wo 20097142689 A1 I T A0FO OO 000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization . /gy | I NN Y000V O 0O R
nternational Bureau S,/ 0
(43) International Publication Date \;/ (10) International Publication Number
26 November 2009 (26.11.2009) PCT WO 2009/142689 Al

(51) International Patent Classification: (74) Agent: HETZ, Joseph, F.; Brinks Hofer Gilson & Lione,
GO6F 21/00 (2006.01) P.O. Box 10087, Chicago, IL 60610 (US).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every

PCT/US2009/002637 kind of national protection available). AE, AG, AL, AM,

. . AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

(22) International Filing Date: . CA., CH, CN, CO. CR, CU, CZ, DE, DK, DM. DO, DZ,
30 April 2009 (30.04.2009) EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

(25) Filing Language: English HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
. KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

(26) Publication Language: Enghsh MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI; NO,

(30) Priority Data: NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
12/124,456 21 May 2008 (21.05.2008) Us SK, SL, SM, ST, SV, SY, T, TM, TN, TR, TT, TZ, UA,
12/124,450 21 May 2008 (21.05.2008) Us UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): SAN- 84) Designateq States (unlgss othemise indicated, for every
DISK CORPORATION [US/US]; 601 McCarthy Boule- kind ofregzonal protection avazlable): ARIPO (BW, GH,
vard, Milpitas, CA 95035 (US), GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TI,

(72) Inventors; and TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

(75) Inventors/Applicants (for US only): YAN, Mei ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
[CN/US]; 10330 N. Foothill Boulevard, A#30, Cupertino, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
CA 95014 (US). YANG, Chieh-Hao [—/US]; 925 South OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
Wolfe Road, Apt. 6, Sunnyvale, CA 97088 (US). MR, NE, SN, TD, TG).

QAWAMI, Bahman [US/US]; 5841 Gleneagles Drive,
Published:

San Jose, CA 95138 (US). SABET-SHARGHI, Farshid
[US/US]; 11198 Magdalen Avenue, Los Altos Hills, CA
94024 (US). DWYER, Patricia [US/US]; 198 Cedar
Street, San Carlos, CA 94070 (US). YUAN, Po [US/US];
35 Parc Place Drive, Milpitas, CA 95035 (US).

with international search report (Art. 21(3))

(54) Title: AUTHENTICATION FOR ACCESS TO SOFTWARE DEVELOPMENT KIT FOR A PERIPHERAL DEVICE

255

HOST DEVICE

APPLICATION

¢

Y105

260 ~_

MEMORY

¢

HOST CPU

165

Fig. 1

(57) Abstract: A set of code for a peripheral device is installed on a host device. The set of code is used to control access to the
peripheral device from the host device. The set of code also contains one or more subsets of code that can be used by software en-
tities on the host device for access to the peripheral device. A software entity on a host device must be successfully authenticated
with the set of code installed on the host device. Once the software entity is successfully authenticated, the set of code will provide
access to the one or more subsets of code specific to the software entity. The one or more subsets of code can be used by the soft-
ware entity to access the peripheral device.

WO 2009/142689 PCT/US2009/002637

-1-

AUTHENTICATION FOR ACCESS TO SOFTWARE
DEVELOPMENT KIT FOR A PERIPHERAL DEVICE

BACKGROUND
Field
{0001} The present invention relates to technology for secure peripheral devices.
Description of the Related Art
[0002] Preventing unauthorized access to a secure peripheral device has become a

greater concern as technology has advanced. An example of a secure peripheral device
may be memory devices, as memory devices containing secure content must be

protected from unauthorized use.

[0003] Semiconductor memory has become more popular for use in various
electronic devices. For example, non-volatile semiconductor memory is used in cellular
telephones, digital cameras, mobile media players, personal digital assistants, mobile

computing devices, non-mobile computing devices and other devices.

[0004] Protecting content stored on non-volatile semiconductor memory devices
has become an important feature, especially concerning protection for copyrighted
material. For example, a user may purchase copyrighted content, such as music, through
an electronic device. Content owners typically intend for only the purchaser to use the
content and may require that the purchased content be played only by authorized
applications on an electronic device, such as the application used to purchase the

content.

[0005] Securely storing information to protect against unauthorized use of secure
content can be performed using a variety of protection techniques, such as encryption.
An application on a device that tries to access encrypted content must decrypt the

content using an encryption key before that content can be read. An application

WO 2009/142689 PCT/US2009/002637

2-

authorized to access the encrypted content will have the appropriate encryption key for
decrypting the content. Unauthorized applications may still be able to access the
encrypted content, but without the appropriate encryption key, the unauthorized
application may not be able to read the content. However, if an application obtains the
encryption key, the unauthorized application will be able to read the protected content.
There is a need for an improved, simplified, and secure way of preventing an
unauthorized application on an electronic device from accessing protected content on a

secure peripheral device.

WO 2009/142689 PCT/US2009/002637

-3-

SUMMARY

[0006] The technology described herein pertains to authentication of an application,
application launcher, or other software entity on a host device to prevent unauthorized
access to a secure peripheral device. The software entity is authenticated with set of
code on the host device using any authentication mechanism. The set of code is
associated with the peripheral device and is installed on the host device to control access
to the peripheral device. The set of code also contains code that software entities on the
host device can use for performing tasks associated with the peripheral device. Once the
software entity is successfully authenticated, the set of code will make code that the
software entity can use for performing tasks associated with the peripheral device

available to the software entity.

[0007] One embodiment includes a process that involves installing a set of code
associated with a secure peripheral device on a host device, where the set of code
includes code for operating the peripheral device on the host device, such as code for a
device driver. The set of code is used to authenticate a first software entity on the host
device. The process further includes exposing a portion of the set of code to the first
software entity if the first software entity is successfully authenticated including
exposing code that allows the first software entity to communicate with the peripheral

device.

[0008] One embodiment of an authentication process includes receiving a first task
request associated with a secure peripheral device from a user at a first software entity
on a host device. A credential is sent from the first software entity to a set of code
installed on the host device for the peripheral device. The process further includes
accessing a portion of the set of code if the credential is valid including accessing code
associated with the first software entity that allows the first software entity to perform
the first task. The set of code includes code that allows one or more software entities on

the host device to perform tasks associated with the peripheral device. The first

WO 2009/142689 PCT/US2009/002637

-4-

software entity sends information associated with the first task using the portion of the

set of code.

[0009] One embodiment of an authentication process includes sending one or more
authentication options to a first software entity on a host device when the first software
entity requests access to a peripheral device. The one or more authentication options are
sent to the first software entity from a set of code installed on the host device for the
peripheral device. The set of code includes code associated with one or more software
entities on the host device. The set of code receives a credential from the first software
entity. The credential is associated with one of the one or more authentication options.
The process further includes providing access to first code associated with the first
software entify if the credential is valid. The first code access to the peripheral device

and is part of the set of code.

[0010] One embodiment includes a secure peripheral device and a host device in
communication with the peripheral device. The host device includes one or more
processors that control access to the peripheral device. The one or more processors also
manage a set of code installed on the host device for the peripheral device by controlling
access to the set of code, where the set of code allows communication between the
peripheral device and one or more software entities on the host device. The one or more
processors verify a credential from a first software entity on the host device and expose
a subset of code from the set of code to the first software entity if the credential is valid,

where the subset of code is associated with the first software entity.

[0011] One embodiment includes a cryptographic engine and one or more
processors on a host device that are in communication with the cryptographic engine.
The cryptographic engine verifies a credential from a first software entity on the host
device. The one or more processors intercept access to a secure peripheral device. The
one or more processors also receive the credential from the first software entity and

expose code associated with the first software entity if the credential is valid. When the

WO 2009/142689 PCT/US2009/002637

-5-

one or more processors execute the code, the one or more processors allow the first

software entity to access the peripheral device.

[0012] One embodiment includes one or more processor readable media having
processor readable code respectively, where the processor readable code causes the one
or more processors to perform a method. The method includes sending one or more
authentication options to a first software entity on a host device when the first software
entity requests access to a peripheral device including sending one or more
authentication options to the first software entity from a set of code installed on the host
device for the peripheral device, where the set of code includes code associated with one
or more software entities on the host device. The set of code receives a credential from
the first software. The credential is associated with one of the one or more
authentication options. The method further includes providing access to first code
associated with the first software entity if the credential is valid. The first code allows

access to the peripheral device and is part of the set of code.

WO 2009/142689 PCT/US2009/002637

-6-

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Figure 1 is a block diagram of a host device before a SDK for a secure

peripheral device is installed.

[0014] Figure 2 is a flow chart describing one process for configuring a SDK

associated with a secure peripheral device.
[0015] Figure 3 depicts one example of a secure peripheral device SDK.

[0016] Figure 4 is a flow chart describing one process for loading a secure

peripheral device into a host device.

[0017] Figure 5 is a block diagram depicting one embodiment of a host device after

a SDK for a secure peripheral device is installed.

[0018] Figure 6 is a block diagram depicting one embodiment of host device

components before installing code for a secure memory device.

[6019] Figure 7 is a block diagram depicting one embodiment of components of a

host device and a secure memory device.

[0020] Figure 8 is a block diagram of one embodiment for a memory device SDK.

[0021] Figure 9 is a block diagram depicting one embodiment of a secure memory
device.
[0022] Figure 10 is a block diagram depicting one embodiment of a firmware

module for a secure memory device.

[0023] Figure 11 depicts one example of partitions within a secure memory device.

WO 2009/142689 PCT/US2009/002637

-7-

[0024] Figure 12 is one example of application APIs contained in a SDK for a

memory device.

[0025] Figure 13 is a flow chart describing one process for accessing a secure

peripheral device.

[0026] Figure 14 is a flow chart describing one embodiment of a process for

registering a software entity on a host device.

[0027] Figures 15A-C are flow charts for different authentication methods that the
SDK can perform. -

[0028] Figure 16 depicts one example of the registration process.

[0029] - Figure 17 depicts one example of software entities successfully registered

on a host device.

[0030] Figure 18 is a flow chart describing one embodiment of a process for storing

protected content on a memory device.

[0031] Figure 19 is a flow chart describing one embodiment of a process for

accessing protected content on a memory device.

[0032] Figure 20 is a flow chart describing one embodiment of a process for

unregistering a software entity.

WO 2009/142689 PCT/US2009/002637

-8-

DETAILED DESCRIPTION

[0033] The disclosed technology provides secure access to a peripheral device by
implementing security features on a host device. A peripheral device can be any device
operated via a host device, such as a memory device, a printer, a keyboard, etc.
Software for the peripheral device must be installed on the host device in order to
operate the peripheral device on the host device. This software is a set of code for a
software development kit (SDK), such as a dynamic link library (DLL) or a static library
(LIB), installed on the host device for operating the peripheral device via one or more
software entities or applications on the host device. Many times, different applications
on the host device will require different APIs for accessing the peripheral device
depending on the type of application, the functions of the application, and the authority
of the application, for example. When a user sends a task request to the host device via
an application and the task request involves access to the peripheral device, the SDK for
the peripheral device will authenticate the application and verify that the application is
authorized to access the peripheral device. If the authentication is successful, the SDK
will expose only those APIs for that specific application. The SDK will not expose
APIs the application is not authorized to access. The application can send and perform
the task request using the exposed APIs specific to that application. This increases the
security of the peripheral device and prevents unauthorized access to APIs for other

applications.

