A vacuum cleaning tool for removing animal hair from nearly any hand-held grooming tool is disclosed. A vacuum grooming tool is also disclosed. A vacuum plenum of the cleaning tool is attachable to a vacuum source and has an opening for cleaning a grooming tool in one pass. The cleaning tool can be mounted on a stationary support and may also include a pivot-action mechanism that connects the cleaning tool to the vacuum source during its engagement by a hand-held grooming tool being cleaned. This pivot-action mechanism can switch the vacuum off to a connected vacuum grooming tool and on to the cleaning tool, such that the airflow through the cleaning tool does not have to compete with any vacuum or airflow through the vacuum grooming tool during its cleaning.
Fig. 4

SLOTS FOR AIR FLOW
Fig. 12A

Fig. 12B

Fig. 12C
VACUUM GROOMING TOOL CLEANER

CROSS-REFERENCE TO RELATED APPLICATION


FIELD

[0002] The present invention relates generally to animal grooming tools and more particularly to animal grooming vacuum tools.

BACKGROUND OF THE INVENTION

[0003] Professional animal groomers deal with a large amount of hair during the grooming process. Hair accumulates on the grooming table, floor, and in the bathing tub. Much of this hair is introduced into the air environment as a result of blow drying, hair stripping, brushing, combing, raking, clipping, shearing, de-shedding, carding, and de-matting operations. Much of this hair is physically handled by the groomer as he/she manually removes accumulated hair from various hand tools such as slicker brushes, combs, and rakes. In this latter case, the groomer must use both hands and either drops extracted hair on the floor or deposits such into a waste receptacle. During the bathing process, an abundance of animal hair often finds its way into the drain causing frequent blockage. Most professional grooming shops have plumbing professionals clean shop bathing drains as frequently as every two weeks as a precautionary measure.

[0004] Many states employ licensing and/or regulations requiring that animal hair be cleaned up after grooming each animal before another can be groomed at the same workstation. In practice, either hair accumulates on the floor until which time as the groomer decides it must be cleaned up, or it is cleaned up after each animal. Most professional groomers use a standard wet/dry vacuum to accomplish this clean-up operation. Fewer perform such clean-up with brush, broom and dustpan. The environment containing accumulated hair, dander and pests is recognized as unhealthy for both humans and animals. Airborne hair and dander is one way of transmitting skin ailments and disease between animals, and allergens to humans, confined in closed spaces.

[0005] Clean-up time can be a substantial portion of the total time allocated to groom an animal. Most grooming business advisors espouse the need to continuously maintain as clean as possible a grooming environment to appease discerning customers.

[0006] Professional groomers often suffer from carpal tunnel syndrome, tendinitis, and other maladies resulting from repetitive motion, particularly repetitive motion that involves strain due to weight or resistance to such motion. Anything that can reduce the number of repetitions and/or release strain, particularly in using common hand tools, can reduce the incidence and severity of such maladies.

[0007] Pet owners often must deal with volumes of hair naturally shed by many animals. This shed hair accumulates around the home during shedding season, creating a general nuisance and requiring more frequent home vacuuming and cleaning.

[0008] One of the problems faced by all groomers is the accumulation of hair on their hand tools (combs, rakes, brushes, etc.) during use. FIG. 9(A) shows a slicker brush before use, and FIG. 9(B) after use. Groomers normally use their free hand to remove the hair (and with slicker brushes in particular, presents a relatively arduous, repetitive task). FIG. 9C illustrates that even rakes and combs are affected.

BRIEF SUMMARY OF THE INVENTION

[0009] The present invention discloses a system of tools which, when attached to a vacuum source, reduces the need for the tool user (groomer) to manually deal with animal hair accumulating on or in such tools during use, or manually clean up hair displaced from the animal during the grooming process. Certain of these tools are used with standard professional grooming hand tools. Others integrate vacuum plenums into and with standard professional grooming tool functionality. Others yet facilitate the drying of animals. These tools also reduce exposure to animal dander and pests often found in animal coats.

