(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O 0 O

International Bureau

(43) International Publication Date
24 July 2008 (24.07.2008)

(10) International Publication Number

WO 2008/087636 A2

(51) International Patent Classification:
GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/TL.2008/000066

(22) International Filing Date: 16 January 2008 (16.01.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/901,674 16 January 2007 (16.01.2007) US

(71) Applicant (for all designated States except US): GIZMOX
LTD. [IL/IL]; Midreshet Ben-Gurion, P.o.b. 114, 84990
Sde Boker (IL).

(72) Inventor; and
(75) Inventor/Applicant (for US only): PELED, Guy [IL/IL];
27 Hadarim Street, 44935 Sede Varburg (IL).

(74) Agents: LUZZATTO, Kfir et al.; P.O. Box 5352, 84152
Beer Sheva (IL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: METHOD AND SYSTEM FOR CREATING IT-ORIENTED SERVER-BASED WEB APPLICATIONS

636 A2 |0 O O T OO

~ (57) Abstract: Method for allowing a computerized system to use IT-oriented server-based Web applications to be presented over
@O a data network. Accordingly, an application is installed on a server side, being in data communication with a client side terminal
& over the data network. A dedicated kernel is downloaded once to the client side, for mediating between the application and the
% client’s side. At the client side, events are associated with corresponding ID tags that represent application objects and a timestamp
&= is assigned to each event. Events are queued and sent to the application in the form of a queue of events, only when a critical event
& occurs. At the server side, events are translated to application actions by associating between them and the application objects, using

the ID tags. If the application objects of the client is more updated by comparing between the timestamp of each received event
O and the last updated timestamp of the application object, a data packet containing only updating commands for the client side to

update the relevant layout objects reflecting the application updates is prepared and sent back to the client side as updates. Finally,
a the screen layout objects at the client side are updated by a presentation layer, according to the content of the data packet.

WO 2008/087636 PCT/IL2008/000066

-1-

METHOD AND SYSTEM FOR CREATING IT-ORIENTED SERVER-
BASED WEB APPLICATIONS

Field of the Invention

The present invention relates to Web applications. More particularly, the
invention relates to a method and system for creating IT (Information
Technology)-oriented server-based Web applications to be presented over a

data network, such as the Internet.

Definitions. Acronyms and Abbreviations
Throughout this specification, the following definitions are employed:

Event: is an action performed by a user on an application.

Critical Event: is an event should be immediately sent to the server in

order to synchronize the client and the server states (as opposed to an event

that can be sent in a delayed time).

Unique Event: is an event that eventually would be sent to the server.

Accumulated Event: is a client side event that is stored in a client event

queue until the next Critical Event occurs. Then, when a Critical Event
happens, the client will send the whole queue of events which occurred

between the previous Critical Event and the current one.

Client: or Client Tier is a user terminal (e.g. webpage) connected to a

server.

Control: is a displayable application component (e.g. button, field, etc...).
Every control can perform defined operations (e.g. getting keyboard input,

pushing, etc...).

WO 2008/087636 PCT/IL2008/000066

Container: is the window which contains controls.

Splitter: is a side panel like control (either horizontal or vertical) which is
positioned between two docked/anchored controls and which enables
changing the ratio of size (width or height) of those controls one on account

of the other by dragging it.

Dedicated Kernel:

In the context of the present invention a dedicated kernel is a small and
static piece of code which is downloaded only once by the client at the first
time the client approaches the application at the server side. This dedicated
kernel mediates between the client's side browser and the application and is
responsible for:

- Sending and receiving any sort of data to and from the server;

- Activating XSL (a language for formatting an XML document: for
example, showing how the data described in the XML document
should be presented in a Web page) Transformations (show how the
XML document should be reorganized into another data structure
which could then be presented by following an XSL style sheet) or any
other presentation layer’s lay-outing techniques;

- Aggregating user events (e.g., keyboard presses and mouse events),
accumulating non-critical event queues and sending those event
queues whenever desired to the server;

- Reflecting any client side’s controls behavior which is achieved by

client languages code.

Application Object Index: is a collection of application objects that holds

component ID (Identification) of the application object instance. This index
is used to process event queues sent from the client by retrieving the

triggered event object owner by its ID and passing event processing

WO 2008/087636 PCT/IL2008/000066

-3.

responsibility to the mapped object instance. This allows a week dependency
between the client and the server object instances which can be expressed in

standard XML syntax using the instance ID.

Application Object Tree: is an object tree containing application objects
in a hierarchical tree structure, representing the application GUI (Graphical

User Interface) structure.

Application Root: is an application object that is bounded to a configured
page name which is accessible by activating it directly so that it acts as an
entry point of the application object tree. Saying that the application root it
browse-able directly by typing a URL in the browser (when using the

present invention on web platform, for example).
Main Form Window: is the first window that the user sees when he
accesses a URL that is processed by this technology. It is equivalent to the

main window that opens when you start a desktop application.

Client Time Stamp: is a time stamp of an object on the client side,

representing the last update time.

Request Time Stamp: is a time stamp indicating the current browser

status, which is the last time the browser had received an update command
from the server. ,
Time Stamp: is a numeric value representing the last update time of the

given application object.

Unique Accumulated Event: is a new event that replaces any event

having the same ID, since the old one is out of date.

WO 2008/087636 PCT/IL2008/000066
-4 -

Update Commands: is a set of XML (Extensible Markup Language)

elements that the browser executes in order to be synchronized with the

application object tree and the server control state.