[0034] Figure 1 depicts one example of a host device 255 before the set of code for
an SDK for a peripheral device is installed. The host device 255 has an application 105,
memory 260, and a host CPU 165. The host device 100 can be any electronic device,
such as a cellular telephone, a PC, a digital camera, mobile media players, personal
digital assistant, mobile computing device, non-mobile computing device and other
devices. The application 105 can be any software entity used on a host device, such as a

calendar, document viewer, media player, etc. The application 105 can also be any

WO 2009/142689 PCT/US2009/002637

9.

software entity used to launch an application. The memory 260 can be any type of
memory that a host device 255 may require. The host CPU 165 can be any type of

processor used for operating the host device 255.

[0035] When a SDK is created by a software developer for a peripheral device that
will be operated through a host device, such as the host device 255 depicted in Figure 1,
the SDK software may be configured for each software entity or application on the host
device that will require access to the peripheral device. Many times, the software entity
on the host device may be owned or created by a particular customer with various needs
and preferences. The SDK may be configured based on each software entity/application
or customer’s needs and preferences, such as authorization preferences or functions of
the customer’s application. Figure 2 is a flow chart for one process of configuring a set
of code for a SDK based on different application and/or customer needs and preferences.
In step 190, the SDK software specific to each application and/or customer will be
configured by the SDK software developer based on the specific requirements of the
application and/or customer. For example, the set of code for the SDK for accessing a
peripheral device through a customer application typically requires an API for
interfacing the application with the peripheral device. The SDK software for access to
these APIs for the application can be specifically configured based on customer
preferences, such as configuring the SDK to require application authentication before
the peripheral device is accessed, for example. The SDK is configured to determine
which APIs each application will need to access. In step 195, the SDK software for
operating the peripheral device will be configured based on the required APIs of the
SDK software specific to each application/customer performed in step 190. This may
include, for example, any SDK software modification needed for any security features
required of each application/customer. Once the SDK software for operating the
peripheral device is configured, the SDK will properly function using all of the software

configured for each application and/or customer in step 190 (e.g. security software

WO 2009/142689 PCT/US2009/002637

-10-

required for authentication) and any other software needed to operate the peripheral

device on the host device, including the software customized in step 195.

[0036] Figure 3 depicts one example of a set of code for a peripheral device SDK
330 that has been configured according to the process described in Figure 2. The
peripheral device SDK 330 includes subsets of code such as the security layer 125, APIs
for applications 1-3, and a device driver 140. The sets of code for the SDK can be a
dynamic link library (DLL) or a static library (LIB). The security layer 125 includes the
software for authenticating different applications that attempt to access the peripheral
device. The security layer 125 may be part of the SDK software that is configured as
described in step 195 of Figure 2. For example, the security layer 125 can be configured
if the APIs for Application 1 262 require extra authentication features. The security
layer 125 will be later discussed in more detail. The APIs for applications 1-3 are the
APIs that each application must use to communicate with the peripheral device. These
APIs may be configured based on customer preferences for each application, as
described in step 190 of Figure 2. For example, APIs for Application 1 262 may be the
APIs customized for application 105 in the host device 255 of Figure 1. The device
driver 140 is the software that allows the peripheral device to properly operate on the

host device.

[0037] Figure 4 is a flow chart describing one process for installing the SDK shown
in Figure 3 on a host device. In step 170 of Figure 4, the secure peripheral device is
connected to the host device. When the secure peripheral device is connected to the host
device, the SDK for operating the secure peripheral device is loaded and installed onto
the host device (step 175). This SDK may be stored in memory for the secure peripheral
device. The SDK contains software used to program the host CPU on the host device in
order to operate the secure peripheral device so that unauthorized access is prevented.
Once the set of SDK code is properly loaded and installed onto the host device, the host

device can be operated with the secure peripheral device (step 180).

WO 2009/142689 PCT/US2009/002637

-11-

[0038] Note that in some embodiments, step 175 is performed for a particular
secure peripheral device only during the first time that the particular secure peripheral
device is connected to the host device. Once the SDK is installed on the host device
during the first connection of a secure peripheral device, the SDK for this particular
peripheral device need not be installed again each time it is re-connected to the host
device. In other embodiments, the SDK is loaded and installed every time the secure

peripheral device is connected to the host device.

[0039] In one embodiment, the SDK for operating the secure peripheral device is
loaded and pre-installed on the host device before the operating system is installed on
the host device. In this case, the SDK can be used by activating or selecting it through
the operating system. Therefore, step 175 need not be performed as part of the process
of Figure 4. In another embodiment, the SDK for operating the secure peripheral device
is loaded and pre-installed on the host device after the operating system for the host
device has been installed. Again, in this case, step 175 need not be performed as part of

the process of Figure 4.

[0040] Figure 5 shows one embodiment of the host device 255 with the secure
peripheral device 145 after the set of code for the SDK 330 of Figure 3 has been
installed. The host device 255 includes the original components shown in Figure 1
(application 105, memory 260, and host CPU 165) as well as the components of the
SDK 330 shown in Figure 3 (security layer 125, APIs for applications 1-3, and device
driver 140). When a user of the host device 255 requests a task involving the secure
peripheral device 145 via the application 105, the security layer 125 will cause the host
CPU 165 to authenticate the application 105. If the application 105 is successfully
authenticated with the security layer 125, the security layer will expose the subgroup of
APIs specific to the application 105, such as APIs for Application 1 262, if application
105 was Application 1. The application 105 can then use that subset of the set of SDK

code to send the task request to the secure peripheral device 145 via the device driver

WO 2009/142689 PCT/US2009/002637

-12-

140. The application 105 can also use those APIs to perform the task request for the

user.

[0041] To more specifically describe the process of securely accessing a peripheral
device through a SDK for the peripheral device, a secure memory device will be used as
an example of a peripheral device. However, note that the peripheral device can be any

peripheral device and is not limited to the example of a memory device described below.

[0042] Figure 6 shows one embodiment of the components in a host device 100
before a SDK for a secure memory device is installed. Typically, a user of a host device
100 assesses content stored on the host device 100 through a software entity such as an
application 105. Examples of applications on the host device 100 include media players,
calendars, address books, etc. that are saved on the host device 100. An application
can also be executable code on the host device used to launch an application (i.e. media
players, calendars, address books, etc.) stored in a different location from the executable
code on the host device 100. For example, an application may be used to launch a
media player application that is saved within the host device in a different part of
memory for the host device 100 or on a peripheral device connected to the host device
100. Content accessed or saved using an application 105 can include content such as

applications, media, scheduling information, or contact information, etc.

[0043] The application 105 uses a host storage manager 110 on the operating
system for the host device 100 to access or store content on the host device 100 or any
other peripheral devices, such as a removable memory device. The host storage
manager 110 is a software component on the operating system that controls access and
storage functions for the host device 100, including access and storage within the host
device 100 and between any peripheral devices, as will be explained in more detail

below.

WO 2009/142689 PCT/US2009/002637

-13-

[0044] Figure 6 also shows the host storage manager 110 and the host file system
130, which is a component that the host storage manager 110 manages. The host storage
manager 110 uses the host CPU 165 to access the host file system 130. The host file
system 130 is stored in memory on the host device 100 and is used to locate and store
content stored on the host device 100 and in any peripheral devices. When a user
requests content from the host device 100, the host storage manager 110 will use the
host file system 130 to locate the content. When a user requests that content be stored, -
the host storage manager 110 will use the host file system 130 to store the content in the

proper location.

[0045] Additionally, content stored on the host device 100 can be encrypted for
protection. The host device may contain a host cryptographic engine 185, which may
have a random number generator and a cryptographic processor that may support
encryption methods such as symmetric encryption (i.e. AES, DES, 3DES, etc.),
cryptographic hash functions (i.e. SHA-1, etc.), asymmetric encryption (PKI, key pair

generation, etc.), or any other cryptography methods.

[0046] Figure 7 shows one example of the host device 100 that operates with a
secure memory device 145 after the set of code for the peripheral device SDK 330 has
been properly loaded and installed on the host device 100. In one embodiment, the
secure peripheral device is a removable storage device for storing content that either
may be stored in a secure partition of the secure memory device or may be stored in a
public partition of the secure memory device. The secure memory device can be any
type of memory device, such as a mass storage device, a non-volatile flash memory
device, etc. The secure memory device protects against unauthorized access of content
stored in the secure partition of the secure memory device. The secure memory device
may also protect against unauthorized access of content stored in the public partition of
the secure memory device if the content is protected. Content is protected in the secure

memory device if the content is encrypted. Content is unprotected in the secure memory

WO 2009/142689 PCT/US2009/002637

-14-

device if the content is unencrypted and is stored in a public partition. A host device
may access and store content on the secure memory device if the host device has the
proper authorizations associated with the content, such as authorizations that allow the

content to be encrypted or decrypted.

[0047) In Figure 7, the host device 100 is physically connected to the secure
memory device 145 through the physical interface 142. The application 105, the host
CPU 165, the host device crypto engine 185, the host storage manager 110, and the host
file system 130 are software components on the host device 100 as shown in Figure 6.
The peripheral device SDK 330 is the set of code installed on the host device 100 and is
used to operate the secure peripheral device 145 with the host device 100. The
peripheral device SDK 330 uses the secure peripheral device API 120, the peripheral
device SDK security layer 125, the host file system 130, the registration table 285, the
SDK crypto library 168, and the secure file system 135 to manage content access and
storage for the secure memory device 145. The secure peripheral device API 120, the
peripheral device SDK security layer 125, the registration table 285, the SDK crypto
library 168, the secure file system 135, and the device driver 140 are software
components loaded and installed on the host device from the set of code for SDK for the
secure memory device 145 as described in step 175 of Figure 4. The open channel 150
and the secure channel 155 are the data buses used to transfer content between the host

device 100 and the secure memory device 145.

[0048] The secure memory device 145 controls access to and storage of content
using software installed on the host device 100 for the secure memory device 145. The
software includes the libraries described in step 175 of Figure 2 or they can be libraries
pre-installed on the host device. The SDK libraries loaded and installed on the host
device can be either dynamic link libraries (DLL) or static libraries (LIB) that can be
integrated into the operating system on the host device. The set of code for the SDK

provide hooks into the host storage manager 110 for secure operation of the secure

WO 2009/142689 PCT/US2009/002637

-15-

memory device 145. For example, subsets of code from the set of code for the
peripheral device SDK can be inserted in the call chain for calling the host file system
130 so that the code causes the host CPU 165 to control how content is accessed and
stored. In Figure 7, the peripheral device SDK security layer 125, the secure peripheral
device API 120, the secure file system 135, the registration table 285, the SDK crypto
library 168, and the device driver 140 are the subsets of code that are provided to the
host device through the set of code for the secure peripheral device SDK using a device
driver 140 installed on the host device 100.

