发明名称
限速感应及车速控制装置

摘要
本发明公开了一种限速感应及车速控制装置，包括限速信号发生及车载接收装置、车速传感器、超速提示及控制装置和 ECU，所述的信号发生及车载接收装置包括限速发射装置和车载 GPS；所述的超速提示及控制装置包括节气门控制电机和加速踏板传感器：车载 GPS、车速传感器、节气门控制电机和加速踏板传感器均接入 ECU，限速发射装置发射编辑有道路限速信息的 GPS 信号，车载 GPS 接收 GPS 信号后传给 ECU，当车速传感器传给 ECU 的当前车速大于道路限速时，由 ECU 控制节气门控制电机运转，进而控制当前车速。本装置通过电控实现了现有装置的合理控制，来实现车辆限速的控制，并且利用 GPS 准确的定位来实现限速的精确感应和接收。
1. 一种限速感应及车速控制装置，其特征在于：包括限速信号发生及车速接收装置、车速传感器、超速提示及控制装置和电子控制单元，所述的信号发生及车速接收装置由限速发射装置和车载 GPS 组成；所述的超速提示及控制装置包括节气门控制电机和加速踏板传感器；车载 GPS、车速传感器、节气门控制电机和加速踏板传感器均接入电子控制单元；限速发射装置发射编辑有道路限速信息的 GPS 信号，车载 GPS 接收 GPS 信号后传给电子控制单元，当车速传感器传给电子控制单元的当前车速大于道路限速时，电子控制单元纪录下此时加速踏板传感器的电信号为 1，同时控制节气门控制电机反转，进行减速；若当前加速踏板传感器的电信号小于 1，电机恢复正转，直至当前车速小于等于道路限速；若当前加速踏板传感器的电信号大于 1，节气门控制电机继续反转，直至当前车速小于等于道路限速。

2. 如权利要求 1 所述的限速感应及车速控制装置，其特征在于：所述的 ECU 与扬声器连接。
限速感应及车速控制装置

技术领域

本发明涉及一种汽车速度控制装置，具体为一种限速感应及车速控制装置。

背景技术

随着汽车工业和高速公路建设的发展，每年由于各种交通事故造成的人员伤亡数目惊人，造成了巨大的经济损失。据统计，造成各种交通事故的主要原因是车辆的超载和超速行驶，而后者随机性很大，事故率高，而且由于中国公路条件复杂，不同等级的公路允许的最高速度不同，现有的限速装置难以适应这种情况。针对这种情况，开发具有超速报警以及车速控制系统的装置对行车安全以及自动驾驶显得极为重要。

目前已有许多关于车辆速度限制方面的研究报告，比如：

公开号为 CN2167886 的实用新型专利，公开了一种汽车限速装置，它能根据接收到的限速信号自动限制车速，包括接收处理器和执行机构，接收处理器包括无线电接收机、速度传感器、单片计算机、解码器、电压转换器和比较器等，执行机构主要是由步进电机带动的一个伸缩装置，执行机构设置在燃油线上，通过改变燃油线的长度从而控制化油器的油气门开启的大小来达到限速目的。

公开号为 CN200979747 的实用新型专利，公开了一种机动车辆自动限速装置，在限速路段上埋设感应器和无线电数据发射装置；在汽车上安装无线电数据接收系统和限速阀体；限速阀体的中轴心与操纵电机相连，操纵电机与无线电数据接收系统相连，限速阀体安装于发动机上的化油器加速节气门的上方或下方；通过以上结构既能控制汽车发动的转速，又能保持汽车原车功率不变，驾驶轻松自如。

但是大多数都针对的是化油器式发动机以及机械式加速踏板，而随着电子技术的发展，越来越多的电子技术被应用到汽车上来，未来的发展趋势必然是电控式发动机以及电子加速踏板来代替现有的装置。现有的限速
信号有物理式的限速牌，其受很大程度上会受到天气状况的影响，而无线发射装置则有相应的盲区和交又，会影响相应的信号接收。

