SPORTS SHAFT GRIP

Applicant: Paul Chalifoux, Wellesley, MA (US)
Inventor: Paul Chalifoux, Wellesley, MA (US)

Appl. No.: 13/922,663
Filed: Jun. 20, 2013

Related U.S. Application Data
 Provisional application No. 61/663,328, filed on Jun. 22, 2012.

Publication Classification
 Int. Cl. A63B 53/16 (2006.01)

U.S. Cl.
 CPC A63B 53/16 (2013.01)
USPC 473/299; 29/453; 29/428

ABSTRACT

A sports stick system, apparatus and method of engagement including a grip assembly and a shaft assembly designed to afford the user maximum functional capability in at point of purchase, practice or game play, coupled with the ability to replace or interchange grip systems. The system and apparatus provides numerous embodiments of grips, shafts and inserts, including the ability to tailor the gripping mechanisms to both right-handed and left-handed users. The system also provides golf clubs including interchangeable grips and heads to be tried at time of purchase or to exchange after trying on a golf course.
Fig. 8A

Fig. 8B
SPORTS SHAFT GRIP

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application takes priority from and claims the benefit of U.S. Provisional Patent application Ser. No. 61/663,328 filed on Jun. 22, 2012, the contents of which are herein incorporated by reference.

FIELD OF THE INVENTION

[0002] This invention relates generally to sporting good apparatuses and more particularly to sports shaft and golf shaft grip and head systems possessing interchangeable characteristics in order to allot the user various strategic choices during purchase, practice and game play.

BACKGROUND OF THE INVENTION

[0003] On present day golf clubs, the grip of the club is attached to the opposite end of the shaft from the club manufacturer, and is the part of the club the player holds on to while swinging. Originally, grips were composed of one or more leather strips wrapped around the shaft. The leather outer wrap on a grip is still seen on some clubs, most commonly putters, but most modern grips are a one-piece “sleeve” made of rubber, synthetic or composite material that is slid over the shaft and secured with an adhesive. These sleeve grips allow clubmakers and golfers to customize the grip’s diameter, consistency (softness/firmness) and texturing pattern to best fit the player. Clubs with an outer “wrap” of leather or leather-like synthetic still typically have a “sleeve” form underneath to add diameter to the grip and give it its basic profile.

[0004] Advances in materials have resulted in more durable, longer-lasting soft grips, but nevertheless grips do eventually dry out, harden, get worn or are otherwise damaged and must be replaced. Replacement grips sold as do-it-yourself kits are generally inexpensive and of high quality, although custom grips that are larger, softer, or textured differently from the everyday “wrap”-style grip are generally bought and installed by a clubsmith.

[0005] Regripping often requires toxic, flammable solvents to soften and activate the adhesive, and a vise to hold the club steady while the grip is forced on. The newest replacement kits, however, use double-sided tape with a water-activated adhesive that is slippery when first activated, allowing easier installation. Once the adhesive cures, it creates a very strong bond between grip and shaft and the grip is usually impossible to remove without cutting it off.

[0006] Presently, many golf grips are secured to a golf club shaft by use of double sided adhesive tape. Tape is applied to a golf club shaft. Acetone is poured over the adhesive tape to eliminate the adhesive nature on a short term basis. The grip is pressed over the end of a shaft with the adhesive tape and slid into position. The adhesive tape becomes adhesive very quickly making grip placement difficult. Movement of the grip is difficult as the adhesive tape grabs the grip making proper alignment difficult. The end of a shaft is reverse tapered so the shaft end is much larger than a grip opening making placement difficult.

[0007] Additionally, as mentioned above, in concurrent systems, removal and replacement of a grip normally takes a great amount of time and labor as the grip must be cut off and the adhesive must also be removed. Therefore, as this involves a tedious, labor intensive and time consuming process, it is virtually impossible for users to test different grips on clubs to ascertain which feel suits the user. It would be advantageous to be able to try on and off grips to determine which is preferable to a golfer.

