wo 20097140590 A1 I 0E O OO0 O YO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2009/140590 A1

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
Al
(43) International Publication Date \'{_5___,/
19 November 2009 (19.11.2009) PCT
(51) International Patent Classification: 74)
GO6F 12/00 (2006.01)
(21) International Application Number:
PCT/US2009/044127 (81)
(22) International Filing Date:
15 May 2009 (15.05.2009)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
200810097594.7 15 May 2008 (15.05.2008) CN
(71) Applicant (for all designated States except US): ALIBA-
BA GROUP HOLDING LIMITED [—/US]; Fouth
Floor, One Capital Place, P.o. Box 847, Grand Cayman 84
(KY).
(72) Inventors; and
(75) Inventors/Applicants (for US ornly): TANG, Yipeng

[CN/CN]; C/o Alibaba.com Corporation, 6/f Chuangye
Mansion, Fast Software Park, Huaxing Road No.99,
Hangzhou, 310099 (CN). HONG, Wenqi [CN/CN]; C/o
Alibaba.com Corporation, 6/f Chuangye Mansion, East
Software Park, Huaxing Road No0.99, Hangzhou, 310099

Agents: GAO, Zeming, M. et al.; Lee & Hayes, PLLC,
601 W. Riverside Ave, Suite 1400, Spokane, WA 99201
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

(CN).

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR LARGE VOLUME DATA PROCESSING

400
— 410
s 420
LARGE FILES /7~ PROCESSORS "\
FILEA
‘ DIVIDE
DIVIDE
SERVER 1
- 430
/ SMALL FILES N\
FILEY PROCESS
&
PROCESS
< SERVER 2
FILE 2 PROCESS l
| < .
PROCESS .
FILE 3 < '
 ProcEss
: <
(]
H PROCESS
H <
N o .
< SERVER N
Fig. 4

(57) Abstract: Disclosed are a method and a system for large volume data
processing for solving the problem of system collapse caused by process-
ing delays resulting from a failure of processing a large volume of data
within a scheduled time. The method allocates a server to divide a source
file into multiple small files, according to a source file naming scheme,
and allocates multiple servers to distributedly process the small files. The
allocation of servers can be based on the filenames named according to a
file naming scheme. The disclosed method deploys multiple servers to di-
vide and process large data files, thereby maximally improving the pro-
cessing power of the system and ensuring the system to complete the pro-
cessing of the files within scheduled times. Furthermore, the system
promises good scalability.

WO 2009/140590 A1 W00 00O 0 AR A RO

Published:
— with international search report (Art. 21(3))

10

15

20

WO 2009/140590 PCT/US2009/044127

METHOD AND SYSTEM FOR LARGE VOLUME DATA

PROCESSING

RELATED APPLICATIONS

The present application claims priority benefit of Chinese patent application No.
200810097594.7, filed May 15, 2008, entitled "METHOD AND SYSTEM FOR LARGE
VOLUME DATA PROCESSING", which Chinese application is hereby incorporated in

its entirety by reference.

BACKGROUND ART

The present disclosure relates to data processing technologies, and particularly to
methods and systems for large volume data processing.

Data processes are commonly observed in a number of applications. In a typical
scenario, a sender saves a certain data into a file in a certain format, and then sends the
file to a recipient. Upon receiving the file, the recipient analyzes content within the file,
and performs logical processing accordingly.

In the above data process, if the file is not too big, and the recipient does not have
a strict processing time requirement, a single server or a single thread may be used for
processing. Under that circumstance, corresponding system may still operate normally,
though the time taken by the recipient to process the data of these files may be quite long.
However, if the file is very big (and/or the number of files is large), and the recipient has
a very strict processing time requirement (e.g., the recipient may require the data of the

file transmitted from the sender to be completely processed within one minute or even a

S 1-

10

15

WO 2009/140590 PCT/US2009/044127

shorter period of time), the processing system using single server or single thread may
not be able to satisfy this need.

In many instances, file data is transferred from a sender to a recipient on a regular
basis, once every five minutes, for example. In addition, the recipient may have a
maximum delay tolerance for the data. If the recipient cannot complete processing the
transmitted data during a corresponding interval, vicious cycle may result — unfinished
processing of data from previous period and arrival of new data will increase the data
delay of the recipient and eventually lead to a system collapse.

Requirement for processing such large volume of data is normally seen in a
number of large-scale applications. Examples include reporting students’ data from a
school to an education authority in educational sector, web log processing in large-scale
websites, and inter-system data synchronization, etc. Therefore, a method for processing
large volume of data within a scheduled time is required to alleviate data processing

delay.

10

15

20

WO 2009/140590 PCT/US2009/044127

SUMMARY

Disclosed are a method and a system for large volume data processing to solve the
problem of system collapse caused by processing delays resulting from failure to process
a large volume of data within a scheduled time.

One aspect of the disclosure is a method for processing large volume data. The
method allocates a server to divide a source file into multiple small files, and allocates
multiple servers to distributedly process the small files. The allocation of servers can be
based on the filenames assigned according to a file naming scheme. The disclosed
method deploys multiple servers to divide and process large data files, thereby improving
the processing power of the system and ensuring the system to complete the processing of
the files within scheduled times. Furthermore, the system promises good scalability. As
files become bigger or the number of files increases, new servers may be added to satisfy
the demands. The system can be linearly expanded without having to purchase more
advanced servers and to re-configure and re-deploy the servers which have been
operating previously.

