发明名称
聚丙烯酸树脂发泡粒子，及其发泡粒子成形体
摘要
本发明涉及聚丙烯酸树脂发泡粒子，及其发泡粒子成形体。发明提供聚丙烯酸树脂发泡粒子，其是将发泡粒子 1 〜 3mg 作为试验片，基于 JIS K7121 (1987 年) 记载的热容差扫描热分析测定法，以 10°C / 分钟的升温速度升温至 200°C 后，以 10°C / 分钟的冷却速度降温至 30°C，再次以 10°C / 分钟的升温速度升温至 200°C 之
际获得 DSC 曲线，根据该曲线确定的树脂熔点为大干等于 120°C 小于 140°C 的聚丙烯酸树脂发泡粒子，其特征在于，将该发泡粒子在耐压容器内通过温度低于前述树脂熔点 5°C 的饱和水蒸气加热 10 秒钟之后，加热前后的发泡粒子的表面密度比 (ρf) / (加热前的发泡粒子的表面密度) / (加热后的发泡粒子的表面密度) 不超过 1.5。
1. 聚丙烯系树脂发泡粒子，其是将发泡粒子 1～3mg 作为试验片，基于 JIS K7121(1987 年)记载的热通量差示扫描热量测定法，以 10°C / 分钟的升温速度升温到 200°C 后，以 10°C / 分钟的冷却速度降温到 30°C，再次以 10°C / 分钟的升温速度从 30°C 升温到 200°C 之际获得 DSC 曲线，根据该曲线确定的树脂熔点为等于大于 120°C 小于 140°C 的聚丙烯系树脂发泡粒子 (b)，其特征在于，

将该发泡粒子 (b) 在耐压容器内通过温度低于前述树脂熔点 5°C 的饱和水蒸气加热 10 秒钟之际，加热前后的发泡粒子的表面密度比 (ρ R) [(加热前的发泡粒子的表面密度 - 加热后的发泡粒子的表面密度)/ 加热前的发泡粒子的表面密度] 不超过 1.5。

2. 如权利要求 1 所述的聚丙烯系树脂发泡粒子，其特征在于，作为前述聚丙烯系树脂发泡粒子 (b) 的基材树脂的聚丙烯系树脂 (a) 为熔点大于 110°C 小于等于 135°C 的聚丙烯系树脂 (a1) 50～80 重量％，和熔点 125°C 以上 140°C 以下的聚丙烯系树脂 (a2) 50～20 重量％的混合树脂，且聚丙烯系树脂 (a1) 与聚丙烯系树脂 (a2) 的熔点温度差 [(a2 的熔点 - (a1 的熔点)] 大于等于 3°C 小于 15°C，其中，聚丙烯系树脂 (a1) 与聚丙烯系树脂 (a2) 的合计为 100 重量％。

3. 如权利要求 2 所述的聚丙烯系树脂发泡粒子，其特征在于，前述聚丙烯系树脂 (a1) 和前述聚丙烯系树脂 (a2) 的任一方或双方为在茂金属聚合催化剂存在下聚合获得的聚丙烯系树脂。

4. 如权利要求 2 所述的聚丙烯系树脂发泡粒子，其特征在于，前述聚丙烯系树脂 (a1) 和聚丙烯系树脂 (a2) 的至少任一方的熔体流动速率的基于 JIS K7210(1999 年) 试验条件 M(温度 230°C、荷重 2.16kg) 的测定值为 20(g/10 分) 以上。

5. 如权利要求 1 所述的聚丙烯系树脂发泡粒子，其是在将发泡粒子 1～3mg 作为试验片，基于 JIS K7121(1987 年) 记载的热通量差示扫描热量测定法，以 10°C / 分钟的升温速度从常温升温到 200°C 之际获得的 DSC 曲线中出现多个吸热峰的发泡粒子 (b)，其特征在于，该吸热峰中，顶点温度显示 120°C 以上 135°C 以下的吸热峰的合计热量为全部吸热峰的合计热量的 50～90%。

6. 将上述权利要求 1～5 中任一项所述的聚丙烯系树脂发泡粒子 (b) 模内成形而成的聚丙烯系树脂发泡粒子成形体。
聚丙烯系树脂发泡粒子，及其发泡粒子成形体

技术领域
[0001] 本发明涉及聚丙烯系树脂发泡粒子，和将该模内成形获得的发泡粒子成形体。

背景技术
[0002] 聚丙烯系树脂由于其机械强度、耐热性、加工性、价格等的平衡优异以及具有易装配性、易回收性等优异的性质而用于各种领域。将聚丙烯系树脂发泡粒子模内成形而获得的发泡粒子成形体，由于在无损上述聚丙烯系树脂的优异性质的情况下可附加缓冲性、隔热性、轻量化等特性，因此广泛用于包装材料、建筑材料、车辆用撞击吸收材料等。
[0003] 将聚丙烯系树脂发泡粒子模内成形而获得的聚丙烯系树脂发泡粒子成形体与用于类似用途的聚苯乙烯系树脂发泡粒子成形体相比，通用耐热性、耐化学品性、韧性和压缩应力恢复性等优异。另一方面，模内成形之际，为了在使聚丙烯系树脂发泡粒子二次发泡的同时使该发泡粒子相互熔粘，必须进行比聚苯乙烯系树脂发泡粒子的模内成形条件更高温的加热，即利用更高饱和蒸汽压的水蒸气的加热。为此，必需高耐压规格的金属模和高温的专用成形机，随之而来的加工成本也巨大。
[0004] 作为解决这种技术问题的方法，特开 2000-894 号公报公开了用低熔点的不同种树脂包覆聚丙烯系树脂发泡粒子表面的方法。用于该包覆的装置复杂且工序繁杂，虽然模内成形时的树脂粒子的相互熔粘性提高，但发泡粒子内部的二次发泡性不充分，因此外观尚有改善的余地。为了解决该技术问题，必需为了提高二次发泡性的增大发泡粒子内部压力的内压赋予工序，以提高压缩的模内成形（发泡粒子填充后，缩小模内吸氧将发泡粒子高压化后，向模内供给蒸汽的模内成形），或者违背初衷的提高模内成形时的利用水蒸气的加热温度。
[0005] 作为其他的技术问题的解决方法，特开平 6-240041 号公报公开了使用熔点较低的聚丙烯系树脂作为基材树脂的方法，例如将使用聚氨酯系聚合催化剂聚合而成的聚丙烯系树脂作为基材树脂使用的聚丙烯系树脂发泡粒子。通常，在聚氨酯系聚合催化剂存在下聚合的聚丙烯系树脂，与现有的齐格勒-纳塔系催化剂存在下聚合的聚丙烯系树脂相比，可聚合低熔点者。但是，即使在聚氨酯系聚合催化剂存在下使用聚合的前述专利文献记载的聚丙烯系树脂发泡粒子时，由于模内成形时降低加热介质所需的水蒸气的饱和蒸汽压力、模内成形所获得的发泡粒子成形体的外观、发泡粒子相互间熔粘性等成形稳定性考虑，尚有改善的余地。
[0006] 另外，特开平 10-292064 号公报中已知使乙烯基系单体含有聚丙烯系树脂，将接枝聚合得到的（聚丙烯系树脂含量/包含乙烯基系单体的聚合体含量）比为 97～65、重量%/3～35 重量%的改性聚丙烯系树脂作为基材树脂使用的未变联发泡粒子。使乙烯基系单体含有该聚丙烯系树脂粒子进行接枝聚合得到的发泡粒子的耐热性能，具有依赖于基材树脂的熔点或者玻璃转化温度的倾向。此时，一般认为虽然通过选择熔点低的聚丙烯系树脂，可在模内成形之际降低加热用水蒸气的饱和蒸汽压力，但是在维持耐热性
上，还留有技术问题。

特开 2006-96805 号公报还提出了混合使用两种熔点不同的聚丙烯系树脂的方法。例如，报道了以混合熔点的温度差为 15～30℃的两种聚丙烯系树脂的、熔融指数（基于 JIS K7210（1999年）试验条件 M（温度 230℃、荷重 2.16kg）的测定值）为 3～20（g/10 分）的聚丙烯系树脂为基材树脂的发泡倍率为 10～50 倍的聚丙烯系树脂发泡粒子。但是，被提议的聚丙烯系树脂发泡粒子的模内成型之际，必需超过 140℃的加热温度，必须使用高饱和蒸气压力的水蒸气作为加热介质。

发明内容

本发明鉴于上述情况而完成，其目的在于，提供在混合作聚丙烯系树脂发泡粒子成形体的特征的韧性、耐热性、易燃烧性、易回收性等优异性能的情况下，即使使用低加热温度下的模内成型也可稳定地获得具有优异性能的聚丙烯系树脂发泡粒子成形体的聚丙烯系树脂发泡粒子、和将其模内成型而获得的发泡粒子成形体。

本发明人为了解决上述技术问题，对于(i) 发泡粒子的差示扫描热量测定下的 DSC 曲线、(ii) 模内成形前后的表面密度比、(iii) 发泡粒子的模内成形时的行为、和 (iv) 将该发泡粒子模内成体型获得的发泡粒子成形体的机械性，研究了它们之间的关系。结果，通过控制发泡粒子的差示扫描热量测定下的 DSC 曲线的熔融峰的顶点温度、和发泡粒子的模内成形时的二次发泡前后的表面密度等，发现在无损聚丙烯系树脂发泡粒子的优异性的情况下，可以将发泡粒子的模内成形温度范围扩展至低侧，并且稳定地获得具有优异性发泡粒子成形体，从而完成了本发明。进而发现作为发泡粒子的基材树脂，通过使用以特定比例配合分别具有特定范围的熔点、且该熔点之差在一定范围的 2 种的聚丙烯系树脂而成的混合树脂、即使不选择使用单独的聚丙烯系树脂，也可以比较容易地获得具有与上述效果同样的效果的发泡粒子、及其发泡粒子成形体。