[0049] A user may access content stored in the secure memory device 145 through
a software entity, such as an application 105 on a host device, as shown in Figure 7. For
protected content stored in the secure peripheral device 145, the application 105 first
needs to be authenticated before the content can be accessed, as described in more detail

below.

[0050) The application 105 uses the host storage manager 110 on the operating
system for the host device to access or store content in the secure memory device 145.
The host storage manager 110 controls access and storage functions for the host device,

including access and storage within the host device and the secure memory device 145.

[0051] Typically, the host storage manager 110 controls access and storage
functions for the host device or any peripheral devices using a host file system 130 on
the operating system for the host device, as discussed in Figure 6. The host file system
130 can be any standard file system, such as FAT12, FAT16, FAT32, NTFS, etc.
However, for the secure memory device 145, the peripheral device SDK 330 for the
secure memory device 145 uses a peripheral device SDK security layer 125 to control
access and storage functions on the host device by using a secure file system 135 for the
secure memory device 145. Access to the secure file system 135 is controlled by
authenticating the application 105 and allowing access to only APIs specific to the

application 105 upon successful authentication. These APIs allow the proper interface

WO 2009/142689 PCT/US2009/002637

-16-

for the secure file system 135. The secure file system 135 is installed on the host device
100 for the secure memory device 145 and is the file system for the content stored in the
secure memory device 145. The secure file system 135 can be any standard file system,
such as FAT12, FAT16, FAT32, NTFS, etc.

[0052] Software for the peripheral device SDK security layer 125 is loaded and
installed as part of the SDK loaded and installed in step 175 of Figure 2. The peripheral
device SDK security layer 125 causes the host CPU 165 to authenticate the application
105. After the application 105 is successfully authenticated, the application 105 will be
registered in the registration table 285. The peripheral device SDK security layer 125
also provides an application handler to the application 105. The application handler
indicates which APIs the application 105 is allowed to access. More detail regarding the
authentication and registration process performed by the peripheral device SDK security

layer 125 will be described below.

[0053] When a user, through an application 105, requests access to content, the
peripheral device SDK security layer 125 will provide the appropriate API, such as
secure peripheral device API 120, needed to access the content from the secure
peripheral device 145 after successful authentication. Using the accessed API, the
application 105 can receive the content stored in the secure peripheral device 145 by
accessing the permissions associated with the content. For protected content, the header
is stored with the content and contains information associated with the content, such as
domain information related to content encryption keys (CEK) for encrypting and
decrypting the content, and content metadata, which may indicate what type of content

is stored.

[0054] The secure peripheral device API (Application Program Interface) 120 in
the peripheral device SDK 330 is used to interface the secure peripheral device 145 with
the application 105 when content is accessed or stored. The secure peripheral device

API 120 is part of the SDK that is installed and may be called by the application 105

WO 2009/142689 PCT/US2009/002637

-17-

when the application 105 is successfully authenticated. The secure peripheral device
API 120 is the interface bridge between the peripheral device SDK security layer 125

and the secure file system 135.

[0055] Once the content is located or filed using either the secure file system 135,
the content can be accessed or stored on the secure memory device 145 in the
appropriate location using the device driver 140 on the host device. This is performed
through the physical interface 142 that physically connects the host device 100 and the
secure memory device 145. The content may be accessed or stored using a secure
channel 155 or an open channel 150. The peripheral device SDK 330 determines
whether the content should be transferred between the secure peripheral device 145 and

the host device using a secure channel 155 or an open channel 150.

[0056] When a user, through the application 105, requests storage of content that
should be unprotected, the peripheral device SDK 330 will use the host file system 130
to store the content. If the user requests storage of content that should be protected in
the secure peripheral device 145, the peripheral device SDK 330 will use the secure file

system 135 to store the content.

[0057] The secure peripheral device API (Application Program Interface) 120 in
the peripheral device SDK 330 is used to interface the secure peripheral device 145 with
the application 105 when protected content is accessed or stored. The secure peripheral
device API 120 is part of the SDK that is installed and may be called by the application
105 when the application 105 is successfully authenticated. The secure peripheral
device API 120 is the interface bridge between the peripheral device SDK security layer
125 and the secure file system 135.

[0058] Once the content is located or filed using either the host file system 130 or
secure file system 135, the content can be accessed or stored on the secure peripheral

device 145 in the appropriate location using the device driver 140 on the host device.

WO 2009/142689 PCT/US2009/002637

-18-

This is performed through the physical interface 142 that physically connects the host
device 100 and the secure memory device 145. The content may be accessed or stored
usihg a secure channel 155 or an open channel 150. The peripheral device SDK security
layer 125 determines whether the content should be transferred between the secure
peripheral device 145 and the host device using a secure channel 155 or an open channel
150.

[0059] A session key is an encryption key used to encrypt content before it is
transferred between the host device and the secure memory device. If content does not
need to be transferred through a secure channel, there may be no session key associated
with the content, or the session key associated with that content may indicate that no

encryption is needed.

[0060] If the content is associated with a session key indicating that the content
should be transferred using a secure channel 155, the content will be encrypted using the
session key before it is transferred through the secure channel 155. Once the encrypted
content is transferred, the content will be decrypted using the same session key. The
content is encrypted or decrypted on the host device 100 using the SDK crypto library
168. The SDK crypto library 168 contains a random number genérator and
cryptographic functions for encryption, such as symmetric encryption (i.e. AES, DES,
3DES, etc.), cryptographic hash functions (i.e. SHA-1, etc.), asymmetric encryption
(PKI, key pair generation, etc.), or any other cryptography methods. The secure
peripheral device 145 has its own crypto engine for encryption on the secure memory
device 145 before or after transferring content, as will be explain in more detail for
Figure 11. If the session key indicates that the content should be transferred using an

open channel 150, the content is transferred without encrypting the content.

[0061] For host devices that do not have the peripheral device SDK installed, the
host device may be able to access content stored in a public partition. If the content is

protected, although the device may be able to access the content, the device will not be

WO 2009/142689 PCT/US2009/002637

-19-

able to read the content correctly if it is encrypted. If the content is stored in a secure

partition, the device cannot access the content.

[0062] Figure 8 shows an example of software contained in the peripheral device
SDK 330 that is installed on the host device 100 when the peripheral device is a secure
memory device, as shown in Figure 7. Again, the peripheral device is not limited to the
example for a memory device. The peripheral device SDK 330 is the library that is
installed on the host device 100 and contains software for operating the secure memory
device 145 on the host device 100, such as peripheral device APIs 260, the peripheral
device SDK security layer 125, the de\-/ice driver 140, the secure file system 135, the
SDK crypto library 168, and the registration table 285. However, the peripheral device
SDK 330 is not limited to only this software.

[0063] The application APIs 260 are the APIs used by any application, such as the
application 105 in Figure 7. These APIs include APIs used for authentication, and they
also include APIs used to interface an application with the secure file system 135 for
access to content on the secure memory device 145 once the application has been
successfully authenticated, such as the secure peripheral device API 120 in Figure 7.
The application APIs 260 may contain APIs specific to that particular application. For
example, an API used by one application may not be used by another application. An
application that is successfully authenticated through the peripheral device SDK security
layer 125 may access protected content in the secure memory device 145 throﬁgh a
secure peripheral device API 120. The secure peripheral device APIs 120 are discussed

in more detail below for Figure 12.

[0064] The peripheral device SDK security layer 125, as shown in Figure 7, is
installed on the host device to provide hooks into the host storage manager 110 and
cause the host CPU 165 to control how content on the secure memory device 145 is

accessed and stored. The code for the peripheral device SDK security layer 125

WO 2009/142689 PCT/US2009/002637

220-

‘hijacks’ the host file operations on the host device 100 so that an application can be

authenticated before accessing content on the secure peripheral device 145.

[0065] The software of the device driver 140, as shown in Figure 7, can be loaded
and installed on the host device after the secure memory device 145 is connected to the
host device 100 (step 175 of Figure 4) or pre-installed on the operating system for the
host device 100 either before or after the operating system is installed on the host

device.

[0066] The secure file system 135 is the file system containing filing data for
accessing and storing content in the secure memory device 145, as illustrated in Figure
7.

[0067) The SDK crypto library 168 is the library containing thé cryptographic
schemes that may be used for encrypting or decrypting content for a secure channel 155.
The cryptographic schemes can be any known schemes, such as AES, DES, 3DES,
SHA-1, PKI, key pair generation, etc. The SDK crypto library 168 will encrypt or

decrypt content based on permissions associated with the content, such as a session key.

[0068] The registration table 285 is the table used by the peripheral device SDK
security layer 125 to manage and maintain the application authentication status and
related information. The table may contain information such as authentication
algorithms, application ID, registration time, expiration time, registration status, etc.

More detail regarding the registration table 285 will be discussed below.

[0069] Continuing with the example of a secure memory device, Figure 9 depicts
one embodiment of the secure peripheral device 145 shown in Figure 7. The secure
peripheral or memory device 145 contains a firmware module 210, a CPU 220, a
peripheral device crypto engine 160, and a system partition 400. The system partition
400 contains public partitions 240 and secure partitions 250. The firmware module 210

accesses and stores content in either the public partitions 240 or the secure partitions 250

WO 2009/142689 PCT/US2009/002637

21-

of the system partition 400 using the CPU 220. The memory device crypto engine 160
is used to encrypt or decrypt the accessed or stored protected content within the secure

memory device 145.

[0070] The firmware module 210 contains the hardware and software for
controlling the access and storage of content on the secure memory device 145 for the
secure partitions 250 and the public partitions 240. The firmware module programs the
CPU 220 to perform the access and storage functions, such as determining from which
portion of memory content should be accessed or stored and whether the content is
protected. More details regarding the firmware module 210 will be discussed below in

the description for Figure 10.

[0071] The public partitions 240 are memory partitions of the secure memory
device 145 that are viewable by a user and detectable by the host device 100. The
secure memory device 145 may have one or more public partitions. The public
partitions 240 may contain public content that is openly accessible to a user or the host
device 100. The public partitions 240 may also store protected content that is encrypted
using a content encryption key (CEK). The CEK can be generated using the domain
information stored in the content header containing information associated with the

content. Public content may also be stored without encrypting the content.

[0072] The secure partitions 250 are hidden memory partitions of the secure
memory device 145 that are not viewable by a user and are not detectable by the host
device. The secure memory device 145 may have one or more secure partitions. The
secure partitions 250 may contain protected content that is not openly accessible to the
user or the host device 100. The protected content may be encrypted using a CEK.
Content stored in the secure partitions 250 is accessible to authenticated applications
having the appropriate permissions for accessing the content. The information
associated with the CEK and the permissions associated with the content are stored in

the content header containing information associated with the content. In one

WO 2009/142689 PCT/US2009/002637

2.

embodiment, public partitions 240 and secure partitions 250 of the system partition 400
are stored in a flash memory device that includes a controller and one or more flash

memory arrays.

[0073] Because the secure partitions 250 are hidden partitions undetectable by a
user or the host device, the secure partitions 250 may contain the software for operating
the secure memory device 145 on the host device 100, including rights objects,

application credentials, etc.