In one embodiment, allocating the source file dividing server according to the
filename of the source file is done by parsing the filename of the source file and obtaining
a source file sequence number; computing (((the source file sequence number) % (total
number of servers available for allocation)) + 1), wherein % represents a modulus
operator; and allocating the source file dividing server according to computed result.
Allocating the small file processing servers according to the filenames of the small files

can be done in a similar manner.

10

15

20

WO 2009/140590 PCT/US2009/044127

The servers may also be allocated according to the data types to be processed by
the servers. In one embodiment, the method configures each server to process a data
type; parses a filename of a file and obtains the data type of data stored in the file; and
allocates the file to a server that is configured to process the data type of the data.

After dividing the source file into small files, the method may save the small files
into a disk.

In one embodiment, the method further allows the source file processing server to
retry to divide the source file upon failure; and allows the plurality of small file
processing servers to retry to process the respective allocated small files upon failure. The
method may allow only a single retry to divide the source file, but allow multiple retries
to process the allocated small files.

The method may place the source file waiting to be divided and small files
waiting to be processed under different directories. In one embodiment, the data flow
under the directory of the source files waiting to be divided includes the following steps:

placing the source file into a directory for to-be-divided source files;

after allocating the source file processing server, placing the source file waiting to
be divided into a temporary directory for file division;

dividing the source file; and

backing up the source file into a directory storing successfully divided source files
if the source file has been divided successfully, and saving the small files thus obtained
into a directory storing post-division small files, or backing up the source file into a
directory storing source files failed to be divided if the source file has failed to be divided

after a retry.

10

15

20

WO 2009/140590 PCT/US2009/044127

Furthermore, the data flow under the directory of the small files waiting to be
processed may include the following steps:

after allocating the small file processing servers, placing the small files that are
waiting to be processed into a temporary directory for small file processing;

processing the small files in the temporary directory; and

backing up one or more of the small files into a directory storing successfully
processed small files if the one or more small files have been processed successfully,
backing up one or more of the small files into a directory storing small files having
partially unsuccessfully processed records if the one or more of the small files need to be
re-processed, and backing up one or more of the small files into a directory storing small
files failed to be processed upon retries if the one or more of the small files have failed to
be processed upon retries.

Another aspect of disclosure is a system for large volume data processing. The
system includes multiple servers, with each server including a pre-processing unit, a
dividing unit and a processing unit. The pre-processing unit is used for determining
whether a source file waiting to be divided is to be processed by the server based on a
source file naming scheme and for triggering a dividing unit if affirmative the pre-
processing unit is also used for determining whether a small file is to be processed by the
server based on a post-division small file naming scheme and for triggering a processing
unit if affirmative. The dividing unit is used for dividing the source file into small files.

The processing unit is used for performing logical processing for the small file.

10

15

20

WO 2009/140590 PCT/US2009/044127

In one embodiment, the pre-processing unit determines wherein whether the
source file is to be processed by the server based on a source file sequence number in the
filename of the source file, and determines whether the small file is to be processed by
the server based on a source file sequence number in the filename of the small file or a
small file sequence number in the filename of the small file.

In another development, the pre-processing unit determines whether the source is
to be processed by the server based on a type of data stored in the source file. In this
case, each server further has a configuration unit used for configuring data type(s) that
can be processed by the server.

Preferably, each server may further include a storage unit which is used for saving
small files obtained from dividing the source file into a disk. The storage unit may adopt
a directory structure, and places files waiting to be divided and files waiting to be
processed under different directories.

Preferably, each server may further include a retry unit used for retrying to divide
the source file upon failure and/or to process the small files upon failure. The retry unit
may allow a single retry to divide the source file but allow multiple retries to process the
small files.

According to some of the exemplary embodiments of the present disclosure, the
disclosed method and system has several potential advantages.

First, the present disclosure provides a method and a system capable of distributed
and concurrent processing of large files. Under the control of a concurrency strategy,
multiple servers may be deployed to divide and process large data files at the same time,

thereby greatly improving processing power of a system and ensuring the system to

10

15

20

WO 2009/140590 PCT/US2009/044127

complete processing of the file within a scheduled time. Moreover, a concurrency
strategy which allocates servers for dividing and processing files based on a file naming
scheme ensures that each source file is divided by just one server, and each small file
obtained by dividing the source file is also processed by only one server, thereby
avoiding resource competition.

Second, the present disclosure discloses several different concurrency strategies.
One strategy allocates a server according to a source file sequence number in the
filename. This strategy can guarantee a balance among servers when there are a relatively
large number of files. Another strategy configures, for each server, a data type that is
allowed to be processed by the server, and allocates a suitable server for respective file(s)
waiting for processing. This latter strategy requires only modification of a configuration
table when a new server is added. Depending on the practical application needs, the
present disclosure may use a combination of these two concurrency strategies so that the
disclosed system may maximally balance the activity levels of the servers.

Furthermore, the system promises good scalability. As files become bigger or the
number of files increases, new servers may be added to satisfy corresponding demands.
Specifically, the system can be linearly expanded, without having to purchase more
advanced servers and to re-deploy the servers which have been operating previously.

Furthermore, in order to reduce disk 10 (Input/Output) pressure, files that are
waiting to be divided and files that are waiting to be processed may be placed under
different directories, in which all files may be subsequently cached. A new file is read

only after the files in the cache have been completely processed.

WO 2009/140590 PCT/US2009/044127

This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is

it intended to be used as an aid in determining the scope of the claimed subject matter.

10

WO 2009/140590 PCT/US2009/044127

DESCRIPTION OF DRAWINGS

FIG. 1 shows a flow chart of an exemplary method for large volume data
processing in accordance with the present disclosure.

FIG. 2 shows a flow chart an exemplary process of dividing a file in a directory
structure.