即，本发明提供以下 (1)～(5) 所示的聚丙烯系树脂发泡粒子 (以下有时称为实施方式 I (第 1 方案))，和该将聚丙烯系树脂发泡粒子模内成形而获得的、以下 (6) 所示的发泡粒子成形体 (以下有时称为实施方式 II (第 2 方案))。 (1) 聚丙烯系树脂发泡粒子，其是将发泡粒子 1～3mg 作为试验片，基于 JIS K7121（1987年）记载的热容量差示扫描热量测定法，以 10℃/分钟的升温速度升温到 200℃后，以 10℃/分钟的冷却速度降温至 30℃，再次以 10℃/分钟的升温速度从 30℃升温至 200℃的聚丙烯系树脂发泡粒子 (a)，其特征在于，将该发泡粒子 (b) 在耐压容器中通过温度低于上述树脂熔点 5℃的饱和水蒸气加热 10 秒钟之际，加热前后的发泡粒子的表面密度 (ρ) (加热前的发泡粒子的表面密度) (加热后的发泡粒子的表面密度) 不超过 1.5。 (2) 前述 (1) 所述的聚丙烯系树脂发泡粒子，其特征在于，作为前述聚丙烯系树脂发泡粒子 (b) 的基材树脂的聚丙烯系树脂 (a) 为熔点大于 110℃小于等于 135℃的聚丙烯系树脂 (a1) 50～80 重量％、和熔点 125℃以上 140℃以下的聚丙烯系树脂 (a2) 50～20 重量％的混合树脂 (其中，聚丙烯系树脂 (a1) 与聚丙烯系树脂 (a2) 的合计为 100 重量％)，且聚丙烯系树脂 (a1) 与聚丙烯系树脂 (a2) 的熔点温度差 [(a2) 的熔点]-(a1) 的熔点] 大于等于 5℃小于 15℃。 (3) 前述 (2) 所述的聚丙烯系树脂发泡粒子，其特征在于，前述聚丙烯系树脂 (a1) 和聚丙烯系树脂 (a2) 的任一方或双方为在茂金
属聚合催化剂存在下聚合获得的聚丙烯系树脂。 (4) 前述 (2) 所述的聚丙烯系树脂发泡粒子，其特征在于，前述聚丙烯系树脂 (a1) 和聚丙烯系树脂 (a2) 的至少任一方的熔体流动速率的基于 JIS K7210 (2009 年) 试验条件 M (温度 230℃，荷重 2.16kg) 的测定值为 20(g/10 分) 以上。 (5) 前述 (1) 所述的聚丙烯系树脂发泡粒子，其是在将发泡粒子 1 ～ 3mg 作为试验片，基于 JIS K7121 (1987 年) 记载的热容量差扫描热容量测定法，以 10℃/分钟的升温速度中温升温到 200℃之间获得的 DSC 曲线中出现多个吸热峰的发泡粒子 (b)，其特征在于，该吸热峰中，顶点显示 120℃以上 135℃以下的吸热峰的合计热量为全部吸热峰的合计热量的 50 ～ 90%。 (6) 将前述 (1) ～ (5) 中任一项所述的聚丙烯系树脂发泡粒子 (b) 模内成形而来的聚丙烯系树脂发泡粒子成形体。

【0011】第 1 方案中的聚丙烯系树脂发泡粒子 (b)，在模内成形之际，成形温度范围与现有的聚丙烯系树脂发泡粒子相比可扩展到低温侧，具有发泡粒子相互间熔粘性、二次发泡性等优异的特征。结果，聚丙烯系树脂发泡粒子 (b)，可进行现有的聚丙烯系树脂发泡粒子难于进行的低加热温度 (低饱和蒸气压的下水蒸气加压) 下的模内成形，可降低成形机的合模压力，还可减少金属模的厚度，因此可以使成形机或金属模采用更低压规格的设计。成形设备方面也可以采用更廉价的设计，同时与现有的聚丙烯系树脂发泡粒子的模内发泡相比，可大幅削减成形时的能源成本。第 1 方案中的聚丙烯系树脂发泡粒子 (b)，是在模内成形加热时，发生发泡粒子相互间的熔粘的温度低于发生发泡粒子的二次发泡的温度的发泡粒子，因此发泡粒子相互间的熔粘可以先于二次发泡发生，结果，可达成加热蒸汽造成的直至成形体内部的均匀加热状态，因此可以进行通常的聚丙烯系树脂发泡粒子难于进行的厚壁成型，特别是即使作为具有 100mm 以上的厚度的发泡粒子成形体的厚壁发泡粒子成形体成型，将其薄切使用时，也可以获得直至内部都不会熔粘不良的片状物、或板状物。

【0012】第 1 方案的将聚丙烯系树脂发泡粒子模内成形而获得的、第 2 方案的发泡粒子成形体 (c) 不仅外观、机械物性等优异，而且成形时的收缩、变形少，因此也具有尺寸稳定性，可适用于各种制品。第 2 方案中的发泡粒子成形体，可制成比已有的聚丙烯系树脂发泡粒子成形体更富有柔软性的成形体，因此可用于复杂的冲切制品或进行弯曲等加工的制品。

附图说明
【0013】图 1 本发明中的聚丙烯系树脂发泡粒子的第 1 次 DSC 曲线的示意图图 2 本发明中的聚丙烯系树脂发泡粒子的第 2 次 DSC 曲线的示意图图 3 本发明的实施例 1 中的聚丙烯系树脂发泡粒子的第 1 次 DSC 曲线图 4 本发明的实施例 1 中的聚丙烯系树脂发泡粒子的第 2 次 DSC 曲线

具体实施方式
【0014】以下有时将作为本发明的第 1 方案的聚丙烯系树脂发泡粒子称为“聚丙烯系树脂发泡粒子 (b)”、或“发泡粒子 (b)”。另外，有时将本发明的聚丙烯系树脂发泡粒子 (b) 的制造中所使用的基材树脂称为聚丙烯系树脂 (a)，聚丙烯系树脂 (a) 为包含 2 种树脂的混合物时，有时将熔点大于 110℃小于等于 135℃的树脂称为“聚丙烯系树脂 (a1)”、将熔
点为 125°C 以上 140°C 以下的树脂称为“聚丙烯系树脂 (a2)”。 有时将发泡粒子 (b) 模内成形而获得的聚丙烯系树脂发泡粒子成形体称为“聚丙烯系树脂发泡粒子成形体 (c)”。
或“发泡粒子成形体 (c)”。
[0015] (1) 实施方式 I (对于作为第 1 方案的聚丙烯系树脂发泡粒子 (b)) 作为第 1 方案的聚丙烯系树脂发泡粒子 (b)，是将发泡粒子 1 ～ 3mg 作为试验片，基于 JIS K7121 (1987 年) 记载的热通量差示扫描热量测定法，以 10°C / 分钟的升温速度升温到 200°C 后，以 10°C / 分钟的冷却速度降温到 30°C，再次以 10°C / 分钟的升温速度从 30°C 升温到 200°C 之际获得 DSC 曲线，根据该曲线确定的树脂熔点为大于等于 120°C 小于 140°C 的聚丙烯系树脂发泡粒子 (b)，其特征在于，将该发泡粒子 (b) 在模内通过温度低于前述树脂熔点 5°C 的饱和蒸气压的水蒸气加热之际，加热后的发泡粒子的表观密度小 (ρg) ((加热前的发泡粒子的表观密度) / (加热后的发泡粒子的表观密度)) 为 1.5 以下。
[0016] 作为本发明的聚丙烯系树脂发泡粒子 (b) 的基材树脂的聚丙烯系树脂 (a)，如果其聚合用单体以丙烯为主成分，则其组成、合成法没有特别限定，例如，可以使用丙烯均聚物、丙烯无规共聚物、丙烯嵌段共聚物、丙烯接枝共聚物、和它们的混合物等，其详情将在后面所述。
[0017] (1) 聚丙烯系树脂发泡粒子 (b) (1-1) 聚丙烯系树脂发泡粒子 (b) 的 DSC 曲线中的树脂熔点聚丙烯系树脂发泡粒子 (b) 将发泡粒子 1 ～ 3mg 作为试验片，基于 JIS K7121 (1987 年) 记载的热通量差示扫描热量测定法，以 10°C / 分钟的升温速度升温到 200°C 后，以 10°C / 分钟的冷却速度降温到 30°C，根据再次以 10°C / 分钟的升温速度从 30°C 升温到 200°C 之际获得的 DSC 曲线 (以下有时称为第 2 次 DSC 曲线) 确定的树脂熔点大于等于 120°C 小于 140°C。 该树脂熔点支撑发泡粒子 (b) 的模内成形之主要物理性质。 聚丙烯系树脂发泡粒子 (b) 包含熔点不同的 2 种聚丙烯系树脂时，由于这些树脂的熔点差，有时第 2 次 DSC 曲线中形成多个熔融引起的吸热峰。 这种情况下，具有后述某种程度的值以上的熔融热量的最高温侧的熔融峰的顶点温度支配模内成形聚丙烯系树脂发泡粒子之主要物理性质。
[0018] 应说明的是，上述热通量差示扫描热量测定法由常温以 10°C / 分钟的升温速度升温至 200°C 的第 1 次升温时获得的 DSC 曲线 (以下有时称为第 1 次 DSC 曲线) 中的熔融峰，与构成聚丙烯系树脂发泡粒子 (b) 的聚丙烯系树脂 (a) 中固有的结晶区域的熔融引起的主吸热峰不同，有时在比主吸热峰更高温侧也出现基于该树脂的二次结晶区域的熔融的吸热峰。 该基于二次结晶区域的熔融的吸热峰的出现会影响发泡粒子的二次发泡性、发泡粒子成形体的机械物性，因此优选在后述特定的热通量范围内。 本发明的第 1 方案中，为了正确地确定支配重置上述基于二次结晶区域的熔融的吸热峰而模内成形之主要物理性质的发泡粒子的树脂熔点，基于第 2 次 DSC 曲线的熔融峰的顶点温度测定聚丙烯系树脂发泡粒子 (b) 的树脂熔点。 另外，本说明书中，常温为大约 25°C。
[0019] 本发明中聚丙烯系树脂发泡粒子 (b) 的树脂熔点为根据 JIS K7121 (1987 年) 记载的方法求出的值。 即，聚丙烯系树脂发泡粒子 (b) 的树脂熔点，也包括形成聚丙烯系树脂发泡粒子 (b) 的聚丙烯系树脂 (a) 包含 2 种混合树脂的情况，以聚丙烯系树脂发泡粒子 1 ～ 3mg 作为试验片，利用差示扫描热量测定装置进行测定。 其具体测定方法是通过由常温以 10°C / 分钟的升温速度升温至 200°C 使树脂充分熔融，之后，以抑制二次结晶化的
10℃/分钟的降温速度降温到30℃，对于二次结晶量为零或极少的聚丙烯系树脂发泡粒子（b）的熔融，固化物以10℃/分钟的升温速度升温到熔融结温度以上，基于此时获得的第2次DSC曲线求得。根据上述树脂熔点测得获得的DSC曲线中出现基于结晶熔融的1个或2个以上的吸热峰。出现1个吸热峰时，将该吸热峰的顶点温度作为树脂熔点，出现2个以上吸热峰时，利用下述部分面积解析法求出各个吸热峰的热量，以吸热峰的热量为4(J/g)以上的吸热峰中出现在最高温侧的吸热峰的顶点温度作为树脂熔点（TmA）（参照图2）。作为上述树脂熔点测定的试验片，除了发泡粒子以外，可适用发泡粒子成形体片、或发泡粒子基材树脂。