Window Structure: is a set of XML elements representing the current

windows structure of the application. The Window Structure is used to
update the Client tier’s state (the currently drawn UI) according to the

Server tier state (the current Ul state on the server).

XSLT Templates: are a set of XSLT (Extensible Stylesheet Language
Transformations) which describes the transformation that has to be done on
the data in order to draw the reflected controls on a Client tier (e.g., web

browser).

XML data behind: is an XML (Extensible Markup Language) that is used
by the client to store the state of an application interface. The application
interface state holds the properties of every Ul control and contains all the
information needed by the client to synchronize its controls state according
to the server’s state. For example, a color or dimension of a control, the text
that it shows ete. This provides the Client tier with the ability to redraw any
part of the Ul using XSLT (Templates transformation) on the data behind
XML.

Background of the Invention

Nowadays, HTML (HyperText Markup Language) is a global standard

language, which is copyright free and available for use by all developers,
and further supported by all programming environments. The ability to
offer links for navigation and its multimedia support capability (sound,
pictures, animations, etc.) caused the world to adopt the HTML as the
industry mainstream. Also, recently, the DHTML (Dynamic HTML)
language was presented. DHTML is a collection of technologies used

WO 2008/087636 PCT/IL2008/000066

- 5.

together to create interactive and animated Web sites by using a
combination of a static markup language (such as HTML), a client-side
scripting language (such as dJavaScript™), a presentation definition
language (Cascading Style Sheets, CSS), and a Document Object Model
(programming interface). Thus, the DHTML language enabled better
interactivity with the Internet users. The penetration of the Internet into all
information driven walks of life and the fast spread of the Internet among
users, along with the growing demands by the business and commercials
sectors as a mean of communication with their users, brought about the
need for more dynamic and heavier remote server/client oriented internet
applications. This led to the introduction of ASP (Application Service
Provider), PHP (Hypertext Preprocessor) and other web application
languages/environments that presented new utilities, such as dynamically
created pages that were static before. These new environments introduced

the capability to expose and receive data from conventional HTML pages.

The demand for higher server-client performance of IT (Information
Technology) Web oriented applications currently can not answer the
growing needs for more sophisticated IT applications. In spite of the
significant evolution of the internet that is becoming the major mediator in
IT uses, the basic principals supporting these usages remained the same as
a couple of decades ago. Nowadays, ASP.NET (Active Server Pages) and JSP
(Java® Server Pages) offer better "server side" development environment.
On the client side, HTML pages, containing scripts that call server-side
pages, i.e. pages are fully reconstructed on each action on the sever side,
resulting in slow and limited performances. Furthermore, using web
applications, which are heavily script-dependent, has become the main
practice of Web developers. The Web applications needs are becoming more
and more resemble to the computer desktop needs. More features that have
been only supported by desktop applications have become essential for Web

applications. This demand came with a high price tag in terms of a

WO 2008/087636 PCT/IL2008/000066

-6-

bandwidth, i.e., web transportation resources. Client side scripts started to
be more and more complex, making Web application hard to design and
maintain. In addition, the performance problems of such applications are
very common. It is easy to mess things up, as scripts offer no code access

limitations, and poor object oriented programming concepts, if at all.

Also, the security issue remains one of the major problems of the current
Web-oriented technologies, since the scripts run on a client browser (e.g.,
Microsoft® Internet Explorer). The use of script languages, being embedded
into the user's browser, has made Web applications to be exposed to
malicious tampering, since pages that serve as data providers for Web
applications are hard to protect. A large part of the data is processed by the
browser at the user's side (and not at the server side), and therefore

exposing more data than required.

Furthermore, the ASP.NET and JSP have become outdated since they are
not able to cope well enough with current IT needs. Even though they
introduced stronger programming possibilities, such as new infrastructural
programming utilities, new modeling and reuse capabilities (reuse
capabilities are the ability to create components once and use them later
multiple times), still the basic concepts remain the same, reflecting the
same problems described above (i.e., performance and user experience,
security, complexity of development and maintenance). The page-based
approach of these environments makes it a poor environment for developing
Web application, since there is no server side support for opening windows
or interacting between frames (since a lot of window management code
should be written in client scripting languages distributing the business
logics to a few languages and locations). There is limited development
support for partial updating of the user interface, leaving the developer with
the need to explicitly manage partial updating and deteriorating the

development process productivity. In addition, the current IT systems

WO 2008/087636 PCT/IL2008/000066

-7

bandwidth constrained and they are not able to support more sophisticated
needs that require larger processing resources. This leads to valuable users'
time waste. The sophisticated actions cause slow browser scripts perform,
wherein each action is calling a different page that is being fully recreated
by the server and fully rendered by the browser. Currently, the developer is
the only one who decides what will be the content of the data transferred
between the client side and the server side. This fact causes the data to be
very inconsistent and informal, i.e., the data can contain presentation data,
business data, and all sorts of security tokens and various other types.
Furthermore, the data 6an be of any format e.g., plain text, XML or any
other format. Several developers and moreover several projects can use
several and very different protocols of data and formats sent and received to
the server and returned from the server. A developer must learn many
Internet languages, which requires considerable training, and therefore the

qualified personnel are hard to find.