FIG. 3 shows a flow chart of an exemplary process of processing a file in a
directory structure.

FIG. 4 shows a logical structural diagram of a system for large volume data
processing in accordance with the present disclosure.

FIG. 5 shows a diagram illustrating an exemplary internal logical structure of

cach server in the system of FIG. 4.

10

15

20

WO 2009/140590 PCT/US2009/044127

DETAILED DESCRIPTION

In order to better understand the characteristics of the present disclosure, the
disclosed method and system are described in further details using accompanying figures
and exemplary embodiments.

The present disclosure provides a method and a system for processing a large file
in a concurrent or distributed manner. Through a concurrency strategy which employs a
file naming scheme to allocate servers, a number of servers can be deployed to divide and
process the large data file at the same time. As a result the method can greatly improve
the processing power of a system and ensure the system to complete the processing of a
large data file within a scheduled time.

For example, a sender creates large files FileA of multiple in a certain format, and
sends one or more files FileA to a recipient from time to time (e.g., in every two
minutes). FileA has a large file size (e.g., 200M). The multiple types may be data types
such as product data and order data, with each type possibly having multiple data files.
Upon receiving the files FileA, the recipient performs subsequent logical processing of
the files FileA. The logical processing may be relatively complicated, and may require a
number of related matters such as saving the files FileA in a database.

In the above example, if the processing power of a single server is 10M/Min, only
20M of data can then be processed within two minutes, leaving 180M of data remained
unprocessed. In this case, a goal of the disclosed method, therefore, is to enable the
system of the recipient to complete processing of all the files FileA within two minutes.

FIG. 1 shows a flow chart of an exemplary method for large volume data

processing in accordance with the present disclosure. Using the above example, the

-10 -

10

15

20

WO 2009/140590 PCT/US2009/044127

present disclosure adopts a method of distributed and concurrent processing by multiple
servers to process a large data file according to business logic. The multiple servers may
execute the same procedures concurrently.

A prerequisite for the exemplary embodiment is that the file FileA sent from a
sender is named using a unified file naming standard or file naming scheme. A file
which fails to follow this naming standard will not be processed. Therefore, files sent
from the sender are named according to the standard, and a recipient may directly parse
the filenames.

Below uses an example of processing a file sent from a sender for illustration. In
this description, the order in which a process is described is not intended to be construed
as a limitation, and any number of the described process blocks may be combined in any
order to implement the method, or an alternate method. The exemplary process is
described as follows.

At S101, a filename of a source file FileA sent from a sender is parsed.

At S102, based on a parsing result of the filename of the source file FileA, a
server is allocated to divide the source file FileA.

At S103, the server divides the source file FileA into multiple small files FileY.

When a file is divided, the file is divided into N smaller files FileY. The value of
N (the number of small files) is set according to practical situations, and is primarily
determined by the number of servers available for processing.

At S104, each small file FileY obtained by dividing the source file FileA is named
automatically according to a post-division small file naming standard.

At S105, the filenames of the small files FileY are parsed.

-11 -

10

15

20

WO 2009/140590 PCT/US2009/044127

At S106, based on the parsing results of the filenames of each small file FileY, a
server is allocated to process the small file FileY.

At S107, the allocated servers distributedly perform subsequent logical
processing.

The source file and each small file (which is obtained by dividing the source file)
cach has its own naming rule. Specific details are given below.

An exemplary source file naming standard is as follows.

An example filename: DateTime Sequence DataType. TXT, where the meaning
of each parameter in the file name is illustrated as follows.

DateTime represents the time when data is exported, and has a precision up to one
second. An exemplary corresponding format is year, month, day, hour, minute, second
(e.g.,20070209133010).

Sequence represents a sequence number of data paging (used to prevent a single
file from being too large), and may also be called a source file sequence number.
Sequence may be set to have three digits, with the accumulation beginning from 001.

DataType represents the type of data stored in the file. For example, “user”
represents user data, “order” represents order data, and “sample” represents product data.

As shown above, each data type DataType may have multiple data files.

An exemplary post-division small file naming standard is as follows.

An example of filename:

SubDateTime DateTime Sequence SubSequence retryX DataType. TXT,

where the meaning for each parameter is described as follows.

12 -

10

15

20

WO 2009/140590 PCT/US2009/044127

The meaning for DateTime, Sequence and DataType is the same as that for source
file.

SubDateTime represents the time when a subfile (i.e., a small file) is exported,
and its default value is the same as DateTime. However, upon a retry, SubDateTime and
DateTime may not be the same. Specific details is found in subsequent description for
retry.

SubSequence represents a sequence number of the small file which is created
upon dividing the corresponding source file. An exemplary SubSequence is set to have
four digits, with the accumulation starting from 0001.

The X in retryX represents the number of retries made to process the
corresponding file in practice. When the file is processed at the first time, X is 0. After
one failure, X is changed to 1, and X accumulates accordingly thereafter. During
accumulation, attention is made to accordingly modify the corresponding SubDateTime
which is in front of retryX. An exemplary rule sets SubDateTime to be the current
system time + retry time interval.

DateTime of the source file is still contained in the filename of the post-division
small file. The primary purpose of keeping DateTime is to allow error checking in case a
problem occurs in subsequent processing.

Blocks S102 and S106 both rely on filename parsing results to rationally allocate
servers. Specifically, servers are dispatched to divide the source file and to process the
post-division small files. In view of the execution of a whole server system, this is a

process of concurrent execution. Specifically, at the time when one server is allocated to

- 13-

10

15

20

WO 2009/140590 PCT/US2009/044127

divide a source file, another server may be allocated to process a small file obtained in
previous division.

