在所述模具的通孔口模板上的通孔, 从通孔口模板一侧流入到设置在另一侧的料流程中；和

d) 传送上述挤出料使其通过设置在所述模具的轮廓口模板中的料流通道以形成具有目标轮廓的制品。

14. 如权利要求 13 所述的方法, 在步骤 c) 和 d) 之间进一步包括步骤 c’); 传送所述挤出料使其通过设置在所述模具的分隔口模板上的、被至少一个沿出料流动方向设置的分隔板分隔的料流通道, 所述分隔口模板在使用中设置在所述通孔口模板和轮廓口模板之间。

15. 如权利要求 13 或 14 所述的方法, 其特征在于, 所述模具为权利要求 1-12 中任一项所述的模具。

16. 如权利要求 13-15 中任一项所述的方法, 其特征在于, 所述挤出料包含热塑性硫化弹性体材料。

17. 如权利要求 16 所述的方法, 其特征在于, 所述热塑性弹性体通过在与热塑性聚合物混合的同时使用交联剂动态交联橡胶来制备。

18. 如权利要求 17 所述的方法, 其特征在于, 所述橡胶为烯烃弹性体共聚物、丁基橡胶、天然橡胶、丁苯橡胶、丁二烯橡胶、丙烯腈橡胶、聚氨酯橡胶、聚异戊二烯橡胶、苯乙烯橡胶、氧化聚丁橡胶, 或其任意两种或多种的混合物。

19. 如权利要求 18 所述的方法, 其特征在于, 所述烯烃弹性体橡胶为乙丙橡胶、丙烯基
橡胶状共聚物、乙烯基弹性体或塑性体，或其任意两种或多种的混合物。

20. 使用如权利要求1-12中任一项所述的模具或采用如权利要求13-19中任一项所述的方法制备的制品。

21. 一种定形器，其适合用于挤出制品的形状保持，包括多个在使用中组合起来能够形成让挤出制品通过的定形通道的定形构件，其中，所述定形构件中在靠近所述定形通道的位置设有真空区域。

22. 如权利要求21所述的定形器，其特征在于，所述挤出制品为权利要求20所述的制品。

23. 如权利要求20或21所述的定形器，其特征在于，所述定形通道让所述定形构件和穿过所述通道的挤出制品之间保留有间隙。

24. 如权利要求23所述的定形器，其特征在于，靠近真空区的所述间隙为大约0.01mm至大约1.0mm。

25. 一种用于保持挤出制品的形状的方法，该方法包括让所述挤出制品通过如权利要求21-24所述的定形器。
挤出用模具和方法

技术领域
[0001] 本发明涉及一种适合用于热塑性硫化弹性体 (thermoplastic vulcanizate) 的挤出成型的模具，尤其是包含热塑性硫化弹性体的多种材料的共挤成型的模具。

背景技术
[0002] 热塑性硫化弹性体 (“TPV”) 其具有良好的密封性、表面特性和耐用性等而广泛用作制备气密密封部件，例如汽车用密封条的材料。
[0003] 制备包含热塑性硫化弹性体作为原料的部件的方法包括挤出成型。但是，由于 TPV 的流变行为与其它材料不同，硫化的热塑性材料和热塑性弹性体组合物的挤出工艺中，会出现某些不希望发生的现象，例如，材料通常容易累积在模具表面，常被称之为模具流涎 (drool) 或模具胡须 (mustache) 的现象和边缘撕裂，点线等现象。另外，在 TPV 与热塑性材料的共挤工艺中，由于不同材料的流变行为不同，更容易产生不想要的现象。此外，当目标轮廓（指沿垂直于挤出方向上的挤出制品的横截面的轮廓或形状，下文同）具有不规则形状时，则是更难以得到优秀的挤出制品的形状。因此，熔融 TPV 通过挤出机模具而获得形状，特别是形状的一致性，不仅取决于模具口的光滑程度，还取决于挤出料流的平衡。因此，控制挤出制品的形状和尺寸的一种方法主要在于控制挤出工艺过程中热塑性硫化弹性体的流变行为。
[0004] 因此，有必要提供一种适合于含有 TPV 的材料的挤出成型或共挤成型的模具，能有效地控制和平衡不同材料的挤出料流，从而制备出具有良好的形状的制品，并减少挤出过程中不良现象的产生。
[0005] 另一方面，挤出的制品通常需要在后续的冷却工序中定形。由不同材料的冷却行为各不相同，对于包含热 TPV 的两种或多种材料制备的部件的定形，特别是具有不规则形状时的定形变得困难。因此，也需要提供一种定形器 (sizer) 以在冷却工序中控制挤出制品的定形从而获得冷却后制品的良好形状。

发明内容
[0006] 本发明的另一方面提供一种适合用于挤出成型的模具，它包括：
[0007] 储料口模板 (pool die plate)，其包括储料口模板料流池，与所述储料口模板料流池相连的料流槽，和贯穿所述储料口模板并用来在侧从挤出机机头接收挤出料流并转动至另一侧的所述所述料流槽的储料口模板通孔，所述储料口模板料流池和料流槽设置在储料口模板的同一个面内；
[0008] 通孔口模板 (orifice die plate)，其在使用中与所述储料口模板相邻设置，并包括至少一个通孔口模板料流池和多个从所述通孔口模板的一侧贯穿至另一侧的，连通所述储料口模板料流池与所述通孔口模板料流池的通孔口模板通孔，所述通孔口模板料流池设置在通孔口模板的表面内；和
[0009] 轮廓口模板 (profile die plate)，其在使用中与所述通孔口模板相邻设置，并包
括用于形成目标轮廓的轮廓口模板料流通道，所述轮廓口模板料流通道从所述轮廓口模板的一侧贯穿至另一侧并与所述通孔口模板料流池相连通。