[0074] The peripheral device crypto engine 160 is used to encrypt or decrypt the
content using the CEK or the session key within the secure memory device 145. The
memory device crypto engine 160 contains a random number generator and a
cryptographic processor that may support encryption methods -such as symmetric
encryption (i.e. AES, DES, 3DES, etc.), cryptographic hash functions (i.e. SHA-1, etc.),
asymmetric encryption (PKI, key pair generation, etc.), or any other cryptography

methods.

[0075] Figure 10 depicts the details of one embodiment for the firmware module
210. The firmware module 210 contains a peripheral device interface module 144, a
flash memory manager 310, a protected content access manager 320, a crypto engine
library 235, and a DRM (digital rights management) module 315. The peripheral device
interface module 144 contains the hardware and software for interfacing the secure
memory device 145 with the host device 100 via the host device physical interface 142.
The hardware components for the peripheral device interface module 144 can include
components for any type of interface, such as a Universal Serial Bus (USB), Secure
Digital (SD), or Compact Flash (CF) interface. The flash memory manager 310 contains
the software that causes the CPU 220 to access or store unprotected content in the public
partitions 240 and may cause the CPU 220 to access or store the content based on
permissions using the DRM module 315. The protected content access manager 320

contains the software that causes the CPU 220 to access or store protected content using

WO 2009/142689 PCT/US2009/002637

-23-

permissions for the protected content and may cause the CPU 220 to access or store the
protected content based on the permissions using the DRM module 315. The protected
content access manager 320 may also use the crypto engine library 235, which stores the
information needed to encrypt content using a session key or a CEK. Both the flash
memory manager 310 and the protected content access manager 320 access and store

content for the host device through the device driver 140 on the host device.

[0076] If no protection is needed, the flash memory manager 310 controls access
and storage of unprotected content in the secure memory device 145 using the CPU 220.
When a request to save unprotected content is received from the host device 100 through
the device driver 140, the flash memory manager 310 will save the content in the
appropriate location according to the host file system 130. When a request to access
unprotected content is received through the host device file system 130 via the device
driver 140, the flash memory manager 310 will access the content from the appropriate
location using the host file system 130. The flash memory manager 310 also provides
access to the protected content access manager 320 when the application 105 tries to

access protected content in the secure memory device 145.

[0077] If protection is needed, the protected content access manager 320 controls
access and storage of protected content in the secure memory device 145 using the CPU
220. The protected content access manager 320 stores or retrieves the permissions
associated with the protected content to or from the DRM module 315. The protected
content access manager 320 uses the secure file system 135 shown in Figure 7 to access
or store protected. For example, when a request to save protected content is received
from the host device through the device driver 140, the peripheral device SDK security
layer 125 will use the SDK crypto library 168 to encrypt the protected content using a
session key associated with the content if the content should be sent through a secure
channel 155. The encrypted content is then sent to the secure memory device 145

through the secure channel 155 and decrypted at the secure memory device 145 using

WO 2009/142689 PCT/US2009/002637

24

the session key and the appropriate cryptographic scheme from the crypto engine library
235. The decrypted content is then encrypted by the peripheral device crypto engine
160 using a CEK for the content. The content encrypted using the CEK is then saved in

the appropriate location according to the secure file system 135.

[0078] For protected content sent through an open channel, a similar method for
transferring the content is performed but without the session key encryption for the
secure channel 155. When a request to access protected content is received from the
host device 100 through the device driver 140, the protected content access manager 320
will access the content from the appropriate location using the secure file system 135
and provide the content to the host storage manager 110 on the host device 100 through
an open channel 150. The protected content access manager 320 will access and store
content through the flash memory manager 310 once the appropriate permissions are

determined by the protected content access manager 320.

[0079] The protected content access manager 320 may also use the DRM module
315 to provide access to content based on permissions associated with the content, such
as copyright permissions for example. The DRM module 315 can support any particular
DRM technology, such as OMA DRM, MS DRM, etc.

[0080]) The crypto engine library 235 contains the cryptographic schemes that may
be used for encrypting the content with a CEK or a session key within the secure
memory device 145. When content should be encrypted or decrypted in the secure
memory device 145, the protected content access manager 320 will access the
appropriate cryptographic scheme from the crypto engine library 235. The
cryptographic schemes can be any of the known schemes, such as AES, DES, 3DES,
SHA-1, PKI, key pair generation, etc.

[0081] Figure 11 depicts an example of a system partition 400 for the secure
memory device 145. The system partition 400 includes all of the memory partitions in

WO 2009/142689 PCT/US2009/002637

225.

the secure memory device 145. That is, the system partition 400 is made up of the
public partitions 240 and the secure partitions 250 shown in Figure 9. The secure
memory device 145 may have any number of public or secure partitions. As previously
described, a public partition is detectible and openly accessible to a user or a host
device. Unprotected content stored in a public partition can be accessed without
authentication. However, protected content stored in a public partition must be accessed
only after successful authentication. A secure partition is a hidden partition that is
undetectable to a user or a host device. Any application attempting to open content in a

secure partition must first be authenticated.

[0082] When protected content is saved to the secure memory device 145, the
protected content access manager 320 organizes the content according to the
permissions associated with the content and the content is then stored by the flash
memory manager 310. Public and secure partitions may have domains or logic groups
that contain groups of protected content having the same CEK. Each domain or logic
group is associated with one CEK for decrypting content from or encrypting content to
that domain or group. Any application having the appropriate permissions for opening
content within a domain or group may also be able to open other content stored in the

same domain or group.

[0083] Public partition PO 410 in Figure 11 contains two logic groups, Domain 1
and Domain 2. All content stored in Domain 1 will use one CEK for encrypting and
decrypting content. All content stored in Domain 2 will use another CEK for encrypting
and decrypting the content. A software entity attempting to access either of these groups
will require authentication before the content can be read. Because the public partition
P0 is not hidden and is openly accessible, protected content contained within a group
may be seen and possibly accessed but the content may not be read unless the content is
properly decrypted using the appropriate CEK. Therefore, it is possible that content in a

group may be corrupted by an unauthorized user but the content may not be read.

WO 2009/142689 PCT/US2009/002637

-26-

[0084] File A 440 in public partition PO 410 is not contained within a group so it
does not have a CEK associated with it. Therefore, any user may access and read File A
440.

[0085] Secure partition P1 420 contains File E and File F. File E and File F can be
any file requiring protection in a secure partition. For example, File E or File F can be
used by the SDK to store secure information, such as content licenses or any internal
management data. However, secure partition P1 420 is not limited to storing only these

types of files. Secure partition P1 420 can store any secure files.

[0086] Secure partition P2 430 contains File G and File H, both within Domain 3
490. Domain 3 is associated with a CEK for encrypting and decrypting the content. For
example, if an application attempts to access File G in Domain 3, the application must
first be authenticated. Once authenticated, the épplication may access File G using the

CEK for Domain 3 and may also access File H within Domain 3.

[0087] Secure partition P3 450 shows an empty partition that may be used to store

any protected content.

[0088] Figure 12 shows an example of the application APIs 260 contained in the
peripheral device SDK 330. The application APIs 260 include standard and secure
storage APIs 340, authentication APIs 350, configuration APIs 360, DRM APIs 370,
and any other customized APIs 380 that a user may need for operating the secure
memory device 145 on the host device 100. Each of the different types of APIs may be
specific to a software entity, such as an application or an application launcher 105. In
one embodiment, the APIs for each application are stored as a logic group, such as a
domain. For example, the APIs for APP 1 262 are stored in a group separate from the
APIs for other applications. In one embodiment, each group contains only one type of
API for one application. For example, the secure storage APIs for APP 1 262 are may

be considered as one group.

WO 2009/142689 PCT/US2009/002637

227

[0089] The APIs for APP 1 262 show the subgroup of APIs from the entire group
of APIs that are specific to Application 1. The SDK was configured to allow the APIs
for APP1 262 to be accessed by Application 1 upon successful authentication (see
Figure 2, step 190). In one embodiment, the APIs for APP 1 262 is the subset of code
from the set of code for the SDK that may be called by one or more different
applications. In another embodiment the APIs for APP 1 262 may only be called by
Application 1 software entity. The APIs for APP 1 262 include secure storage APIs,
configuration APIs, DRM APIs, and customized APIs. However, the APIs for APP 1
262 are not limited to only those APIs.

[0090] The standard and secure storage APIs 340 contain the APIs needed for an
application or an application launcher 105 to retrieve and store content on the secure
memory device 145, to establish a secure session, or to perform any other type
operétions involving access and storage of content on the secure memory device 145.
For example, a standard or secure storage API 340 may be an API that allows an
application 105 to send a path location for content requested for access to the host file
system 130 or the secure file system 135. The application 105 may call a standard API
from the group of standard and secure APIs 340 when accessing public content and may
call a secure API from the group of APIs for APP 1 262 after Application 1 is
authenticated with the peripheral device SDK security layer 125, such as secure

peripheral device API 120 shown in Figure 7.

[0091} The authentication APIs 350 are APIs used to authenticate an application
105, and it is open to all applications without requiring an authentication process for
access to authentication APIs 350. The authentication APIs 340 are called by the
application 105. When an authentication API 340 is called by an application 105, the
application 105 can send a credential to the peripheral device SDK security layer 125
using the authentication API 340. The peripheral device SDK security layer 125 will
then verify if the credential sent by the application 105 through the authentication API

WO 2009/142689 PCT/US2009/002637

8-

340 is valid. The credential can be any type of credential used to authenticate a software
entity, such as a response to a challenge/response authentication algorithm, a PKI
certificate, a PIN, a key, a password, etc. In the case of the challenge/response
authentication, the authentication API 350 may be used to send a challenge to the
application 105. The response to the challenge may then be sent from the application
105 to the peripheral device SDK security layer 125 using the same authentication API
340.

[0092] The configuration APIs 360 are the APIs used to allow the application 105
to configure the secure memory device 145 or to retrieve information about the
configuration of the secure memory device 145. This may only occur if the application
105 has the appropriate authority to do so. For example, the configuration APIs 360
may be called by a specific application 105 to obtain information about the used and free
memory space on the secure memory device 145 or to create a new secure partition after

the application 105 is successfully authenticated.

[0093] The DRM APIs 370 may be called by the application 105 to access the
permissions or digital rights associated with content and provide access to that content if
the rights are valid. The validation of these rights would occur in the DRM module 315
in the firmware module 210 in the secure memory device 145. In one embodiment, the
DRM APIs 370 may be specific to a particular application 105, such as shown in the
subgroup of APIs for APP 1 262.

[0094] The customized APIs 380 may be any additional APIs a user may require
for operation of the secure memory device 145 in the host device 100. The customized
APIs 380 may be specific to a particular application 105, such as shown in the subgroup
of APIs for APP 1 262.

[0095] Figure 13 is a flow chart describing an example of how a host device can be

operated with the secure peripheral device after the peripheral device SDK is properly

WO 2009/142689 PCT/US2009/002637

-29-

installed on the host device (step 180 of Figure 4). More specifically, Figure 13 is a
process describing how a task request associated with the secure peripheral device and
sent by a user through an application on the host device is performed. For example, a
task request can be a request to access or store content on the secure peripheral device,
including accessing and storing files (e.g. music, applications, etc.), accessing
information associated with the secure peripheral device (e.g. the amount of free
memory space), changing content for configuration of the secure memory device, or
accessing DRM information (e.g. digital rights objects). The user may request this task
via an application on the host device. In the following example, a secure memory
device will be used as the secure peripheral device. However, note that the secure

peripheral device is not limited in its use or configuration as provided such this example.