发明内容

本发明提供了一种限速感应及车速控制装置，是主要针对电子节气门以及电子加速踏板设计的速度控制，并且利用全球定位系统（GPS）准确的定位来实现限速的精确感应和接收。

本发明的装置包括限速信号发生及车载接收装置、车速传感器、超速提示及控制装置和电子控制单元（Electronic Control Unit，简称 ECU），所述的信号发生及车载接收装置包括限速发射装置和车载 GPS；所述的超速提示及控制装置包括节气门控制电机和加速踏板传感器；车载 GPS、车速传感器、节气门控制电机和加速踏板传感器均接入 ECU；

道路限速信息预先在 GPS 地图上编辑，限速发射装置发射编辑有道路限速信息的 GPS 信号，车载 GPS 接收编辑有道路限速信息的 GPS 信号后传给 ECU，当车速传感器传给 ECU 的当前车速大于道路限速时，ECU 记录下此时加速踏板传感器的电信号 I，同时控制节气门控制电机反转，进行减速度；若当前加速踏板传感器的电信号小于 I，电机恢复正常转，直至当前车速小于等于道路限速；若当前加速踏板传感器的电信号大于 I，节气门控制电机继续反转，直至当前车速小于等于道路限速。

无线发射装置发射的信号难免产生交叉或盲区，影响车辆限速的正常接收，无法合理利用资源。因此本发明采用如下设计方案：利用现有的 GPS 地图，在编辑路段信息时，附加上路段的限速信息，使车辆可以准确地收到各个路段的不同限速信息，不再有信号的盲区以及交叉问题。

有了 GPS 提前设置的道路限速信号，车载 GPS 就能在限速路段或交叉路口接收到相应的限制时速，能给车辆的行驶带来很大的方便。

GPS 限速信号的在编辑时还可以预先设置好相应的车型的道路限速，可以用数字信号来代替相应车型，比如用 1 代表货车，2 代表轿车等，并分别规定其限速为多少。而相应的在车载 GPS 的预设时，应设置好与 GPS 发射装置对应的车型代号，在获取相应的限速时可以很好的得以匹配。

在得到相应的道路限速信号以后，立即送往 ECU，ECU 即可在第一时间获得相对应于自己车型的所在道路限速 Vs。
GPS 定位准确，道路信息清晰，可以最大限度的利用资源，并且可以提供准确的道路限速信息。

所述的车速传感器为现有汽车的常用装置，用的较多的是磁电式车速传感器以及霍尔式车速传感器，通过对车轮转速的测量来通过预先的转换关系，转换得到车辆的当前车速 V。

节气门的作用是控制发动机的进气流量，决定发动机的运行工况，驾驶员通过操纵加速踏板来操纵节气门开度。加速踏板传感器是一个无触电的双电位器传感器，加速踏板位置的变化会引起相应电阻值的线性变化，而产生不同的电信号，并将此电信号送给 ECU，ECU 根据电信号的大小通过控制节气门控制电机来对节气门进行调节，以到达司机想要的车速。

所述的 ECU 也可以与扬声器连接，在当前车速 V 大于道路限速 Vs 时，扬声器开启，以提醒司机。

在 ECU 获得道路限速 Vs 和车辆当前速度 V 两个相应的信号后，立即进行相应的处理，对车速 V 和道路限速 Vs 进行比较；

当 V<=Vs 时，一切正常；

而当 V>Vs 时，相应的装置开始工作。在道路上行驶的车辆由于经常做超车动作，会势必会出现短期的超速现象，所以给车子留有一定的超速范围。比如先假设将超速范围定于 120%Vs (实际应用时可以根据道路上的实际情况来设置最高超速范围)，当 Vs<V≤120%Vs 时，由 ECU 控制扬声器发声，向司机发出警示，说明已经超速；直到当前车速 V<=限速 Vs 时，扬声器停止工作；而当 V>120%Vs 时，ECU 将对车速进行干预，即对节气门进行控制，来控制车速。