The present disclosure provides two exemplary kinds of concurrency strategies
for dividing a source file and processing a post-division small file. An exemplary
principle of the concurrency strategies is to allow a source file to be divided by one server
only, and to allow each post-division small file to be processed by one server only, in
order to avoid resource competition.

One exemplary strategy is to apply a modulus operation to Sequence or
SubSequence in the filename using the following formula:

(Sequence/SubSequence) % (number of servers waited for allocation) + 1;

where “%” represents a modulus operator, and "+1" (the addition of one) ensures
that a result computed will not be zero.

For example, assume that the number of available servers is three, and the
filename is 20070429160001 00x_order.txt, with 00x representing Sequence.

Using the above formula, x % 3 + 1 is computed first. If the result is one, the
corresponding file is allocated to be processed by serverl. If the result is two, the file is
allocated to be processed by server2. If the result is three, the file is allocated to be
processed by server3.

By default, the same determination rule for allocation may be used for both
processing a small file and for dividing a source file. For example, the allocation for
processing the small file and the allocation for dividing the source file may both be based

on Sequence in the corresponding filename. However, in order to ensure further

- 14 -

10

15

20

WO 2009/140590 PCT/US2009/044127

evenness among servers, determination of allocation may preferably be based on
SubSequence for processing a small file.

It is appreciated that any other suitable formula based on Sequence or
SubSequence in a filename may be used for allocating the servers evenly. The above
formula which uses modulus operation is only meant to be an example for illustrative
purpose.

The foregoing strategy may achieve relatively even allocation of servers.
However, because the number of files is not always a multiple of the number of available
service (e.g., three in the present example), serverl and server2 may process a few more
files than server3. Furthermore, a file having a relatively small data volume may have
only one divided small file, and thus will always be processed by serverl according to
this rule. Therefore, this strategy is suitable for situations where the number of the files
to be processed is large. The larger the number of files is, the more the evenness among
servers will be. However, if a new server i1s added, the number of the available servers
changes to cause a different server allocation, and as a result all the servers are required
to be re-deployed.

Another strategy configures, for each server, a DataType that can be processed
and is only allowed to be processed by that server. According to this strategy, the system
provides a configuration table, with configuration items showing, for each server, a
DataType that can be processed and is only allowed to be processed by that server. For
example, serverl, server2 and server3 may be configured to process order data, user data

and sample data, respectively. In setting these configuration items, it may be required to

-15-

10

15

20

WO 2009/140590 PCT/US2009/044127

guarantee that no inter-server conflict exist in the configuration. If a conflict exists, a
warning about the configuration error is given.

Either of the above-described concurrency strategies can schedule multiple
servers for dividing source files and for processing small files at the same time well.
Depending on specific application requirements, any one of the two strategies may be
selected in practical applications. As the concurrency strategies are not mutually
exclusive, they may preferably be combined. For example, multiple servers may be
assigned to process files having "order" as DataType (i.c., files having order data), while
server3 is allocated to process user data only, and server?2 is allocated to process sample
data only. This helps to maximize the evenness of the processing among servers, and to
maximize the balance among the activities of the servers.

In the processes of dividing the source file and processing the small files as shown
in FIG. 1, if the above first strategy is used, the filename of the source file is parsed to
obtain Sequence, while the filename of the small file is parsed to obtain Sequence or
SubSequence. If the second strategy is used, DataType is obtained from the filenames. If
a combination of the two strategies is used, Sequence or SubSequence, and DataType
may be obtained at the same time. No matter which concurrency strategy is adopted,
which server is used for dividing or processing a file is determined upon the filename of
the object file. Each server can only process the files assigned to it (the present server).

Preferably, after a server divides a source file, the corresponding post-division
small files are stored into a disk. When a small file needs to be processed, the small file
is obtained from the disk. If a small file obtained by dividing the source file by the server

has not been completely written into a disk, this small file is not allowed to be processed.

- 16 -

10

15

20

WO 2009/140590 PCT/US2009/044127

This precaution is needed because if the small file is processed in this circumstance, the
content of the small file read by another server (a small file processing server) may not be
complete.

Preferably, if an error occurs during division or processing, the corresponding
erroneous part is re-done. Moreover, if many files are waiting to be divided or processed,
the files may be processed in a chronological order.

All in all, this method of distributed and concurrent processing by multiple
servers may greatly improve processing power of a system, particularly when large files
are processed, and can maximally balance the activity levels of the servers. Moreover,
this method promises good scalability. If files become bigger or the number of files
increases, servers may be added to satisfy the demands. Specifically, the system can be
linearly expanded, without having to purchase more advanced servers and to re-deploy
the servers which have been operating previously.

In order to reduce the disk I/O pressure caused by file scanning, the present
disclosure preferably places files to be divided and files to be processed under different
directories, and cache the files in their respective directories. After a file in the cache is
processed, another file is read. The processing order depends on a natural ordering of the
filenames (i.e., according to the ascending order of DateTime in the filenames, with files
of carlier DateTime being processed first).

