(19) **日本国特許庁(JP)**

(12) 特 許 公 報(B2)

(11) 特許番号

特許第4225589号 (P4225589)

(45) 発行日 平成21年2月18日 (2009. 2.18)

(24) 登録日 平成20年12月5日(2008.12.5)

(51) Int. Cl. F. I.

B65H 54/38 (2006.01)

B 6 5 H 54/38 A

請求項の数 8 (全 7 頁)

(21) 出願番号 特願平9-46821

(22) 出願日 平成9年3月3日(1997.3.3)

(65) 公開番号 特開平9-240919

(43) 公開日 平成9年9月16日 (1997.9.16) 審査請求日 平成16年2月9日 (2004.2.9) 審判番号 不服2007-15658 (P2007-15658/J1)

審判請求日 平成19年6月5日 (2007.6.5)

(31) 優先権主張番号 19607905.5

(32) 優先日 平成8年3月1日 (1996.3.1)

(33) 優先権主張国 ドイツ (DE)

(73)特許権者 591214789

ヴェー シュラーフホルスト アクチェン ゲゼルシャフト ウント コンパニー ドイツ連邦共和国 メンヒェングラートバ

ッハ 1 (番地なし)

||(74)代理人 100061815

弁理士 矢野 敏雄

(74)代理人 100094798

弁理士 山崎 利臣

|(72)発明者 フェルディナントーヨーゼフ ヘルマンス

ドイツ連邦共和国 エルケレンツ イム

ゲルデスハーン 15

||(72) 発明者 アンドレアス クリューガー

ドイツ連邦共和国 メンヒェングラートバッハ ツェッペリンシュトラーセ 81

最終頁に続く

(54) 【発明の名称】 あらいピッチで巻かれた綾巻ボビンを製作する方法と装置

(57)【特許請求の範囲】

【請求項1】

綾巻ボビンを駆動する摩擦ローラと綾振手段とによりあらいピッチで巻かれた綾巻ボビンを製作する方法であって、綾振手段の往復行程の周波数を摩擦ローラの回転数に対してコンスタントな比に保ち、これにより、ボビン直径増大につれて減少する巻取比の経過を規定している形式のものにおいて、駆動される摩擦ローラ(14)を、少なくともリボンの発生原因を成す巻取比範囲(18)で連続して交互に加速かつ制動せしめ、これにより摩擦ローラ(14)と綾巻ボビン(11)との間にスリップを生ぜしめて、リボン発生原因を成す巻取比範囲の上方と下方の目標値(Wso及びWsu)の間で巻取比(W)を跳躍的に切換えることを特徴とするあらいピッチで巻かれた綾巻ボビンを製作する方法。

【請求項2】

摩擦ローラ(14)の加速及び制動を、巻取過程中の少なくとも予め規定された巻取比 範囲(18)内で行う請求項1記載の方法。

【請求項3】

摩擦ローラ(14)及び綾巻ボビン(11)の周波数又は周期を巻取過程中に検出して、リボンの発生原因を成す巻取比範囲(18)の到来を検知する請求項1記載の方法。

【請求項4】

加速のために、スリップのない巻取比(W)の瞬間的な実際値と、リボンの発生原因を成す巻取比範囲(18)の下方に位置する、巻取比の下方の目標値(Wsu)とから、下方の目標値(Wsu)に属するスリップを発生させるのに適した加速のための値を計算す

る請求項1から3までのいずれか1項記載の方法。

【請求項5】

制動のために、スリップのない巻取比(W)の実際値と、リボンの発生原因を成す巻取比範囲(18)の上方に位置する、巻取比の上方の目標値(Wso)とから、上方の目標値(Wso)に属するスリップを発生させるのに適した制動のための値を計算する請求項1から4までのいずれか1項記載の方法。

【請求項6】

計算された加速値を、加速の予定された最小値と比較し、かつ計算された加速値が最小値に比して同じか又は小さい場合に、交番する加速と制動とを中断する請求項 4 記載の方法。