【0010】按本发明第一个方面提供的模具的一个实施方式中，该模具进一步包括：

【0011】分隔口模板（separator die plate），其在使用中设置在所述通孔口模板和所述轮廓口模板之间，并包括分隔口模板料流通道和至少一个沿挤出料流的流动方向设置于所述分隔口模板料流通道内的分隔壁，所述分隔口模板料流通道从所述分隔口模板的一侧贯穿至另一侧并连通所述通孔口模板料流池和所述轮廓口模板料流通道。

【0012】在本发明第一方面的另一个实施方式中，该模具适合用于包含 TPV 材料的共挤成型，其包括：

【0013】第一储料口模板和至少一个第二储料口模板，每一个所述储料口模板包括储料口模板料流池、与所述储料口模板料流池相连通的储料口模板中的料流槽，和贯穿所述储料口模板并用来在一侧从挤出机头接收挤出料流并转送至另一侧的所述料流槽的储料口模板通孔，所述储料口模板料流池和储料口模板料流槽设置在储料口模板的同一个表面内；

【0014】第一通孔口模板和至少一个第二通孔口模板，其在模具的使用中分别与所述第一储料口模板和所述第二储料口模板相邻设置，每一个所述通孔口模板包括至少一个通孔口模板料流槽和多个从所述通孔口模板的一侧贯穿至另一侧的通孔口模板料流池与所述通孔口模板料流池的通孔口模板通孔，所述通孔口模板料流池设置在通孔口模板的表面内，和

【0015】轮廓口模板，其在模具的使用中与所述第一通孔口模板和第二通孔口模板相邻设置，并包括用于形成目标轮廓的轮廓口模板料流通道，所述轮廓口模板料流通道从所述轮廓口模板的一侧贯穿至另一侧并与所述通孔口模板料流池相连通。

【0016】在另一个实施方式中，该模具适合用于共挤成型的模具进一步包括：

【0017】第一分隔口模板，其在模具的使用中设置在所述第一通孔口模板与所述轮廓口模板之间，并至少一个第二分隔口模板，其在模具的使用中设置在所述第二通孔口模板与所述轮廓口模板之间，每一个所述分隔口模板包括分隔口模板料流通道和至少一个沿挤出料的流动方向设置于所述分隔口模板料流通道内的分隔壁，所述分隔口模板料流通道从所述分隔口模板的一侧贯穿至另一侧并连通所述通孔口模板料流池和所述轮廓口模板料流通道。

【0018】本发明的第二个方面提供一种挤出成型制品的方法，包括步骤：

【0019】a) 在带有模具的挤出机中形成挤出料；

【0020】b) 传送所述挤出料使其从所述模具的储料口模板的一侧流入到设置在另一侧的料流池中；

【0021】c) 传送所述挤出料使其通过多个设置在所述模具的通孔口模板上的通孔，从通孔口模板一侧流入到设置在另一侧的料流池中，和

【0022】d) 传送所述挤出料使其通过设置在所述模具的轮廓口模板中的料流通道以形成具有目标轮廓的制品。

【0023】在本发明第二个方面的方法的一个实施方式中，在步骤 (c) 和 (d) 之间进一步包括步骤 (c’), 传送所述挤出料使其通过设置在所述模具的分隔口模板上的，被至少一个沿挤出
料流动方向设置的分隔壁分隔的料流通道，所述分隔口模板在使用中设置在所述通孔口模板和所述轮廓口模板之间。

【0024】在另一个实施方式中，本发明第二方面的方法中的模具是本发明第一方面提供的模具。

【0025】本发明第三方面提供由本发明的第一方面的模具和/或本发明第二方面的方法获得的制品。

【0026】本发明第四方面提供一种适合用于有效地保持挤出制品的形状和尺寸的定形器，其包括多个在使用中组合起来能够形成形挤出制品使用的定形通道的定形状件，其中，所述定形状件在靠近所述定形通道的位置设有真空区域。

【0027】本发明第五方面提供一种保持挤出制品的形状的方法，其包括让挤出制品穿过上述的定形器步骤。

【0028】使用本发明中的模具或方法进行挤出成型的一个优点在于，本发明模具中的料流池和通孔的设计，挤出料在模具中的流动能被很好地被控制和平衡，而得具有良好的形状表现的挤出的制品，例如，良好的表面光滑度，无边缘撕裂，轻微的或者无扭线，无银线，并减少了模具胡须的产生。另外，结合本发明的定形器使用，在挤出后的冷却工序中，最终轮廓的形状和尺寸能被很好地保持。

附图说明
【0029】本发明的内容及其优选实施方式，解决的技术问题和优点将结合附图来进行说明，其中：

【0030】图1A和1B是本发明一个实施方式中的模具的示意图，其包括储料口模板10、通孔口模板20、分隔口模板30、和轮廓口模板40，其中图1A是从挤出料流出方向观察到的各个口模板的示意图，图1B是从挤出料流入方向观察到的各个口模板的示意图；