[0008] Presently, golf clubs including putters, irons, metals, woods and drivers are sold with a grip, shaft and club head predetermined by golf club manufacturers. If a golfer prefers a different type of grip, shaft or club head, either based on material, size, shape, color or other characteristic, be it structural or aesthetic, the golfer must have the component changed after purchase is completed. Concurrently, placement and replacement of golf grips on golf club shafts with is extremely tedious as there is difficulty in both removing and installing the grips. Golf club heads are predetermined and never changed. When clubs wear with use over a period of time, a golfer is more likely to buy new clubs than place new shafts. The present time consuming process does not allow for changing a grip or club head at the time of purchase.

[0010] Golf club heads are normally screwed onto shafts in such a manner as to change their position by creating a different loft, opening or closing the face angle. Normally, club heads are tried on for fitting to fit a person’s height and swing such that the sole of a head is striking the ground in the middle. When it is determined which club head is appropriate, the information is sent to a manufacturer to have the clubs custom manufactured.

[0011] The club heads are almost always the same size, shape and aesthetic appearance, the only difference to be determined is the lie angle. It would be desirable to test different club heads in a store and with such a method, a golfer could theoretically leave with the clubs at the time of purchase. Additionally, club shafts are made of different materials, lengths and various aesthetic designs. It is a major project to change shafts as the head and grips which are glued to a shaft must be removed. New ones are then glued back on. It would be desirable to have shafts of different materials, shapes, colors, length and the like to test at the time of purchase.

SUMMARY OF THE INVENTION

[0012] The instant apparatus and system, as illustrated herein, is clearly not anticipated, rendered obvious, or even present in any of the prior art mechanisms, either alone or in any combination thereof. A versatile system, method and series of apparatuses for creating and utilizing a golf grip for a golf club. Thus the several embodiments of the instant apparatus are illustrated herein.

[0013] The present invention provides a method to secure a golf club grip to a golf club shaft without the use of adhesive tape. A grip is constructed with internal structures that snap or lock into structures on a shaft or components attached to a shaft. The grip is solid elastic material or is adhered to a
plastic, metal or other material internal component. The internal components may be one piece or constructed of several components. The shaft is tapered, parallel or reverse tapered at the grip end. A parallel is the preferred shape. The shaft has areas shaped to accept components on the grip that create resistance to grip removal.

[0014] A set of forces acting onto a golf club are generated while striking a golf ball. The swinging motion generated around a person’s body creates centripetal forces, which could cause dislodgement of a shaft from a grip if proper resistance is not provided. Striking a ball with the club head creates rotational forces in one direction. Components to the new invention in several versions utilize the fact that little to no force is applied in the opposite rotation created by ball striking.

[0015] Twisting of a shaft in a grip while striking a ball is resisted by components constructed on a shaft and within a grip. Twisting in the opposite direction is resisted by snap components which compress or bend and release into or passed indentations or other components. Enough force is easily generated by hand twisting to disengage snap locks, however, the force is more that can be generated by using a club during a round of golf. In addition, forces of hands on to a grip secure it further to a shaft as components that need to expand for release are compressed. For the snap adaptation, there exist at least are three known main types of snap fits: annular, cantilever, and torsional.

[0016] In an exemplary embodiment, components in a golf club grip will compress, and thus the diameter of the grip will expand as the downward force of the grip placement occurs. Compression of components or grip diameter expansion is released and engagement of shaft components is engaged. A grip is held in position by these components. As illustrated herein, there may be as few as one component and as many as thousands depending on their size.

[0017] Depending upon the amount of usage, golf club grips regularly require removal and replacement. It is nice if grips are interchangeable to be able to try different grips on golf clubs to see which grip is most effective for a particular golfer. In one embodiment of the instant apparatus, grip removal can be predetermined to be difficult to avoid accidental separation during use. In yet another embodiment, removal and replacement may be render effortless in order to allow a golfer to test different grips and see which grip feels best.