【請求項7】

綾巻ボビンを駆動する摩擦ローラと、綾振手段とによりあらいピッチで巻かれた綾巻ボビンを製作する請求項1記載の方法を実施する装置であって、綾振手段の往復行程の周波数が摩擦ローラの回転数に対してコンスタントな比を保ち、その結果、ボビン直径増大につれて減少する巻取比の経過が規定されている形式のものにおいて、モータにより駆動される摩擦ローラ(14)の加速及び制動のための手段(17,19)が設けられており、これらの手段が評価装置(19)により交番にオン・オフ制御可能であり、かつ少なくともリボンの発生原因を成す巻取比範囲(18)内で、摩擦ローラ(14)のための加速値及び制動値を形成し、この加速値及び制動値が、摩擦ローラ(14)と綾巻ボビン(11)との間のスリップを生ぜしめ、かつリボンの発生原因と成る巻取比範囲(18)の上方及び下方の目標値(Wso,Wsu)の間で巻取比(W)を跳躍的に連続的に切換えることを特徴とするあらいピッチで巻かれた綾巻ボビンを製作する装置。

【請求項8】

摩擦ローラ(14)がブラシレス直流モータ(17)により駆動されており、このブラシレス直流モータ<u>の</u>入力部<u>に</u>評価装置の出力部<u>が</u>接続されている請求項7記載の装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は綾巻ボビンを駆動する摩擦ローラと、綾振手段とによりあらいピッチで巻かれた 綾巻ボビンを製作する方法と装置であって、綾振手段の往復行程の周波数が摩擦ローラの 回転数に対してコンスタントな比に保たれ、これにより、ボビン直径増大につれて減少す る巻取比の経過が規定されている形式のものに関する。

[0002]

【従来の技術】

あらいピッチで巻かれた円筒状又は円錐状の綾巻ボビンを製作する際に、巻取比、換言すれば綾振手段の往復行程当たりのボビン回転数が双曲線状に減少させられる。巻取比が例えば整数の値となる規定された巻取比範囲内では、リボン、いわゆる鬼巻が生じる。この巻取比範囲内では互いに続く複数の巻取層の糸が互いに上下に又は著しく密に互いに並んで位置させられる。このリボンの存在により、綾巻ボビンはこの範囲内で密集度が増大し、その結果、例えば染色時に不均一な着色を生じる。その上、互いに上下に又は密に互いに並んで位置する糸領域が側方向へ互いにスリップし、かつその際、互いにからまり合い、その結果、この種の綾巻ボビンの繰出し特性が著しく損なわれる危険がある。それゆえ、実地においては、リボンブレーキング法又はリボンブレーキング装置により、巻取過程中のリボンの形成が阻止される。

[0003]

リボンを回避するために、溝ローラとして形成された摩擦ローラを基本回転数から出発して短いインターバルで駆動モータにより制動しかつ再び加速し、これにより加速中並びに制動中にスリップを生ぜしめることが公知である(ドイツ連邦共和国特許公開第3916918号明細書)。

[0004]

10

20

30

さらにまた、溝ローラとして形成された摩擦ローラを備えた装置において、ボビン及び溝ローラの回転角度を測定しかつ測定結果をコンピュータで評価することにより、巻取過程中にリボンの発生原因を成す巻取比範囲、いわゆるリボン発生区域がいつ通過されたかを決定することも公知である(ドイツ連邦共和国特許公開第4239579号明細書)。このリボン発生区域内では、ボビンが溝ローラに比して減速回転することによりスリップが生じるように、ボビンが溝ローラに対して制動される。このリボン発生区域が通過した後、制動が再び解除され、その結果、ボビンが再びスリップなく駆動される。

[0005]

さらに、ボビンを駆動する摩擦ローラと、これに無関係な綾振装置とを備えた巻取装置も公知である(ヨーロッパ特許第B0093258号明細書)。綾振装置の綾振り速度は常にその最高値と最小値との間で変化させられる。さらに付加的に、綾振り速度の平均値がリボン発生区域の手前で間隔をおいて跳躍的に変化させられ、その結果、リボンの発生が阻止される。リボン発生区域の通過後、綾振り速度の平均値は再びそれ以前の平均値へ戻される。

[0006]

【発明が解決しようとする課題】

本発明の課題とするところは、リボンの発生を効果的に抑制し、かつ特に多数の巻取装置を備えた機械でも簡単に実現されるような冒頭に記載した形式の方法を及び装置を提供することにある。

[0007]

【課題を解決するための手段】

上記課題は本発明によれば、駆動される摩擦ローラを、少なくともリボンの発生原因を成す巻取比範囲内で交互に加速かつ制動せしめ、これにより摩擦ローラと綾巻ボビンとの間にスリップを生ぜしめて、リボン発生原因を成す巻取比範囲の上方と下方の目標値の間で巻取比を跳躍的に切換えることにより解決される。