[0010] Features of this system of tools and/or individual tools (as applicable) include:

[0011] 1. aerodynamic design to allow operation under vacuum application without significantly contributing to environmental noise;

[0012] 2. ergonomic design to be lightweight and comfortable to use;

[0013] 3. increased efficiency, compared to common grooming tools that the invention replaces, as measured in the amount of hair extracted per operational stroke and/or the elimination of operational strokes, both of which can directly translate to reduction of repetitive motion actions and the amount of time required to groom an animal;

[0014] 4. the ability to automatically capture most animal hair, dander, and pests that otherwise would be released in the environment as a result of the grooming process;

[0015] 5. designs comparable to the professional hand tools the invention replaces in their ability to properly accommodate animal body contour(s) and varying types of animal hair;

[0016] 6. the ability to use such tools with a single hand, allowing the groomer the ability to always keep one hand on the animal being groomed;

[0017] 7. reduction of time devoted to animal drying after bathing;

[0018] 8. reduction of the amount of hair introduced into both drains and thereby reducing the incidence of drain clogging resulting from animal bathing;

[0019] 9. reduction of the acoustic noise environment, particularly during blow drying and clean-up, either in sound pressure level (intensity) reduction or time of exposure to such, or both; and
[0020] 10. design of certain tools to be usable by animal owners employing a standard home vacuum cleaner (upright or canister) as the vacuum source.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0021] Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:

[0022] FIG. 1 shows a set of embodiments of the invention in which the vacuum grooming tool includes shedding blade(s);

[0023] FIG. 2 shows the grooming tools shown in FIGS. 1(A), 1(B) and 1(C), respectively, in a different perspective;

[0024] FIG. 3 shows a side view of the grooming tools shown in FIG. 2;

[0025] FIG. 4 shows another embodiment of the invention, in which the grooming tool includes a brush;

[0026] FIG. 5 shows another set of embodiments of the invention, in which the grooming tool includes a comb;

[0027] FIG. 6(A) shows another embodiment of the invention, in which the grooming tool includes a rake;

[0028] FIG. 6(B) shows a conventional grooming rake;

[0029] FIG. 7 shows another embodiment of the invention, in which the grooming tool includes a rake;

[0030] FIG. 8 shows another embodiment of the invention, in which the grooming tool includes a de-matting tool;

[0031] FIGS. 9(A), 9(B) and 9(C) show examples of conventional grooming tools;

[0032] FIGS. 9(D) and 9(E) show examples of the vacuuming grooming tools according to the invention in their condition after use;

[0033] FIGS. 10 and 11 show a grooming tool cleaner according to the invention and examples of various uses of the cleaner; and

[0034] FIGS. 12 and 13 show an articulated cleaner according to an aspect of the invention.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

[0035] FIG. 1D depicts an animal grooming vacuum tool 100 having an integrated shedding tool blade 110. The device has a suction nozzle 120 having an integrally formed suction pipe 122 to connect to a source of negative pressure (such as a vacuum). The suction pipe 122 is in physical communication with a hollow body 124 terminating in an integrally formed mouth opening 126. In the preferred embodiment, the mouth 126 is substantially rectangular and is defined by a first pair of integrally formed spaced rectangular walls 128 which are substantially parallel to each other and a second pair of integrally formed spaced rectangular walls 130 which are substantially parallel to each other.

[0036] The apparatus has one or more substantially straight stainless steel grooming blades 110, illustrated in more detail in FIG. 1(F), disposed within the rectangular mouth opening. Each blade 110 has two shaped and smoothed ends 112, each end is attached to one of the second pair of integrally formed spaced rectangular walls 130. Each blade also has a serrated edge 114 extending outside the plane of the rectangular mouth opening 126. In multiple blade implementations, such as those schematically shown in FIGS. 1(A), 1(B), 1(C) and 1(E) each blade 110 is substantially parallel to the other blades 110 and to the first pair of integrally formed spaced rectangular walls. In addition, the blades 110 are positioned to provide an air passage extending from the mouth opening 126 into the hollow body portion 124 of the nozzle 120 between each of the blades 110 and between the blades 110 and the first pair of integrally formed spaced rectangular walls 128. Better results are achieved if the animal hair can be sucked down from both sides of the blade 110.