【0031】图2是本发明一个实施方式中的储料口模板10的挤出料流出侧的流道设计示意图；

【0032】图3是本发明一个实施方式中的通孔口模板20的挤出料流出侧的流道设计示意图；

【0033】图4是本发明一个实施方式中的分隔口模板30的挤出料流出侧的流道设计示意图；

【0034】图5是本发明一个实施方式中的轮廓口模板40的挤出料流出侧的流道设计示意图；

【0035】图6A是本发明一个实施方式中的模具的示意图，其包括第一储料口模板10、第一通孔口模板20、第二储料口模板10’、第二通孔口模板20’，与第二分隔口模板30’及一个在第一分隔口模板30、和轮廓口模板40；图6B是上述各口模板的挤出料流出侧的流道设计示意图；

【0036】图7本发明一个实施方式中的定形器的剖面结构示意图。

【0037】优选实施方式
【0038】下面将描述本发明的各种具体实施方式，包括优选实施方式和本文中使用的定义。尽管下面的详细描述给出了具体的优选实施方式，本领域的技术人员将会明白这些实
施方式仅是示范性地，本发明可以其它实施。
【0039】本文中的“挤出机”是指任何类型的、能通过施加足够的剪切力来熔解材料，例如热塑性材料（热塑性硫化弹性体、聚乙烯、聚丙烯等），实现材料的混合并进行传送的装置。本文中的“挤出机”指混合熔融后通过挤出机挤出的材料。本文中“模具”是指由多个口模板（die plate）按一定顺序可拆卸地组装在一起的组合。
【0040】材料
【0041】本发明的模具尤其适合用于热塑性硫化弹性体（TPV）的挤出成型，或者热塑性硫化弹性体与已知热塑性材料的共挤成型。已知热塑性材料包括，但不限于，聚乙烯（PE）、聚丙烯（PP）、聚苯乙烯（PS）、热塑性硫化（TPS）、热塑性性体（TPE）、聚氯乙烯（PVC）或其混合物。
【0042】在一个实施方式中，TPV 通过在与热塑性聚和物混合的同时使用交联剂动态交联橡胶来制备。得到的组合物包括交联或硫化相、部分交联或硫化相和非交联相。交联相或部分交联相包括交联或部分交联的橡胶，非交联相包括热塑性聚和物。
【0043】橡胶包括能被硫化剂，例如，过氧化物，交联或硫化的那些聚合物。所提及的橡胶可以包括多于一种橡胶的混合物。非限制性的橡胶实例包括，烯烃弹性体共聚物、丁基橡胶、天然橡胶、丁苯橡胶、丁二烯橡胶、丙烯腈橡胶、丁苯橡胶、聚氨酯橡胶、聚异戊二烯橡胶、表氯醇橡胶、氯丁橡胶，或其混合物。
【0044】在一个实施方式中，烯烃弹性体共聚物包括乙丙橡胶、丙烯基橡胶状共聚物、和乙烯基烯烃性体或塑性体。乙丙橡胶是指从乙烯、至少一种 α-烯烃单体，和可选的至少一种二烯单体聚合得到的橡胶状共聚物。丙烯基橡胶状共聚物，也可称为丙烯-α-烯烃共聚物，包括衍生自丙烯的单元（即，重复单元）和衍生自乙烯或 α-烯烃的一个或多个共聚单体单元。乙烯基聚合性体或弹性体，也可称为乙烯-α-烯烃共聚物，包括衍生自乙烯和一个或多个 α-烯烃共聚单体的共聚物。本文中，α-烯烃具有少于 20 碳原子数。
【0045】在一个或多个实施方式中，丁基橡胶包括和丁烯与至少一个其它共聚单体，例如异戊二烯，聚合而来的共聚物或三聚物。
【0046】任何热塑性树脂都可用于制备本发明中的热塑性硫化弹性体。有用的热塑性树脂包括固态的、通常是高分子量的塑料树脂。在一个或多个实施方式中，热塑性树脂包括非功能化树脂。而某些实施方式中，热塑性硫化弹性体的热塑性成分包含功能化树脂。
【0047】在一个或多个实施方式中，热塑性硫化弹性体可以包含矿物油、合成油、或其混合物。这些油也称之为增塑剂或混合剂。在某些实施方式中，所述混合剂包括有机酯、烷基醚，或其混合物。在一些特定实施方式中，热塑性硫化弹性体还包含一些聚合加工助剂。
【0048】除了橡胶、热塑性树脂、和可选的加工助剂之外，本发明中的热塑性硫化弹性体可选择性地包括增强剂和非增强填料、抗氧剂、稳定剂、橡胶加工油、润滑剂、抗粘连剂、抗静电剂、石蜡、发泡剂、颜料、阻燃剂，或其它在橡胶混合领域熟知的加工助剂。可用的填料和混合剂包括传统的无机填料，例如，碳酸钙、粘土、滑石粉、硅土、二氧化钛、炭黑等。
【0049】可用于本发明的硫化剂（交联剂）指本领域技术人员熟知的氧化物，特别是有机氧化物交联剂。除此之外也可以添加其它交联助剂。
【0050】在一个或多个实施方式中，通过动态交联用交联剂来硫化或交联橡胶。术语“动态交联”是指橡胶的硫化或交联过程包含在与热塑性树脂的混合过程中，其中，橡胶在高于热
说明书