[0018] Moreover, the ability to readily change grips may be especially high import for putter use as this feature would lead golfers the ability to test a thicker or thinner grip. Additionally, although herein embodiments of gripping mechanisms have been highlighted, the instant system and all embodiment thereof may be readily adapted for attachment of a club head to a shaft in an identical And, this qualifies as extremely important when golfers would like to try different combinations grips, shafts, clubheads.

[0019] It is an object of the present system to additionally introduce and employs several techniques for quick exchange of grips and club heads in order that a customer in a store may assess different grips, shafts, and club heads to determine which combination best suits the customer at the time of purchase. The customer will more likely buy a club if the feel is better based on the grip, shaft control and head performance. Determining which combination is better achieved by trying different components. In addition, a customer may determine that they do not like the grip, shaft or club head after purchase of golf clubs and have the opportunity to easily return and exchange it with another interchangeable grip.

[0020] It is also an object of the present system to reveal a series of easy exchange techniques to be utilized as grips, shafts or club heads wear, allowing for easy replacement of old worn grips with new ones, particularly as grips wear out several times a year for many golfers. Presently, the replacement of old worn grips is accomplished by a professional club builder or by a golfer themselves. If a golfer attempts to perform the replacement, the cost is reduced as the cost of profession labor is thus eliminated.

[0021] It is a primary object of the present system to introduce the concept of interchangeable components, especially grips, results in ease of placement and potential cost savings, which will inherently result in greater profits for golf companies and courses, as well as providing a better brand of golf for the user as the ability to have fresh grips and heads, without having to wait for a professional to perform replacement, will enable players to always possess their “A-game”.

[0022] It is an object of the present system to reveal techniques which allow exchangeable and interchangeable grips, shafts and club heads can include snap, screw, Velcro, interlocking, channels, Morses taper, friction or like methods of joining and disconnection parts quickly. It is a further object of the instant system to introduce at least three manners or methods in which components may be constructed to facilitate quick exchange.

[0023] It is a further object of the instant system to introduce a first manner or method in which components may be constructed to facilitate quick exchange wherein a shaft may be composed of uniform construction such that each end facilitates the technique of removal. It is a further object of the instant system to introduce a second manner or method in which components may be constructed to facilitate quick exchange wherein a shaft is constructed and altered after construction such as placing holes, grooves, threads, taper, slots, projections or the like.

[0024] It is a further object of the instant system to introduce a third manner or method in which components may be constructed to facilitate quick exchange wherein an existing shaft is cut and inserts into the shaft placed or inserts placed into or onto a shaft without cutting. In one embodiment, a shaft may have a groove, slot, dimple or like placed into a shaft during manufactured or altered after manufacture for provide the desired result. In an additional embodiment, a shaft may be cut and an insert fitted and glued with materials such as epoxy, which are used to hold club heads to shafts.

[0025] It is an additional object of the instant system to introduce a method for providing the consumer with a point of purchase system wherein the consumer may purchase the comprising the capability wherein purchasing a sports equipment gripping mechanism, and particularly a golf club grip, may be chosen to fit the consumer’s requirements via the ability to interchange/exchange numerous grip types and sizes. Thus, the consumer can get in and complete the purchase of the grip of choice and the club of choice within a matter of minutes, even as few as ten minutes.

[0026] There has thus been outlined, rather broadly, the more important features of the versatile golf club embodiments in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are
additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto.

[0027] In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phrasing and terminology employed herein are for the purpose of description and should not be regarded as limiting.

[0028] These together with other objects of the invention, along with the various features of novelty, which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated preferred embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] Advantages of the present invention will be apparent from the following detailed description of exemplary embodiments thereof, which description should be considered in conjunction with the accompanying drawings, in which having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:

[0030] FIG. 1 illustrates grip 1 has a central hole accessed through opening;
[0031] FIG. 2 illustrates a grip shaft assembly consisting of grip, insert and shaft;
[0032] FIG. 3A is a side view of the apparatus of FIG. 1 in the fully open position;
[0033] FIG. 3B illustrates top plan views of different embodiments of the apparatus of FIG. 1 in the fully open position;
[0034] FIG. 4 illustrates a grip shaft assembly consisting of grip, insert, shaft and snap lock.
[0035] FIG. 5 illustrates an assembly drawing of the grip and shaft assembled as grip shaft and illustrates different meshing and securing apparatus variations.
[0036] FIG. 6 illustrates an additional embodiment of the golf club with shaft and grip.
[0037] FIGS. 7A and 7B illustrate alternative embodiments of the golf club shaft grip.
[0038] FIGS. 8A and 8B illustrate side views of an alternative embodiment of the golf club shaft grip and top plan view of the same.
[0039] FIG. 9A illustrates a side view of an alternative embodiment of the shaft/golf club wherein club is external and not inserted into golf grip insert.
[0040] FIG. 9B illustrates a side view of the embodiment of the shaft/golf club of FIG. 9A wherein the club which accepts placement of golf grip insert attachment through opening.
[0041] FIG. 10A illustrates the shaft of an embodiment of the present system comprising an internal snap system which includes shaft, locking pin and grip.
[0042] FIG. 10B illustrates the locking pin and grip of the internal snap system.

[0043] FIG. 10C illustrates an embodiment of the present system wherein the internal snap system assembled in the entirety with the shaft, locking pin and grip in place.
[0044] FIG. 11A illustrates an embodiment of the present system comprising a grip which fits over shaft, wherein the shaft is manufactured with areas to substantially house and retain extended portions of the grip.
[0045] FIG. 11B illustrates an embodiment of the present system wherein the grip fitted over the shaft.
[0046] FIG. 11C illustrates the grip fitted over shaft and locked to retain the grip in place, additionally the use of a spring at the top of the shaft and inside of the grip may be used to offset the difficulty in obtaining manufacturing tolerances.
[0047] FIG. 12 illustrates an embodiment of the present system somewhat similar to the grip shaft snap connection of FIG. 11, however, the internal portion possesses screw like threads to tighten the grip to the shaft as the grip is rotated.
[0048] FIGS. 13A and 13B illustrates an embodiment of the present system wherein the shaft fits into grip wherein, the shaft has top surface, opening to vertical groove, which opens to horizontal groove to vertical groove.
[0049] FIG. 14. illustrates a base set of golf clubs with several interchangeable grips for grip changing.
[0050] FIG. 15 illustrates an embodiment of the present system wherein a golf club with an insert into a golf club shaft for grip changing.
[0051] FIG. 16A illustrates the separately disposed components of an embodiment of the present system wherein the shaft is altered to expose an insert for grip changing.
[0052] FIG. 16B illustrates the system of FIG. 16A wherein the shaft is altered to expose an insert for grip changing in the fully assembled form.
[0053] FIGS. 17A and 17B illustrate a grip system comprising an easy to use safeguard system comprising an upper circular member, a stem and a square insert.

DETAILED DESCRIPTION OF THE SEVERAL EMBODIMENTS

[0054] The detailed description set forth below in connection with the appended drawings is intended as a description of presently preferred embodiments of the invention and does not represent the only forms in which the present invention may be constructed and/or utilized. The description sets forth the functions and the sequence of steps for constructing and operating the invention in connection with the illustrated embodiments.

[0055] FIG. 1 shows grip 1 has a central hole or access aperture 8, through a longitudinal substantially cylindrical cavity 4. A snap lock mechanism 6 possesses a projection 7, which may be an optional feature and may not be required in all circumstances. Shaft 10 has a main stem 12, an inclined plane 15 and inclined plane 18 and projection lock 20. Shaft 10 is positioned into grip 1 through access hole or aperture 8 until main stem 12 is fully seated into space 4. Snap lock 6 slides down main stem 12 and engages inclined plane 18 expanding snap lock 6. As grip 1 is pressed further into position, inclined plane 18 is engaged by snap lock 6. Snap lock 6 squeezed together forcing grip 1 downward. When fully seated, inclined plane 15 against snap lock 6 prevents separation of grip 1 from shaft 10. When projection 7 is used, it creates a firm lock into indentation 20. Projection 7 may be round, square, triangular, oval, rectangular or any usable shape depending on how much retention is required to hold grip 1 on shaft 10.
FIG. 2 shows a grip shaft assembly 30 consisting of grip 32, insert 34 and shaft 38. Because grip 32 may be constructed of a rubber like material, engagement into locks, snaps, grooves etc is wear as rubber compresses easily and deforms with time, using an insert constructed of metal, plastic, ceramic or other hard material or combinations of materials provides less compression and a firmer grip retention. Snap lock 36 uses combinations of sizes, inclinations, indentations, projections to provide adequate long term retention.