[0037] Although the mouth 126 of the preferred embodiment is rectangular, those skilled in the art will recognize that other mouth shapes such as ovals may be used, so long as the blades 110, in multiple blade devices, are substantially parallel to each other.

[0038] Each blade 110 can be attached to the mouth opening 126 in a variety of ways. For example the blades 110 can be glued to the walls using commercially available epoxies. For additional stability, receiving slots can be cut in the nozzle housing to receive the ends of each blade 110 or the entire edge of the blade 110 opposite the serrated teeth 114.

[0039] Blades 110 may be constructed out of stainless steel or a plastic blade may be used provided the mold for the serrated edges of such (or post molding operations) give rise to sharp edges. The ends 112 of the blades are shaped (and may be smoothed) in order to minimize sharp corners which could cut or scrape an animal’s skin when used. These tools are designed to be pushed or pulled on the animal’s coat, not side-to-side, which could injure the coat or underlying skin.

[0040] The blade can be formed from a substantially straight piece of the toothed metal, as opposed to trying to maintain a curve in the metal blade. The blade can be integrated with an upholstery nozzle that does not have bristles. The blade can also take the form of any manual shedding blade. For example, in the embodiment illustrated in FIG. 1(G), the blade 140 has faceted teeth 142 with sharply angled channels 144 between the teeth 142 and sharp edges 145 for pulling hair. A blade similar to a hair clipper blade, with teeth that have cutting edges, can also be used.

[0041] As illustrated in FIG. 1(H), the orientation of the blade(s) can be set at an angle 116 relative to the direction of tool motion 118 during the intended normal use. Typically, the tool is moved in a direction substantially perpendicular to the rim of the mouth opening 126 so that the vacuuming action is the most efficient. The blade can be perpendicular to the tool motion, or deviate from the perpendicular orientation by an angle 116. Typically, the blade is perpendicular or angled away from the tool motion 118.

[0042] FIGS. 2(A), 2(B) and 2(C) as well as FIGS. 3(A), 3(B) and 3(C) depict, respectively, blades having different heights 210, depending upon the type of animal’s coat to be groomed. The angle 220 between the hose attachment point (i.e., suction pipe 122, which serves as the handle) and blade(s) 110 may vary according to customer preference and/or ergonomic design considerations. In the preferred embodiment the blade protrudes between 1/4" to 5/8" from the mouth of the nozzle.

[0043] The blade could also be mechanically secured to the mouth using a clip or other fastener. Those skilled in the art will recognize that using a mechanical mechanism allows blades to be exchanged.

[0044] The present invention will operate with commercially available wet/dry and standard vacuum cleaners. The greater suction of the wet/dry vacuum (compared to the upright or canister vacuum) tends to be more effective in lifting the animal’s coat (its hair), almost to the point of standing upright within the vacuum tool. Nevertheless, care
should be taken to ensure that too much suction is not used. In the event a strong vacuum is used, an adjustable vacuum suction hose can be used to reduce the vacuum pressure. Other means can be used to reduce suction. For example, a vacuum with a variable-speed motor drive can be used to create variable suction; a vent, with or without a valve, can also be placed on the grooming tool itself.

In the preferred embodiment, the vacuum pressure should be at least 40 inches of water or above 90 CFM. Tools may be fabricated with smaller vacuum orifices to accommodate less powerful vacuum cleaners. Similarly, larger tools designed for horses and similar large animals may operate best with greater vacuum pressure and airflow.

FIGS. 1, 2 and 3 show several tools incorporating shedding tool functionality into a vacuum nozzle. The number of blades and overall tool size varies depending upon the type and size of animal, and the characteristics of the animal’s hair. For example, Tool E in FIG. 1 is sized for horses and other large animals. The length of the blade 110 is typically a few inches in the preferred embodiment, but may be built larger or smaller to suit the intended use. An example of where a smaller tool may be of value would be for small dogs and particularly legs of dogs generally. For such a purpose, a tool approximately 1 to 2 in. wide may prove most useful.