[0096] In step 505 of Figure 13, a user may send a task request to an application
105 on the host device 100. The task request is received from the application 105 at the
peripheral device SDK security layer 125 (step 505).

[0097] In step 515, the peripheral device SDK security layer 125 will perform a
registration process for the application 105. The registration process is the process for
authenticating the application 105 and registering the application 105 in the internal
registration table 285 (shown in Figure 7) if the authentication is successful. If the
registration is successful, the peripheral device SDK will send an indication to the
application 105. The indication indicates that the APIs specific to the registered
application 105 are exposed. The peripheral device SDK security layer 125 also sends
an application handler to the application 105. The application handler is used as an
added security measure. Each time the application 105 communicates with the
peripheral device 145 using an exposed API, the application 105 must also send the
application handler to the peripheral device via the API. More detail about the

registration process will be described in Figure 14.

WO 2009/142689 PCT/US2009/002637

-30-

[0098] If the registration process of step 515 is successful, the application 105 will
send the task request to the peripheral device SDK 330 through one or more of the APIs
exposed during the registration process (step 520). The task request must be sent with

the application handler given to the application 105 during the registration process.

[0099] In step 5295, the peripheral device SDK 330 will perform the task request
using the exposed subgroup of APIs specific to the application 105. Figure 18 describes
an example of how this step is performed for storage of protected content in a secure
memory device. Figure 19 describes an example of how this step is performed for

access of protected content stored in a secure memory device.

[00100] Once the task request is completed in step 525, the peripheral device SDK
security layer 125 will unregister the application 105 from the internal registration table

285 in step 530. Figure 20 describes how this step is performed in more detail.

[00101] Figure 14 is a flow chart illustrating one example of how the registration
process is performed for a task associated with protected content (step 515 of Figure 13).
In step 700, after a user sends a task request to the application 105, the application 105
will choose an authentication method from a list of authentication method options. The
list of authentication method options is provided to the application 105 by peripheral
device SDK security layer 125 through an authentication API. The API for providing

such a list can be defined, for example, as:
void ListAuthenMethod(char* AppID, char* AuthList).

[00102] The ListAuthenMethod API may provide the peripheral device SDK
security layer 125 with the application ID (char*AppID) for the application 105. The
application ID is the unique identifier associated with the application 105. The
peripheral device SDK security layer 125 will return a list of authentication methods
(char* AuthList) supported by the peripheral device SDK 125. The application 105 will

then choose which authentication method to use from the list provided by the peripheral

WO 2009/142689 PCT/US2009/002637

31-

device SDK security layer 125 based on the authentication method the application 105 is

programmed to use.

[00103] In step 705, the application 105 will perform the chosen authentication
method by acquiring the appropriate credential for the chosen authentication method.
For example, if the chosen authentication method is PKI-based, the application 105 will
perform the authentication method by retrieving its PKI certificate as its credential. If
the chosen authentication method is a challenge/response authentication method, the
application 105 will perform the authentication method by calling the
challenge/response API stored with the authentication APIs 350 in the memory device
SDK 330. The application 105 will receive the challenge from the peripheral device
SDK security layer 125 using the challenge/response API. The challenge can be a
random number generated by the host device crypto engine 185 or the memory device
crypto engine 160. The application 105 will then calculate the appropriate response to
the challenge as its credential. More detail about how different authentication methods

are performed is discussed in the description for Figures 15A-C.

[00104] In step 710, the application 105 will send the registration information to the
peripheral device SDK security layer 125 by calling a registration API. The API for

registering the application can be defined, for example, as:

uchar RegisterApplication(char* AppID, char* AuthMethod, uchar*credential,
uchar credentialLen).

[00105] The RegisterApplication API may allow the application 105 to send its
application ID (char* ApplD), the chosen authentication method (char* AuthMethod), the
credential (uchar*credential), and the length of the credential (uchar credentialLen)
retrieved in step 705 to the peripheral device SDK security layer 125 using the
RegisterApplication API. The credential length should be provided to support different

credential lengths that different authentication methods may require.

WO 2009/142689 PCT/US2009/002637

.32

[00106] In step 715, the peripheral device SDK security layer 125 will check to see
if the credential is valid. If the credential is not valid, the peripheral device SDK

security layer 125 will return an error to the application 105 (step 720).

[00107] If the credential is valid, in step 722, the peripheral device SDK security
layer 125 will generate an application handler for the application 105. The application
handler is a unique random number that is generated using any predefined cryptographic
algorithm, such as HASH, for example. The application handler will be generated by
inputting particular values into the predefined cryptographic algorithm. These particular
values can be any values associated with the application 105 and/or the registration
information for the application 105, such as the application ID, the time that the
application 105 is registered, the amount of time that the application 105 can be
registered, or the registration status, for example. All peripheral device SDK APIs
contain an input parameter for an application handler. In one embodiment, a default
application handler can be generated and used for APIs that are open to all applications.
However, as previously described, the authentication APIs 350 are open to all
applications and no application handler is required for accessing these APIs for

authentication.

[00108] Once the application handler is generated, the peripheral device SDK
security layer 125 will register the application 105 in an internal registration table 285
managed by the peripheral device SDK security layer 125 (step 725). The internal
registration table 285 contains information for authenticated applications and application
launchers. For applications and application launchers that have been successfully
authenticated with the peripheral device SDK security layer 125, the peripheral device
SDK security layer 125 will record information in the internal registration table 285,
such as the application handler, a time out period for the application 105 indicating an
amount of time that the authenticated application can remain registered in the internal

registration table 285 (e.g. the registration time + the amount of time the application can

WO 2009/142689 PCT/US2009/002637

-33-

be registered), the APIs the application 105 can access, or any other information. The
internal registration table 285 is used to keep track of authenticated applications and
application launchers so that those authenticated applications and application launchers
do not have to re-authenticate each time a task request is received while the
authenticated applications and application launchers are registered in the authentication

table.

[00109] In step 730, the peripheral device SDK security layer 125 checks if the
-application 105 is successfully registered in the internal registration table 285. If the
application 105 is not successfully registered in the internal registration table 285, the

peripheral device SDK security layer 125 will return an error to the application 105 (step
735).

[00110] If the application 105 is successfully registered in the internal registration
table 285, the peripheral device SDK security layer 125 will return the application
handler generated in step 722 to the application 105 (step 738) via the authentication
API. The peripheral device SDK security layer 125 will also return an indication to the
application 105 indicating that the registration was successful, such as status_ok (step
740). The status_ok indication lets the application 105 know that the subgroup of APIs
specific to the application 105 and needed to perform the task will be exposed for use by
the application 105.

[00111] In step 745, the peripheral device SDK security layer 125 will then expose
the subgroup of APIs from the peripheral device SDK 330 to the application 105, such
as the subgroup 262 shown in Figure 12. This subgroup of APIs will allow the
application 105 to communicate with the secure peripheral device 145. However, access
to this portion of code is only allowed if the application 105 provides a valid application
handler after authentication. This subgroup of APIs allows the application 105 to
perform the task request by creating the proper link between the application 105 and the

secure peripheral device 145.

WO 2009/142689 PCT/US2009/002637

-34-

[00112) Figures 15A-C show examples of process for performing different types of
authentication methods supported by the peripheral device SDK security layer 125
(steps 710 and 715 of Figure 14). Figure 15A is a flow chart of one example of a
process of performing a password-based authentication. The application 105 is
programmed with a password that can be used for authentication. In step 535 of Figure
15A, the application 105 accesses the password that the application 105 was
programmed to use. The application 105 will send the password to the peripheral device
SDK security layer 125 via an authentication API. The peripheral device SDK security
layer 125 will then continue with the process of Figure 14 by checking to see if the
password is valid (step 715 of Figure 14).

[00113] Figure 15B is a flow chart of one example of a process of performing a
challenge-response based authentication. In step 545, the application 105 receives a
challenge from the peripheral device SDK security layer 125 via an authentication APIL
For example, the form of the API can be void GetChallenge(char*AppID,
uchar*challenge, uchar*challengeLen). The API GetChallenge may allow the
application 105 to provide the peripheral device SDK security layer 125 with its
application ID (char*AppID). The peripheral device SDK security layer 125 may then
return the challenge (uchar*challenge) as well as the length of the challenge
(uchar*challenge) to the application 105.

[00114] In step 500, the application 105 will calculate a response by inputting the
received challenge into a cryptographic function that the application 105 was
programmed to use. In step 555, the application 105 will send the calculated response to
the peripheral device SDK security layer 125. The peripheral device SDK security layer
125 will also calculate a response using the same challenge in the same cryptographic
function (step 560) and compare that calculated response with the response received
from the application 105 (step 565). This comparison step is how the peripheral device
SDK security layer 125 checks if the credential (e.g. the response from the application

WO 2009/142689 PCT/US2009/002637

-35-

105)A is valid (step 715 of Figure 14). The registration process of Figure 14 can continue

based on this credential.

[00115] Figure 15C is a flow chart of one example of a process for performing a
PKI-based authentication of the application 105. In step 570, the application 105 sends
a certificate to the peripheral device SDK security layer 125. The certificate is part of
the credential that is stored with the application 105. The application 105 is

programmed to provide this certificate through an authentication API.

[00116] In step 575, the peripheral device SDK security layer 125 will verify the
certificate. In step 580, if the certificate is valid, the peripheral device SDK security
layer 125 will encrypt a randomly generated number with a public key retrieved from
the certificate sent by the application (step 570). The random number could be
generated and encrypted using the SDK crypto library 168. The encrypted random
number is then sent from the peripheral device SDK security layer 125 to the application
105 (step 585).

[00117] In step 590, the application 105 will decrypt the encrypted random number
received from the peripheral device SDK security layer 125 using a private key
associated with the public key used by the peripheral device SDK security layer 125.
Authorized applications are able to decrypt the encrypted random number because they
have the correct private key. In step 590, the application 105 will send the decrypted
random number to the peripheral device SDK security layer 125 for verification (step

715 of Figure 14). At that point, the process of Figure 14 can be continued.

[00118] Figure 16 depicts a block diagram of an example of the registration process
of Figure 12. Application 1 107 will first perform an authentication method (step 705 of
Figure 12) using the chosen authentication method from the list provided by the
peripheral device SDK security layer 125 in step 700 of Figure 14 and send the

registration information to the peripheral device SDK security layer 125 within the

WO 2009/142689 PCT/US2009/002637

-36-

peripheral device SDK 330 (step 710). If the peripheral device SDK security layer 125
determines that the credential is valid (step 715), the peripheral device SDK security
layer 125 will generate an application handler for Application 1 (step722), register
Application 1 107 in the internal registration table 285 (step 725), and expose the
subgroup of APIs for APP 1 262 to Application 1 107 (step 745).