FIG. 3 shows grip shaft assembly 40 consisting of grip 42, insert 44, shaft 45 and separate snap lock 46. Snap lock 46 may be separated from insert 44 or be contiguous of the same or differing materials. Cross section 47 reveals different configurations shown at cross section 60, cross section 62 and cross section 64. Rubber like material grip 50 surrounds insert 52. Insert 53 may be contiguous or divided into segments divided by open spaces 56. Open spaces 56 may be filled in with other materials. There may be as few as two segments or as many as hundreds.

FIG. 4 shows a grip shaft assembly 70 consisting of grip 72, insert 74, shaft 76 and snap lock 77. Snap lock 77 consists of grip area 80, circumferential band 82, insert area 84, and shaft area 86. Cross section of snap lock 77 at line 78 reveals cross section 88. Cross section 88 shows circumferential grip 80, circumferential band 82, insert 84 and shaft section 86. Circumferential band 82 provides added or all the compression to inserts 84. Inserts 84 may be a single unit or divided into multiple sections. Circumferential band 82 can also engage portions of shaft 86 to create further retention. Cutting or releasing circumferential band 82 allows removal of grip 72 from shaft 76.

FIG. 5 shows grip 92 and shaft 94 assembled as grip shaft 90. Shaft 94 can have an oval cross section 100, round 102 or any shape. Shaft 94 has indentations 96 which may be a circular grooves 96 or dimples 99. Grip 92 has extensions 98 which fit into indentations 96 of grip 92 to provide retention. Extensions 98 of grip 92 are pressed into place as a grip is placed onto shaft 94 which is tapered, parallel or reverse tapered. Extensions 98 of grip 92 are positioned into indentations 96 of shaft 94 by parts compressing or expanding as downward force is applied and then released into position. Alternatively, surfaces of a shaft and grip are covered with spheres or ribs which press past each other. Internal surface 100 of grip 92 has ribs 104 attached to inner surface of a grip or insert which compress past spheres or ribs 106 attached to a shaft outer surface.

FIG. 6 shows golf club 110 with shaft 118 and grip 112. Shaft 112 has anterotational and retention grooves 116 and anterotational top groove 114. Anterotational wings 120 provide potential retention and resistance to grip 112 rotating around shaft 112. Grip 118 has matching internal features to fit into features previously mentioned on shaft 118 surface.

FIG. 7 shows the golf club shaft grip wherein an embodiment of the golf club shaft grip 124 is in the tightened position and an embodiment of the golf club shaft grip 140 is an additional alternative in the tightened position. Golf club shaft grip 124 secures and detaches grip 128 by tightening or loosening screw 130 which drives insert 132 up or down to engage or disengage snap 146. Golf club shaft grip 140 has screw 126 which provides added security that grip 142 will not disengage from shaft 136, 144 during swing motions by disengaging snap 148.

FIG. 8 shows golf club 150 with grip 154 and shaft 159 secured by snap 158. Snap 158 is engaged and disengaged by tightening or loosening screw 152 with screw driver 156. Top of screw 160 of golf club 162 can have any shape to provide adequate torque such as a slot, hex, square, star or the like.

FIG. 9 shows shaft/golf club 170 which accepts placement of golf/grip insert 172 through opening 174. Shaft/golf club 170 is an existing golf club which has been cut shorter to accept insert 172. Portion 178 of snap grip 172 is placed into cut shaft 182 through hole 180. It is secured by adhesive cements or the like. Assembled club 174 shows snap grip 172 cemented into shaft 182.