塑性树脂的熔点温度以上的温度下，在高剪切力的条件下被交联或部分交联或硫化。

【0051】挤出机

【0052】挤出机可以是本领域已知的任何合适的设备，例如是单、双或多筒式挤出机。在一个实施方式中，挤出机为单筒式挤出机。在另一个实施方式中，挤出机为双筒式挤出机，而在另一实施方式中，可使用多筒式挤出机。在一些实施方式中，挤出机料筒是光滑的；而在某些实施方式中，挤出机料筒是带凹槽的。

【0053】螺杆可以是本领域已知的任何合适的设备，只要能在挤出机中能产生高的剪切力即可，例如，通用螺杆，其不提供增强的剪切力，销钉螺杆（pin screw）、马多克螺杆（Maddock type screw）、或障碍螺杆（barrier screw）。在一个优选实施方式中，使用障碍螺杆。在另一实施方式中，可使用多孔螺杆。另外，优选挤出机螺杆的长径比超过 20。

【0054】挤出机中原料的混合通常在不超过 400℃的温度下进行，优选不超过 300℃，更优选不超过 250℃。进行熔融混合的最低温度通常大于等于 130℃，优选大于等于 150℃，更优选大于等于 180℃。混合的时间取决于所选用的 TPV 的材料的特性和混合的温度。通常混合时间的范围为 5 秒 -120 分钟，在大部分实施方式中为 10 秒 -30 分钟。

【0055】模具

【0056】在挤出机中混合后挤出到模具中。下面结合附图 1-6 详细说明本发明中的模具。每一个口模板使用本领域已知的材料制备以满足必要的目的。典型地材料包括但不限于，普通钢、不锈钢或合金。

【0057】在本发明的一个实施方式中，模具依次包括储料口模板 10，通孔口模板 20，分隔口模板 30（可选地）和轮廓口模板 40，如图 1A 和 1B 所示。其中，轮廓口模板安装在离挤出机最远的那端。

【0058】参照图 2，一个实施方式中，储料口模板 10 包括用来从挤出机出口（图中未示出）接收挤出料的通孔 11（下文称为“储料口模板通孔 11”）。储料口模板通孔 11 延伸贯穿储料口模板 10，并具有设置在不同侧面内，优选相对侧面内的进口和出口。一个开口与料流槽 12 相通，另一个开口则与挤出机的出口，例如挤出机的机头（或任何其它挤出料传送设备，例如适配器）相通。料流槽 12 与料流池 15（下文称为“储料口模板料流池 15”）相通。在储料口模板中，料流槽 12 和储料口模板料流池 15 设置在同一个表面内，例如，以一定深度凹入表面中。

【0059】在一个实施方式中，挤出料通过储料口模板通孔 11 接收，并依次流入到料流槽 12，然后流入到料流池 15 中。然而在另一实施方式中，在出料口模板上设置有料流支槽 13 用以连通料流槽 12 和储料口模板料流池 15。料流支槽 13 设置在与料流槽 12 和储料口模板料流池 15 相同的表面内。在这种情况下，挤出料通过储料口模板通孔 11 流入到料流槽 12，料流支槽 13，然后流入到储料口模板料流池 15 中，如图 2 所示。

【0060】对料流槽 12，料流支槽 13、或储料口模板料流池 15 的深度没有特别的限定，本领域人员很容易根据不同的目的选择适当的深度。在一个实施方式中，料流槽 12，料流支槽 13，和料流池 15 具有相同的深度。在另一实施方式中，储料口模板料流池 15 具有铰料流槽 12 和料流支槽 13 更深的深度。然而在某些实施方式中，也可以使储料口模板料流池 15 具有铰料流槽 12 和料流支槽 13 更浅的深度，只要在料流槽 12 和 / 或料流支槽 13 中产生的挤出料流的压力不至于导致储料口模板 10 与和其相邻的口模板，例如通孔口模板 20 被分
隔开即可。

【0061】料流槽 12 和料流支槽 13 的形状和尺寸没有特别的限定，本领域技术人员很容易根据不同的目标轮廓选择合适的形状和尺寸。一般地，料流槽 12 或料流支槽 13 具有 D 型横截面或者方形横截面。

【0062】在有些实施方式中，优选在料流槽 12 和/或料流支槽 13 中设置凸块 14，用以调节这些料流槽中的料流速度，从而平衡流入至储料口模架料流池 15 中的挤出料流。凸块 14 自料流槽 12 和/或料流支槽 13 的底部向上凸起一定的高度，可以设置在料流槽 12 和/或料流支槽 13 中的任意位置且不限于任何形状或尺寸。在一个实施方式中，凸块 14 设置在料流支槽 13 的端口处，如图 2 所示。

【0063】在储料口模板 10 中，挤出料从挤出机种通过储料口模架通孔 11 引入并汇聚在储料口模架料流池 15 中，然后流入与储料口模板 10 相邻的通孔口模板 20 中。

【0064】参见图 3，在一个实施方式中，通孔口模板 20 包括多个延伸穿过通孔口模板 20 的通孔 21（下文称为“通孔口模架通孔 21”）和至少一个的料流池 22（下文称为“通孔口模架料流池 22”）。每个通孔口模架通孔 21 具有设置在通孔口模板 20 的不同侧面中，优选相对侧面中的进口和出口，其中进口与储料口模架料流池 15 相连通；出口与通孔口模架料流池 22 相连通。因此，通过通孔口模架通孔 21，挤出料被分成多个细小的料流，均匀地从储料口模架料流池 15 流入到通孔口模架料流池 22 中。