[00119] Figure 17 depicts an example of software layers for several authenticated
applications requesting access to a secure memory device 145. Different APIs are
accessible based on how the SDK was configured for each application, as described in
step 190 of Figure 2. For example, after Application 1 107 has been successfully
authenticated with the peripheral device SDK security layer 125 and registered in the
internal registration table 285, Application 1 107 will have access to the subgroup of
APIs for Application 1 262. For example, Application 1 107 may call those APIs to
securely store and access protected content on a secure memory device 145, configure
the secure memory device 145, etc. The APIs for APP1 262 will provide the appropriate
interface so Application 1 can perform the requested tasks for protected content through
the secure file system 135 and the device driver 140. In the case of Application 1 107,
the SDK was configured to provide a full set of functions for access to each of the APIs
for APP 1 (see step 190 of Figure 2).

[00120] Application 2 and Application 3 are examples of other applications that have
been successfully authenticated with the file system filter 125 and registered in the
internal registration table 285. Application 2 may access and store protected content
through the secure file system 135 and the device driver 140 using the subgroup of APIs
for APP 2, such as the secure storage APIs and the DRM APIs, and may also configure
the secure memory device 145 using the configure APIs in the SDK. However,
Application 2 may not have access to any custom APIs within the SDK. The APISs that
Application 2 is allowed to access are based on the SDK configuration as described in

step 190 of Figure 2. Similarly, Application 3 may access and store protected content

WO 2009/142689 PCT/US2009/002637

-37-

through the secure file system 135 and the device driver 140 using the subgroup of APIs
for APP 3. However, Application 3 does not have access to the configuration, DRM,
and custom APIs within the SDK, as the SDK was not configured to allow Application 3
to access these APIs in step 190 of Figure 2.

[00121]) Continuing with the example of a secure memory device as the peripheral
device, Figure 18 is a flow chart describing one example of how the peripheral device
SDK 330 performs the task of storing protected content in the secure memory device
145 (step 525 of Figure 13). In step 900, once the registration process of Figure 13 is
complete and the task request has been sent using one or more of the exposed APIs, the
peripheral device SDK 330 will direct the secure file system 135 for the secure memory
device 145 to locate a place to store the protected content in the secure memory device
145. The application 105 may call one of the APIs from the subgroup of APIs that was
exposed in step 745 of Figure 14 to provide the desired storage location for the secure

file system 135.

[00122] In step 905, the peripheral device SDK 330 will access the permissions
associated with the storage location where the protected content is to be stored, such as a
session key for creating a secure channel 155. In step 910, the peripheral device SDK
330 will determine whether a secure channel should be used to transfer the protected

content based on the permissions accessed in step 905.

[00123] If the peripheral device SDK 330 determines that a secure channel should
not be used, the protected content will be transferred from the host storage manager 110
on the host device 100 to the secure memory device 145 through an open channel 150
(step 915). The application 105 may transfer this content by calling one of the APIs
from the subgroup of APIs exposed in step 745 of Figure 14. The protected content
access manager 320 will access the CEK for the storage location and direct the

peripheral device crypto engine 160 to encrypt the content using the CEK and the crypto

WO 2009/142689 PCT/US2009/002637

-38-

engine library 235 (step 920). The protected content access manager 320 will then store
the encrypted protected content in the appropriate storage location (step 925).

[00124] If in step 910 the peripheral device SDK 330 determines that a secure
channel 155 should be used, the peripheral device SDK 330 will receive the content
from the application 105 through one of the APIs in the subgroup of exposed APIs and
direct the SDK crypto engine 168 to encrypt the protected content within the host device
100 using the session key and the appropriate cryptographic scheme (step 930). In step

- 935, the encrypted content will be transferred from the host storage manager 110 on the
host device 100 to the secure memory device 145 through a secure channel 155. The
peripheral device crypto engine 160 will then decrypt the transferred protected content
in the secure memory device 145 and the crypto engine library 235 (step 940).

[00125] In step 920, the protected content access manager 320 will access the CEK
for the storage location where the protected content is to be stored and direct the
peripheral device crypto engine 160 to encrypt the content using the CEK and the crypto
engine library 235. The protected content access manager 320 will then store the

encrypted protected content in the appropriate storage location (step 925).

[00126] Figure 19 is a flow chart describing one example of how the peripheral
device SDK security layer 125 performs the task of accessing protected content stored in
the secure memory device 145 (step 525 of Figure 13). In step 800, once the registration
process of Figure 13 is complete and the task request has been sent using one or more of
the exposed APIs, the peripheral device SDK security layer 125 will direct the secure
file system 135 to locate the requested protected content in the appropriate location of
the secure memory device 145. The application 105 may call one of the APIs from the
subgroup of APIs that was exposed in step 745 of Figure 14 to provide the desired

storage location for the secure file system 135.

WO 2009/142689 PCT/US2009/002637

-39

[00127] The protected content access manager 320 accesses the permissions
associated with the location of the protected content, including the CEK and the session
key (step 805). The secure content access manager 320 then accesses the protected
content from the location in the secure memory device 145 (step 810) and directs the
peripheral device crypto engine 160 to decrypt the content using the CEK and the crypto
engine library 235 (step 815).

[00128] In step 820, the protected content access manager 320 then determines
- whether the protected content should be transferred to the host storage manager 110 on
the host device 100 using a secure channel. If the session key accessed in step 805
indicates that the protected content should be transferred using an open channel 150, the
protected content access manager 320 will transfer the content to the host storage

manager 110 on the host device 100 through the open channel 150 (step 825).

[00129] If in step 820, the protected content access manager 320 determines that the
protected content should be transferred to the host storage manager 110 on the host
device 100 using a secure channel 155, the protected content access manager 320 will
direct the peripheral device crypto engine 160 to encrypt the protected content within the
secure memory device 145 using the session key (step 830). The protected content
access manager 320 will then transfer the encrypted protected content to the host storage
manager 110 on the host device 100 through the secure channel 155 (step 835). Once
the protected content is transferred, the SDK crypt library 168 will be used to decrypt

the protected content using the same session key (step 840).

[00130] After the protected content is successfully transferred (step 825 and step
835) and decrypted if necessary (step 840), the application 105 will receive the
requested protected content (step 850). The application 105 will receive the requested
protected content using one of the APIs from the subgroup of APIs exposed in step 745
of Figure 14.

WO 2009/142689 PCT/US2009/002637

-40-

{00131] Figure 20 is a flow chart describing one example of how the application
105 is unregistered from the internal registration table 285 in the peripheral device SDK
security layer 125 (step 530 of Figure 13). In step 945, the peripheral device SDK
security layer 125 will check to see if the task has been completed. If the task has been
completed, the peripheral device SDK security layer 125 will clean the registration table
285 of any information associated with the application 105 (step 970). The peripheral
device SDK security layer 125 will then unregister the application 105 from the internal
registration table 285 (step 975). The step of unregistering the application 105 can be
performed by calling the appropriate APIL, such as uchar
UnRegisterApplication(char*AppID), for example. This API will unregister the
application 105 by removing the corresponding application ID from the internal
registration table 285. The process of performing the requested task is then ended (step
980).

[00132] If the task is not yet complete, while the task request is performed (step
525), the peripheral device SDK security layer 125 checks to see if the application 105
has been registered for the amount of time indicated in the internal registration table 285
for the time out period (step 950). If the time out period has passed, the peripheral
device SDK security layer 125 will clean the registration table 285 of any information
associated with the application 105 (step 955). The peripheral device SDK security
layer 125 will then request re-authentication of the application 105 (step 960). An
authentication process similar to Figure 14 can be used for re-authentication of
application 105. The peripheral device SDK security layer 125 will determine if the re-
authentication was successful (step 965). If re-authentication is successful, the task will
continue to be performed (step 525). If the re-authentication is unsuccessful, the
peripheral device SDK security layer 125 will unregister the application 105 from the
internal registration table 285 by calling the appropriate API, such as uchar
UnRegisterApplication(char* AppID) (step 975). This API will unregister the

WO 2009/142689 PCT/US2009/002637

-41-

application 105 by removing the corresponding application ID from the internal

registration table 285. The process of performing the task will then end (step 980).

[00133] If in step 950 the peripheral device SDK security layer 125 determines that
the time out period in the internal registration table 285 has not passed, the peripheral

device SDK security layer 125 will continue performing the task request in step 525.

[00134] The foregoing detailed description of various embodiments is not intended
to be exhaustive or to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the above teaching. The described
embodiments were chosen in order to best explain the principles of the invention and its
practical application, to thereby enable others skilled in the art to best utilize the
invention in various embodiments and with various modifications as are suited to the
particular use contemplated. The foregoing description is not intended to thereby limit

the scope of the invention as recited in claims appended hereto.

WO 2009/142689 PCT/US2009/002637

-42-
CLAIMS
What is claimed is:
1. A method for providing access to a secure device, comprising:

installing a set of code associated with a peripheral device on a host device, the
set of code includes code for operating the peripheral device on the host device;

authenticating a first software entity on the host device using the set of code; and

exposing a portion of the set of code to the first software entity if the first
software entity is successfully authenticated including exposing code that allows the first

software entity to communicate with the peripheral device.

2. The method according to claim 1, wherein:

the set of code includes device driver code, application programming interface
code, and authentication code; and

the portion of the set of code includes portions of code from the application

programming interface code and the authentication code.

3. The method according to claim 1, further comprising:
receiving a task request from the first software entity at the set of code; and

performing the task request using the portion of the set of code.

4, The method according to claim 1, wherein the step of authenticating
comprises:
receiving a credential from the first software entity; and

verifying the credential, the verifying is performed by the set of code.

5. The method according to claim 4, further comprising:

providing one or more authentication options to the first software entity, the

WO 2009/142689 PCT/US2009/002637

-43.

providing is performed by the set of code; and
receiving a response indicating one of the one or more authentication options
from the first software entity, the step of verifying includes verifying the credential based

on the response.

6. The method according to claim 1, further comprising:
returning an error to the first software entity if the first software entity is not

successfully authenticated.

7. The method according to claim 1, further comprising:
generating a software entity handler using an identifier associated with the first
software entity in a cryptographic function if the first software entity is successfully

authenticated.

8. The method according to claim 7, further comprising:
sending the software entity handler to the first software entity, the software entity

handler provides access to the first code.

9. The method according to claim 7, further comprising:
registering the first software entity using the set of code if the first software entity
is successfully authenticated including registering the software entity handler in a table of

authenticated software entities.

10. The method according to claim 9, further comprising:
sending an indication that the portion of the set of code is exposed including
sending the indication to the first software entity if the first software entity is successfully

registered.

WO 2009/142689 PCT/US2009/002637

-44.

11. The method according to claim 10, further comprising:

allowing the first software entity to perform tasks associated with the peripheral
device while the first software entity is registered including allowing the first software
entity to perform the tasks using the software entity handler with the portion of the set of

code.

12. The method according to claim 9, wherein:
the step of registering includes registering permissions associated with the first
software entity, the permissions indicate one or more portions of set the of code the first

software entity can access.

13. The method according to claim 9, further comprising:
unregistering the first software entity if the first software entity is registered in the

table for a predetermined amount of time indicated in the table.