An exemplary directory structure for file processing may look like the following:

/root // root directory
/source_file /1 directory for source files to be divided
/tmp_divide // temporary directory used during file division

/hostnameA // hostname of a server for current division

-17 -

WO 2009/140590

10

15

20

25

/hostnameB

PCT/US2009/044127

1

// these directory names are dynamically allocated

according to the number of servers

/source_smallfile

/tmp_execute

/hostnameA

/hostnameB

/bak_sucs_file

/20070212
/hour
/20070213

/hour

/bak_sucs small

/20070212

/hour

/20070213

/hour

/bak_error

/20070212

// storing small files obtained from dividing the

source file

/ftemporary directory used during processing a

certain small file according to business logic

// hostname of a server for current processing

/

// these directory names are dynamically allocated

according to the number of servers

// backup source files that have been successfully

divided

// current date

// hour of current date, e.g., 10, 20

/

/

// dynamically add according to current date

// backup small files that have been successfully

processed

// current date

// hour of current date, e.g., 10, 20

/

/

// dynamically added according to current date

// backup small files that have been recorded but
partially failed to be processed

// current date

- 18 -

10

15

20

25

WO 2009/140590 PCT/US2009/044127

/hour // hour of current date, e.g., 10, 20
/20070213 /
/hour //
// dynamically add according to current date
/error_divide // backup source files which have had an error in
dividing to small files
/20070212 // current date
/hour // hour of current date, e.g., 10, 20
/20070213 /
/hour //
// dynamically added according to current date
/error_execute // backup small files that have been processed
unsuccessfully with retry failure exceeding five times
/20070212 // current date
/hour // hour of current date, e.g., 10, 20
/20070213 /
/hour //

// dynamically add according to current date

The above directory structure is used in these exemplary embodiments for
illustrative purposes only. The directory structure may be self-adjusted. For example,
whether /hour directory is needed depends on the number of small files obtained from
dividing the source file by the system. Because an operating system has restrictions on
the number of files, the size of directory tree, and the maximum number of files under a
directory, performance of the system may be severely affected if the number of files

under one directory is too large.

-19-

10

15

20

WO 2009/140590 PCT/US2009/044127

In practice, the process of creating the above directory structure is in
synchronization with the processes of dividing the source file and processing the small
files shown in FIG. 1, and may reflect the process shown in FIG. 1 Through data flow of
files across directories. Such process primarily includes data flows in file division and file
processing. Specific details are described as follows.

FIG. 2 shows a flow chart illustrating an exemplary process of dividing a large
source file in a directory structure. The process is described with reference to the
directory structure described above below.

At S201, a source file transmitted from a sender is placed under a directory
/source_file.

At S202, the source file which is under the directory /source file and waiting to
be divided is allocated a server based on its filename. In order to avoid dividing the same
source file by multiple threads, the file is further placed under a corresponding directory
/tmp_divide/hostname, which is preferably a directory of the allocated server. This
process is referred to as renaming.

At 8203, the server divides the source file which is waiting to be divided. If the
source file is successfully divided, small files obtained from the division are saved under
a directory /source smallfile. The source file which has been divided successfully is
backed up under a directory /bak_sucs_file.

At S204, if the above dividing process fails, a retry to divide is attempted. If the
first try is successful, the process returns back to S203, and the small files obtained from

the division are saved under a directory /source smallfile. The source file which has

-20 -

10

15

20

WO 2009/140590 PCT/US2009/044127

been divided successfully is backed up under a directory /bak sucs file. If the retry also
fails, the source file is backed up under a directory /error_divide.

FIG. 3 shows a flow chart illustrating an exemplary process of processing a post-
division small file in a directory structure. The process is described with reference to the
directory structure described above.

At S301, a small file obtained from dividing the source file is placed under a
directory /source_smallfile.

At S302, the small file which is under the directory /source smallfile and waiting
to be processed is allocated a server based on its filename. In order to avoid processing
the same small file by multiple threads, the small file is further placed under
corresponding directory /tmp execute/hostname, which is preferably a directory of the
allocated server. This process is called renaming.

At S303, the allocated server logically processes the small file that is waiting to
be processed. If successful, the processed small file is saved under a directory
/bak_sucs_small.

At S304, if an error occurs in processing, a retry is attempted. The number of
allowable retries may be set to be five, for example.

The small file which is waiting for a retry for processing is backed up under a
directory /bak error. When a retry is attempted, the process returns to S301. Specifically,
the small file which has failed to be processed at S303 is placed back under the directory
/source_smallfile, and processed again by the originally allocated server. If the number
of unsuccessful retries exceeds the maximum number of retries allowed (e.g., five times),

the small file is backed up under a directory /error_execute.

_21 -

10

15

20

WO 2009/140590 PCT/US2009/044127

In the exemplary embodiments, the number of retries to divide a source file and
the number of retries to process a small file are not the same. If an error occurs in
dividing a large source file, a retry to divide is made. If the retry still fails to divide, the
source file is transferred directly to “error directory” (i.e., /error_divide). An error log is
written while a warning is provided. However, a more flexible retry mechanism is used
to handle an error occurring in the business logic processing of a small file. Because the
error rate for dividing a source file is very small, but failures for the subsequent business
logic processing occur more frequently, multiple retries are allowed for processing small
files.

Because multiple retries may be attempted for a small file, a list of retry intervals
is configured. The number of allowable retries and the duration needed to be waited
before making the next retry may be set manually. For example, the number of allowable
retries may be set to be five. If five unsuccessful retries have been made, the small file
will not be processed, but transferred to “error directory”. An error log is written while a
warning is provided. Therefore, when a server obtains a specific file for processing, the
server needs to determine whether SubDateTime of that file is earlier than the current
time. If yes, the server processes the file. Otherwise, the file is not processed.

As described above, if a small file obtained from dividing the source file by a
certain server has not been written completely into a disk, this small file is not allowed to
be processed. In order to avoid processing of a small file which has not been completely
written into a disk, a directory structure is used. The small file is first written to a
temporary directory /source_smallfile. Upon successful writing, the small file is renamed,

and transferred to another directory /tmp execute/hostname. Because the renaming is

2.