【0065】通孔口模架料流池 22 以一定的深度凹入地设置在通孔口模板 20 的表面内。通孔口模架料流池 22 的深度没有特别的限制。本领域技术人员很容易地根据不同的材料和目的选择合适的深度。

【0066】通孔口模架通孔 21 的直径也没有特别的限定范围。这里的“直径”是指沿垂直于挤出料流动方向上的通孔横截面的最大尺寸，并可以随横截面不同而不同。一般地，挤出料的粘度越大，通孔口模架通孔 21 的直径越大，以防止通孔堵塞。一般地，该直径可以是 0.1mm-5.0mm，或 0.5mm-3.0mm，或 0.5mm-2.5mm，或 1.0mm-2.5mm。在一个实施方式中，所有通孔口模架通孔 21 的直径都相同。在另一个实施方式中，通孔口模架通孔 21 的直径可以互不相同，例如，当不同通孔口模架通孔 21 中的料流速度互不相同时，可以调节通孔口模架通孔 21 的直径，例如使用钻头碾磨通孔以适当地增加直径，或者将具有较挤出料更高熔融温度的金属片或类似物焊接到通孔内以适当地减小直径，从而控制不同通孔口模架通孔 21 中的料流速度使其保持基本相同。

【0067】通孔口模架通孔 21 的数量设置没有特别限定。优选的是设置越多越好。通孔口模架通孔 21 的终端开口在通孔口模架料流池 21 中的分布没有特别限制，可以以任何方式分布。在一个优选实施方式中，所有通孔 21 的出口是均匀分布地。在一个实施方式中，通孔口模架通孔 21 的出口在通孔口模架料流池 22 的周边分布较其中间区域更密集。

【0068】通孔口模架料流池 22 的开口不限于任何特定的形状。通孔口模架料流池的开口尺寸为目标轮廓尺寸的 1-10 倍，或 1.5-8 倍，或 2-4 倍。在对应于目标轮廓的最薄（最小轮廓尺寸）部分，通孔口模架料流池的尺寸优选为不小于目标轮廓尺寸的 1.2 倍，或不小于 1.5 倍，或不小于 1.8 倍。

【0069】通过设置在通孔口模板 20 中的多个通孔口模架通孔 21，挤出料汇聚到通孔口模架料流池 22 中，然后流入 30 中。
参照附图 4，在一个实施方式中，分隔口模板 30 包含从该分隔口模板 30 的一侧贯穿至另一侧的料流通道 31（下文称“分隔口模板料流通道 31”）。也就是说，该分隔口模板料流通道 31 具有设置在不同侧面中，优选相对侧面中的进口和出口。分隔口模板料流通道 31 的进口与通孔口模板料流池 22 相连通。该分隔口模板料流通道 31 被至少一个沿挤出料流动方向设置在料流通道 31 内的分隔壁 32 分隔成二个或多个小的料流通道。分隔壁 32 在沿挤出料的流动方向上的长度不大于料流通道 31 的长度。分隔壁 32 可以设置在任何需要的位置。在一个实施方式中，分隔壁 32 设置在目标轮廓的具有不同形状的两个部分相交处相对应的位置上。而在另一实施方式中，分隔壁 32 设置在与目标轮廓的弯曲处或转角处相对应的位置上。

分隔壁 32 的厚度应以不至不导致分隔口模板料流通道 31 中的挤出料流的波动为宜。在某些实施方式中，分隔壁 32 的最小厚度为 0.01mm，或 0.05mm，或 0.1mm，或 0.15mm，或 0.2mm，或 0.3mm，或 0.4mm，或 0.5mm，或 0.8mm，或 1.0mm，或 0.9mm，或 0.8mm，或 0.6mm，或 0.5mm，或 0.4mm，或 0.3mm，或 0.2mm，或 0.1mm，只要最大厚度大于等于最小厚度即可。

优选地是，分隔壁 32 具有光滑的与挤出料相接触的表面。在一个实施方式中，分隔壁 32 的一个或两个端口处被倒角从而使端口处具有非常薄的厚度，这样，能在不产生料流波动的情况下使被分隔的挤出料流汇聚到一起。在另一个实施方式中，分隔壁 32 较分隔口模板 30 更短，从而使分隔壁 32，至少在出口端，缩入在料流通道 31 内，这样，被分隔的挤出料在流入到下游的口模板，例如，轮廓口模板 40 之前就汇聚在一起，从而减少挤出料在下游口模板中的波动。

分隔口模板料流通道 31 的出口尺寸为目标轮廓的尺寸的 1-5 倍，或 1.2-4 倍，或 1.5-3 倍。优选地是，对应于目标轮廓的最薄（最小轮廓尺寸）部分，分隔口模板料流通道 31 的出口的尺寸为不小于 1.01 倍，或不小于 1.1 倍，或不小于 1.2 倍，或不小于 1.5 倍。

通过分隔口模板 30，挤出料流被分隔成多个较细的料流，这样更容易的每一个部分的料流速度，特别是在目标轮廓具有不同厚度的情况下。接下来，挤出料流入到轮廓口模板 40 中。对某些挤出材料，该分隔口模板可以是必需的。在这种情况下，挤出料从通孔口模板 20 流至轮廓口模板 40 中。

参照图 5，在一个实施方式中，轮廓口模板 40 包括从其一侧贯穿至另一侧的料流通道 41（下文成为“轮廓口模板料流通道 41”）。也就是说，轮廓口模板料流通道 41 具有设置在不同侧面中，优选相对侧面中的进口和出口。轮廓口模板料流通道 41 进口与通孔口模板料流池 22 相连通（不使用分隔口模板时），或与分隔口模板料流通道 31 相连通。