FIG. 10 shows an internal snap system which includes shaft 186, locking pin 188 and grip 190. Shaft 186 has snap lock 194 attached to or integral with the lower shaft 196. Shaft 186 is inserted into grip 190 through opening 202 and pressed into position until snap lock 194 engages internal grip lock 204. To secure snap lock 194, locking pin 198 is placed through opening 204 of grip 190 and between extensions of snap lock 194 to prevent compression and release. Locking pin 198 is removed if desired to allow removal of grip 190.

FIG. 11 shows grip 212 which fits over shaft 210. Shaft 210 has slot 222 with side slots 224. Side slots 224 have dimples or indentations 218. Grip 212 has pegs 226 on the inside of grip 212. Pegs 212 slide down slot 222 of shaft 210 and line up with slots 224. Grip 212 is rotated into slots 224 and engage dimples or indentations 218. Golfers are right handed or left handed so the orientation is dependent on the force of one or the other. A right handed golfer swings a golf club such that forces are pulling a shaft out of a grip and as the club strikes a ball force are rotational such that the shaft wants to rotate clockwise. The side slots 224 have a distal wall which stops rotation in a clockwise direction. However, forces are minimal to none in a counter clockwise direction during use. Applied force in a counter clockwise direction disengages pegs 226 from dimples 218 of side slots 224 so a grip can be removed.

Additionally the use of a form of tension applying and retaining mechanism, such as a spring or torsion bar at the top of the shaft and inside of the grip may be used to offset the difficulty in obtaining manufacturing tolerances. The use of this design can be combined with other versions to create proper resistance and retention. Snap locks 224 and 226 can be placed a different intervals for different golf club manufacturers such that only their golf grip fits their brand of golf club. There may be different distances, offsets or numbers to make each individualized.

FIG. 12 is a similar design to the grip shaft snap connection of FIG. 11 however, the internal portion has screw like threads 232 to tighten the grip to the shaft as it is rotated. Threads 242 within grip 238 slide down channel 230 of shaft 236. Threads 242 of grip 238 are rotated into threads 232 of shaft 236 until extension sphere 246 engages dimple 234 to provide retention.

FIG. 13 shows a shaft 290 which fits into grip 301. Shaft 290 has top surface 293, opening 292 to vertical groove 298, which opens to horizontal groove 296 to vertical groove 294. Grip 301 has tabs 306 which slide down vertical groove 298, into horizontal groove 296, and up vertical groove 294 during placement. Grip 301 has cushioned inner surface 308 producing a soft feel while golfing and accurate fit. During placement, tabs 306 slide down slot 298 until top surface 293 of shaft 290 hits top inner surface 302 of grip 301. Elastic area 302 stretches as downward force continues allowing tabs 306
to engage horizontal slot 296 until horizontal slot 294 is engaged at which point the elastic layer 302 shortens lifting and holding tabs 306 into horizontal slot 294. To remove grip 301 from shaft 290, downward pressure and rotation disengage components. Slots in shaft 290 may be curved, dimpled or be of various shapes.

[0069] Referring to FIG. 14, golf club 2400 has grip 401, shaft 408 and club head 412. Shaft 408 has lower portion 410 which attaches to club head 412 and upper portion 406 which is covered by grip 404. Upper portion 406 of shaft 408 provides a means for grip 404 to be removed quickly. Common techniques include reversible glues such as thermoplastic glues, screws, snaps, Velcro, interlocking, Morses taper, frictional or like methods of joining and disconnection parts quickly. Methods may be combined such as occurs with snaps or interlocks further secured with a screw from the top, side or bottom. Grip 404 is easily and quickly removed from upper portion 406 of shaft 408. Grips 414, 416, 418 and 420 are designed to fit onto upper portion 406 of shaft 408 in the same manner as grip 404. Grip 414, 416, 418 and 420 vary by material, size, shape, color, design, aesthetics, combination of material, cord, etc. A golfer would select the grip that feels the best and use it. There could also be a method of securing a grip permanently or more securely if desired. Golf club heads 407 and 411 are joined to a shaft in a similar manner as described for grips.