10

15

20

WO 2009/140590 PCT/US2009/044127

atomic, and only a file pointer needs to be modified, this will guarantee the integrity of
the data.

The present disclosure further provides an exemplary system for large volume
data processing.

FIG. 4 shows a logical structural diagram of an exemplary system for large
volume data processing in accordance with the present disclosure.

As shown in FIG. 4, system 400 adopts a distributed structure including multiple
servers 410, with each server having the abilities of dividing source files 420 and
processing small files 430 obtained from dividing the source files 420. In the context of
an example of processing data transferred from a sender to a recipient within a scheduled
time, the system 400 is deployed on the recipient side and is referred to as recipient
system 400 below. The multiple servers 410 of the recipient system 400 may execute the
same procedures concurrently.

An exemplary process of concurrent processing a large source file FileA sent
from a sender by multiple servers 410 of the recipient system 400 is described as follows.

A large file FileA (420) is first placed under a directory /source file. Each server
410 constantly scans large files 420 which are sent from the sender and placed under this
directory. Based on the foregoing concurrency strategies (which is not described here
again), cach server serverA (410) determines based on the file’s filename whether a file
420 is to be divided by the present server. Upon obtaining a file FileA needed to be
processed by the present server, the server serverA divides the file into N smaller files
FileY. The value of N depends on practical situations and is primarily determined by the

number of servers 410 available to be used for processing the small files. According to

_23.

10

15

20

WO 2009/140590 PCT/US2009/044127

one concurrency strategy, the multiple servers serverX further determine whether any of
the small files FileY obtained from dividing the source file is/are to be processed by the
multiple servers serverX. Upon obtaining a small file FileY which is to be processed by
server serverB, for example, the server serverB performs subsequent logical processing
of the small file FileY.

In the above process, in order to prevent resource competition, it is preferred to
ensure that only one server is allowed to divide the source file FileA, and only one server
is allowed to process each of the small files FileY obtained from dividing the source file
FileA. Moreover, the activity levels of each server are balanced to the maximum extent
to avoid situations in which certain servers are too busy while other servers are idling.
This can be accomplished by the concurrency strategies described in this disclosure.
Furthermore, the disclosed system is very flexible, has good scalability, and can support
independent configuration of each server for processing certain types of files. In some
embodiments, therefore, in case a new server is added, previously operated servers are
not required to be reconfigured and deployed again with a new configuration.

Preferably, in order to ensure read integrity of small files, after a source file is
divided, the small files obtained from dividing the source file are saved into a disk.
Furthermore, if an error occurs in the file division or file processing, the erroncous part is
processed again. If a lot of files are waiting to be divided or processed, the files will be
divided or processed in a chronological order.

FIG. 5 shows a structural diagram of an exemplary internal logic of each server in
the system 400. Server 510 includes a pre-processing unit U501, a dividing unit U502

and a processing unit U503.

-4 -

10

15

20

WO 2009/140590 PCT/US2009/044127

The pre-processing unit U501 is used for scanning a directory of a disk on a
regular basis to determine whether a file within the directory is to be processed by the
server 510. Specifically, the pre-processing unit U501 determines whether a source file
is to be divided by the present server 510. The determination is based on the filename of
the source file which is assigned according to a source file naming scheme. If the answer
is affirmative, the pre-processing unit U503 triggers a dividing unit U502 to divide the
source file. The pre-processing unit US01 may further determine whether a small file is
to be processed by the server 510. The determination is based on the filename of the
small file which is assigned according to a post-division small file naming scheme. If
yes, the pre-processing unit U501 triggers a processing unit U502 to process the small
file. The dividing unit U502 is used for dividing the source file into small files. The
processing unit U503 is used for performing logical processing of the small file which,
according to the above determination, is to be processed by the server 510.

According to the concurrency strategies described above, if the first strategy is
used, the pre-processing unit U501 determines whether a source file is to be processed by
the server 510 based on a source file sequence number in the file’s filename, and
determines whether a small file is to be processed by the server 510 based on a
corresponding source file sequence number in the small file's filename or a small file
sequence number in the small file’s filename.

If the second strategy is adopted, the pre-processing unit U501 determines
whether a source file is to be divided by the server 510 based on the type of data stored in
the source file. The server 510 further includes a configuration unit U504 which is used

for configuring data type(s) that can be processed by the server 510. During

-25-

10

15

20

WO 2009/140590 PCT/US2009/044127

determination, the pre-processing unit U501 determines whether data type of the data
stored in the source file is the type that can be processed by the server 510.

Preferably, in order to guarantee read integrity of small files obtained from
dividing the source file, the server 510 may further include a storage unit U505 which is
used for saving the small files into a disk. Moreover, in order to reduce disk 10 pressure
caused by file scanning, the storage unit U505 adopts a directory structure, and places
files that are waiting to be divided and files that are waiting for processing under different
directories.

Preferably, the server may further include a retry unit U506, which is used for
retrying to divide a source file or to process a small file upon operation failure. Based on
application needs, a single retry is attempted to divide a source file, while multiple retries
may be attempted to process a small file.

In conclusion, the system 400 supports concurrent executions by multiple servers
410 (510) for improving processing power of the system 400. The system 400 described
also has a very good scalability.

Any details of the system 400 left out in FIG. 4 and FIG. 5 can be found in related
sections of the method disclosed in FIG. 1, FIG. 2 and FIG. 3, and therefore are not be
repeated here.