In desktop application development environments, the control positioning is
divided into docking and anchoring. Docking is the ability to take a list of
controls and give each of them one of the five docking behaviors (Left, Top,
Right, Bottom, and Fill) and using these definitions to create the screen
layout. Each control is independent, but is placed in relation to the other
controls without overlapping. That way there's no need to update the
positioning of all the controls when updating one. Anchoring is the ability to
define virtual strings that are tied from a control edge's (one, some or all of
them) to its container. When the control's container is resized, moved or
both the distance between the anchored-to container’s side panels and the
anchored control’s side panels will remain static on side panels which the
control is anchored to. This can result in the control’s resize when anchoring

to opposite side panels (e.g., left+right and/or top+bottom).

WO 2008/087636 PCT/IL2008/000066

-8-

The conventional web application development environments provide the
programmer an object module (the output of an assembler or compiler,
which is in the machine code of the target computer. Object modules must
be linked with other modules to create the final executable program)
representing HTML elements for building the page content.

The page layout is done using three tools:

1. HTML tables (which can contain the text of the web and can be also
used to layout any HTML elements.

9. Flow control styles such as CSS (cascading style sheets) layout
definitions.

3. Absolute positioning which allows positioning any browser displayed
element (i.e. Button, List etc.) by specifying the exact location of the
element regardless of other displayed elements. This methodology is
very difficult to use when developing a web site which should act as

an application.

All the above describes the complicated work environment of web
application design. It also presents the drawbacks and the limitations of the

usage of these applications.

In the closest prior art (Pub. No.: 2008/0200254 Al), the application tasks'
are divided between the server and the client. A client using this application
must install a service program (JAVA applet). It means that some
processing tasks are done in the client side. That limits the user for
installation authorized computers only and to specific operating system and
web browser. It also makes it less adaptable for the operating system and
web browser updates. Another disadvantage of the client side, having some
of the application processing tasks, is in the communication method. Data
packages, which probably contain significant information, must be sent from
the client side to the server and vice versa. Such communication is far from

being ideal in manners of data size (bandwidth) and time. It also holds

WO 2008/087636 PCT/IL2008/000066

-9-

security risks since significant information is available on the client side,

which is connected to the global network.

The "Microsoft’s "Remote Desktop Connection" is an application that
enables using application on servers/computers through a data network.
The application actually runs on server/computer and a user, using other
computer/terminal connected to a network, can operate the application. The
method used here is sending the screen as a bitmap of the application to the
user/client. The client sends keyboard and mouse events back. The data sent
from the server is the screen capture (bitmap) of the application on the
server, reflecting the exact screen display generated on the server. In order
to get a smooth picture on the user side, the bitmaps are sent from the
servef frequently. The data packages are big and the transmitting rate is
high. This cause to mass activity on the network and consuming allot of
network resources (bandwidth). This application requires both, the server
and the client, to use the same operating system. The client side also

required to install an applet to support the application.

The main purpose of the preset invention is to overcome all these
drawbacks, both of the design and the usage of web applications, despite all
the limitations. In other words, using the same circumstances of design
complexity and web transportation resources, the present iﬁvention enables
a relatively simple design method and system, and much more efficient and

secure usage of IT-oriented server-based web applications.

It is an object of the present invention to disclose a system and method for

providing IT-oriented server-based Web applications.

Tt is still another object of the present invention to provide a method and
system that enables to program server-based Web applications similarly to

programming desktop applications.

WO 2008/087636 PCT/IL2008/000066

-10 -

Tt is still another object of the present invention to provide a method and
system wherein a unified object model handles all application needs such as
handling a web application with multiple windows, managing the
communication between the server and the browser, sending applications
events (events queues) and getting back commands to update the Ul (User

Interface) when required.

It is still another object of the present invention to provide a method and
system, which does not employ client scripting languages or any other web

language such as JavaScript.

Tt is still another object of the present invention to provide a method and
system, which the developer uses a single, organized and object oriented
language such as C#, VB.NET or any other language that supports full
object-oriented programming and compilation capabilities, eliminating the

developer need for common web design languages knowledge.

It is a further object of the present invention to provide a method and
system, in which all processing is done at the server side; the user's browser

is used only to receive input commands and display output, accordingly.

Tt is still a further object of the present invention, to provide a method and
system, in which the data transmission capacity is significantly reduced,

compared to the prior art.

It is still a further object of the present invention, to provide a method and
system, in which the significantly higher security level is achieved,

compared to the prior art.

WO 2008/087636 PCT/IL2008/000066

211 -

Tt is still a further object of the present invention, to provide a method and
system, in which the design of a Web page (presented on a user's computer
screen/display) is loaded only once, without the need to reload it again for
updating the data presented on said Web page.

It is still a further object of the present invention to provide a method and
system, in which the relétively low bandwidth and processing resources are

used at the client side.

It is an object of the present invention to provide a method and system for
providing developers of IT-oriented server-based Web application with a
new developing environment that is compliant with the Microsoft®

developing environment.

Other objects and advantages of the invention will become apparent as the

description proceeds.