FIG. 4 discloses an alternate embodiment using a pin brush 410 instead of one or more blades. The pin brush 410 has a large number of plastic or metal wire pins 420 held by base 430. Base 430 may be rigid or flexible. The pins allow airflow from a vacuum to suck hair through the slots 440 formed in the base 430 and the mouth 126 of the device.

The slot configuration of this design also aids blow drying. The slots 440 allow airflow created by the vacuum to help suck hair (and fleas, ticks, dirt, etc.) up into the brush while brushing and to evacuate loosened hair and moisture. Note that hair may wrap around the brush pins (more than the shedding blade) and require additional procedures to remove the hair. Airflow may be induced in reverse (connected to the blower output of a vacuum cleaner for example) to further aid blow drying while brushing the animal.

Those skilled in the art will recognize that the slot size, shape, number, and length of pins may all vary depending on the animal’s hair length and the required amount of brushing or drying assistance. Overall size may also vary depending on the size of the animal. Instead of brush pins, bristles can also be used in the embodiment shown in FIG. 4.

FIG. 5 discloses an alternate embodiment using combs 510, 530 and 560 instead of a blade. Three styles of vacuum combs are shown, respectively. Two (FIGS. 5(A) and 5(B)) of the depicted embodiments are intended to be used like a rake (moved fore and aft). Pulling the rake works better than pushing. The third vacuum comb (FIG. 5(C)) is designed to be used more like a traditional comb (moved sideways).

In all cases, airflow (created by vacuum) flows around both sides of the comb to suck hair up into the comb and evacuate loosened hair (along with dirt, dander, fleas, ticks, etc.). The combs may be constructed of metal or plastic. Comb length and pitch (number of teeth per inch) may be varied according to personal preference and the type and length of hair on the animal to be groomed. Hair will accumulate in the teeth during use, requiring removal. Size may vary also (length of teeth) depending on personal preference and the size of the animal.

FIGS. 6(A) and 7 depict rakes 610 and 710, respectively, of embodiments of the present invention. Conventional rakes, such as the one 650 shown in FIG. 6(B), are used for some dog breeds. FIG. 7 shows a double row rake 710 integrated into a vacuum hand tool, creating a vacuum rake in accordance with an embodiment of the present invention. Shown in FIG. 6(A) is a single row Teflon coated rake according to an embodiment of the invention. Again, vacuum causes airflow around the rake so to suck up hair, dirt, fleas, ticks, etc. into the tool. Preferably, air flow would also flow between the rows of the double row rake 710. The devices were made using metal rakes (some Teflon coated), but can be made of any suitable material, such as metal and plastic. The number of teeth, pitch, length of rake, and length of rake tangs may vary, according to the preferences of the user and breed of animal to be groomed. The rake tangs could be made of plastic. In use, hair will build up in the tangs, requiring removal.

FIG. 8 depicts two vacuum de-matting tools. De-matting tools usually have replaceable blades 820, 860 that are very sharp for cutting hair. The purpose is to cut through hair mats, somewhat shredding such in order to allow a comb to effectively run through the hair. Blades are replaceable in both cases but need not be in either. According to one embodiment, air (from the vacuum) flows around both sides of the blades 820, 860 (the cutting and non-cutting edges), and in one case between the blades 860. A thumb rest 870 is shown on the embodiment illustrated in FIG. 8(B). Blades are reversible to accommodate both right and left-handed users. Blades might be made of plastic. Cut hair may accumulate in the blades during use, requiring removal.

As mentioned above, and illustrated as examples in FIGS. 9(D) and 9(E), the animal hair may accumulate in the tool of the invention during use. FIG. 10 through 13 depict devices that are used to remove accumulated hair from tools during use, thereby eliminating the need for using fingers to do so.

One embodiment is a static vacuum cleaner 1000 shown in FIGS. 10 and 11. A vacuum source (not shown) is adapted to a cleaner head 1010 having an opening 1020 at least the size (length) of most tools. The other dimension (width) is such that maximum airflow is created, yet the opening is adequate to easily accommodate any of the non-brush tools.