It is appreciated configurations alternate to the above recipient system 400 may
also be used. For example, servers 410 may be divided into two groups, one placed on
the sender's side, and the other on the receiving side. The source file is divided by the
first group of servers on the sender's side and the resultant post-division small files are

sent to the recipient side to be processed by the second group of servers. Alternatively,

-26 -

10

WO 2009/140590 PCT/US2009/044127

the system may not involve a sender and recipient but has only one side which contains
multiple servers to conduct filed division and file processing.

The method and the system for large volume data processing in the present
disclosure have been described in detail above. Exemplary embodiments are employed
to illustrate the concept and implementation of the present disclosure in this disclosure.

It is appreciated that the potential benefits and advantages discussed herein are not
to be construed as a limitation or restriction to the scope of the appended claims.

Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as exemplary forms of implementing

the claims.

_27 -

WO 2009/140590 PCT/US2009/044127

CLAIMS
1. A method for large volume data processing, the method comprising:

receiving a source file named according to a source file naming scheme;

allocating a source file dividing server according to the filename of the source file
to divide the source file into a plurality of small files named according to a
small file naming scheme; and

allocating a plurality of small file processing servers according to the filenames of
the small files to process the plurality of small files, cach allocated small file

processing server processing one or more respective small files.

2. The method as recited in claim 1, wherein allocating the source file dividing server
according to the filename of the source file comprises:
parsing the filename of the source file and obtaining a source file sequence
number;
computing (((the source file sequence number) % (total number of servers
available for allocation)) + 1), wherein % represents a modulus operator;
and

allocating the source file dividing server according to computed result.

3. The method as recited in claim 1, wherein allocating the plurality of small file
processing servers according the filenames of the small files comprises:
parsing the filename of each small file and obtaining a small file sequence

number;

-28 -

WO 2009/140590 PCT/US2009/044127

computing (((the small file sequence number) % (total number of servers
available for allocation)) + 1), wherein % represents a modulus operator;
and

allocating one of the plurality of small file processing servers to process the small

file according to computed result.

4. The method as recited in claim 1, wherein allocating the source file dividing server
according to the filename of the source file comprises:
for each available server, configuring a data type to be processed by the server;
parsing the filename of the source file, and obtaining the data type of the source
file; and
allocating to the source file one of the available servers configured to process the

data type.

5. The method as recited in claim 1, wherein allocating the plurality of small file
processing servers according to the filenames of the filenames of the small files
comprises:
for each available server, configuring a data type to be processed by the server;
for each small file, parsing the filename of the small file and obtaining the data
type of the small file; and
allocating to the small file one of the available servers configured to process the

data type.

-29.

WO 2009/140590 PCT/US2009/044127

6. The method as recited in claim 1, wherein after dividing the source file into the
plurality of small files, the method further comprises:

saving the plurality of small files into a disk.

7. The method as recited in claim 1, further comprising:
allowing the source file dividing server to retry to divide the source file upon
failure; and
allowing the plurality of small file processing servers to retry to process the

respective allocated small files upon failure.

8. The method as recited in claim 7, wherein only a single retry is allowed to divide the

source file, and multiple retries are allowed to process the allocated small files.

9. The method as recited in claim 1, further comprising:
placing the source file waiting to be divided and small files waiting to be

processed under different directories.

10. The method as recited in claim 9, wherein data flow under a directory of the source
files waiting to be divided comprises:
placing the source file into a directory for to-be-divided source files;
after allocating the source file processing server, placing the source file waiting to
be divided into a temporary directory for file division;

dividing the source file; and

-30 -

WO 2009/140590 PCT/US2009/044127

backing up the source file into a directory storing successfully divided source files
if the source file has been divided successfully, and saving the small files
thus obtained into a directory storing post-division small files, or backing up
the source file into a directory storing source files failed to be divided if the

source file has failed to be divided after a retry.

11. The method as recited in claim 9, wherein data flow under a directory of the small
files waiting to be processed comprises:
saving the small files into a directory storing post-division small files;
after allocating the small file processing servers, placing the small files that are
waiting to be processed into a temporary directory for small file processing;
processing the small files in the temporary directory; and
backing up one or more of the small files into a directory storing successfully
processed small files if the one or more small files have been processed
successfully, backing up one or more of the small files into a directory
storing small files having partially unsuccessfully processed records if the
one or more of the small files need to be re-processed, and backing up one
or more of the small files into a directory storing small files failed to be
processed upon retries if the one or more of the small files have failed to be

processed upon retries.

12. A system for large volume data processing, wherein the system comprises multiple

servers, each server comprising:

-31 -

WO 2009/140590 PCT/US2009/044127

a pre-processing unit used for determining whether a source file waiting to be
divided is to be processed by the server based on a source file naming
scheme and triggering a dividing unit if affirmative, and for determining
whether a small file waiting to be processed is to be processed by the server
based on a post-division small file naming scheme and triggering a
processing unit if affirmative;

said dividing unit used for dividing the source file into small files; and

said processing unit used for performing logical processing for the small file.

13. The system as recited in claim 12, wherein the pre-processing unit determines
whether the source file waiting to be divided is to be processed by the server based on a
source file sequence number in the filename of the source file, and determines whether
the small file waiting to be processed is to be processed by the server based on a source
file sequence number in the filename of the small file or a small file sequence number in

the filename of the small file.

14. The system as recited in claim 12, wherein the pre-processing unit determines
whether the source file waiting to be divided is to be processed by the server based on a
type of data stored in the source file, and each server further comprising:

a configuration unit used for configuring data type(s) that can be processed by the

SCrver.

15. The system as recited in claim 12, wherein each server further comprising:

-32-

WO 2009/140590 PCT/US2009/044127

a storage unit used for saving the small files into a disk.