Summary of the Invention

The present invention is directed to a method for allowing a computerized
system to use IT-oriented server-based Web applications to be presented
over a data network. Accordingly, an application is installed on a server
side, being in data communication with a client side terminal over the data
network. A dedicated kernel is downloaded once to the client side, for
mediating (e.g., managing the client side communication protocol) between
the application and the client's side. At the client side, events are associated
with corresponding ID tags that represent application objects and a
timestamp is assigned to each event. Events are queued and sent to the
application in the form of a queue of events, only when a critical event
oceurs. At the server side, events are translated to application actions by

associating between them and the application objects, using the ID tags. If

WO 2
0O 2008/087636 PCT/IL2008/000066

-12 -

the application objects of the client is more updated by comparing between
the timestamp of each received event and the last updated timestamp of the
application object, a data packet containing only updating commands for the
client side to update the relevant layout objects reflecting the application
updates is prepared and sent back to the client side as updates. Finally, the
screen layout objects at the client side are updated by a presentation layer,

according to the content of the data packet.

The client side may be any web browser operating under any operating
system. The presentétion layef is independent of the code of the dedicated
kernel and may be DHTML, WinForms® (a framework for building Windows
client applications that utilize the common language runtime. WinForms®
applications can be written in any language that the common language
runtime supports), Microsoft®Silverlight™ (is a browser plugin that allows
web applications to be developed) or that can be supported by any other

presentation layer that can send and receive XML codes.

The Dedicated Kernel may be a code which changes between different
supported presentation layers. Data exchange between the server and the

client's side is performed using only XML.

The present invention is also directed to a method for programming an IT-
oriented server-based Web applications to be presented at the client side
over a data network, by allowing programming a web application similarly
to desktop application programming using any Object Oriented
programming language by converting the programmed application to web
application by making adaptation of objects and their associated logic to web
design languages. The programmed application may be based on another
web application that was developed using different design tools.

WO 2008/087636 PCT/IL2008/000066

.13 -

Brief Description of the Drawings

The above and other characteristics and advantages of the invention will be
better understood through the following illustrative and non-limitative
detailed description of preferred embodiments thereof, with reference to the
appended drawings, wherein:
- Fig. 1is a schematic illustration of the client side initialization of the
system proposed by the invention;
- Fig. 2 illustrates the routine interaction between the server and the
client side; and ‘
- Fig. 8 is a schematic illustration of the architecture of a system for
providing IT-oriented server-based Web applications, according to a

preferred embodiment of the present invention.

Detailed Description of the Preferred Embodiments

The system of the invention takes a step forward the field of client-server IT
application, both in the design of these applications and in the usage of the
system. The innovation in the design derives by using any Object Oriented
- (00) design software (high level programming language) to design web
application. It totally eliminates the necessary of the designer for common
web/internet programming tools (e.g. HTML, XML, CSS etc.). This system's
character makes the web application design accessible to any programmer
and not only to those who have specialized in web/internet design
languages. Another clear advantage of the system of the invention is by
using a single programming language instead of several. The layout design
in use at the system of the invention is much more simple then the common
method in the prior arts. There is no need to describe the figures and the
properties of windows and controls in characters/mumbers, but only use
'drag and drop' method. The same as done in some desktop applications
design tools such as "Visual Studio". There is also implementation of the

layout design method- docking and anchoring (described in the background

WO 2008/087636 PCT/IL2008/000066

-14 -

of the invention), which make the layout design and modification much

more simple and user-friendly.

The innovation and the advantages using the system of the invention are
projected also at the client (user) side the server-client communication
method. '

The client benefits a total liberty choosing any operating system and web
browser for his convenience. The client is also not restricted by special
authorizations since no local installation is necessary. Therefore, the client
can use any computer connected to the global network (or local network of
the server), under any operation system and any browser. It achieved by
holding the entire application tasks' at the server side. The client side only
projects the desirable screen. It means that the client holds no significant
information on his side, but only the projected data. The projected data is
not stored by any mean (e.g. 'cookies'- website memory on a loéal hard drive)
in the client side. The client uses a dedicated kernel to decode the data
received from the server and to translate it to screen display. The dedicated
kernel is also used to encode the data transmitted to the server. These
characteristics of the system of the invention make it also highly secured,
compared to the prior arts, and also make the communication much more
efficient in term of data packages size to be sent from the client to the server

and vise versa.

More aspects of the communication method in the system of the invention
are described hereinafter. The communication between the server and the
browser is performed using a single URL (Uniform Resource Locator-
address of web site) utilizing the main application window. The application
can be consist of many windows, but still the communication with the server

is done using a single address.

WO 2008/087636 PCT/IL2008/000066

-15-

The communication of the client-server is done as follows: when a client
turns to the server at the first time, the whole page is transferred to the
client. This happens only once. From now on the page will be partly updated
according to the client requests'. At the client side events are aggregated in
a queue, and when a critical event arises, the whole queue is sent to the
server. Every event at the client gets ID tag and timestamp, which uses the
server to update back the client only with the necessary data. This also
enables the server to serve many clients, since the server can distinguish
between the clients and their requests using those tags and timestamps.
The data sent from a client to the server reflects the client activities (e.g.,
mouse clicks on specific fields/controls, writing using the keyboard, etc.).
This data is encoded to a minimal data packet and sent to the server. The
server runs the application on the data and sends in return the result in a
minimal data packet to the client. The client, as aforesaid, encodes the data
and translates it to a screen display. This method of interaction between the
server and the client involves significant reduced communication actions

and data packets size comparing to prior art systems.