轮廓口模板 40 的出口的尺寸放大为目标轮廓的轮廓尺寸最薄区域的 1-3 倍，1.1-2.5 倍，或 1.2-2 倍。一般地，如果材料具有较高的熔融强度或较高的挤出胀大，出口的尺寸则越小。在对应于目标轮廓的最薄部分的位置处，轮廓口模板出口的尺寸为不小于目标轮廓的 1.05 倍，或不小于 1.1 倍，或不小于 1.15 倍。

轮廓口模板 40 用来形成与目标轮廓的形状和尺寸非常接近，甚至相同的挤出制品。挤出料从轮廓口模板 40 出来以后，挤出制品被取出并进入到冷却设备、上架设备（如果需要）、切割设备、和包装设备等中。

各个口模板 10、20、30、40 之间的装配方式可以是本领域中已知的任何方式。例
如，各口模板可以设计成具有用于装配的螺栓孔。

[0079] 本发明的模具的总长度没有特别限定，取决于所需制品的尺寸和挤出速度。一般地，目标轮廓的尺寸或挤出速度越大，模具的总长度越大，相反，挤出料的粘度越低，模具的总长度越小。优选地，轮廓口模板40具有较储料口模板10、通孔口模板20、或分隔口模板30更小的长度（厚度）。例如，在一个实施例中，使用滑石粉填充的聚丙烯来进行挤出，储料口模板10、通孔口模板20、分隔口模板30，和轮廓口模板40的长度（厚度）分别是10mm、10mm、10mm、和6mm。

[0080] 在挤出过程中，模具通常套有加热装置，例如，加热夹套，用以保持模具的温度在挤出材料的熔融点之上。例如，在一个实施方式中，使用滑石粉填充的聚丙烯进行挤出成型，模具的温度为约185℃－约205℃，在另一实施方式中模具的温度为约190℃－约205℃，而在另一实施方式中模具的温度为约190℃－约200℃。

[0081] 使用本发明的模具的一个优点在于能应用在含有热塑性硫化弹性体材料的共挤成型工艺中。不同的挤出材料能分别通过储料口模板、通孔口模板和分隔口模板，这样不同的挤出材料可以分别进行控制和平衡，并最终汇聚到同一轮廓口模板中。

[0082] 在一个实施方式中，适合用于共挤成型的模具包括：

[0083] 第一储料口模板10和至少一个第二储料口模板10’，每一个储料口模板10、10’包括储料口模板料流池15、15’，与所述储料口模板料流池15、15’相连通的料流槽12、12’，和用来在一侧从挤出机接收挤出料流并转送至另一侧所述储料口模板10、10’的储料口模板通孔11、11’，所述储料口模板料流池15、15’和储料口模板料流槽12、12’凹入地设置在储料口模板10、10’的同一表面上；

[0084] 第一通孔口模板20和至少一个第二通孔口模板20’，其在使用中分别与所述第一储料口模板10和所述第二储料口模板10’相邻设置，每一个通孔口模板20、20’包括至少一个通孔口模板料流池22、22’和多个从所述通孔口模板20、20’的一侧贯穿至另一侧的，并连通所述储料口模板料流池15、15’与所述通孔口模板料流池的通孔口模板通孔21、21’，所述通孔口模板料流池22、22’凹入地设置在通孔口模板20、20’的表面上；和

[0085] 轮廓口模板40，其在使用中与所述第一分隔口模板30，至少一个第二分隔口模板30’相邻设置，并包括用于形成目标轮廓的轮廓口模板料流通道41，所述轮廓口模板料流通道41从所述轮廓口模板40的一侧贯穿至另一侧并与所述第一通孔口模板料流池22和所述第二通孔口模板料流池22’相连通。

[0086] 在另一个实施方式中，该适合用于共挤成型的模具还包括：

[0087] 第一分隔口模板30和至少一个第二分隔口模板30’，它们在使用中分别设置在所述第一通孔口模板20与所述轮廓口模板之间，和所述第二通孔口模板20’与所述轮廓口模板之间，每一个分隔口模板30、30’包括分隔口模板料流通道31、31’和至少一个沿挤出料的流动方向设置于所述分隔口模板料流通道31、31’内的分隔壁32、32’，所述分隔口模板料流通道31、31’从所述分隔口模板30、30’的一侧贯穿至另一侧并与所述通孔口模板料流池22、22’和所述轮廓口模板料流通道41相连通。

[0088] 适合用于共挤模具不受装配方式的限制，只要能保证第一储料口模板10、第一通孔口模板20、和第一分隔口模板30（如果适用），或第二储料口模板10’、第二通孔口模板20’、和第二分隔口模板30’（如果适用）能够彼此相邻，并且所有通孔口模板20、20’，或分
隔口模板 30, 30'（如有）中的挤出料都能汇聚到轮廓口模板 40 中即可。在一个实施方式中，依次排列的第一储料口模板 10, 第一通孔口模板 20 和第二分隔口模板 30 与依次排列的第二储料口模板 10', 第二通孔口模板 20' 和第二分隔口模板 30' 平行设置，且第一分隔口模板 30 和第二分隔口模板 30' 同时与轮廓口模板相邻设置。在另一个实施方式中，如图 6 所示，共挤模具包括依次排列的第一储料口模板 10, 第一通孔口模板 20, 同时设置有第一分隔口模板 30 的第二储料口模板 10', 同时设置有延伸的第一分隔口模板 30 的第二通孔口模板 20', 同时设置有延伸的第一分隔口模板 30' 和轮廓口模板 40。在该实施方式中，第二储料口模板通孔 11' 的一端开口可以设置在第二储料口模板 10' 的未装配的侧面中；也可以设置在第一通孔口模板 20 的未装配的侧面中，并延伸穿过第一通孔口模板 20 至第二储料口模板 20；还可以设置在第一储料口模板 10 的未装配的侧面中，并延伸穿过第一储料口模板 10, 第一通孔口模板 20 至第二储料口模板 10'。本领域技术人员可以基于本发明对共挤模具的装配方式作出各种变形，但这些变形的实施方式应包含在本发明的保护范围内。