Brush tools are cleaned across the cleaner opening 1020, providing mechanical scrubbing action to facilitate the vacuum action. Non-brush tools are merely held in the vacuum cleaner opening 1020.

Disconnecting the source of vacuum from the vacuum tool before attempting to remove hair from the tool with the vacuum cleaner typically makes hair removal from said tool easier and more complete (vacuum sources and resultant airflow don’t compete).

FIGS. 12 and 13 show one of many possible implementations of an articulated tool cleaner 1200 according to one aspect of the invention. The tool cleaner 1200 can be activated by placing the tool to be cleaned onto the cleaner opening 1220 of a movable vacuum plenum 1210 and pressing down, causing rotation of the cleaner about a pivot 1230 held in place by channels effectuating a rotational sliding mechanism similar to the action of a standard linear motion blast gate. This rotation effectively switches the vacuum source from a vacuum tool to the cleaner, allowing both the vacuum tool and cleaner to share the same vacuum source, but
not simultaneously. This switches the vacuum off to the connected vacuum tool and on to the cleaner, such that the airflow through the cleaner does not have to compete with any vacuum or airflow through the tool to be cleaned (wiped). If a brush is used, the brush is wiped across the cleaner opening, (while pressing down) providing mechanical assistance to assist the vacuum in removing hair. Releasing the downward force causes a spring to return the cleaner to the original position (via counter-rotation about the pivot point).

[0060] An auxiliary vacuum device 1250 (AVD), shown in FIG. 12(B) is designed to split the vacuum source to it in order to provide vacuum outlets 1270 to either side of the movable vacuum plenum 1210. This provides flexibility in mounting the entire unit. The unused outlet port is plugged in normal operation. One of the many alternatives readily appreciated by one skilled in the art is a simple pipe “elbow” (not shown), providing tool attachment on only one side of the movable vacuum plenum 1210. Such pipe elbow could also be configured such that it could be rotated to provide tool attachment on either side of the movable vacuum plenum 1210.

[0061] Mechanical articulation and rotation can be minimized or eliminated by using a pressure or other switch to activate pneumatic (even vacuum-driven) or electrical motorized opening and closing of respective valves to achieve the same function as that described above.

[0062] In the preferred embodiment, the articulated brush scrubber is made up of the following: a fixed 2½/4” vacuum plenum 1280, to which vacuum is continuously supplied; a moveable vacuum plenum 1210, which rotates up and down around a fixed pivot point 1230. One end of the moveable vacuum plenum 1210 has an opening 1220 having a width just larger than the width of the tool to be cleaned. The other end of the movable vacuum plenum has a sliding vacuum seal 1290 (shown in FIG. 13(B) sealing off the fixed vacuum plenum).

[0063] The device is activated by pushing the moveable vacuum plenum 1210 down with the tool to be cleaned. This action, as illustrated in FIG. 13(C), rotates the sliding vacuum seal 1290 off the fixed vacuum plenum 1280 and simultaneously rotates the previously open end of the moveable vacuum plenum 1210 to engage a seal with the fixed vacuum plenum 1280. This causes air flow through the moveable vacuum plenum 1210. It also stops or reduces air flow through the AVD 1250. The device being cleaned is then pushed across or inserted into the open end 1220 of the moveable vacuum plenum 1210 to release trapped hair, which is sucked up by the moveable vacuum plenum 1210, through the seal between moveable and fixed vacuum plenums and on to a vacuum source.

[0064] At the completion of the cleaning motion, pressure on the moveable vacuum plenum 1210 by the device being cleaned is released by lifting the device being cleaned. A return spring 1282 biases the moveable vacuum plenum 1210 back to the starting position, sealing off the vacuum from the fixed vacuum plenum 1280 to the moveable vacuum plenum 1210 and restoring full vacuum to the AVD 1250. This device could be used with any standard grooming tool as well as any of the vacuum tools (with vacuum still running to such). In the case of a shedding blade, comb, rake, or de-matting tool, the tool would be cleared of trapped hair simply by engaging the open end of the moveable vacuum plenum 1210, pushing both down. No alt-flore motion of the tool would be required—the trapped hair would be just sucked off. As for a non-vacuum assisted slicker, bristle or pin brush, wiping motion of a pin brush style vacuum tool would facilitate clearing of hair from the pins. Cleaning a vacuum tool connected to its vacuum source via the AVD 1250 gains the benefit of having its vacuum supply automatically stopped or reduced through such engagement of the open end of the movable vacuum plenum 1210, effectively disconnecting the AVD 1250, and hence the source of vacuum to the vacuum tool from fixed vacuum plenum 1280.