The IT application is designed using the system of the invention can be
programmed at the programmer computer and then be published on the
network (installed on the server), or can be programmed directly on the
server through the network, i.e., remote programming. The latter
programming method uses the same communication method as the client-
server using at the application usage of the system of the invention. In that
case a programmer is a user on a client side, and the application on the
server side is the design tools to build the IT application. The following
illustrations refer to both cases: a remote IT application designer using the
system of the invention and a user of the IT application itself. In the
following descriptions application means either IT application or the design

tools, and user means an IT application user or a remote programmer.

WO 20
08/087636 PCT/IL2008/000066

.16 -

Fig. 1 is a schematic illustration of the client side initialization of the
system proposed by the invention. Bach time a user wants to use the
application, the following process takes place. A user, operating the client
side 300, using web browser on a computer/terminal connected to the server
200 through a network 500, appealing the server 200 through a pre-defined
website. The server in return sends the dedicated kernel to be used by the
client side 300 and the data for creating the application display on the client
side 300 screen. This action, as aforesaid, occurs only once at the client

system's initialization. It is, in fact, the login of a user into the system.

Fig. 2 illustrates the routine interaction between the server 200 and the
client side 300. After the login, all the interaction between the user and the
application is done as follows: at the client side 300, the user actions (e.g-
mouse clicks, keyboard types or any other user input) on the screen are
translated to events. Every event gets a unique ID and a timestamp. The
events are queuing on the client side 300. When a critical event arises, the
entire queue is transmitted to the server 200. As the server 200 gets the
data, it translates the events into actions on the application and prepares a
data packet to be sent back to the client side 300. The data packet include
only the necessary information the client side 300 needs to update the
display on its screen and project the result of the apphcatlon s actions.

These iterations occur while the user is logged in to the apphcatlon

There are cases which the user did not perform any activity (e.g., mouse
clicks, keyboard presses, etc.) but an event will still be fired to the server.
This can happen due to timers operations which are performed periodically
by the infrastructure (such as “Keep-Connected”, which is an event fired
every configurable constant time which synchronizes the client and the
server on idle time) or due to a developer’s request for asynchronous

operations (i.e., an asynchronous timer which was operated by the developer

WO 2
0O 2008/087636 PCT/IL2008/000066

217 -

to cause asynchronous events, such as progress bars or periodic refreshes

initiated by the client machine automatically).

Fig. 3 is a schematic illustration of a system 100 for providing IT-oriented
server-based Web applications, according to a preferred embodiment of the
present invention. System 100 comprises three tiers: an Application tier
105, a Sex;ver tier 115, and a Client tier 300. Client tier 300 interacts with
Server tier 115, which in turn interacts with Application tier 105. The
interaction between Client tier 300 and _Server tier 115 is performed by
means of events that are queued and sent from Browser 135 to Application
server 116 in a XML (Extensible Markup Language) form. On the other
hand, the Interaction between Server tier 115 and Client tier 800 is done by
means of update commands that are sent from Application server 116 to

Browser 135 in the XML form.

Application tier 105 further comprises: Application object tree 106, that can
be a tree-structured object model representing the application instance
(created in a program code) for keeping an application status; Application
object index 107, which can be a hash table, for holding relations between
component identifications to component references and which 1s used to get
an application object reference from an application object identification; and
Application configuration 108, which can be an XML document, for holding

application parameters and definitions.

Server tier 115, which further comprises Application server 116, is
responsible for:

- routing resource requests from the Client tier, which can be of various
types to resource request handlers on the Server tier, which are the
objects that should provide the application with its resources, such as
Icons/Images, Data, Assemblies, Contents etc. and send the data
back to the Client tier;

WO 2008/087636 PCT/IL2008/000066

-18 -

- routing requests to an application object (within Application object
tree 106) that has requested a file can be done by adding a specific
field to the submitted form that holds the application object ID and by
getting its reference from the application object index. The
application object index is a dictionary which holds the application
objects by ID, enabling direct access to application objects by
providing an ID. This way, when a request arrives to the Server tier it
is routed to the appropriate Application object.

- receiving event queues and processing the events one by one in a loop
on the queue items; each event is processed by the order that it has
occurred in Client tier 300;

- returning update commands from Browser 135 to Application server
116 by using a time stamp sent from the Server tier on the last server
response (provided within Client tier 300) to Application server 116
(provided within Server tier 115);

- handling first URL navigation by: obtaining a class which represents
a container control of an entry point to the system (for example a
Form container object) of the application object provided within
Application object tree 106 (said class mapped to a specific URL),
initializing an object from said class and returning a full update
command. . A full update command is a complete set of properties
which enables the client to render the controls completely as opposed
to partial update command which updates certain properties and

therefore enables partial rendering of controls.

Client tier 300 further comprises the following software components:

- Browser 1385 (e.g., Mozilla Firefox® or Microsoft® IE (Internet
Explorer) browser) for surfing over a data network, such as the
Internet;

- Browser controller scripts 127, which are scripts that are downloaded

with the first navigation and are used as a “generic framework”. A

WO 2008/087636 PCT/IL2008/000066

-19-

“generic framework” means that the Client tier scripting is
downloaded once and is used for all purposes, as opposed to other
frameworks on which each application/control/control-state requires
downloading a specific script. This “generic framework” script is used
for communicating with Application server 116 and updating Client
tier 300 by means of update commands received from said Application
server 116. The “generic framework” script enables the Client tier to
commit update commands which might include, as previously
mentioned, partial/full directions of what needs to be changed or re-
rendered on the Client tier. The “generic framework” script also
enables the Client tier to perform further communication with the
server regarding to whatever happens in Client tier (Client Events)
ie. user 130 inputs clicks/double-click, text-changes, mouse-moves
ete.