[0008]

【発明の効果】

上記構成により、リボンの発生原因とならない巻取比範囲内で駆動への影響を受けることなしに効果的なリボンブレーキングが行われる。それゆえ、リボンの発生原因を成す巻取比範囲の外部ではコンスタントな速度で作動することが可能であり、このことは糸張力及びボビンの形成のために有利である。

[0009]

本発明の簡単な構成では、摩擦ローラの加速及び制動が巻取過程中の予め規定された範囲内で実施される。この範囲は例えば巻取時間又はボビン直径の測定により予め規定可能であり、かつコンピュータのメモリ内に貯蔵可能であり、その結果、巻取過程中の予定の時点でリボンブレーキングを実施することができる。この場合、ボビン及び摩擦ローラの周波数を検出する測定装置は不要である。

[0010]

本発明の別の構成では、摩擦ローラ及びボビンの周波数又は周期が巻取過程中に検出され、これにより、リボンの発生原因を成す臨界的な巻取比範囲の到達が検知される。この構成の有する利点は、作動が著しく正確であることにある。リボンブレーキングは実際にリボンの発生原因を成す巻取比範囲内でのみ実施されることにある。綾巻ボビンの製作時にこの巻取比範囲内でリボンブレーキングが実施されない場合に、綾巻ボビンの巻取時に困難を生ぜしめるこの巻取比範囲は臨界的と認識される。

[0011]

本発明のさらに別の構成によれば、加速のために、スリップのない巻取比の瞬間的な実際値と、リボンの発生原因を成す臨界的な巻取比範囲の下方に位置する、巻取比の下方の目標値とから、下方の目標値に属するスリップを発生させるのに適した加速のための値が計算される。

[0012]

40

30

10

20

これに対応して、制動のために、スリップのない巻取比の実際値と、リボンの発生原因を 成す巻取比範囲の上方に位置する、巻取比の上方の目標値とから、上方の目標値に属する スリップを発生させるのに適した制動のための値が計算される。

[0013]

本発明のさらに別の構成によれば、本発明方法を実施するために、基本回転数で駆動される摩擦ローラを加速及び制動する手段が設けられており、この摩擦ローラが評価装置により交番にオン・オフ切換え可能であり、この評価装置が、リボンの発生原因を成す臨界的な巻取比範囲内で摩擦ローラのための加速値及び制動値を形成して、摩擦ローラとボビンとの間にスリップを発生せしめ、リボンの発生原因を成す臨界的な巻取比範囲の上方及び下方の目標値の間で巻取比を跳躍的に切換える。

[0014]

【発明の実施の形態】

本発明のその他の特徴及び利点が次の図示の実施例の記載から明らかとなる。図1に示さ れた巻取装置は例えば自動ワインダの巻取部の構成部分を成している。この種の自動ワイ ンダは多数の巻取部を備えており、これらの巻取部はそれぞれ巻取装置を備えている。こ の巻取装置により、糸10が綾巻ボビン11に巻成される。この綾巻ボビン11はボビン スリーブを有しており、このボビンスリーブはボビンクリール13内に支承されたボビン 支持皿12により保持されている。ボビンクリール13は旋回可能に支承されていて、緩 衝・負荷装置を備えており、この緩衝・負荷装置により綾巻ボビン11が不変の圧着力で 摩擦ローラ14に圧着される。摩擦ローラ14は、糸案内溝15を備えた溝ローラとして 形成されている。摩擦ローラ14の手前で糸ガイド16により案内された糸10は摩擦ロ ーラ14の糸案内溝15内を走行する。それゆえ、この糸案内溝は糸10のための綾振手 段として役立っている。摩擦ローラ14はブラシレス直流モータ17により基本回転数で 駆動される。電子的に整流される直流モータの代わりにトランスベクトル制御により形成 された非同期モータをトルク発生機として使用することもできる。糸10の綾振周波数、 換言すれば綾振運動の往復行程の数は摩擦ローラ14の回転数に対して固定されたコンス タントな比を成している。このことにより、巻取比、換言すれば糸10の往復行程当たり の綾巻ボビン11の回転数が得られる。この巻取比は規定された経過を有しており、かつ ボビン直径増大に伴い双曲線状に減少する。

[0015]