【0020】基于图1说明上述部分面积解析法。引出连接获得的DSC曲线上的相当于80℃的点α，并相当于树脂的熔融结温度Te的DSC曲线上的点β的直线（α-β）。然后，从连接相当于最低温侧观察到的吸热峰X1和与吸热峰X1相邻的吸热峰X2之间的谷部的DSC曲线上的点Y1引出与曲线图的纵轴平行的直线，以与前述直线（α-β）相交的点作为δ1。另外，由于可以观察到吸热峰X3相邻的吸热峰X3，因此从相当于吸热峰X1与吸热峰X3之间的谷部的DSC曲线上的点Y2引出与曲线图的纵轴平行直线，以与上述直线（α-β）相交的点作为δ2。之后，观察吸热峰X1、吸热峰X3、吸热峰X3，，吸热峰X3，时重复同样的操作。通过上述操作，得到的线段（δn-n(n(n为1以上的整数))成为确定吸热峰的面积时的各吸热峰边界线。于是，相当于吸热峰的热量的各吸热峰的面积为。吸热峰X1中，作为被显示吸热峰X1的DSC曲线、线段（δ1-Y1）、和线段（α-δ1）包围的面积，吸热峰X2中，作为被显示吸热峰X1的DSC曲线、线段（δ1-Y1）、线段（δ1-Y2）、和线段（δ2-β）包围的面积，吸热峰X3中，作为被显示吸热峰X1的DSC曲线、线段（δ1-Y2）和线段（δ2-β）包围的面积而确定。之后，观察吸热峰X1、吸热峰X3，吸热峰X3，时也可以采用相同的要领确定吸热峰的面积，于是，各吸热峰的热量（ΔH1+ΔH2+ΔH3+···）J/g基于上述确定的各吸热峰的面积利用差示扫描热量测定装置机械地算出。全部吸热峰热量（ΔH）相当于各吸热峰的热量的合计（ΔH = ΔH1+ΔH2+ΔH3+···）。应说明的是，对于上述测定点方法，为了引出作为基线的直线（α-β），以DSC曲线上的点α作为对应于温度80℃点的原因是基于本发明人的下述发现，即以对应于80℃的点为起点、以熔融结束温度为终点的基线，在重现性良好地稳定求出吸热峰的热量这点上去是理想的。

【0021】将聚丙烯系树脂发泡粒子（b）模内成形之际，如果使用通过第2次DSC曲线确定的树脂熔点（TmA）为“大于等于120℃小于140℃”的发泡粒子，则在无损聚丙烯系树脂发泡粒子的优异物性的情况下，可将发泡粒子的模内成形的温度范围扩展到更低温度。即，通过使用具有上述树脂熔点（TmA）的发泡粒子（b），低加热温度（低饱和蒸气压力下的水蒸气加热）下的模内成形成为可能。结果，可降低成形机的合模压力，可以使成形机或金属模为更低压的设计，与现有的聚丙烯系树脂发泡粒子的模内发泡相比，可大幅降低成形时的能源成本。

【0022】（1-2）聚丙烯系树脂发泡粒子（b）的加热前后的表面密度比（ρs）第1方案中的聚丙烯系树脂发泡粒子（b）的特征在于，耐压容器内通过比前述树脂熔点低5℃的饱和蒸气压的水蒸气加热10秒钟之际，加热前后的发泡粒子的表观密度比（ρs）[(加热前的发泡粒子的表观密度)/(加热后的发泡粒子的表观密度)]不超过1.5。应说明的是，表观密度比（ρs）通常用于获得发泡粒子成形体的优异外观、发泡粒子相互间熔粘性优良的发泡粒子。
子成形体的观点，优选下限为 1.3。

[0023] 本发明中的表观密度 ρ_g 由以下测定法测定各自的表观密度而算出。 (i) 加热前的发泡粒子的表观密度 ρ_i 的测定准备加入了 23°C 的水的量筒，在该量筒中使用金属网等沉入相对密度 50%、23°C、1atm 的条件下放置 2 日的约 500m l 的发泡粒子。发泡粒子组的重量 W_1，用量筒中放入的发泡粒子组的重量 $W_1(g)$ 除以水位上升部分读取的发泡粒子组的容积 $V_1(l)(W_1/V_1)$ 而求出。 (ii) 加热后的发泡粒子的表观密度 ρ_g 的测定将发泡粒子充满于耐压容器内，通过温度比发泡粒子的树脂熔点 (TmA) 低 5°C 的饱和蒸气压的水蒸气加热 10 秒钟后，将压力开放为常压，然后水冷，取出发泡粒子。 将该发泡粒子用 60°C 的烘箱干燥 12 小时，接着以 0.2MPa(g) 的空气加压 12 小时后，在放有 23°C 的水的量筒中，使用金属网等沉入约 500m l 的发泡粒子 (发泡粒子组的重量 W_2)，用量筒中放入的发泡粒子组的重量 $W_2(g)$ 除以水位上升部分读取的发泡粒子组的容积 $V_2(l)(W_2/V_2)$ 而求出。 (iii) 表观密度比 ρ_g 由下式算出。 表观密度比 $\rho_g = (\text{加热前的发泡粒子的表观密度})/(\text{加热后的发泡粒子的表观密度})$

[0024] 模内成形所使用发明的发泡粒子根据其性质可分为，具有发泡粒子相互熔粘、然后二次发泡的性质的熔粘在先型发泡粒子，和具有发泡粒子的二次发泡在先、然后发生发泡粒子的相互熔粘的性质的二次发泡在先发泡粒子。二次发泡在先型发泡粒子的情况下，由于二次发泡容易先于熔粘进行，具有由于填充于模内的发泡粒子的二次发泡其间隙变窄的倾向，结果如果阻碍作为加热介质的水蒸气向该间隙的流入、通过，就会阻碍发泡粒子间的熔粘。另一方面，模内成形中使用熔粘在先型发泡粒子的情况下，由于熔粘在先，填充于上述那样模内的发泡粒子难于发生其间隙狭窄，因此在模内成形中，更优选熔粘在先型发泡粒子的使用。应说明的是，其中的聚丙烯系树脂发泡粒子被分类为二次发泡在先型发泡粒子。

[0025] 采用 “利用温度差树脂熔点 (TmA) 低 5°C 的饱和蒸气压的水蒸气加热” 条件测定前述加工后的表观密度 ρ_g，是因为为了获得发泡粒子成形体的模内成形时的加热温度条件采用比发泡粒子的树脂熔点低 5°C 左右的条件。现有的加热前后的表观密度比 ρ_g 超过 1.5 的发泡粒子相对而言发泡力大，因此显示作为二次发泡在先型发泡粒子的行为。另一方面，如果使用具有加热前后的表观密度比 ρ_g 不超过 1.5 的物理性质的发泡粒子 (b)，则模内成形时显示作为熔粘在先型发泡粒子的行为，因此可以将前述发泡粒子的模内成形温度范围扩展到更低温侧，且可进行熔粘先于发泡粒子的二次发泡的模内成形，因此与现有的模内成形相比改良成形条件，且可制造外观性和机械性等优异的发泡粒子成形体。对于本发明中的熔粘在先型发泡粒子的优选制造方法将在后面叙述。应说明的是，作为实际将发泡粒子模内成形时的操作条件，可选择压缩填充成形、对发泡粒子赋予内压等各种条件。但是，采用任何条件下，加热前后的表观密度比 ρ_g 超过 1.5 的发泡粒子由二次发泡在先。

[0026] 发泡粒子 (b) 可采用 10 ～ 500g/升 (L) 的范围的表观密度，但考虑到提高作为发泡粒子成形体的轻量性、缓冲性等基本特性，优选 300g/L 以下，更优选 180g/L 以下。另一方面，发泡粒子的表观密度过低，则气泡容易破裂，因而发泡粒子 (b) 的表观密度优选 12g/L 以上，更优选 15g/L 以上。