- an XSL document 126, which is generated on Application server 116,
is used to turn update commands that are sent from Application
server 116 to Browser 135 into the HTML (Hypertext Markup
Language) code that replaces existing HTML code. This is done by
XSI, transformation of the updated XML data behind which help
transforming the newly updated properties into drawn controls.;

. an XML interface status document 128 that holds the interface state
and is used to render incremental updating and save interface state.
By holding this XML of properties data on the Client tier, an
incremental updates can be done since the Server tier can send only
the required data on each stage, by updating the XML interface
status document 128 and re-render only the parts that should be
rendered.

- A CSS document 136 which is generated on the Server tier and is
used as general styling (such as back-color, border dimensions,
border-color, layout-style etc) for all rendered (Data + XSLT
transformed) HTML elements.

WO 2008/087636 PCT/IL2008/000066

- 20 -

The client events (e.g. clicks, double-clicks, mouse moves etc) are queued in
Browser controller scripts 127. These client events are divided into three
main categories:

e Accumulated events: these events are queued by means of
Browser controller scripts 127 into Client event queue 129;

e Accumulated unique events: these events are also queues by
means of Browser controller scripts 127 into Client event
queue 129, but are kept as unique events: this means that if
an event of this type is raised and a previous event of the
same source and name already exists, then the previous one
will be deleted and the new event will be queued;

e Critical events: when an event of this type is raised, it is
queued as the last event and triggers the event queue which
contains a chronologic list of all the non-critical events which
occurred on the Client tier between the last Critical event
and the current one. Triggering the event means that it is
sent, without delay and in a synchronous fashion, to the

Application server 116.

Initial requesting of a URL (which is the URL typed in the web browser in
order to browse to one entry point of the appjication) that is managed by
Application server 116 causes said Application server 116 to search within
Application configuration 108 for a mapping of an application object class
(for the given URL). After retrieving the mapped application object class
from said Application configuration 108 software component, this class 1s
being initialized to represent the root object of Application objects tree 106
(this means that the root object is being initialized in order to build the
entry point of the application and show it on the Client tier). Then a full
update command is returned from Application server 116 to Client tier 300,

enabling said Client tier 300 to initialize the client interface. Initialization is

WO 2008/087636 PCT/IL2008/000066

-921 -

the process of creating new objects of all the currently shown controls in
state and assigning the desired initial state of properties on them. From this
point on, the communication between Client tier 300 to Application server
115 is done be means of events and update commands, except when a
refresh action is issued (can be issued by pressing the refresh button of the
browser or by changing some major property of the application such as its
language), which will cause the server tier 11 to send again the full update

commands.

When a critical event triggers the event queue sending, Browser controller
scripts 127 sends to Application server 116 a queue of actions (provided
within Client event queue 129) along with the client unique stamp, for
example a time stamp, which is a numeric value representing the last
update time of the Client tier 135. Then, Application server 116 within
server tier 115 receives the event queue and the client time stamp. After
that, the server processes the event queue from the tail to the head, which 1s
the order that the events have occurred. Every event in the event queue has
a source value that is an ID (identification) of an application object to which
this event is related. Such application object ID, received from the current
event, is used when searching Application object index 107 to get an object
reference to the application object, to which this event is related. The
current event object is sent to a method (the method which is the event
handler of the object for this kind of events) of the application object that
transforms the object event to a normal event raising (A normal event
raising is the server’s model of sending events between objects as opposed to
non-normal events which are the events sent from the Client tier to the
Application Server tier, based on the present invention). Then, the
application object depending on the type (control type i.e., Button, Form,
ListBox etc.) and behaviors (the method of reaction to each event of that
specific application object) that it uses, sends normal code events that can be

used by the program code developer. A normal code event is an accepted and

WO 2008/087636 PCT/IL2008/000066

-929.

well known mechanism of sending messages between objects written in the
same technology (i.e. C#, Java etc.) e.g., an object that send a message to
inform its container object regarding to some change which occurred in his
data as opposed to a non-normal event which this present invention
presents. A non-normal event passes between the Client tier and the
Application server using this present invention mechanism is for example
an HTML rendered element on the client sends an event saying it was
clicked; then, when the event is actually raised to the object that should
handle it on the Server tier, it is transformed to a normal code event by the

present invention mechanism. .

After all events have been sent from Client tier to Application server 115,
said Application server 115 calls the application root object, which is the
root of Application object tree 106, to render the update commands that
should be executed on Client tier 300 in order to be synchronized with
Application object tree 106. For creating update commands, the client time
stamp is sent to the application root object within Application object tree
106, which in turn starts a recursive render action that calls each
application object in said Application object tree 106 to check its own time
stamp to see if it needs to generate one or more update commands. An
application object can hold one or more time stamps so that it can generate
different update commands for updating components, when required. This
multi time stamp per application object is currently used for partial
updating commands (for example, updating only application object
attributes such as back color, contained data etc.). Partial commands are
used to make the update process as efficient as possible in terms of the

number of elements that has to be re-drawn and their complexity. .

The update commands created by the Application object tree 106 are sent to
Application server 116 within Qerver tier 115, which in turn sends said

update commands as an XML document to Client tier 300. Browser

WO 2008/087636 PCT/IL2008/000066

-93 -

controller scripts 127 receive the update commands and updates XML
interface status document 128. Then, the updated elements are
transformed one by one into their HTML code representation to be displayed
on Display 131, by using XSL document 126. The HTML representation is
created by XSL transformation of the XML interface status document 128
with the suitable XSL template (for that element which represents a

control).