図2には時間tに依存する巻取過程の一部の巻取比Wがプロットされている。この巻取比 Wが例えば整数の値WBになると、リボン、いわゆる鬼巻が巻成され、このリボン内では 順次に続く巻取層の糸が互いに上下に又は互いに密に並んで位置する。この整数の巻取比 WBの範囲内にはいわゆるリボン発生区域18、例えば巻取比WB ± Wによって規定さ れるリボン発生区域が生じ、この場合 Wは例えば0.005 であることができる。この結果 、図2に示したようにリボン発生区域18の範囲内の破線で示したような経過で巻取比W が推移するようにこのリボン発生区域18内で巻取過程が実施されると、リボン発生区域 18のこの範囲内にリボンが形成される。図2に見られるように、リボン発生区域18の 範囲内ではリボンブレーキング法が適用され、これにより、巻取比Wは下方の目標値Ws u と上方の目標値W s o との間で跳躍的に切換えられる。下方の目標値W s u はリボン発 生区域 1 8 の下方に、かつ上方の目標値Wsoはリボン発生区域 1 8 の上方に位置してい る。このようにして、リボンの発生する可能性が著しく削減される。リボン発生区域18 の手前及び後の範囲内では、巻取りがコンスタントな速度で、ひいては常時変化する巻取 比Wで行われるか、又は公知の連続的なブレーキング法、例えば綾巻ボビン11と摩擦口 ーラ14との間の周期的なスリップを生じる加速との組合せで行われる。それ自体固定さ れている巻取比Wを変化させるために、摩擦ローラ14は、摩擦ローラ14と綾巻ボビン 11との間にスリップが生じるようにそのつど短時間だけ加速されかつ制動される。これ により、巻取比Wが変化させられる。加速及び制動は、リボン発生区域18の範囲内で巻 取比Wが上方の目標値Wsoと下方の目標値Wsuとの間で飛躍的に切換えられるように 行われる。その際、リボン発生区域18はそのつど著しく迅速に通過される。

10

20

30

40

[0016]

摩擦ローラ14の加速及び制動は直流モータ17の最終段の基準値が基準回転数を規定する目標値に対して変化せられるような形式で行われる。例えば、直流モータ17の最終段のための目標値は、摩擦ローラ14の周速度ひいては巻取速度が1000m/minに保たれるように設定される。直流モータの最終段の基準値の変化により、例えば、加速時に摩擦ローラ14の周速度ひいては巻取速度が±70m/minだけ変化させられる。その際、加速及び制動は、摩擦ローラ14と綾巻ボビン11との間にスリップが生じて、綾巻ボビンがそれまでとほぼ同じ周速度で回転を続けるように迅速に行われる。基準値は評価装置19により直流モータ17の最終段の入力側にインプットされる。

[0017]

第1実施例では、ボビン形成中、いわゆる巻取過程中に生じる周知のリボン発生区域18が評価装置内に貯蔵される。これにより、リボン発生区域18の到達は巻取時間(中断を差し引く)の評価により検知される。巻取経過中のそのつど所定の時点の後に、リボン発生区域18の到達が予期され、その結果、図2について説明したような制動と加速とによるリボンブレーキング法が導入される。その際、摩擦ローラ14の加速及び制動によるリボンブレーキング法のオン・オフ切換は間隔あけてそのつどのリボン発生区域18の前と後で行われる。

[0018]

リボン発生区域18の到達が綾巻ボビン11の直径に依存しているため、別の実施例では、綾巻ボビンのそのつどの直径が測定装置により検出されて、評価装置に供給さる。

[0019]

図1に示す実施例では、巻取比Wの実際値が評価装置19内で検知される。綾巻ボビン11又はこれと一緒に回転するエレメント、例えばボビン支持皿12には、増分発生器21が対応して配置されている。同様に、摩擦ローラ14又はこれと一緒に回転するエレメント、例えば直流モータ17のモータ軸には、増分発生器22が対応して配置されている。評価装置19は例えばドイツ連邦共和国特許公開第4239579号明細書から公知であるように増分発生器21,22の値から巻取比Wの実際値を検知する。評価装置19はリボン発生区域18、例えば整数の巻取比WBの到達を決定してリボンブレーキング法を導入する。

[0020]