[0065] In the preferred embodiment, the device has a sufficient seal so that leakage is not a significant source of noise. Also, the seal remains adequate throughout many cycles. In addition the vacuum plenums are designed with aerodynamically smooth inner surfaces to avoid generation of noise. Finally, the entire tool cleaner is designed as a single unit that can easily be attached (with screws, etc.) to either the top or bottom of a grooming table 1302, or to a wall so to provide easy, natural access to such by any tool held in a groomer’s hand.

[0066] With this implementation, a vacuum source could easily be shared between the tool cleaner and vacuum tools. Doing so may even make both tools work better. Full vacuum would be available to the vacuum tool when grooming. Activation of the tool cleaner would release some or all of the vacuum from the vacuum tool, making it that much easier for the tool cleaner to suck trapped hair off the vacuum tool. Full vacuum would be restored to the vacuum tool upon release of the tool cleaner. All of this action is accomplished with just the one hand holding the tool that is to be “scrubbed” of hair.

We claim:

1. A vacuum cleaning tool, comprising a grooming tool cleaning head having a nozzle attachable to a vacuum source, the nozzle having an opening positionable in proximity to a surface of a grooming device such that animal hair attached to the surface of the grooming device can be removed from the surface of the grooming device by negative airflow generated by the vacuum source, the grooming tool cleaning head being mounted on a stationary support, whereby animal hair attached to the surface of the grooming device can be removed from the surface of the grooming device without requiring an operator of the vacuum cleaning tool and the grooming device to hold the vacuum cleaning tool by hand, wherein the opening is at least as large as one dimension of the surface of the grooming device, whereby the surface of the grooming device can be cleaned in a single pass of the surface of the grooming device across the opening of the nozzle of the grooming tool cleaning head.

2. The cleaning tool of claim 1, wherein the cleaning head is pivotally mounted on the stationary support.

3. A grooming tool cleaner, comprising a grooming tool cleaning head having a nozzle attachable to a vacuum source, the nozzle having an opening, which when proximate to a surface of a grooming device, removes animal hair attached to the surface of the grooming device by negative airflow generated by the vacuum source as the grooming device is wiped across, the grooming tool cleaning head being mounted on a stationary support, whereby an operator of the grooming device has the ability to engage the vacuum cleaning tool to clean the grooming device without releasing an animal being groomed.

4. The grooming tool cleaner of claim 3, wherein the cleaning head is pivotally mounted on the stationary support.

5. A grooming tool cleaner, comprising a grooming tool cleaning head having a nozzle attachable to a vacuum source, the nozzle having an opening configured to interface with a
slicker brush, the opening when engaged with the slicker brush removes animal hair attached to the slicker brush with negative airflow generated by the vacuum source as the slicker brush is wiped across the opening, the grooming tool cleaning head being mounted on a stationary support, thereby allowing a groomer to engage the slicker brush with the opening to clean the slicker brush without releasing an animal being groomed.

6. The grooming tool cleaner of claim 5, wherein the cleaning head is pivotally mounted on the stationary support.

7. A grooming tool cleaner comprising a grooming tool cleaning head having a first nozzle attachable to a vacuum source, the first nozzle having an opening with respect to which a pressure differential is induced between the vacuum source and the opening, the opening being compatible with a shape of an operative portion of a grooming tool so as to increase the pressure differential’s affect upon the operative portion of the grooming tool and when the operative portion of the grooming tool is engaged with the opening the pressure differential removes animal hair attached to the operative portion of the grooming tool.

8. The grooming tool cleaner of claim 7, wherein the cleaning head is pivotally mounted on the stationary support.

* * * * *