[0027] (1) 聚丙烯系树脂 (a) 作为发泡粒子 (b) 的基材树脂的聚丙烯系树脂 (a) 的组成、
聚合法无特别限定，例如，可列举出丙烯均聚物、乙烯-丙烯无规共聚物、丙烯-丁烯无规共聚物、乙烯-丙烯嵌段共聚物、乙烯-丙烯-丁烯三元共聚物等，还可使用多个树脂的混合物作为丙烯烯系树脂 (a)。以下对于丙烯烯系树脂 (a) 进行具体说明。(2-1) 单体成分构成发泡粒子 (b) 的聚丙烯系树脂 (a) 可以从以丙烯单体为主原料聚合而成的丙烯烯系树脂中选择，如果本发明的发泡粒子 (b) 的第 2 次 DSC 曲线中的树脂熔点 (TmA) 显著大于等于 120℃或小于140℃，则可以使用包含丙烯均聚物、丙烯烯系嵌段共聚物、丙烯烯系无规共聚物、丙烯烯系接枝共聚物的丙烯烯系树脂。应说明的是，作为上述丙烯烯系树脂，包含丙烯与可共聚的共聚单体成分的共聚物，作为该共聚单体成分可列举出，乙烯或/和碳原子数 4～20 的 α-烯烃等乙烯、1-丁烯、1-戊烯、1-己烯、1-辛烯、4-甲基-1-丁烯等。

[0028] 上述丙烯烯系聚物可以是丙烯-乙烯无规共聚物、丙烯-丁烯无规共聚物等 2 元共聚物，也可以是丙烯-乙烯-丁烯无规共聚物等 3 元共聚物。应说明的是，即使聚丙烯烯系树脂 (a) 包含 1 种、或 2 种以上的混合树脂时，也可以从聚合后的聚丙烯烯系树脂的第 2 次 DSC 曲线中的熔点大于等于 120℃小于 140℃者中选择。另外，聚丙烯烯系聚物中丙烯以外的共聚单体成分的比例没有特别限定，各聚丙烯烯系聚物的该共聚物中丙烯来

源的成分单位含量优选为 70 重量％以上、更优选为 80～99.5 重量％，由乙烯或/和碳原子数 4～20 的 α-烯烃得的成分单位含量优选为 30 重量％以下、更优选为 0.5～20 重量％。

[0029] (2-2) 聚合催化剂制造聚丙烯烯系树脂 (a) 时使用的聚合催化剂没有特别限定，可使用具有作为聚合催化剂的性能的有机金属络合物等。通常可使用 (i) 以被称为齐格勒-纳塔催化剂的钛、铝、镁等作为成核元素，用烷基修饰部分或全部的有机金属络合物，(ii) 被称为茂金属聚合催化剂、或者均一系催化剂的锆、钛、锆、镧、镧、铁等过渡金属或以硼作为成核元素、用环戊烷环等修饰的有机金属络合物，或 (iii) 前述有机金属络合物与甲基铝氧烷的联用系等。

[0030] 本发明中使用的聚丙烯烯系树脂 (a) 中使用茂金属聚合催化剂聚合而成的聚丙烯烯系树脂，可以使对于现有的齐格勒-纳塔催化剂难以聚合的单体与丙烯共聚，该聚丙烯烯系聚物也可以作为制造发泡粒子的基材树脂使用。这种单体的例子，例如，可列举出环戊烯、降冰片烯、1, 4, 5, 8-二甲基-1, 2, 3, 4, 4a, 8, 8a, 6-八氢萘等环状烯烃、5-甲基-1, 4-二烯、7-甲基-6-辛二烯等非共轭二烯、苯乙烯、乙烯基苯等芳香族不饱和化合物等 1 种或 2 种以上。使用茂金属聚合催化剂 (特别优选交联型茂催化剂) 时，例如特开 2003-327740 号公报记载的，由于存在用 13C-NMR 测定的、基于全丙烯插入中丙烯单体成分单元的 2, 1-插入的位置不规则成分单元和基于丙烯单体成分单元的 1, 3-插入的位置不规则成分单元等，与使用齐格勒-纳塔催化剂的情况相比，有可获得更低熔点的聚丙烯烯系树脂的倾向。

[0031] (2-3) 包含混合树脂的聚丙烯烯系树脂 (a) 包含 2 种混合树脂的聚丙烯烯系树脂 (a) 作为本发明中的聚丙烯烯系树脂发泡粒子 (b) 的基材树脂的聚丙烯烯系树脂 (a)，可以使用混合 2 种以上的聚丙烯烯系树脂而成的树脂。从实用上优选混合 2 种聚丙烯烯系树脂使用，此时，聚丙烯烯系树脂 (a) 优选包含熔点 115℃、小于等于 135℃的聚丙烯烯系树脂 (a)50～80 重量％、和熔点 125℃以上 140℃以下的聚丙烯烯系树脂 (a2)50～20 重量％的 2 种混合
树脂（其中，聚丙烯系树脂 (a1) 与聚丙烯系树脂 (a2) 的合计为 100 重量％），且聚丙烯系树脂 (a1) 与聚丙烯系树脂 (a2) 的熔点温度差 [(a2 的熔点) - (a1 的熔点)] 大于等于 5℃小于 15℃。应说明的是，将本发明中混合上述 2 种聚丙烯系树脂而成的树脂作为聚丙烯系树脂 (a) 使用时，在本发明的目的、效果的范围内，还可以进一步含有其他的树脂成分（还含有第 3 种以后的聚丙烯系树脂）。

[0032] 上述聚丙烯系树脂 (a1) 的熔点低 (熔点：大于 110℃小于等于 135℃)，因此需成形之际熔粘起始温度低，将发泡粒子 (b) 的模内成形温度范围扩展到更低温度，具有提高发泡粒子之间的熔粘性的作用。另一方面，聚丙烯系树脂 (a2) 具有比 (a1) 高的熔点 (熔点：125℃以上 140℃以下)，因此具有提高模内成形时的尺寸稳定性、和耐热性的作用。应说明的是，由聚丙烯系树脂发泡粒子 (b) 的第 2 次的升温时出现的 DSC 曲线确定的树脂熔点大于等于 120℃小于 140℃。从这点来看，希望作为对应于具有这种树脂熔点的聚丙烯系树脂发泡粒子 (b) 的基材树脂的聚丙烯系树脂 (a)，为包含熔点大于 110℃小于等于 135℃的聚丙烯系树脂 (a1)、和熔点 125℃以上 140℃以下的聚丙烯系树脂 (a2) 的混合树脂。

[0033] 聚丙烯系树脂 (a1) 与聚丙烯系树脂 (a2) 的熔点温度差优选大于等于 5℃小于 15℃是因为，如果该熔点温度差为 5℃以上，则可将作为本发明的显著效果的发泡粒子的模内成形温度范围扩展到更低温度，另一方面，如果该熔点温度差不足 15℃，则可良好地维持两树脂间的相溶性，而且在不降低模内成形的聚丙烯系树脂发泡粒子 (b) 的伸长度的情况下，可获得良好的二次发泡性。如果熔点温度差为 15℃以上，则有若没有特别的方法就难以进行树脂之间的充分的混炼，或者发泡粒子的模内成形时的二次发泡抑制效果得过大，失去发泡粒子成形体表面的平滑性等，无法获得良好的成型体之虞。

[0034] (ii) 熔点的测定方法分别将聚丙烯系树脂 1～3mg 在差示扫描热量测定中以 10℃/分钟的速度加热到 200℃，接着在刚到达该 200℃的温度后，立即以 10℃/分钟的冷却速度从 200℃冷却到 30℃后，再次以 10℃/分钟的加热速度从 30℃加热到 200℃，用此时获得的各自的 DSC 曲线的吸热峰的顶点温度表示聚丙烯系树脂 (a1) 和 (a2) 的熔点。DSC 曲线具有多个吸热峰时，采用最大面积的吸热峰的顶点温度。上述示差扫描热量测定基于 JIS K7121（1987 年）测定熔点。

[0035] (iii) 聚丙烯系树脂 (a1) 和 (a2) 的制备前述聚丙烯系树脂 (a1) 和 (a2) 可以一起作为丙烯均聚物、以及丙烯和乙烯或/和碳原子数 4～20 的 α-烯烃的共聚物制造。作为分别制造前述聚丙烯系树脂 (a1) 和 (a2) 时使用的共聚单体，可列举出乙烯、1-丁烯、1-戊烯、1-己烯、1-辛烯、4-甲基-1-丁烯等。因此，作为聚丙烯系树脂 (a1) 和 (a2)，可分别具体列举出，丙烯-乙烯无规共聚物、丙烯-丁烯 1 无规共聚物、丙烯-乙烯-丁烯-1 无规共聚物等。聚丙烯系树脂 (a1) 和 (a2) 中共聚单体成分的理想比例可以考虑目标发泡粒子的树脂熔点和机械强度来适当选择。前述共聚单体成分的比例根据聚合聚丙烯系树脂时使用的齐格勒-纳塔催化剂，茂金属聚合催化剂等催化剂的种类而不同。

[0036] 由聚丙烯系树脂 (a1) 与聚丙烯系树脂 (a2) 的组合，考虑共聚中使用的优选的单体成分的比例的各种组合。例如，使用茂金属聚合催化剂时，聚丙烯系树脂 (a2) 中乙烯成分单元含量或/和碳原子数 4～20 的 α-烯烃成分单元含量优选为 0.5～8 重量％，更优选为 1.0～7 重量％，聚丙烯系树脂 (a1) 中乙烯成分单元含量或/和碳原子数 4～20 的
α-烯烃成分单元含量可以为丙烯烯系树脂(a2)中乙烯成分单元含量或/和碳原子数4～20的α-烯烃成分单元含量1.5～4倍左右。

【0037】作为熔点大于110℃小于等于135℃的聚丙烯烯系树脂(a1)，例如，优选使用受金属聚合催化剂将丙烯烯和共聚单体或聚烯烃的乙烯-烯烃无规共聚物、丙烯-丁烯1无规共聚物和丙烯-Al无规共聚物。使用该金属聚合催化剂获得的低熔点的聚丙烯烯系树脂可将伴随熔点降低的机械物理性降低抑制到较低。使用该金属聚合催化剂获得的熔点大于110℃、小于等于135℃的聚丙烯烯系树脂，由于与熔点为125℃以上140℃以下的聚丙烯烯系树脂(a2)的相溶性优异，因而特别优选。