14. The method according to claim 9, further comprising:

receiving a task request from the first software entity;

performing the task request using the portion of the set of code; and

unregistering the first software entity from the table using the set of code after the

task request is performed.

15. The method according to claim 1, wherein:

the peripheral device is a flash memory device.

16. The method according to claim 1, further comprising:
receiving a request to store content in a group of the peripheral device including
receiving the request from the first software entity at the set of code;

accessing an encryption key associated with the group if the first software entity

WO 2009/142689 PCT/US2009/002637

-45-

is successfully authenticated;
encrypting the content using the encryption key; and

storing the content in the group using the portion of the set of code.

17. The method according to claim 1, further comprising:

receiving a request to access content in a group of the peripheral device including
receiving the request from the first software entity at the set of code;

accessing an encryption key associated with the group if the first software entity
is successfully authenticated;

decrypting the content using the encryption key; and

accessing the content using the portion of the set of code.

18. A method for providing access to a device, comprising:

receiving a first task request associated with a peripheral device from a user of a
first software entity on a host device;

sending a credential from the first software entity to a set of code installed on the
host device for the peripheral device;

accessing a portion of the set of code associated with the first software entity if
the credential is valid including accessing code that allows the first software entity to
perform the first task, the set of code includes code that allows one or more software
entities on the host device to perform tasks associated with the peripheral device; and

sending information associated with the first task using the portion of the set of

code, the sending information is performed by the first software entity.

19. The method according to claim 18, further comprising:
choosing an authentication method from a selection of authentication methods,
the sending the credential is based on the authentication method, the choosing is

performed by the first software entity.

WO 2009/142689 PCT/US2009/002637

-46-

20. The method according to claim 18, further comprising:
sending information associated with a second task using the portion of the set of
code without sending a second credential, the sending is performed by the first software

entity.

21. A method for providing access to a secure device, comprising:

sending to a first software entity on a host device one or more authentication
options in response to a request to access a memory device from the first software entity ,
the one or more authentication options are derived from a set of code installed on the
host device for the memory device, the set of code including code associated with one or
more software entities on the host device;

receiving a credential from the first software entity, the credential is associated
with one of the one or more authentication options; and

providing access to first code associated with the first software entity if the
credential is valid, the first code allows access to the memory device, the first code is part

of the set of code.

22. The method according to claim 21, further comprising:

calculating a software entity handler using an identifier associated with the first
software entity if the credential is valid; and

sending the software entity handler to the first software entity, the software entity

handler is used by the first software entity to access the first code.

23. The method according to claim 22, further comprising:
registering the first software entity in a table of authenticated software entities if
the credential is valid including registering the software entity handler in the table; and

allowing the first software entity to perform one or more tasks associated with the

WO 2009/142689 PCT/US2009/002637

-47-

memory device while the first software entity is registered in the table including allowing
the first software entity to perform the one or more tasks using the software entity handler

with the first code.

24. The method according to claim 23, further comprising:
unregistering the first software entity from the table when the one or more tasks

are completed.

25. The method according to claim 23, further comprising:
unregistering the first software entity from the table after the software entity is
registered in the table for a predetermined amount of time indicated in the software entity

handler.

26. A system for accessing a secure device, comprising;:

a peripheral device; and

a host device in communication with the peripheral device, the host device
includes one or more processors adapted to control access to the peripheral device, the
one or more processors are adapted to manage a set of code installed on the host device
for the peripheral device, the set of code allows communication between the peripheral
device and one or more software entities on the host device, the one or more processors
are adapted to verify a credential from a first software entity on the host device, the one
or more processors are adapted to expose a subset of code from the set of code to the first
software entity if the credential is valid, the subset of code is associated with the first

software entity.

27. The system according to claim 26, wherein:
the one or more processors receive a task request from the first software entity;

and

WO 2009/142689 PCT/US2009/002637

-48-

the one or more processors perform the task request when the one or more

processors are programmed with the subset of code.

28. The system according to claim 26, wherein:

the one or more processors provide one or more authentication options to the first
software entity; and

the one or more processors receive a response that indicates one of the one or
more authentication options from the first software entity, the one or more processors

verify the credential based on the response.

29. The system according to claim 26, wherein:
the one or more processors return an error to the first software entity if the

credential is not valid.

30. The system according to claim 26, wherein:
the one or more processors generate a software entity handler using an identifier
associated with the first software entity in a cryptographic function if the credential is

valid.

31. The system according to claim 30, wherein:
the one or more processors send the software entity handler to the first software

entity.

32. The system according to claim 30, wherein:

the one or more processors register the first software entity in a table of
authenticated software entities if the credential is valid; and

the one or more processors register the software entity handler in the table if the

credential is valid.

WO 2009/142689 PCT/US2009/002637

-49.-

33. The system according to claim 32, wherein:
the one or more processors send an indication to the first software entity if the
software entity is successfully registered, the indication indicates that the subset of code

is exposed.

34. The system according to claim 33, wherein:

the one or more processors allow the first software entity to perform tasks
associated with the peripheral device using the software entity handler while the first
software entity is registered in the table if the one or more processors are programmed

with the subset of code.

35. The system according to claim 32, wherein:
the one or more processors register permissions associated with the first software
entity in the table, the permissions indicate one or more subsets of the set of code the first

software entity can access.

36. The system according to claim 32, wherein:
the one or more processors unregister the first software entity if the first software

entity is registered in the table for a predetermined amount of time indicated in the table.

37. The system according to claim 32, wherein:

the one or more processors receive a task request from the first software entity;

the one or more processors perform the task request when the one or more
processors are programmed with the subset of code; and

the one or more processors unregister the first software entity from the table after

the task request is performed.

WO 2009/142689 PCT/US2009/002637

-50-

38. The system according to claim 26, wherein:

the peripheral device is a flash memory device.

39. The system according to claim 26, wherein:

the one or more processors receive a request to store content in a group of the
peripheral device, the request is received from the first software entity;

the one or more processors access an encryption key associated with the group if
the credential is valid; and

the peripheral device includes one or more peripheral device processors, the one
or more peripheral device processors encrypt the content using the encryption key and

store the content in the group.

40. The system according to claim 26, wherein:

the one or more processors receive a request to access content in a group of the
peripheral device, the request is received from the first software entity;

the one or more processors access an encryption key associated with the group if
the credential is valid;

the peripheral device includes one or more peripheral device processors, the one
or more peripheral device processors decrypt the content using the encryption key; and

the one or more processors access the content if the one or more processors are

programmed with the subset of code.

4]1. A system for accessing a secure device, comprising:

a cryptographic engine, the cryptographic engine verifies a credential from a first
software entity on a host device; and

one or more processors on the host device in communication with the
cryptographic engine, the one or more processors intercept access to a memory device in

communication with the host device, the one or more processors receive the credential

WO 2009/142689 PCT/US2009/002637

-51-

from the first software entity, the one or more processors expose code associated with the
first software entity if the credential is valid, the one or more processors allow the first
software entity to access the memory device when the one or more processors are

programmed with the code.

42. The system according to claim 41, wherein:

the one or more processors provide one or more authentication options to the first
software entity;

the one or more processors receive a selection of the one or more authentication
options from the first software entity ; and

the cryptographic engine verifies the credential based on the selection.

43. The system according to claim 41, wherein:

the one or more processors registers the first software entity in a table of
authenticated software entities if the credential is valid; and

the one or more processors allow communication between the first software entity

and the memory device while the first software entity is registered in the table.

WO 2009/142689
1/14

PCT/US2009/002637

255
A HOST DEVICE
APPLICATION
t Y05
260 ~J MEMORY
HOST CPU ~~ 165
Fig. 1
190
CONFIGURE SDK SOFTWARE SPECIFIC
TO EACH APPLICATION/CUSTOMER
THAT WILL USE THE PERIPHERAL
DEVICE ~ 170
v _ 195 CONNECT SECURE
CONFIGURE SDK SOFTWARE FOR PERIPHERAL DEVICE TO
OPERATING THE PERIPHERAL DEVICE HOST DEVICE
BASED ON REQUIRED AP| OF SDK l
SOFTWARE SPECIFIC TO EACH ~ 175
APPLICATION/CUSTOMER LOAD AND INSTALL SDK
Fi 2 LIBRARIES FOR SECURE
1g. PERIPHERAL DEVICE
330 V180
PERIPHERAL DEVICE SDK OPERATE HOST DEVICE
WITH SECURE
SECURITY LAYER ~— 125 PERIPHERAL DEVICE
262~
APIs FOR| [APIs FOR| |APIs FOR Fig. 4

APP 1 APP 2 APP 3

DEVICE DRIVER ™~ 140

Fig. 3

WO 2009/142689 PCT/US2009/002637
2/14

2954 HOST DEVICE

APPLICATION
] V105
Fig. 5 260~ |MEMORY [+—{ HOST CPU [\165

v

SECURITY LAYER |™~-125

262~ I 1 i

APIs FOR| |APIs FOR|{ |APIs FOR
APP 1 APP 2 APP 3

v : ¥ 140
|

[DEVICE DRIVER

7y
L 4

SECURE PERIPHERAL DEVICE ~~ 145

100\ HOST DEVICE

APPLICATION

t \105

Fig. 6 110~ HOST STORAGE
MANAGER

HOST
FILE SYSTEM

3

HOST CPU I~ 165

k3 185

HOST DEVICE CRYPTO ENGINE

\

130

WO 2009/142689

3/14

PCT/US2009/002637

HOST
DEVICE
APPLICATION > VPO
< ENGINE
110 f 105
1 {
185
HOST STORAGE MANAGER
HOST
330\ PERIPHERAL DEVICE SDK CPU
PERIPHERAL DEVICE SDK T
SECURITY LAYER
1 165
T3 T Tos
|\ SECURE
‘ REG PERIPHERAL
_l/ TABLE DEVICE AP
HOST T 1
FILE 285 120 "
- SYSTEM m
z SDK SECURE o
z ! CRYPTO |«¢¥] FILE 2
; LIBRARY SYSTEM m
(@] \ o)
A T
z W30 168 L3 135 >
w 2
a =
O m
m
Z v 11407 < /
DEVICE DRIVER
HOST DEVICE PHYSICAL INTERFACE
~ 0
_ 142 m
wl O
prd C
4 Py
< m
5 o
o I
z 145 z
o fi
SECURE PERIPHERAL DEVICE -
150 155

Fig. 7

WO 2009/142689 PCT/US2009/002637
4/14

Fig. 9
SECURE PERIPHERAL DEVICE — 145
FIRMWARE MODULE
220~ I 160 ~_ \ 210
PERIPHERAL
CPU «—>»| DEVICE CRYPTO
ENGINE
2 T 400
SYSTEM PARTITION
PUBLIC SECURE
PARTITIONS PARTITIONS
AN N\
~ 240 ~ 250
Fig. 10
HOST 5
pevice— * 210
PHYSICAL
INTERFACE FIRMWARE MODULE
[144
> PERIPHERAL DEVICE INTERFACE MODULE
310 s $ 32 235
FLASH MEMORY
QDU 1> MANAGER > PROTECTED
2% CONTENT | |G e
315\ ACCESS LIBRARY
DRM MODULE |«»| MANAGER
v

CPU™ 220

WO 2009/142689 PCT/US2009/002637
5/14

| 400
SYSTEM PARTITION 0
(FAT-0
File A
r_/
PO — Public < 440 S main 1
Partition
/
410
FileC || File D
\ Domain 2
" FAT - 1
r ————————————
P1 —~ Secure <
ﬂtm" File E File F
420
o
a FAT -2
P2 — Secure
Partition
430
\ Domain 3
FAT - 3
P3 - Secure
Partition
450

WO 2009/142689

PCT/US2009/002637
6/14

330 PERIPHERAL DEVICE SDK Fig. 8
~— 260 — 125 140
APPLICATION|| ~PERIPHERAL DEVICE
APL DEVICE SDK DEYVICE
SECURITY LAYER
135 168 285
SECURE 1| spkcrypro ||REGISTRATION
SYSTEM LIBRARY TABLE
APls FOR APP 1 262
SECURE
STORAGE
APIs
Fig. 12
DRM CUSTOMIZED
APls APIs
— — 260
APPLICATION
APls

STANDARD/
SECURE
STORAGE APIs

DRM APIs

370

AUTHENTICATION
APls

CONFIGURATION
APls

CUSTOMIZED
APls

380

WO 2009/142689 PCT/US2009/002637
7/14

USER SENDS TASK REQUEST TO APPLICATION ON HOST
DEVICE — 905

!