16. The system as recited in claim 15, wherein the storage unit adopts a directory
structure, and places the source file to be divided and the small files waiting to be

processed under different directories.

17. The system as recited in claim 12, wherein each server further comprising:
a retry unit used for retrying to divide the source file upon failure and/or to
process the small files upon failure, wherein a single retry is allowed to

divide while multiple retries are allowed to process.

18. A method for large volume data processing, the method comprising:

assigning a filename to a source file according to a source file naming scheme;

allocating a source file dividing server according to the filename of the source file
to divide the source file into a plurality of small files;

assigning filenames to the plurality of small files according to a small file naming
scheme;

allocating a plurality of small file processing servers according to the filenames of
the small files to distributedly process the plurality of small files; and

processing the plurality of small files by the allocated small file processing

SCrvers.

-33.-

WO 2009/140590 PCT/US2009/044127

S101

PARSE FILENAME OF A SOURCE FILE FILEA WHICH IS SENT
FROM PARTY A

A 4

S102

ASSIGN A SERVER TO DIVIDE THE SOURCE FILE FILEA BASED
ON PARSING RESULT

A 4

S103

THE SERVER DIVIDES THE SOURCE FILE FILEA INTO MULTIPLE
SMALL FILES FILEY

A 4
AUTOMATICALLY ASSIGN NAMES TO EACH SMALL FILE FILEY
OBTAINED AFTER DIVISION ACCORDING TO A SMALL FILE
NAMING STANDARD

S104

S105

PARSE FILENAMES OF EACH SMALL FILE FILEY

A 4
BASED ON THE PARSING RESULTS,
ALLOCATE AN AVAILABLE SERVER TO EACH SMALL FILE FILEY
FOR PROCESSING

S106

— = = N

A 4

— $107
ALLOCATED SERVERS DISTRIBUTEDLY PERFORM SUBSEQUENT
LOGICAL PROCESSING

N

Fig. 1

WO 2009/140590 PCT/US2009/044127

2/5

S201

/SOURCE_FILE

l S202
(RENAMING

l

/TMP_DIVIDE/HOSTNAME |

(DIVIDING

S203

FIRST FAILURE?

/SOURCE_SMALLFILE/BAK_SUCS_FILE /ERROR_DIVIDE

WO 2009/140590 PCT/US2009/044127

/ S301

/SOURCE_ SMALLFILE |1

\ 4 S302

(RENAMING

/TMP_EXECUTE/HOSTNAME

S303

(PROCESSING YES

NUMBER OF FAILURES < N?

YES

/BAK_SUCS_SMALL /ERROR_EXECUTE |

/BAK_ERROR |17

3/5

WO 2009/140590

-

LARGE FILES
FILEA
FILES
430
SMALL FILES
FILEY
FiLE 1 |
FiLE 2 |
FILE 3 |
0
0
0
0
0
FILEM |

N
(@]

420

DIVIDE

DIVIDE

PROCESS

PROCESS

PROCESS

PROCESS

PROCESS

PROCESS

PROCESS

PCT/US2009/044127

SERVER 1

SERVER 2

SERVER N

J

4/5

WO 2009/140590

1
-
o

PRE-PROCESSING UNIT
U501

PCT/US2009/044127

5/5

RETRY UNIT U506

CONFIGURATION UNIT
U504

DIVIDING UNIT U502

STORAGE UNIT U505

PROCESSING UNIT
Us03

INTERNATIONAL SEARCH REPQRT International application No.

PCT/US 09/44127

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 12/00 (2009.01)
USPC - 711/173

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC: 711/173 ’

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 700/1; 707/205; 711/100, 170-172 (keyword limited - see terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWEST (PGPB, USPT, USOC, EPAB, JPAB); GOOGLE

Search Terms: data processing, process data, volume, large volume, source file, server, large database, small files, divide files,
split files, partition files, small files, smaller files, back-up

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 6,061,733 A (Bodin et al.) 09 May 2000 (09.05.2000), 1-18
entire document, especially; abstract, col. 2, In 6-10, 13-19, col. 3, In 47-49,
col. 5, In 7-10, Fig. 7
Y US 2006/0167838 A1 (Lacapra) 27 July 2006 (27.07.2006), 1-18
entire document, especially; abstract, para. [0006}-[0008], [0020], [0025], [0031], [0061]
Y US 2007/0136540 A1 (Matlock) 14 June 2007 (14.06.2007), 2,3,13,14
entire document, especially; abstract, para. [0015], [0017], [0027]
Y US 2006/0277434 A1 (Tsern et al.) 07 December 2006 (07.12.2006), 7,8, 10, 11, 17
entire document, especially; abstract, para. [0015], [0016]
Y US 2004/0268068 A1 (Curran et al.) 30 December 2004 (30.12.2004), 9-11,16
entire document, especially; abstract, para. [0025], [0053], Fig. 2

[

D Further documents are listed in the continuation of Box C.

*

Special categories of cited documents: “T” later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the apghqauon but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or after the intemational “X” document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
:“egglor::;ﬁzh(sg ;hec?tl_:le)(l;)c ation date of another citation or other “Y” document of particular relevance; the claimed invention cannot be
pe S 5pe X L considered to involve an inventive step when the document is
“O” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
“P” document published prior to the international filing date but laterthan «g» 45cument member of the same patent family

the priority date claimed

Date of the actual completion of the international search

19 June 2009 (19.06.2009)

Date of mailing of the international search report

01 JUL 2009

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer: .
Lee W. Young

PCT Helpdesk: 5§71-272-4300
PCT OSP: 571-272-7774

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report