【0038】作为聚丙烯烯系树脂(a)，适合使用相对低熔点的树脂，因此希望前述聚丙烯烯系树脂(a1)和聚丙烯烯系树脂(a2)的任一方或双方为在茂金属聚合催化剂存在下聚合获得的聚丙烯烯系树脂。另外，使用包含上述聚丙烯烯系树脂(a1)和聚丙烯烯系树脂发泡粒子(a2)的混合树脂进行模内成形之际，为了兼顾发泡粒子的烯粘性和二次发泡性，优选包含聚烯烃系树脂(a1)50～80重量％、和聚丙烯烯系树脂(a2)50～20重量％的混合树脂(其中，聚丙烯烯系树脂(a1)与聚丙烯烯系树脂(a2)的合计为100重量％)。聚丙烯烯系树脂(a)中的聚烯烃系树脂(a1)为50重量％以上，则可将模内成形温度扩展到低温侧，可进一步提高烯粘性，另一方面，如果聚丙烯烯系树脂(a1)为80重量％以下，则可以将发泡粒子(b)模内成形而获得外观性、机械物理性等改善效果的发泡粒子成形体。

【0039】(2-4)其他树脂成分作为本发明的发泡粒子(b)的基材树脂的聚丙烯烯系树脂(a)也包括聚丙烯烯系树脂(a1)和聚丙烯烯系树脂(a2)的混合树脂，在无损本发明的效果的范围内，也可以通过挤出机等模炼装置等含有其他聚合物成分或添加剂。作为上述的其他聚合物成分，例如，可列举出，高密度聚乙烯、中密度聚乙烯、低密度聚乙烯、直链状超低密度聚乙烯、直链状低密度聚乙烯、乙烯-乙酸乙烯共聚物、乙烯-丙烯酸共聚物、乙烯-甲基丙烯酸共聚物等聚乙烯系树脂、或聚烯乙烯、苯乙烯-马来酸酐共聚物等聚苯乙烯系树脂、乙烯-丙烯系橡胶、乙烯-丁烯橡胶、丙烯-丁烯橡胶、乙烯-丙烯、乙烯系橡胶、异戊二烯橡胶、氟丁橡胶、氯橡胶等橡胶、苯乙烯-二烯嵌段共聚物或苯乙烯-二烯嵌段共聚物的加氢物等苯乙烯系热塑性弹性体等。

【0040】这些树脂、橡胶、或弹性体也可以组合2种以上使用。将上述其他聚合物成分配合于聚丙烯烯系树脂时，这些其他聚合物成分的含量相对于聚丙烯烯系树脂(a)100重量份，优选合计为20重量份以下、更优选10重量份以下。构成发泡粒子的基材树脂可以是未交联聚丙烯烯系树脂，例如，可以是根据以往公知的方法交联的交联聚丙烯烯系树脂，但考虑到回收性、发泡粒子的生产性等，优选未交联聚丙烯烯系树脂。

【0041】(2-5)添加剂作为聚丙烯烯系树脂(a)中配合的添加剂，可列举出气泡调整剂、防静电剂、导电性赋予剂、润滑剂、抗氧化剂、紫外线吸收剂、阻燃剂、金属失活剂、颜料、染料、结晶成核剂、或无机填充材料等各种添加剂，根据需要可在构成发泡粒子的聚丙烯烯系树脂中含有上述添加剂。作为上述气泡调整剂，可列举出，滑石、碳酸钙、二氧化硅、氧化钛、石膏、沸石、硼砂、氢氧化铝、炭黑等无机物，以及磷酸系成核剂、苯酚系成核剂、胺系成核剂等有机系成核剂。这些添加剂的含量根据其添加目的而不同，相对于基材树脂100重量份，优选为25重量份以下，更优选为15重量份以下，进一步优选为8重量份以下，特别优选为5重量份以下。
[0042] (2-6) 聚丙烯系树脂 (a1) 和聚丙烯系树脂 (a2) 的混合方法发泡粒子 (b) 的制造原料用的包含聚丙烯系树脂 (a1) 和聚丙烯系树脂 (a2) 的基材树脂，根据需要，混合上述其他树脂成分和添加剂后，利用混炼机充分均匀地混炼。通常，加热到树脂熔融的温度利用单螺杆挤出机混炼、挤出，也可以采用双螺杆混炼机等混炼性高的挤出机、或如特开 2006-69143 号公报记载的饥饿的成形方法利用挤出机混炼。此处所说的挤出机的饥饿运转条件是为了使熔点或熔融粘度大不相同的树脂之间良好分散而混炼的方法，相对于为了提供挤出机的输送能力而用原料树脂粒料填满原料供给部进行挤出的通常全速运转条件时的树脂的喷出量，用容量式的进料器一边调整树脂的供给一边供给，以使相同螺杆旋转数下的树脂的喷出量小于等于全速运转时的挤出方法。应说明的是，相对于全速运转时，饥饿运转时的喷出量优选为 60 ～ 80%。

[0043] (2-7) 聚丙烯系树脂 (a1) 和聚丙烯系树脂 (a2) 的熔体流动速率 (MFR) 作为聚丙烯系树脂 (a) 使用包含聚丙烯系树脂 (a1) 和聚丙烯系树脂 (a2) 的混合物的情况下，希望这些至少任一方的熔体流动速率 (JIS K7210 (1999 年)) 的试验条件 M(温度 230℃、荷重 2.16kg) 中的测定值) 为 20 (g/10 分) 以上。通过使用这种聚丙烯系树脂 (a)，可以理想地通过一次发泡制造发泡粒子 (b)，进而模内成形之际低加热温度下发泡粒子相互间的熔粘强度特别优异。

[0044] (3) 聚丙烯系树脂发泡粒子 (b) 的制造在聚丙烯系树脂粒子 (a) 中将发泡剂含浸后，使其发泡，而制造聚丙烯系树脂发泡粒子 (b)。首先，通过由挤出机将熔融树脂挤出为带状，将该带状物切割为适合制造发泡粒子的粒子进行喷射等公知的成形方法制造聚丙烯系树脂粒子 (a)。应说明的是，树脂粒子 (a) 和发泡粒子 (b) 的 1 个的平均重量通常优选为 0.01 ～ 10.0mg，更优选为 0.1 ～ 5.0mg。可以采用在密闭容器内将上述获得的聚丙烯系树脂粒子 (a) 和发泡剂分散于水等分散介质，搅拌下加热使树脂粒子软化，同时在树脂粒子中含浸发泡剂后，在树脂粒子的软化温度以上的温度下由容器内向低压下 (通常大气压下) 释放树脂粒子使其发泡等，特公昭 49-2183 号公报、特公昭 56-1344 号公报、特公昭 62-61227 号公报等记载的公知的发泡方法。为了获得发泡粒子，优选将密闭容器内的内容物从密闭容器内释放到低压区之际，使用实用的发泡剂或氮、空气等无机气体向密闭容器内施加背压，保持不使该容器内的压力急剧降低，释放内容物。通过这种操作，获得的发泡粒子 (b) 的表面密度变得更加均匀。

[0045] 通过前述方法，从密闭容器向低压区释放而获得的聚丙烯系树脂发泡粒子，经过在该释放后通常进行的大气压下的养护工序后，通过加压用的密闭容器中填充的空气等加压气体加压处理，将发泡粒子内的压力调整到 0.01 ～ 0.6MPa(G) 后，将该发泡粒子从该容器内取出，使用水蒸气或热风加热，由此可制成更低表面密度的发泡粒子 (以下，有时将该工序称为二级发泡)。

[0046] (3-1) 发泡剂作为上述方法中使用的发泡剂，可使用有机系物理发泡剂或无机系物理发泡剂，或其混合物等。有机系物理发泡剂可列举出，丙烷、丁烷、己烷、戊烷、庚烷等脂肪族烃类，环丁烷、环己烷等环状式烃类，氯甲烷、三氟甲烷、1-1-二氟乙烯、1-1-二氟乙烯、1-1-二氟乙烯、氯甲烷、氯乙烯、氯乙烯等卤代烃，二甲基醚、二乙基醚、甲基乙基醚等二烷基醚等，可将它们混合 2 种以上而使用。前述无机系物理发泡剂可列举出，氮、二氧化碳、氩、空气、水等，可将它们混合 2 种以上而使用。混合有机
系物理发泡剂和无机系物理发泡剂使用时，可组合使用从上述有机系物理发泡剂和无机系物理发泡剂中任意选择的发泡剂。应说明的是，联用无机系物理发泡剂和有机系物理发泡剂时，优选含有无机系物理发泡剂至少30重量％以上。

0047 上述发泡剂中，特别考虑到环境问题，优选无机系物理发泡剂，其中，优选氢、空气、二氧化碳、水。应说明的是，获得发泡粒子之际，在密闭容器内与树脂粒子一起使用水作为分散媒质时，通过使用在该树脂粒中混炼有吸水性树脂等的物质，也可以将属于分散媒质的水作为发泡剂使用。发泡剂的使用量可以根据目标发泡粒子的表面密度、基材树脂的种类、或发泡剂的种类等决定，通常相对于树脂粒子100重量份，有机系物理发泡剂优选使用5～50重量份，无机系物理发泡剂优选使用0.5～30重量份。

0048 (3-2) 分散介质和分散剂发泡粒子(b)的制造时，作为分散树脂粒子的分散介质，不限于上述的水，只要不溶解树脂粒子的溶媒都可以使用。水以外的分散介质例如可列表举出，乙二醇、丙三醇、甲醇、乙醇等，通常使用水。上述方法中，分散介质中，根据需要，为了使树脂粒子在分散介质中均匀分散，优选分散氧化铝、磷酸钙、焦磷酸镁、氧化锌、高岭土等难水溶性无机物质等分散剂，十二烷基苯磺酸钠、链烷磺酸钠等阴离子系表面活性剂等分散助剂。制造发泡粒子之一分散介质中添加的分散剂的量，以树脂粒子的重量为基准，优选使树脂粒子的重量与分散剂的重量的比率(树脂粒子的重量/分散剂的重量)为20～2000，更优选30～1000。优选使分散剂的重量与分散助剂的重量的比率(分散剂的重量/分散助剂的重量)为0.1～500，更优选1～50。