本装置通过电控实现了现有装置的合理控制，来实现车辆限速的控制。对道路交通日益发达的今天，车辆的限速会很大程度的减小因车祸带来的经济损失，也更好的提高了车辆行驶时对自身以及对周围环境的安全性。

附图说明
图 1 为本发明装置示意图；
图 2 为本发明装置工作流程图。
具体实施方式

如图1所示的装置，包括限速信号发生及车载接收装置、车速传感器、超速提示及控制装置和 ECU, 信号发生及车载接收装置包括限速发射装置1和车载GPS 2，限速发射装置1安装在限速路段，发射编辑有道路限速信息的GPS地图信号；超速提示及控制装置包括节气门控制电机6和加速踏板传感器4；车载GPS 2、车速传感器5、节气门控制电机6和加速踏板传感器4均接入ECU3。

车速传感器采用霍尔车速传感器，其结构主要由齿圈、霍尔元件、永久磁铁和电子线路等组成。工作原理是永久磁铁的磁力线穿过霍尔元件通向触发齿圈，齿圈相当于一个集磁器，由齿圈旋转引起穿过霍尔元件的磁场变化，从而引起霍尔电压变化，最后通过电子线路变换成为标准脉冲电压。在车轮转轴上安装一非磁性的圆盘，在圆盘的边缘等距离的粘贴上磁钢，磁钢为永久磁铁分割成的小磁块，具有较抢的磁性。将霍尔元件固定在距离磁块平面1mm~3mm处，当磁块与霍尔元件相对位置发生变化时，通过霍尔元件磁面的磁场强度就会发生变化。

随着圆盘的旋转，磁场强度就发生周期性的变化。当磁块靠近霍尔元件时，穿过霍尔元件的磁场较强，当霍尔元件位于磁块之间时，磁力线分散，霍尔元件输出低电平；当磁场减弱时，霍尔元件输出高电平，使得在车轮转动过程中，霍尔开关输出连续的脉冲信号。得到脉冲信号的放大整形以及相应的换算都由ECU来完成，并得到相应的车速V5。

限速发射装置发射的道路限速信号Vs由车载GPS接收后传给ECU,车速传感器获得的车辆当前车速V也传给ECU。

当前车速V大于120%Vs时，ECU记录下加速踏板此时的电信号I，并且ECU控制节气门控制电机以较小的加速度（如果加速度太大，会导致车辆的突然减速），可能导致交通事故的发生的发生）。反转（即向着减速的方向转动），然后根据加速踏板位置的变化情况来工作。当加速踏板位置传感器传来的电信号比记录的I大，那ECU继续控制节气门控制电机反转，继续减速，即使司机继续踩下加速踏板，由于电机不再正向（加速方向）转动，所以节气门开度不会增加，因此车速不会继续增加。而ECU一直在对V和I进行分析。当加速踏板位置传感器传来的电信号小于之前超速20%时记录的电信号I时，节气门控制电机恢复正常。如果加速踏板位置
传感器所传来的电信号一直大于 I，那么 ECU 会在车速 \(V \leq V_s \) 时恢复正常。并且会在此时的加速踏板位置传感器所传来的电信号 \(I' \) 与 \(I \) 进行比较分析，如果现在的电信号 \(I' \) 与记录的电信号 \(I \) 的差值 \((I' - I) \) 大于设定值时，ECU 仍不能按照加速踏板位置传感器传来的信号来工作，而是控制节气门控制电机缓慢正转，防止在电机反转时，司机没有理会，继续踩加速踏板，而当 ECU 恢复正常时，车速增加，很容易导致交通事故。

在此期间，扬声器一直在工作，提示司机，直到车辆的行驶速度小于道路限速以后，扬声器才停止工作。