[0089] 上述适合用于共挤成型的模具仅是本发明的模具在共挤成型中的一种实施方式。本发明模具能与其它类型的已知模具结合在一起用于共挤成型，只要不同挤出料最终汇聚到轮廓口模板中即可。实际应用中，当挤出料的配方发生改变时，挤出料的流变行为相应地也将发生改变。在这种情况下，有必要对模具进行适当的修改从而获得良好的挤出料流的平衡。这个过程中通常称之为“修模”。本领域技术人员基于本发明可以进行修模，但修模后的模具也应包含在本发明的保护范围内。

[0090] 下面将描述的是对根据本发明的模具进行修模的一种方法，包括步骤：

[0091] a) 装配分隔口模板 30, 通孔口模板 20 和储料口模板 10 至挤出机机头，进行挤出实验，经过试验，挤出料流被分隔口 32 分成多个细小料流；

[0092] b) 检查每一个细小料流的速度，并调节通孔口模板通孔 21 的直径和 / 或凸块 14 的高度，直到各个细小料流的速度相同；

[0093] c) 在分隔口模板 30 的下游增加轮廓口模板 40，并进行目标轮廓的挤出实验；

[0094] d) 检查挤出制品的形状，调节通孔口模板通孔 21 的直径和 / 或凸块 14 的高度和 / 或对轮廓口模板料流通道 41 倒角，直到挤出制品具有所需的厚度和光滑度；

[0095] e) 检查不同的细小料流汇聚处的挤出料流，调节分隔口 32 的厚度，直到挤出料流具有平缓的汇流；

[0096] f) 降低挤出机螺杆的转速至挤出料流断裂的临界值，并进行小的目标轮廓的挤出实验，检查并调节通孔口模板通孔 21 的直径和 / 或凸块 14 的高度，直到在较低转速下的小的挤出制品具有相似的形状和尺寸。

[0097] 在上述步骤中，通孔口模板通孔 21 的直径、凸块 14 的高度或分隔口 32 的厚度可以用任何本领域公知的方法进行调节。例如，通孔口模板 21 的直径可以使用钻头加工通孔以适当地增加直径，或者将金属片焊接到通孔内以适当地减小直径。

[0098] 在上述步骤 e）中，如果必要，可去除一个或多个分隔口 32 以获得挤出料流的平缓汇流。此外，步骤 e）可以与步骤 d）同时进行。

[0099] 在共挤成型的情况下，步骤 a) 至 d) 需要用不同的材料逐一分隔地进行。在步骤 a) 至 d) 中，挤出机螺杆的转速通常保持不变。
在使用回收材料进行挤出时，需要与生产设计时一致的原材料/回收材料比值的材料进行修模，因为新的材料和回收的材料之间的粘度会有轻微的不同，这将导致熔融流体的粘流特性不同。

定形器

如前所述，挤出制品从轮廓口模板40出来后通常需要进行冷却工序，因此冷却工序中，由于不同材料具有不同的冷却速度，挤出的轮廓形状和尺寸很难保持与共挤成型中的轮廓形状和尺寸相同。因此为了保持挤出的轮廓的尺寸，满足目标轮廓的形状要求，需要提供用于冷却工序中的定形器。

本发明提供的定形器50能有效地在冷却工序中保持挤出制品的形状和尺寸。该定形器50由多个定形构件51组成，并且集定形构件51能组合形成能将挤出制品通过的定形通道52，其中在定形构件51中靠近所述定形通道52的位置设有真空区53。通过设置真空区53，由于定形通道52和真空区53之间的压力差，当挤出制品在通过所述定形通道52时，使靠近真空区53挤出制品部分的形状得以保持。这里所说的真空区是指气压比1个标准大气压小的空间，而不要求是指绝对的真空。

真空区53的形状没有特别限定，并且可以设置在任何需要的位置，这取决于材料的冷却工序中的变形性能。一般地，真空区53设置在由较大变形性能的材料制成的制品部分附近的定形部件中。

当挤出制品通过由定形构件51构成的通道52时，优选的是在挤出制品和定形通道52的壁之间保留一定的间隙，以防止挤出制品粘附在定形通道52的壁上。间隙的大小因材料不同而变化。不同材料的熔融强度会导致挤出制品在定形器50中的不同的变形和冷却行为。一般地，间隙越小，获得的形状越好。但是，过小的间隙可能会导致挤出制品的堵塞问题。此外，粘性材料更容易发生堵塞问题，因此，为平衡良好的形状和加工性能，靠近真空区53的间隙通常设为不超过1.0mm，或不超过0.8mm，或不超过0.5mm，或不超过0.3mm，同时也不小于0.01mm，或不小于0.05mm，或不小于0.08mm，或不小于0.1mm，或不小于0.2mm。