0049 (3-3) 利用等温结晶化操作的发泡粒子(b)的制造本发明的发泡粒子(b)优选在上述的制造方法中，特别是通过等温结晶化操作，调整了结晶构造，以使发泡粒子的第1次DSC曲线上出现多个吸热峰，且该吸热峰中，顶点温度显示120℃以上135℃以下的吸热峰的合计热量达到全部吸热峰的合计热量的50～90％。由于可以具有获得稳定的机械物性等的发泡粒子成形体因而优选这种发泡粒子。应说明的是，通过等温结晶化操作，以使发泡粒子的第1次DSC曲线上出现多个吸热峰是因为，通过该操作形成二次结晶，在发泡粒子的第1次DSC曲线上，该二次结晶区域的熔融引起的吸热峰与聚丙烯系树脂固有的吸热峰分开出现在该吸热峰的高温侧。

0050 前述的等温结晶化操作可通过下述方法进行，即，在密闭容器内将聚丙烯系树脂(a)分散于分散介质进行加热之际，不升温到该树脂粒子的熔融结束温度(以下有时称为Tc)以上，而是在比聚丙烯系树脂(a)粒子的熔点(Tm)低15℃的温度以上、不到Tc的范围内的任意的温度(Ta)停止，在该温度下保持充分的时间、优选5～60分钟左右，之后，调节到(Tm-5℃)～(Tc+5℃)的范围的任意的温度(Tb)，在该温度下将树脂粒子从容器内释放到低压区而发泡。应说明的是，等温结晶化操作中的上述(Tm-15℃)以上、小于Tc的范围内保持，可以在该温度范围内设定为多阶段，也可以在该温度范围内经过足够长的时间慢慢升温来形成该高温峰。作为本发明的发泡粒子(b)的基材树脂的聚丙烯系树脂(a)的熔点(Tm)、发泡粒子(b)的第2次DSC曲线中的树脂熔点(TmA)和第1次DSC曲线中的低温侧的吸热峰的顶点温度(PtM)相互接近，因此可以由发泡粒子的TmA或PTmA推测聚丙烯系树脂(a)的熔点(Tm)。

0051 在差示扫描热量测定中以10℃/分钟的速度将聚丙烯系树脂(a)1～3mg加热到200℃，接着，到达该200℃的温度后立即以10℃/分钟的冷却速度从200℃冷却到30℃
后，再次以 10°C/分钟的加热速度从 30°C 加热到 200°C，以此时获得的 DSC 曲线的吸热峰的顶点温度表示聚丙烯酰树脂 (a) 的熔点 (Tm)。应说明的是，DSC 曲线有多个吸热峰时，采用最大面积的吸热峰的顶点温度。上述所述扫描热量测定为与树脂熔点 (TmA) 的测定方法的载同理地利用热容量差示扫描热量测定装置基于 JIS K7121 (1987 年) 测定的熔点。

[0052] 利用发泡粒子的等温结晶化操作的二次结晶的形成、和该二次结晶区域的熔融引起的吸热峰的热量的大小，主要依赖于制造发泡粒子时对于树脂粒子的上述温度 Ta 和温度 Tb 中的保持时间、和上述温度 (Tm-15°C) 以上 (Te+5°C) 的范围内的升温速度。 (i) 温度 Ta 或 Tb 在上述各温度范围内越低，(ii)(Tm-15°C) 以上，小于 Te 的范围内的保持时间越长，以及(iii)(Tm-15°C) 以上，小于 Te 的范围内的升温速度越慢，显示发泡粒子在上述该二次结晶区域的熔融引起吸热峰的热量越小的趋势。应说明的是，上述升温速度通常采用 0.5 ~ 5°C/分钟。另一方面，(i) 温度 Ta 或 Tb 在上述温度范围内越高，(ii)(Tm-15°C) 以上，小于 Te 的范围内的保持时间越短，(iii)(Tm-15°C) 以上，小于 Te 的范围内的升温速度越快，以及(iv)Te ~ (Te+5°C) 的范围内的升温速度越慢，显示前述二次结晶区域的熔融引起的吸热峰的热量越小的趋势。考虑到这些，反复进行预备实验的话，可以得知显示所期望的二次结晶区域的熔融引起的吸热峰的热量的发泡粒子的制造条件。应说明的是，上述二次结晶区域的熔融引起的吸热峰的热量的形成涉及的温度范围，为使用无机系物理发泡剂作为发泡剂时的适当的温度范围。因此，发泡剂更变为有机系物理发泡剂时，根据其种类或使用量，其适当的温度范围比上述温度范围分别移至低温侧 0 ~ 30°C 左右。

[0053] (3-4) 利用聚丙烯酰树脂发泡粒子 (b) 的 DSC 曲线求出的吸热峰的热量发泡粒子 (b) 的第 1 次 DSC 曲线的全部吸热峰热量 (ΔH) 如下求出。图 1 是发泡粒子的第 1 次 DSC 曲线的示意图，如图 1 所示，引出连接相当于前述 DSC 曲线上的 80°C 的点 α、和相当于树脂的熔融结束温度 Te 的 DSC 曲线上的点 β 的直线 (α - β)，将其作为基线，将与该基线和 DSC 曲线包围部分的面积相当的热量作为全部吸热峰热量 (ΔH)/g。上述峰的热量是基于峰的面积利用差示扫描热量测定装置演算而机械性算出的。应说明的是，本发明中，全部吸热峰热量 (ΔH) 优选为 40 ~ 120J/g 的范围，更优选 45 ~ 100J/g 的范围，特别优选 45 ~ 85J/g 的范围。另外，与图 1 所示的吸热峰 x1、x2、x3· · · 的面积的面积相当的各吸热峰的热量 (ΔH1、ΔH2、ΔH3· · ·) 可以如前所述，通过部分面积解析法求出。

[0054] 发泡粒子 (b) 是在第 1 次 DSC 曲线中，将发泡粒子 1 ~ 3mg 作为试验片，基于 JIS K7122 (1987 年) 记载的热容量差示扫描热量测定法，以 10°C/分钟的升温速度由常温升温到 200°C 之际获得的第 1 次 DSC 曲线中出现多个吸热峰的发泡粒子 (b)，具有该吸热峰中顶点温度显示 120°C 以上 135°C 以下的吸热峰的合计热量为全部吸热峰的合计热量的 50 ~ 90% 的结晶构造，考虑到成为目标熔粘在先型的发泡粒子的二次发泡性、获得的发泡粒子成形体的机械强度、耐热性等，因而优选。上述顶点温度显示 120°C 以上 135°C 以下的吸热峰有作为单独的吸热峰出现的情况，也有作为多个吸热峰出现的情况。应说明的，图 1 为发泡粒子的第 1 次 DSC 曲线的示意图，显示在 120°C 以上 135°C 以下范围具有顶点温度 (PTmA) 的吸热峰 x1 单独出现的情况。
本发明的发泡粒子在发泡粒子的第1次DSC曲线中存在顶点温度(PTmA)显示120℃以上135℃以下的吸热峰，考虑到提高耐热性和进一步降低模内成形时的成形温度，因而优选。本发明的发泡粒子在发泡粒子的第1次DSC曲线中顶点温度显示120℃以上135℃以下的吸热峰的合热热量为全部吸热峰热量(ΔH)的50～90%，考虑到获得的发泡粒子成形体的机械强度、耐热性等物性提高和发泡粒子(b)的低温下的模内成形性的平衡，因而优选。

通过混合使用多个聚丙烯系树脂作为发泡粒子(b)的基材树脂，在发泡粒子(b)的第1次DSC曲线中，形成多个吸热峰，进一步，如前所述，通过进行等温结晶化操作，也可以在形成多个吸热峰的同时也可以增加该多个吸热中高温侧的吸热峰的热量。因此，通过上述方法，特别是等温结晶化操作，对于在发泡粒子的第1次DSC曲线中出现多个吸热峰的发泡粒子(b)，可以将该多个吸热峰中的顶点温度显示120℃以上135℃以下的吸热峰的合热热量调整为全部吸热峰的合热热量的50～90%。应说明的是，通过等温结晶化操作形成的吸热峰的热量优选为2～30J/g，更优选为5～20J/g的范围。

应说明的是，发泡粒子的第1次DSC曲线出现多个吸热峰时，这些吸热峰是通过等温结晶化操作形成的，还是并不是通过该操作形成的，可以通过以下的聚丙烯系树脂发泡粒子(a)差示扫描热量测定方法确认。利用差示扫描热量测定装置以10℃/分钟的加热速度将聚丙烯系树脂发泡粒子1～3mg加热到200℃，可获得例如图3例示的第1次DSC曲线。接着，到达100℃的温度后，立即以10℃/分钟的冷却速度从200℃冷却到30℃，再次到达该30℃的温度后，立即以10℃/分钟的加热速度从30℃加热到200℃，可获得例如图4例示的第2次DSC曲线。通过上述方法获得第1次DSC曲线的图3中，存在有作为第2次DSC曲线的图4中消失的吸热峰。即，图3例示的发泡粒子(b)的第1次DSC曲线中，观察到顶点温度为139℃的吸热峰，但在图4例示的该发泡粒子的第2次DSC曲线中，139℃附近具有顶点温度的吸热峰消失。此时，第1次DSC曲线中，第2次DSC曲线中消失的吸热峰为通过等温结晶化操作形成的吸热峰，其他吸热峰是丙烯系树脂成分固有的吸热峰。