図2から分かるように、リボン発生区域18の範囲は巻取過程中に上方から、換言すれば 、高い方の巻取比の範囲から通過される。リボン発生区域18の下方の範囲で巻取比を変 化させるためには、比較的強い加速が実施される必要がある。これに対して、リボン発生 区域18の上方の範囲に再び到達するためには、リボン発生区域18の到達の始めでは比 較的弱い制動が行われる必要がある。この理由により、巻取比の下方の目標値Wsu及び 巻取比の上方の目標値W s o に加速及び制動により達するために、評価装置19はそのつ ど加速値と制動値とを計算する。第1の制御段では(スリップのない)巻取比Wの実際値 と下方の目標値Wsuとにもとづき、下方の目標値Wsuに到達するために必要な加速値 が計算される。次いで評価装置19は予定の時間インターバルで、適当な基準値を直流モ ータ17の最終段の入力側にインプットする。評価装置の第2の制御段で、スリップのな い巻取比Wの実際値と上方の目標値Wsoとから、上方の目標値Wsoの到達に必要な制 動値(減速)が計算され、次いで基準値として評価装置19から直流モータ17の最終段 の入力側に所定の時間インターバルでインプットされる。図2から看取されるように、下 方の目標値Wsu及び上方の目標値Wsoに到達するために、はじめは制動に比して比較 的強い加速が必要である。整数の巻取比WB が到達された際に、制動と加速の値は同じで あり、他面においてその後では加速値に比して制動値が大きい。

[0021]

評価装置19内では加速のための最小値が貯蔵される。巻取比の下方の目標値Wsuの到達のために計算された加速値が、貯蔵された最小加速値に比して同じかそれより小さい場合には、リボンブレーキング法が中断される。この場合には、すでに摩擦ローラ14の付

10

20

30

40

加的な加速なしでも、リボン発生区域18の外側に位置する巻取比Wが得られる。

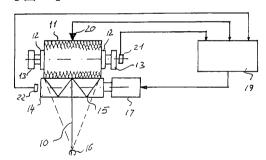
[0022]

制動及び加速のための値の到達時に綾巻ボビン11の質量をも考慮するのが効果的である。それというのは、綾巻ボビン11の直径が比較的大きく、従って質量が比較的大きい場合に比して、綾巻ボビンの直径がまだ小さい場合には、スリップを生ぜしめるためには摩擦ローラ14の比較的強い加速と制動とが必要であるからである。綾巻ボビン11の実際直径、ひいては実際質量は評価装置19内で増分発生器21,22のデータにより検知される。さらに、この実際値は直径検出装置20により直に評価装置内へインプットされることも可能である。

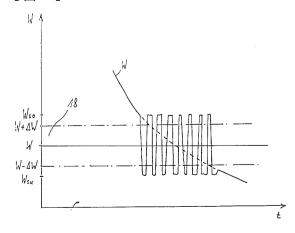
[0023]

実地においては多くの場合、巻取比wの跳躍的な切換のために臨界的な巻取比範囲 1 8 内でのみ摩擦ローラ 1 4 の加速及び制動がその駆動装置の制御により行われるだけで十分である。この臨界的な巻取比範囲 1 8 は特に整数の巻取比wの小さい値の範囲、換言すればw=4 の値までであり、すでに値w=5 ではあまり臨界的ではない。

【図面の簡単な説明】


【図1】リボンブレーキングを達成するために巻取比を制御する付属の制御装置によりあらいピッチで巻かれた綾巻ボビンを形成するための本発明にもとづく装置の略示図である

【図2】リボン発生区域の範囲内での参取比の制御中に図1に示す装置の参取比の経過を示すグラフを示す図である。


【符号の説明】

10 糸、 11 綾巻ボビン、 12 ボビン支持皿、 13 ボビンクリール、 14 摩擦ローラ、 15 糸案内溝、 16 糸ガイド、 17 直流モータ、 18 リボン発生区域(リボンの発生原因を成す巻取比範囲)、 19 評価装置、 20 直径検出装置、 21,22 増分発生器

【図1】

【図2】

10

フロントページの続き

(72)発明者 トールステン フォルヒェ ドイツ連邦共和国 ディングデン アーホルンヴェーク 3

(72)発明者 シュテファン テレルデ ドイツ連邦共和国 ディングデン ザクセンシュトラーセ 4

(72)発明者 ハインリッヒ ヴァインガルテン ドイツ連邦共和国 クレーフェルト シュライナー シュトラーセ 29

合議体

審判長 松縄 正登 審判官 佐野 健治 審判官 村山 禎恒

(56)参考文献 特公平2-40577(JP,B2) 特開平6-211427(JP,A)

(58)調査した分野(Int.CI., DB名) B65H54/38