[0070] Referring to FIG. 15, golf club 422 has grip 424 mounted onto insert 426 in such fashion as to be easily exchanged and interchanged. An insert which has lower portion 428 which fits into a shaft and is removably attached via any of the mechanisms mentioned herein including, but not limited to, snaps, depression peg fittings, slidable disposed pegs, snap locks, sliding channel technology comprising threads down a shaft and additionally technology such as extension spheres engages dimple member to provide retention, wherein the shaft may tapered, parallel or reverse tapered.

[0071] Referring to FIG. 16, insert 436 is constructed of a size to fit into opening hole 440 of shaft 443 of golf club 38. Cut out 42 exposes the inside of shaft 443. Golf club 444 shows insert 436 placed inside shaft 443 to provide mechanisms to provide reversible retention of a grip. Each manufacturer can have a specific design configured so only their grips, shaft and club head fits their clubs.

[0072] FIGS. 17A and 17B comprise a grip system 460 comprising an easy to use safeguard system 462 comprising a upper circular member 472, a stem 474 and a square insert 476 the golf grip snap 464, 466 coming undone from the shaft 470, which may include a screw mechanism and a square insert disposed to enter from the top of the mechanism and insert through the grip and engages a matching square or rectangle in the grip insert and shaft. The grip may comprise a smaller cylindrical hole or aperture 480 and may also comprise a flexible material such that the aperture may stretch and then release to hold insert in place.

[0073] The profit loss of others providing replacements is eliminated. There is more profit for the manufacturer of the club. For example, if different companies market and sell putters and one company offers a putter, than the interchangeable grips, shafts and club heads could be manufactured to possess different configurations such that grips, shafts and club heads of one company wouldn’t fit the grips, shafts and club heads of another company. This would eliminate companies which make grips from supplying replacements.

[0074] The greatest opportunity for implementation of this concept may well be with putters. The ability to have different grips and different club heads connect with different length shafts creates an exponential number of choices for the user. Just as different golfers require different putter lengths, many different golfers desire different grip sizes, shapes, appearances, as well different putter heads. Therefore, retail stores and pro shops would be required to stock different grips, shafts and club heads, which would require minimal space when compared to the same number of putters, to achieve similar results.

[0075] Therefore, illustrated in one embodiment is a method for providing the consumer a point of purchase system comprising the capability wherein purchasing a sports equipment gripping mechanism, and particularly a golf club grip, may be chosen to fit the consumer’s requirements via the ability to interchange/exchange numerous grip types and sizes. Thus, the consumer can get in and complete the purchase of the grip of choice and the club of choice within a matter of minutes, which could range from ten minutes to 30 minutes.

1. A sports stick apparatus comprising:
 a. a removably attached reusable grip member;
 b. a shaft member comprising a non-uniform area for attachment of the removably attached reusable grip member;
 c. a striking surface.
2. The sports stick apparatus of claim 1 wherein the removably attached reusable grip member comprises:
 a. a flexible body member;
 b. a centrally disposed, annular aperture comprising an access opening and;
 c. a snap lock mechanism.
3. The sports stick apparatus of claim 1 wherein the shaft comprises:
 a. a substantially rigid main stem;
 b. a first inclined plane;
 c. a second inclined plane; wherein the shaft is disposed to fit into the grip through the access opening and wherein the main stem is fully seated into the annular space of the grip and wherein the snap lock is disposed to slide down the main stem and snugly engages the second inclined plane.
4. (canceled)
5. (canceled)
6. The sports stick apparatus of claim 3 wherein the grip mechanism comprises a projection and wherein the shaft comprises a projection lock.
7. (canceled)
8. (canceled)
9. (canceled)
10. The sports stick apparatus of claim 10 further comprising an insert mechanism in mechanical communication with the shaft mechanism.
11. (canceled)
12. (canceled)
13. The sports stick apparatus of claim 10 wherein the insert mechanism is wholly contiguous.
14. (canceled)
15. The sports stick apparatus of claim 10 wherein the insert mechanism comprises divided segments and wherein
the open spaces between the divided segments are filled in with material differing from the material of the insert mechanism.

16. The sports stick apparatus of claim 10 wherein the insert mechanism comprises a range of two to one hundred divided segments.

17. The sports stick apparatus of claim 10 wherein the insert mechanism and the snap lock are contiguous.

18. (canceled)

19. (canceled)

20. (canceled)

21. A sports stick apparatus comprising a grip shaft assembly comprising:

a grip;
at least one insert;
a shaft; and,
a snap lock comprising:
a grip area;
an insert area;
a shaft area; and,
a circumferential band disposed to provide compression to the inserts.

22. The sports stick apparatus comprising a grip shaft assembly of claim 21 wherein the circumferential band engages portions of shaft to create retention.

23. (canceled)

24. (canceled)

25. The sports stick apparatus comprising a grip shaft assembly of claim 21 wherein the at least one insert is divided into multiple sections.

26. (canceled)

27. (canceled)

28. The sports stick apparatus comprising a grip shaft assembly of claim 21 wherein the grip comprises extensions which fit into indentations of grip to provide retention.

29. (canceled)

30. (canceled)

31. (canceled)

32. The sports stick apparatus comprising a grip shaft assembly of claim 21 wherein surfaces of the shaft and the grip are covered with opposing spheres and ribs which press past each other for engagement.

33. (canceled)

34. (canceled)

35. (canceled)

36. (canceled)

37. (canceled)

38. (canceled)

39. (canceled)

40. (canceled)

41. (canceled)

42. (canceled)

43. (canceled)

44. (canceled)

45. (canceled)

46. A method of removably attaching a golf grip mechanism comprising an access aperture, a longitudinal substantially cylindrical cavity, and a snap lock mechanism to a golf shaft mechanism comprising a main stem, a first inclined plane and a second inclined plane comprising the steps of:

 positioning the shaft mechanism into grip mechanism through the access aperture;
 increasing the grip downwardly upon the shaft mechanism until the main stem is fully seated into the longitudinal substantially cylindrical cavity;
 sliding the snap lock down the main stem and engaging the first inclined plane;
 expanding snap lock;
 sliding the snap lock downwardly to engage the second inclined plane; and,
 pressing the snap lock into a locked position;
 engaging the inclined plane by snap lock;
 forcing grip downward; and,
 squeezing the snap lock together.

47. (canceled)

48. (canceled)

49. (canceled)

50. (canceled)

51. (canceled)

52. (canceled)

53. A method of removably attaching a golf grip mechanism comprising an access aperture, a longitudinal substantially cylindrical cavity and a set of extensions and a golf shaft mechanism comprising a main stem comprising a set of indentations, comprising the steps of:

 positioning the shaft mechanism into grip mechanism through the access aperture;
 increasing the grip downwardly upon the shaft mechanism until the main stem is fully seated into the longitudinal substantially cylindrical cavity; and,
 engaging the extensions of the grip with the indentations of the shaft to provide retention.

54. (canceled)

55. (canceled)

56. (canceled)

57. The method of removably attaching a golf grip mechanism comprising an access aperture of claim 53, wherein the method provides a consumer with a point of purchase system for instant purchase of a properly fitted golf grip and the club of choice within a period from a range of one to thirty minutes comprising the steps of:

 providing a set of interchangeable golf shafts sizes and grip types; and,
 providing a set of interchangeable golf shafts sizes and grip sizes.

58. The sports stick apparatus of claim 10 further comprising a grip mechanism in mechanical communication with the insert mechanism and wherein the grip mechanism comprises a screw mechanism disposed to secure and detach the grip mechanism by tightening or loosening screw which drives the insert in the upward or downward direction along the shaft.

* * * * *