(3-5) 平均气泡径本发明的发泡粒子(b)的平均气泡径通常为30～500μm，优选为50～350μm。具有上述范围内的平均气泡径的发泡粒子(b)，由于气泡膜的强度的关系，没有后述的发泡粒子的二阶发泡或模内成形时构成发泡粒子的气泡破裂之虞，显示良好的二次发泡性。将发泡粒子切割为大致2等分，得到气泡断面，用显微镜拍摄该断面，基于放大照片，可以通过以下操作求出前述发泡粒子(b)的平均气泡径。在上述气泡断面的放大照片中，引出从发泡粒子的表面到另一表面、且通过气泡断面的中心部的直径4根，从中心部向发泡粒子表面放射状朝向8个方向。接着，求出与前述4根直径相交的气泡的数的总数：N(个)。然后，用由前述4根直径中的表面到其他表面的线段的长度总和：L(μm)除以气泡数的总数：N(个)，将通过(L/N)求出的值作为发泡粒子的平均气泡径。

前述平均气泡径由于基材树脂的高熔体流动速率化、发泡温度的上升、发泡剂的减量、气泡调整剂的减量和树脂粒子的粗粒径化等而变大，因此可以通过适当调整这些平均气泡径变动要因而获得具有目标平均气泡径的发泡粒子(b)。包含滑石、氢氧化
铝、二氧化硅、沸石、硼砂等无机物的气泡调节剂优选在树脂粒子的制造之际，以相对
于基材树脂 100 重量份为 0.01 ～ 5 重量份的比例在基材树脂中配合。应说明的是，上述
发泡粒子制造时的发泡温度或发泡剂的种类和使用量等也会使该平均气泡径变化，因此
为了获得具有目标平均气泡径的树脂，优选事先进行预备实验来设定条件。

（2）第 2 方案的发泡粒子成形体 (a) 聚丙烯系树脂发泡粒子 (b) 的模内成形方
法本发明的发泡粒子成形体 (c) 可以采用下述方法来制造：根据需要，进行与上述二级
发泡中的操作同样的提高发泡粒子内的压力的操作将发泡粒子内的压力调整为 0.1 ～
0.2MPa(G) 后，填充于可加热和冷却且可开关、密闭的以往公知的热塑性树脂发泡粒子
模内成形用的金属模的空腔内，供给饱和蒸气压为 0.05 ～ 0.25MPa(G)、优选 0.08 ～
0.20MPa(G) 的水蒸气，在金属模内加热发泡粒子之间使其膨胀、熔粘，接着将剩余的发
泡粒子成形体冷却，从空腔内取出的外观形状模内成形法 (例如，特公平 4-46217 号公报、
特公平6-49795 号公报等记载的成形方法)。

（0061）作为上述模内成形法中的水蒸气加热的方法，可采用适当组合一方加热、双
一方加热、两方向同时加热等加热方法的以往公知的方法，特别优选按预定加热、一方
加热、相反一方加热、两方向同时加热的顺序加热发泡粒子的方法。应说明的是，发泡
粒子成形时的上述 0.05 ～ 0.25MPa(G) 的饱和蒸气压，在模内成形工序中，为供给金属模
内的水蒸气的饱和蒸气压的最大值。本发明的发泡粒子成形体 (c) 还可以通过将聚丙烯系
树脂发泡粒子 (b)，根据需要将发泡粒子内的压力调整到 0.1 ～ 0.2MPa(G) 之后，连续
地供给到沿着具有加热区域和冷却区域的通路内的上下连续移动的皮带形成的模内，通
过加热区域时将饱和蒸气压 0.05 ～ 0.25MPa(G) 的水蒸气供给模内使发泡粒子之间膨胀、
熔粘，之后通过冷却区域进行冷却，接着将得到的发泡粒子成形体从模内取出，依次切
割为适当长度的连续式模内成形法 (例如特开平9-104026号公报、特开平9-104027号公
报和特开平10-180888号公报等记载的成形方法) 来制造。

（0062）应说明的是，获得表观密度为 30g/L 以下的发泡粒子成形体时，对于现有的聚丙
烯系树脂发泡粒子的模内成形，虽然受目标形状的影响，但是如果不是使用提高发泡粒子
内的压力的发泡粒子的模内成形方法，或者制造表观密度 20g/L 以下的发泡粒子，大大
提高发泡粒子的金属模空腔内的填充率而模内成形的方法，就难于获得良好的发泡粒子
成形体。但是，本发明的聚丙烯系树脂发泡粒子 (b) 并不受这种方法的影响，可以获得低
密度的发泡粒子成形体。本发明的发泡粒子在现有的方法低的模内成形压力下也可以
获得良好的发泡粒子成形体 (c)。

（0063）（2）通过模内成形获得的发泡粒子成形体利用本发明的聚丙烯系树脂发泡粒子 (b)
进行的模内成形，首先通过利用前述水蒸气的加热发泡粒子的表面之间熔粘，另一方面
发泡粒子自身软化而于发泡粒子的表面之间的熔粘而进行二次发泡，由此可形成外观
和发泡粒子相互间熔粘性都优异的良好的发泡粒子成形体。即使假设模内成形时发生一
些加热不均的情况下，由于成形温度范围宽，也可以形成良好的发泡粒子成形体 (c)。本
发明的发泡粒子成形体 (c)，其发泡粒子之间紧密地熔粘，发泡粒子不会剥离，显示良好
的压缩强度、柔软性，压缩永久应力也小，表面平滑而凹凸极少，尺寸稳定性也优异。
另外，对于壁厚发泡粒子成形体，直到该成形体的内部发泡粒子相互间熔粘性也优异。

（0064）如上所述地制造的本发明的发泡粒子成形体 (c) 的依照 ASTM-D2856-70 的程序
C 的连续气泡率优选为 40% 以下，更优选为 30% 以下，最优选为 25% 以下。 越是连续气泡率小的发泡粒子成形体，机械强度越优异。 另外，本发明的发泡粒子成形体 (c) 的表观密度，考虑到机械强度、缓冲性、轻量性等，优选为 10 ~ 300g/L，更优选为 13 ~ 180g/L。应说明的是，发泡粒子成形体的表观密度 (g/L) 可以用发泡粒子成形体的重量 (g) 除以该发泡粒子成形体的外形尺寸求出的体积 (L) 而求出。

实施例
[0065] 下面通过实施例更加详细地说明本发明。但本发明并不限于这些实施例。以下记载实施例中的评价方法等。应说明的是，本发明的实施例、比较例中使用的 DSC 装置为ディー・エイ・インスツルメント・ジャパン (株) 制、商品名：DSC Q1000。
[0066] (1) 评价方法 (1-1) 对于基材树脂 (i) 基材树脂的熔点采用 “(1) 对于作为第 1 方案的聚丙烯系树脂发泡粒子，(2) 聚丙烯系树脂 (a)、(2-3) 包含混合树脂的聚丙烯系树脂 (a)、(ii) 熔点的测定方法” 的项目中记载的方法。 (1-2) 对于发泡粒子 (i) 发泡粒子的树脂熔点的测定采用 “(1) 对于作为第 1 方案的聚丙烯系树脂发泡粒子，(1) 聚丙烯系树脂发泡粒子 (b)、(1-1) 聚丙烯系树脂发泡粒子 (b)” 的项目中记载的 DSC 曲线中的树脂熔点的测定方法。 (ii) 发泡粒子的第 1 次 DSC 曲线中的吸热峰 (ΔH1、ΔH120-135) 的热量测定采用 “(1) 对于作为第 1 方案的聚丙烯系树脂发泡粒子，(3) 聚丙烯系树脂发泡粒子 (b) 的制造、(3-4) 利用聚丙烯系树脂发泡粒子 (b) 的 DSC 曲线测定的吸热峰的热量” 的项目中记载的方法。 (iii) 发泡粒子的表观密度 (ρg) 和发泡粒子的加热前后的表观密度比 (ρx) 采用 “(1) 对于作为第 1 方案的聚丙烯系树脂发泡粒子，(1) 聚丙烯系树脂发泡粒子 (b)、(1-2) 聚丙烯系树脂发泡粒子 (b) 的加热前后的表观密度比 (ρx)” 的项目中记载的方法。
[0067] (iv) 发泡粒子的熔粘压的压力的测定基于发泡粒子的第 1 次 DSC 曲线，推测发泡粒子的表面熔融的温度的下限，利用相当于该下限温度的饱和蒸气压的蒸汽进行发泡粒子的模内成形，对于得到的发泡粒子成形体进行下述发泡粒子相互间熔粘性的评价，可确认发泡粒子成形体的熔粘压不足 50%。接着，除了将蒸汽的饱和蒸气压升高设定为 0.01MPa 以外，同样地进行上述熔粘性的评价。依次进行将蒸汽的饱和蒸气压升高设定为 0.01MPa 而进行熔粘性的评价的操作，使发泡粒子成形体的熔粘率达到 50% 以上，以该熔粘率达到 50% 以上时的饱和蒸气压 (该熔粘率达到 50% 以上的最低的饱和蒸气压) 作为熔粘压。应说明的是，上述模内成形使用的金属模为成形空间为长 250mm、宽 250mm、厚 100mm 的长方体形。另外，上述发泡粒子成形体的熔粘压是指，不弯曲发泡粒子成形体，在长度方向或宽度方向断裂为大致等分，观察断裂面，用存在于断裂面的断裂的发泡粒子的数目除以存在于该断裂面的所有发泡粒子的数目的值的百分率。 (v) 平均气泡径采用 “(1) 对于作为第 1 方案的聚丙烯系树脂发泡粒子，(3) 聚丙烯系树脂发泡粒子 (b) 的制造、(3-5) 平均气泡径” 的项目中记载的方法。
[0068] (1-3) 对于发泡粒子成形体 (i) 内部熔粘性对发泡粒子不进行内压赋予等前处理，
在成形空间为长 250mm、宽 250mm、厚 100mm 的金属模内成形，在 80℃的烘箱中养护干燥 12 小时后，从发泡粒子成形体的中央部切割长 70mm、宽 70mm、厚 100mm 的试验片，将该试验片在厚度方向弯曲折断为大致等分，观察断裂面，将用存在于断裂面的断
裂的发泡粒子的数目除以存在于该断面面的所有发泡粒子的数目的值的百分率作为熔粘率（%），通过以下基准进行评价。A：试验片的熔粘率为50%以上。C：试验片的熔粘率不足50%。