The management of open applications windows is performed in the same
way as of all other application objects, but the update commands that are
returned from Server tier 115 to open a window or an update command that
keeps a windowﬂ opened, further contain an indication of a window XML
structure (XML elements structures can either be of an Application object
contained in a window so that the element will be contained or a structure
of a window its self as a root XML node) that represents the current window
structure (e.g., main window, modal-dialog or non-modal dialog, dimensions,
location etc.). When Browser controller scripts 127 receive the XML
structure of opened windows, it scans (loops over the currently opened
windows) said opened windows to see if one of them should be closed and
scans the window structure to see if a new window should be opened.
Managing of the windows content is performed at the same way as
managing the main window content (A main window is the browser window
which browsed the initial URL at start while other windows are opened on
top of the main window during the application run) by managing the
application object ID to update is unique so it can be found cross windows,
meaning that the application object ID cannot repeat in other windows even
though the application object is contained in a completely different
container. This way an object can be found uniquely, regardless its

containing window, within the XML.

WO 2008/087636 PCT/IL2008/000066

.94 -

According to an embodiment of the present invention, the layout definitions
of conventional desktop applications, which defines docking and anchoring
attributes on the layout items, is used. The docking layout is easier to
maintain than HTML tables or absolute positioning that conventional web
applications use. Eventually, the output remains HTML but the
programmer defines only those attributes that relate to docking or
anchoring on the application object. Application objects that supports
docking expose a Dock prdperty that is an enumerator of "Left", "Top",
"Right", "Bottom" and "Fill". These enumerators define the layout behavior
of an application object:

o Defining the "Top" docking causes the application object to appear at
the highest possible position, according to the height definition, and
the application object width will be the maximum possible width;

e Defining the "Bottom" docking causes the application object to
appear at the lowest possible position, according to its height
definition, and the application object width will be the maximum
possible width;

e Defining "Left" docking causes the application object to appear at the
most left position, according to its width definition, and its height will
be the maximum possible height;

o Defining "Right" docking causes the application object to appear at
the most right position, according to its width definition, and its
height will be the maximum possible height.

e Defining "Fill" docking causes the application object to fill the
remaining client area. Any application objects which will be defined
after a Fill application object will not be displayed at all as the
application object with the “Fill” docking has already took all the

remaining space.

According to a preferred embodiment of the present invention, takes the

ability to absolute position an element in HTML and the ability to add

WO 2008/087636 PCT/IL2008/000066

-95-

expressions on style attributes (attributes which describe the control’s style
such as color, dimensions, fonts etc. as opposed to data attributes such as
text) which should be recalculated from time to time (recalculation is the

action of sei:ting the control’s position and dimensions).

When a user surfs to a URL, which is managed by Application server 116
and mapped to an application root object class (the mapping is done so that
the application will have an entry point, saying that a specified application
obJect represents the first screen displayed), this class is initialized and acts
as the root object for all other application objects on Application object tree
106. Programming the application is done through application events in
order to change the current application object tree status (such as
programming the code which happens when a button click event occurs, an
item from a list is selected etc) and structure (such as programming the code
which causes appearance/disappearance of controls, controls’
dimensions/styles/state, windows opening etc), and the server reflects these
changes in the client's browser through update commands that are used to
synchronize the current interface state with the application object tree
state. Managing the web application windows is also done through the
application object tree. Opening a window requires the programmer to
create a new instance of an object that inherits from a window class. Calling
the "show window" function (which is the function that commands the
server to show an instance of a window) of this object marks this window
object as visible, which in the next update commands will add this window
to the window structure part of the response, notifying the browser that a
window was created on the server and it should open a new window and
renders it’s content. When calling "hide window" function which is the
function that commands the server to hide an existing window and send
back to the client a new update command which does not contain the issued

window structure, saying that this window should be closed. The browser

WO 2008/087636 PCT/IL2008/000066

- 926 -

always compares its currently opened windows with the list windows
structures in the update command; then there are 3 possible cases:

1. A window exists in both the update command and the XML interface
status document 128, then, the window should stay open, since it is
visible in both Server tier state and Client tier state.

9. A window exits in the update command and does not exist in the XML
interface status document 128, then, a new window with the specified
content within the new window structure should be opened, since it is
visible on the Server tier state but it is not visible on the Client tier
state.

3. A window does not exists in the update command but does exist in the
XML interface status document 128, then, the issued window should
be closed, since it is not visible on the Server tier state but it is visible

on the Client tier state.

The prior art web applications environments are page-based, which means
that a URL is called with data that is combined with the session data and
other system resources like database records that are used to fully render a
new page to the client. Updating the client interface requires a page to be
fully rendered by the server, be sent to the browser and be rendered by the
browser to update its interface. Passing this behavior in those environments
requires scripts running in the browser to call an HTTP request to pages on

the server and update the interface of the browser.

While this web application development environment uses client scripts to
accomplish its tasks it does so through a basic sets of scripts that are used to
update client interface and send back events from the client and all the
processing is done on the server side generating update commands that are
used to update the client interface. Thus, the need for the application
programmer to code his web application, using client scripts, is eliminated.