APPLICATION REGISTRATION PROCESS —— 515

l

APPLICATION SENDS TASK REQUEST TO SDK USING THE L 520
EXPOSED SUBGROUP OF APIs AND THE APPLICATION
HANDLER

l

PERFORM TASK REQUEST USING SUBGROUP OF APIs L 525
SPECIFIC TO APPLICATION

:

UNREGISTER APPLICATION — 530

Fig. 13

WO 2009/142689 PCT/US2009/002637

8/14

APPLICATION CHOOSES AUTHENTICATION METHOD FROM LIST —— 700
PROVIDED BY PERIPHERAL DEVICE SDK SECURITY LAYER
APPLICATION PERFORMS AUTHENTICATION USING CHOSEN METHOD |— 705
APPLICATION SENDS | 710
REGISTRATION INFORMATION
720
RETURN
?
VALID CREDENTIAL? ERROR
GENERATE APPLICATION HANDLER — 722
REGISTER APPLICATION IN INTERNAL REGISTRATION TABLE —— 725
730 — 735
- RETURN
?
REGISTRATION SUCCESSFUL? ERROR
SEND APPLICATION HANDLER TO APPLICATION — 738
v
RETURN status_OK TO APPLICATION —— 740
. v
EXPOSE SUBGROUP OF PERIPHERAL DEVICE SDK APIs SPECIFIC TO 745
APPLICATION

Fig. 14

WO 2009/142689
9/14

_— 535

APPLICATION ACCESSES PASSWORD

I __ 540

APPLICATION SENDS PASSWORD TO
PERIPHERAL DEVICE SDK SECURITY
LAYER

Fig. 15A

~— 545

PCT/US2009/002637

570

APPLICATION SENDS
CERTIFICATETO
PERIPHERAL DEVICE SDK
SECURITY LAYER

¢ /575

PERIPHERAL DEVICE SDK
SECURITY LAYER VERIFIES
CERTIFICATE

¢ 580

APPLICATION RECEIVES CHALLENGE
FROM PERIPHERAL DEVICE SDK
SECURITY LAYER

PERIPHERAL DEVICE SDK
SECURITY LAYER ENCRYPTS
A RANDOMLY GENERATED
NUMBER WITH A PUBLIC KEY

v __ 550

l /585

APPLICATION CALCULATES RESPONSE
USING CRYPTOGRAPHIC FUNCTION

I _ 555

PERIPHERAL DEVICE SDK
SECURITY LAYER SENDS
ENCRYPTED RANDOM
NUMBER TO APPLICATION

APPLICATION SENDS RESPONSE TO
PERIPHERAL DEVICE SDK SECURITY
LAYER

¢ /590

l _ 560

PERIPHERAL DEVICE SDK SECURITY
LAYER CALCULATES A RESPONSE USING
THE SAME CHALLENGE AND
CRYPTOGRAPHIC FUNCTION

APPLICATION DECRYPTS
THE ENCRYPTED RANDOM
NUMBER RECEIVED FROM
THE PERIPHERAL DEVICE
SDK SECURITY LAYER USING
PRIVATE KEY

v _ 595

! _ 565

PERIPHERAL DEVICE SDK SECURITY
LAYER COMPARES CALCULATED
RESPONSE TO RESPONSE RECEIVED
FROM APPLICATION

APPLICATION SENDS
DECRYPTED RANDOM
NUMBER TO THE
PERIPHERAL DEVICE SDK
SECURITY LAYER FOR
VERIFICATION

Fig. 158

Fig. 15C

WO 2009/142689

10/14

PCT/US2009/002637

— 107
expose > APPLICATION 1
_— 262
APls FOR APP 1
SECURE authenticate
STORAGE
\ Ja 330
y
ey
~ PERIPHERAL
APPLICATION DEVICE SDK DEVICE
APls SECURITY DRIVER
LAYER
260 ~ 125 - 140 ~
SECURE FILE SDK CRYPTO | | REGISTRATION
SYSTEM LIBRARY TABLE
1357 168" 2857

PERIPHERAL DEVICE SDK

Fig. 16

PCT/US2009/002637

WO 2009/142689

11/14

Ll "bi

ovl —] H3IAIKEA IDINIA
sel _ W31LSAS 34 FHNO3S
JOVHOLS
IHNO3IS JHNO3S
€ ddV Y04 sidv ¢ ddV {04 m_n__< 292 p— Il ddV JOd sidv
mNF\ H3IAVT ALIIND3IS MAS IDIAIA TvHIHJINId
€ NOILVYOINddY ¢ NOILVYDITddY I NOILVYOIlddY

00—

WO 2009/142689

PCT/US2009/002637

900

/./
LOCATE PLACE TO STORE PROTECTED CONTENT USING SECURE
FILE SYSTEM
905

ACCESS PERMISSIONS ASSOCIATED WITH LOCATION OF
PROTECTED CONTENT

no

/915

CREATE SECURE
CHANNEL?

TRANSFER CONTENT TO
PERIPHERAL DEVICE

930
L~

ENCRYPT CONTENT IN HOST
DEVICE USING HOST DEVICE
CRYPTO ENGINE

l - 935

TRANSFER ENCRYPTED CONTENT
TO PERIPHERAL DEVICE VIA
SECURE CHANNEL

920
l et
ENCRYPT CONTENT USING
CEK
925
l ~

STORE PROTECTED CONTENT
USING PROTECTED CONTENT
ACCESS MANAGER

l - 940

DECRYPT CONTENT IN PERIPHERAL
DEVICE USING PERIPHERAL DEVICE
CRYPTO ENGINE

Fig. 18

WO 2009/142689

13/14

800

LOCATE PROTECTED CONTENT USING
SECURE FILE SYSTEM

__ 805 l
ACCESS PERMISSIONS FOR PROTECTED
CONTENT
810 l

ACCESS PROTECTED CONTENT USING
PROTECTED CONTENT ACCESS MANAGER

815

—~ l

DECRYPT CONTENT TO BE ACCESSED
USING CEK

820

REATE SECUR
CHANNEL?

830

PCT/US2009/002637

825
/

TRANSFER
CONTENT
TO HOST

DEVICE

ENCRYPT CONTENT IN PERIPHERAL
DEVICE USING PERIPHERAL DEVICE
CRYPTO ENGINE

__ 835 l

TRANSFER ENCRYPTED CONTENT TO
HOST DEVICE VIA SECURE CHANNEL

__ 840 I

DECRYPT CONTENT IN HOST DEVICE
USING HOST DEVICE CRYPTO ENGINE

850 ¢

RECEIVE TRANSFERRED CONTENT FROM
PERIPHERAL DEVICE AT APPLICATION

Fig. 19

WO 2009/142689 PCT/US2009/002637
14/14

PERFORM TASK REQUEST USING SUBGROUP OF APIs | 525

> SPECIFIC TO APPLICATION
TASK COMPLETED? yes
< no TIME OUT PERIOD PASSED?
f'/
CLEAN REGISTRATION TABLE
¢ __ 960 y 970
CLEAN
REQUEST REGISTRATION
RE-AUTHENTICATION TABLE
l 975
/—/
yes AUTHENTICATION OK? UNREGISTER
l 980
/—/

Fig. 20 =ND

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2009/002637

. CLASSIFICATION O] O%UBJECT MATTER

A
INV. GO6F21

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Categi)ry' Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X EP 1 764 721 A (NTT DOCOMO INC [JP])
21 March 2007 (2007 -03-21)
figure 1

paragraph [0024] - paragraph [0031]
paragraph [0048] - paragraph [0053]

A US 2007/033144 Al (HOWARD MATTHEW [US] ET
AL) 8 February 2007 (2007-02-08)
paragraph [0014] - paragraph [0017]

X US 2007/177777 Al (FUNAHASHI TAKESHI [JP]
ET AL) 2 August 2007 (2007-08-02)
figures 1,7

paragraph [0036]

1-43

1-43

21-25

m- Further documents are listed in the continuation of Box C. E See patent family annex.

* Special categories of cited documents :

"A"* document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or afier the international we
filing date

invention

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the ~

document of particular rélevanoe; the claimed invention
cannot be considered novel or cannot be considered to
‘L* document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

which is cited to eslablish the publication date of another *y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to invoive an inventive step when the
0 document referring to an oral disclosure, use, exhibition or : document is combined with one or more other such docu-
other means) ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed ‘&' document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search report
17 July 2009 _ . 27/07/2009
Name and mailing address of the ISA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk . .
Tel. (+31-70) 340-2040, .
Fax: (+31-70) 340-3016 : Chabot, Pedro

Fomm PCT/ISA/210 (second sheet) (April 2005)

. INTERNATIONAL SEARCH REPORT

International application No

PCT/US2009/002637

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indiéation, where appropriate, of the relevant passages

Relevant to claim No.

X

US 2006/174334 Al (PERLIN ERIC C [US] ET
AL) 3 August 2006 (2006-08-03) .
paragraph [0024] - paragraph [0037]
paragraph [0046] - paragraph [0049]

US 2002/078367 Al (LANG ALEX [US] ET AL)
20 June 2002 (2002-06-20)

figures 3,5

paragraph [0033]

paragraph [0047] - paragraph [0053]

1-43

41-43

Fom PCT/ISA/210 (continuation of second sheat) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent tamily members

international application No

PCT/US2009/002637
" Patent document Publication Patent family Publication
cited in search report date- member(s) date
EP 1764721 A 21-03-2007 CN 1933647 A 21-03-2007
- JP 2007080058 A 29-03-2007
US 2007033144 Al 08-02-2007 NONE
us 2007177777 Al 02-08-2007 CN 1996329 A 11-07-2007
’ JP 2007172508 A 05-07-2007

US 2006174334 Al 03-08-2006 NONE

US 2002078367 Al 20-06-2002 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - wo-search-report
	Page 68 - wo-search-report
	Page 69 - wo-search-report