(ii) 二次发泡性（外观）肉眼观察发泡成形体的表面，通过以下基准进行评价。A：发泡成形体的表面没有凹凸，几乎看不到粒子间隙，显示良好的表面状态。B：发泡成形体的表面可以稍微看到粒子间隙和/或凹凸。C：发泡成形体的表面的粒子间隙和/或凹凸明显。

(iii) 尺寸稳定性在80°C、12小时的养护条件下的养护结束后，测定发泡粒子成形体的长度、宽度、和厚度方向的长度，求出与金属模成形空间的对应方向的尺寸差，将其平均值作为“发泡成形体相对于金属模成形空间尺寸的尺寸差”，通过以下基准进行评价。A：发泡粒子成形体相对于金属模成形空间尺寸的尺寸差小于4%。B：发泡粒子成形体相对于金属模成形空间尺寸的尺寸差为4%以上，但几乎看不到发泡粒子成形体的中央部的厚度减少。C：发泡粒子成形体相对于金属模成形空间尺寸的尺寸差为4%以上，且相对于发泡成形体外周部，中央部的厚度明显小。

(2) 实施例、比较例中使用的基材树脂实施例、比较例中使用的基材树脂及其物理性质等如表1所示。

【表1】

<table>
<thead>
<tr>
<th>树脂简称</th>
<th>基材树脂的种类</th>
<th>催化剂种类</th>
<th>乙烯成分单元含量（重量%）</th>
<th>MFR (g/10分)</th>
<th>熔点 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>树脂1</td>
<td>丙烯-乙烯无规共聚物</td>
<td>齐格勒系催化剂</td>
<td>2.8</td>
<td>5</td>
<td>145</td>
</tr>
<tr>
<td>树脂2</td>
<td>丙烯-乙烯无规共聚物</td>
<td>茂金属系催化剂</td>
<td>1.6</td>
<td>8</td>
<td>134</td>
</tr>
<tr>
<td>树脂3</td>
<td>丙烯-乙烯无规共聚物</td>
<td>茂金属系催化剂</td>
<td>1.6</td>
<td>27</td>
<td>134</td>
</tr>
<tr>
<td>树脂4</td>
<td>丙烯-乙烯无规共聚物</td>
<td>茂金属系催化剂</td>
<td>2.8</td>
<td>7</td>
<td>125</td>
</tr>
<tr>
<td>树脂5</td>
<td>丙烯-乙烯无规共聚物</td>
<td>茂金属系催化剂</td>
<td>2.4</td>
<td>27</td>
<td>128</td>
</tr>
<tr>
<td>树脂6</td>
<td>丙烯-乙烯无规共聚物</td>
<td>茂金属系催化剂</td>
<td>2.6</td>
<td>8</td>
<td>128</td>
</tr>
</tbody>
</table>

[0072] 实施例1～7(1) 聚丙烯系树脂发泡粒子的制造作为基材树脂，将表1记载的聚丙烯系树脂以表2所示的比例与硼酸锌500重量ppm一起用内径65mm的单螺杆挤出机熔融混炼，将混炼物从安装在挤出机前端的喷嘴的小孔条状挤出，用水槽冷却，将料条切割为重约1mg，进行干燥，得到树脂粒子。

[0073] 将上述树脂粒子1kg装入具备作为分散媒质的水3升(L)和搅拌机的5L的密闭容器内，在分散媒质中进一步添加作为分散剂的高岭土0.3重量份、作为表面活性剂的烷基苯磺酸钠0.004重量份、和硫酸铝0.01重量份，在密闭容器内压入作为发泡剂的碳化气体8重量份，搅拌下升温到表2所示的发泡温度，在该温度保持15分钟，进行等温结晶化操作以获得规定的高温峰吸热量后，将内容物在大气压下释放，得到表2所示的表现密度

18
的发泡粒子。另外，将在大气下释放前述操作中的内容物时的容器内压力一并示于表2。应说明的是，表示上述分剂、表面活性剂、硫酸铝和发泡剂的使用量的重量份为相对于树脂粒子 100 重量份的比例。将得到的发泡粒子的第 1 次 DSC 曲线中的、全部吸热峰热量 (ΔH) 和顶点温度显示 120℃以上 135℃以下的吸热峰的热量 (ΔH₁₂₀-₁₃₅)、发泡粒子的第 2 次 DSC 曲线中的树脂熔点 (表 2 中记为树脂熔点)、和发泡粒子的发泡粒子的加热前后的表面密度比 (ρₙ)、发包粒子的加热后前的表面密度比 (ρₚ) 示于表 2。实施例 1 中的第 1 次 DSC 曲线测定结果如图 3 所示，第 2 次 DSC 曲线的测定结果如图 4 所示。图 3 中，作为顶点温度 125℃付近的吸热峰观察到实施例 1 中使用的树脂 3 和树脂 5 的混合树脂固有的吸热峰。另外，图 3 中，作为顶点温度 139℃付近的吸热峰观察到由于混合树脂的等温结晶化操作形成的二次结晶区域的熔融引发的吸热峰。图 4 中，前述树脂的二次结晶区域的熔融引发的高温侧的吸热峰消失，作为顶点温度 131℃附近、124℃附近的吸热峰，可分别观察到树脂 3 和树脂 5 固有的吸热峰的熔融引发的吸热峰。

[0074] (2) 发泡粒子成形体的制造将上述获得的发泡粒子填充到长 250mm×宽 250mm×厚 100mm 的平板金属模中，进行利用表 2 所示的成形压 (饱和蒸气压) 的水蒸气加热的模内成形，得到厚壁发泡粒子成形体。进而，将该发泡粒子成形体在 80℃的烘箱中养护 12 小时，得到聚丙烯系树脂发泡粒子成形体。将得到的发泡成形体的密度、该发泡粒子成形体的内部熔粘性、二次发泡性及尺寸稳定性的评价结果一并示于表 2。

[0075] [比较例 1 ～ 9] (1) 聚丙烯系树脂发泡粒子的制造除了将表 1 记载的聚丙烯系树脂单独或其 2 种采用表 2 所示的配合比例以外，通过与实施例 1 ～ 7 的记载同样的方法，制造聚丙烯系树脂发泡粒子。与实施例 1 ～ 7 的记载同样地，将得到的发泡粒子的第 1 次 DSC 曲线中的 ΔH 和 ΔH₁₂₀-₁₃₅、发泡粒子的第 2 次 DSC 曲线中的树脂熔点 (表 2 中记为树脂熔点)、和发泡粒子的发泡粒子的加热前后的表面密度比 (ρₚ) 示于表 2。发泡粒子成形体的制造利用与实施例 1 ～ 7 的记载同样的方法进行模内成形，得到厚壁发泡粒子成形体。进而，将该发泡粒子成形体在 80℃的烘箱中养护 12 小时，得到聚丙烯系树脂发泡粒子成形体。将发泡粒子成形体的密度、该发泡粒子成形体的内部熔粘性、二次发泡性及尺寸稳定性的评价结果一并示于表 2。

[0076] [评价结果] (i) 实施例 1 ～ 7 实施例 1 ～ 7 的发泡粒子满足本发明的构成要件，虽然模内成形时的成形压低，但可获得发泡粒子相互间熔粘性良好的发泡成形体。应说明的是，实施例 7 中，基材树脂的 MFR 均小于 20(g/10 分)，因此成形加热压力有些增高。

[0077] (ii) 比较例 1 ～ 5 由比较例 1 ～ 5 的发泡粒子，可知与发泡粒子的第 2 次 DSC 曲线中的树脂熔点无关，如果表观察密度比 (ρₚ) 为 1.6 以上，则发泡成形体的内部熔粘性差。另外，比较例 1 中，该树脂熔点超出本发明的范围，模内成形时的加热蒸气压力增高。 (iii) 比较例 6 比较例 6 的发泡粒子使用与实施例 1、2、4、5 相同成分的树脂，但 2 种树脂的配合比例与实施例 1 不同，因此表观察密度比 (ρₚ) 达到 1.6 以上，发泡成形体的内部熔粘性差。

[0078] (iv) 比较例 7 比较例 7 的发泡粒子使用与实施例 7 相同成分的树脂，但 2 种树脂的配合比例与实施例 7 相同，因此表观察密度比 (ρₚ) 达到 1.6 以上，发泡成形体的内部熔粘性差。 (v) 比较例 8 与比较例 8 的发泡粒子以 2 种混合树脂作为基材树脂，各树脂的熔点差小，为 3℃，因此表观察密度比 (ρₚ) 达到 1.6 以上，发泡成形体的内部熔粘性差。
(vi) 比较例 9 比较例 9 的发泡粒子以 2 种混合树脂作为基材树脂，各树脂的熔点差大，为 17℃，因此表观密度比 \(\rho_0 \) 达到 1.6 以上，可满足发泡粒子成形体的表面平滑性、发泡粒子相互间熔粘性的模内成形时的成型压的下限高，发泡粒子成形体的内部熔粘性差。
<table>
<thead>
<tr>
<th>材料</th>
<th>湿度 (%)</th>
<th>比例 (%)</th>
<th>表面质量</th>
<th>颜色</th>
<th>电阻率 (Ω·cm)</th>
<th>体积电阻率 (Ω·cm²)</th>
<th>表面电阻率 (Ω·cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>6</td>
<td>132</td>
<td>3.2</td>
<td>78</td>
<td>224</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>6</td>
<td>133</td>
<td>3.2</td>
<td>77</td>
<td>185</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>6</td>
<td>133</td>
<td>3.2</td>
<td>75</td>
<td>153</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>6</td>
<td>133</td>
<td>3.2</td>
<td>76</td>
<td>152</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>6</td>
<td>133</td>
<td>3.2</td>
<td>77</td>
<td>153</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
<td>6</td>
<td>133</td>
<td>3.2</td>
<td>76</td>
<td>152</td>
<td>62</td>
</tr>
</tbody>
</table>

【0079】
$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$

图1
图 2
图 3