某些材料在冷却工序中容易发生弯曲。为了获得理想的直的制品，在一些实施方式中，多个定形器设置成与挤出制品的弯曲方向相反的方式弯曲，从而对挤出制品的弯曲进行补偿。这样可以得到直的挤出制品。基于上述发明构思，本领域的技术人员可以根据需要选择适当的定形器数量，和以适当的弯曲方式设置等。本文将不作详细描述，但显然这些都应包括在本文的公开范围的一部分。

实施例

在实施例1和2中，通过如图6所示的模具共挤制备不规则形状的制品。各种原料中，挤出参数，包括挤出机各段C1-C5、挤出机冷热器、机头的温度，挤出速度，模具温度，螺杆转速等，列出在表1中。

实施例中使用的材料如下：

TPV：埃克森美孚化工公司的牌号为Santroprene 121-73W175的热塑性树脂，其为一种硫化的乙丙橡胶分散在聚丙烯连续相中的产品。

共挤材料：滑石粉填充的聚丙烯（Talc-PP），其MFR为1.1-1.3g/10min，包括68重量%的MFR为1.0-1.5g/10min的均聚聚丙烯、30重量%的滑石粉和2重量%的其他
添加剂;该产品可商购自毅兴工程塑料（上海）有限公司（Shanghai Ngai Hing Plastic Materials Co. Ltd.）。

实施例 1 和实施例 2 采用本使用新型的共挤模具来制造汽车上用的内皮带密封件,其形状如图 6B 轮廓口模板 40 中所示。实施例 1 和 2 中使用的模具如图 6A 和 6B 所示,包括依次排列的第一储料口模板 10、第一通孔口模板 20、同时设置有第一分隔口模板 30 的第二储料口模板 10’、同时设置有延伸的第一分隔口模板 30 的第二通孔口模板 20’、同时设置有延伸的第一分隔口模板 30 的第二分隔口模板 30’和轮廓口模板 40。第二储料口模板通孔 11 的一端开口设置在第一储料口模板 10 的未装配的表面上，并延伸穿过第一储料口模板 10、第一通孔口模板 20 至第二储料口模板 10’上。该模具中，第一储料口模板 10 和第一通孔口模板 20 用于 TPV 材料；第二储料口模板 10’和第一通孔口模板 20’用于滑石粉填充的聚丙烯。滑石粉填充的聚丙烯通过设置在第一出料口模板 10 上、延伸穿过第一通孔口模板 20 的通孔被输送到第二储料口模板 10’。在第一分隔口模板 30（同时也是第二分隔口模板 30’）和轮廓口模板 40 中，TPV 和滑石粉填充的聚丙烯汇聚到一起,形成多材料构成的制品。

实施例 1

<table>
<thead>
<tr>
<th>实施例 1</th>
<th>实施例 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPV</td>
<td>Talc- PP</td>
</tr>
</tbody>
</table>

挤出参数	175	175	175	175
温度 C1 (°C)	180	180	180	180
温度 C2 (°C)	185	185	185	185
温度 C3 (°C)	190	190	190	190
温度 C4 (°C)	190	190	190	190
连接器温度 (°C)	175	195	175	195
机头和模具温度 (°C)	175	175	175	175

肉眼观察按实施例的模具形成的制品的表面光滑度,边缘撕裂,扭曲,银线等形状特性,以及模具胡须现象。结果如表 1 中所示。

表 1:挤出参数和挤出制品的形状特性
<table>
<thead>
<tr>
<th>熔点 (℃)</th>
<th>175</th>
<th>190</th>
<th>177</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>转速</td>
<td>8.2</td>
<td>9.0</td>
<td>38.0</td>
<td>37.0</td>
</tr>
<tr>
<td>螺杆类型</td>
<td>障壁螺杆</td>
<td>障壁螺杆</td>
<td>障壁螺杆</td>
<td>障壁螺杆</td>
</tr>
<tr>
<td>螺杆直径</td>
<td>65mm</td>
<td>65mm</td>
<td>65mm</td>
<td>65mm</td>
</tr>
<tr>
<td>挤出速度</td>
<td>2 m/min</td>
<td>8 m/min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

制品形状特性

<table>
<thead>
<tr>
<th>表面光滑度</th>
<th>好</th>
<th>好</th>
<th>好</th>
<th>好</th>
</tr>
</thead>
<tbody>
<tr>
<td>边缘断裂</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>制品翘曲</td>
<td>轻微</td>
<td>轻微</td>
<td>轻微</td>
<td>轻微</td>
</tr>
<tr>
<td>亮线</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>模具胡须</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
</tbody>
</table>

[0117] 从轮廓口模板 40 出来的挤出制品在冷却工序中通过如图 7 所示的定形器 50。在实施例 1 和 2 中，对于 TPV 材料，真空区一侧的间隙设置为约 0.3mm，而非真空区一侧的间隙设置为约 0.5mm；对于滑石粉填充的聚丙烯材料，靠近真空侧的间隙设置为约 0.1mm，而非真空侧的间隙设置为约 0.2mm。可以观察到，通过定形器 50 的挤出制品的形状在冷却过程中保持的非常好。

[0118] 从前面的总体描述和具体的实施方式以及图示的使用新型的实施形态可以明显看出，在不违背本发明宗旨的前提下可以做出各种变形或改进。
图 6A
图 7