The application programmer handles the application object tree events and

WO 2008/087636 PCT/IL2008/000066

-927.-

by changing the application object tree structure and state, through those

event handlers, he is indirectly interacting with the user interface.

According to the prior art, Web pages are fully rendered on the server and
client sides. This web application development environment uses XML
HTTP as both its synchronous and asynchronous mediator and the content
sent is an event queue which consists of relevant changes and actions that
took place in the browser. With the event queue, a client time stamp is also
being sent to the server which is used to render update commands after the
event queue is processed and the event handler code were executed.
Changes made by the event handlers to the application object tree elements,
causes each changed element to have a different last updated time stamp
and by traversing the application object tree recursively and comparing the
client time stamp to that of each application object tree element, a list of
update commands can be extracted and used to update the client interface
so it will be synchronized with the application object tree. This mechanism
optimizes the size of the data sent to the server and returned from the
server to a minimum. Event queue mechanism used by this web application
development environment optimizes server calls so that events that do not
have to be processed on the server are not sent, and only when an event that
has to be processed is taking place, it is sent. The event queue is optimized
even more when redefining unique events, which means that some events
cancel each other. For example: if a user changes a splitter position on the
screen and then changes it again the first event value is not relevant and

will be deleted from the queue.

According to a preferred embodiment of the present invention, importing a
legacy application (e.g., utilities, client/server applications etc) from any
existing desktop environment to web is possible. In addition, the higher
security level is achieved, since the browser holds no business logic scripts

(such as application validations, passwords, hidden fields, tokens etc), and

WO 2008/087636 PCT/IL2008/000066

.98 -

substantially almost no data, besides presentation data which enables the

creation of the current view presented at any given time.

While some embodiments of the invention have been described by way of
illustration, it will be apparent that the invention can be put into practice
with many modifications, variations and adaptations, and with the use of
numerous equivalents or alternative solutions that are within the scope of
persons skilled in the art, without departing from the spirit of the invention

or exceeding the scope of the claims.

WO 2008/087636 PCT/IL2008/000066
-29.

Claims

1. A method for allowing a computerized system to use IT-oriented server-
based Web applications to be presented over a data network, comprising:

a) providing a server side;

b) providing a client side terminal, being in data communication with said
server over said data network;

¢) installing an application on said server side;

d) downloading a dedicated kernel once to said client side for mediating
between the application and the client's side, wherein:

e) at the client side:

e.1) associating between events and corresponding ID tags, representing
application objects;

e.2) assigning a timestamp to each event;

e.3) queuing events and sending them to said application in the form of a
queue of events only when a critical event occurs;

f) at the server side:

f.1) translating events to application actions by associating between said
events and said application objects, using said ID tags;

£.9) checking if the application objects of said client is more updated by
comparing between the timestamp of each received event and the last
updated timestamp of said application object;

£.3) if it is more updated, preparing a data packet containing only updating
commands for the client side to update the relevant layout objects reflecting
the application updates;

f.4) sending said data packet back to said client side as updates; and

g) updating the screen layout objects at the client side by a presentation
layer, according to the content of said data packet.

9. Method according to claim 1, wherein the client side is any web browser

operating under any operating system.

WO 2008/087636 PCT/IL2008/000066
-30-

3. Method for programming an IT-oriented server-based Web applications to
be presented at the client side over a data network, by allowing
programming a web application similarly to desktop application
programming using any Object Oriented programming language by
converting said programmed application to web application by making

adaptation of objects and their associated logic to web design languages.

4. Method according to claim 3, wherein the programmed application is
based on another web application that was developed using different design

tools.

5. Method according to claim 1, wherein the presentation layer is
independent of the code of the dedicated kernel and is currently selected
from the following group:

- DHTML;

- WinForms®;

- Microsoft®Silverlight " ; or

- that can be supported by any other presentation layer that can send

and receive XML codes.

6. Method according to claim 1, wherein the Dedicated Kernel is a code

which changes between different supported presentation layers.

7. Method according to claim 1, wherein data exchange between the server

and the client's side is performed using only XML.

8. Method according to claim 1, wherein the dedicated kernel manages the

client side communication protocol.

WO 2008/087636 PCT/IL2008/000066

1/3
System
100 Server
N | 200
Application
Network

: 500
Client
300 Webpage lﬁT Login —

N

Browser

Fig. 1

WO 2008/087636

PCT/IL2008/000066

2/3

System
100

Server
200

N

Application

Network

Client 500
3'(()38 Commandsl IQueue ./

Browser

Fig. 2

PCT/IL2008/000066

WO 2008/087636

m - @_.H_ | Jesn feidsig [~ LSl
. 9€1 otk 1)
\ Induj ‘ jndino |
/ y
00¢ 7 Juswinoop SS9 / onanbusnejualy | 6Z1
Jo1L udlD LA
juswinoop snjels siduog]
eoepelUl TNX il J8]jouo) Jasmo.g | wewnoopigx | 9zl
/ / yd A Jasmolg
Ggel 8cl LZl
A 4
B - Jaaleg uoneolddy
(ap) y 9Ll - \ X
GLi Ial] JoAIeg
A 4 A 4 A\ 4
Y uoneinbyuo) xapuj 108[q0 oal] s)09lqo
00¢ /] uoneoiddy uoneolddy uoneolddy
Jonleg | GOL
/ / /
\ 801 01 901 ls)1 uoneoyddy
001

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings

