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(57) ABSTRACT

In overview, methods, computer programs products and
devices for securing software are provided. In accordance
with the disclosure, a method may comprise attaching a
debugger process to a software process. During execution of
the software process, operations relevant to the functionality
of the code process are carried out within the debugger
process. As a result, the debugger process cannot be replaced
or subverted without impinging on the functionality of the
software process. The software process can therefore be
protected from inspection by modified or malicious debug-
ging techniques.
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SELF-DEBUGGING

FIELD

[0001] The present disclosure relates to software security,
particularly to protection of software such as applications or
libraries from attacks using debugging techniques.

BACKGROUND

[0002] Debugging is the process by which errors in code
can be identified. One tool for this is the debugger, a type of
utility which many operating systems allow to be paired
with code to be debugged. When an exception or other error
occurs, this is reported to the debugger which is able then to
inspect the code and identify the origin of this problem.
[0003] The ability to pair a debugger with code has been
utilised by malicious parties in order to compromise the
security of that code. In particular, since a debugger is able
to identify the operation of code, it can be a source of
vulnerability.

[0004] Techniques have been developed to try to protect
code against such attack. These techniques include attempts
to allow code to identify when an active debugger has been
illicitly coupled to the code. Another approach is to design
the code to itself initiate a debugger when executed (this
debugger can be termed a “self-debugger’). Most operating
systems will only allow a single debugger to be paired with
a given process, meaning the self-debugger occupies the
space a malicious debugger may otherwise wish to use.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a schematic illustration of the main
features of a prior art code process, and the coupled code
process and debugger process of a first embodiment;
[0006] FIG. 2 is a flow chart showing runtime steps
according to the first embodiment;

[0007] FIG. 3 shows primary aspects of the generation of
binaries according to the first embodiment;

[0008] FIG. 4 is a schematic illustration of the coupled
code process and debugger process of a second embodiment;
[0009] FIG. 5 is a flow chart showing run time steps
according to the second embodiment; and

[0010] FIG. 6 shows a hardware infrastructure for imple-
menting a preferred embodiment.

DETAILED DESCRIPTION OF THE DRAWINGS

[0011] In overview, methods for securing the operation of
code are provided. In accordance with the disclosure, a
method may comprise launching a code process and initial-
ising a debugger process attached to the code process.
During execution of the code process, operations critically
relevant to the functionality of the code process can be
carried out within the debugger process. As a result, the
debugger process cannot be replaced or subverted without
impinging on the functionality of the code process. The code
process can therefore be protected from inspection by modi-
fied or malicious debugging techniques.

[0012] In this context, “critically” can be understood to
mean that the output produced by those operations carried
out in the debugger process serves as input for the remaining
part of the code process, and that that input is necessary to
allow the code process to generate its correct output given
that code process’ other input.

Jan. 7, 2021

[0013] In some aspects of the disclosure a method for
securing software is provided. The method may comprise
launching a software process and attaching a debugger
process to the software process. The code process can then
be executed such that the debugger process is invoked at
least once. Upon invocation, one or more functions may be
performed within the debugger process, these functions
having an output dependent on data associated with the
software process. Since the output can vary in dependence
on data associated with the software process (i.e. it is not
predetermined), the overall functionality is only achieved
when both software process and debugger process are oper-
ating correctly. This does not leave space for interference
with the debugger process to analyse the code.

[0014] The software process of this aspect may be con-
sidered a “debuggee” process since it takes the place of the
process being debugged by the debugger. The debugger
process may be initialised when the software process is
launched or at a later time. For example, a debugger process
may be initialised when certain functionality (e.g. a library)
is loaded into the software process). In some examples, the
software process forks to initialise the debugger process. In
other examples, the debugger process may be initialised first
and then fork to generate the software process.

[0015] In some embodiments, the output comprises a data
output for use by the software process. Thus the output of the
functions within the debugger process can directly influence
the later operation of the software process, thereby tightly
coupling the two processes in a way which is not easy to
break. The output of the function in the debugger process
comprises a data input for the software process, said data
input being critical for the execution of the software process.

[0016] The software process may generate a data structure
comprising parameters required for performance of the one
or more functions within the debugger process prior to
invocation of the debugger process. Thus the software
process may make preparations to allow easy access to data
from its memory to the debugger process. This is particu-
larly applicable where source code or bitcode rewriting has
been employed to generate the program associated with
debugger process. Rewriting at this level can allow imple-
mentation of techniques to facilitate the generation of appro-
priate data structure for functions performed by the debug-
ger process. The data structure may be a state structure.

[0017] In some examples, the software process acts to
debug the debugger process. As such, a “circular” debugging
arrangement is provided, in which both processes act to
debug the other. This may prevent an external debugger
processes attaching any process.

[0018] The method may launch an additional process to
debug the debugger process. Further additional processes
may be provided to continue the cascade, with each process
being debugged by another. Again, a circular arrangement
may be provided. For example, software process may debug
the additional process so that no process is available for an
external debugger.

[0019] In some embodiments, the output of a given func-
tion may indicate multiple points of return within the
software process for continued execution. As such, the point
of return for at least one function is variable (rather than
fixed). The control flow is thus variable according to the
behaviour of the debugger process and cannot be readily
inferred or recreated.
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[0020] In some embodiments, the debugger process pro-
vides memory support capabilities to enable the one or more
functions to retrieve data from memory within address space
of the software process. As such, the program-relevant
functions can have an ability to process data as if they were
carried out within the software process.

[0021] The debugger process can be invoked when a break
point within the code process is reached. The debugger
process can be detached from the software process when the
software process finishes. The software process may finish
because it is complete, or otherwise (such as when aborted).
Alternatively, the debugger process may be detached from
the software process when functionality within the software
process finishes rather than waiting for the process as a
whole to finish.

[0022] In some embodiments, the software process imple-
ments an executable, such as an application. In others, the
code process implements a library.

[0023] Inanother aspect of the disclosure, there is provide
method of generating protected code. One or more functions
in code to be compiled for a first process is identified to be
migrated to a second process, wherein the one of the first and
second processes is a debugger for the other of the first and
second processes. The migration is then carried out and the
first process modified to allow transfer of state between the
first and second processes. The first and second processes
are then to generate binary code. The binary code at runtime
may cause a debugger process to attach to a software
process, the identified function or functions being executed
within the debugger process

[0024] The code to be compiled may be source code or
bitcode. In general, it may be code at a higher level than the
binary.

[0025] An initializer may be injected into one of the first
and second processes to invoke execution of the other of the
first and second processes. This initializer may invoke
execution of the first or second process which acts as a
debugger to the other of the first and second process. In this
manner, the debugger is automatically launched.

[0026] One or more Initializers may be injected into the
first or second program to register functions present in the
other of the first and second process. As such, each process
is able to account for and take steps in recognition of
functions carried out elsewhere. For example, initializers
may facilitate the generation of a data structure for the one
or more functions performed in the other process.

[0027] In some examples, each of the first and second
processes is a debugger for the other of the first and second
processes. As such, a “circular” debugging arrangement is
provided, in which both processes act to debug the other.
This prevents an illicit debugger attaching itself to the
debugger program.

[0028] The method may provide a third process which is
a debugger for one of the first and second processes. For
example, the second process may debug the fist, and the
third may debug the second. Additional processes may be
provided to continue the cascade, with each process being
debugged by another. Again, a circular arrangement may be
provided. For example, the where the second processes
debugs the first and the third process debugs the second, the
first process may debug the third.

[0029] In another aspect of the disclosure, there is pro-
vided a method for generating protected code. Code frag-
ments within object code to be migrated to a debugger can
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be identified. Binary code can then be generated, where the
binary code at runtime causes a debugger process to attach
to a software process, the identified code fragments being
executed within the debugger process. The software process
and the debugger process may be forked from a single
process. For example, the software process may initialise the
debugger process.

[0030] The step of generating may comprise incorporating
predefined code corresponding to generic debugger func-
tionality within the binary code. The generating step may be
a linking step incorporating some predefined aspects of the
debugger such aspects may be termed a “mini-debugger”.
As such, the overall debugger includes some generic aspects
as well as some aspects specific to the source code by virtue
of the inclusion of the identified code fragments.

[0031] The method may comprise extracting from source
code one or more annotations identifying code fragments to
be migrated to a debugger. The source code is then compiled
to generate the object code. Binary code can then be
generated from the object code, with the identified code
fragments being integrated with a debugger in the binary
code. In this way, the generation of binary code may be
linking step which includes an element of re-writing to move
identified fragments to another location. When the binary
code is then used, a debugger is generated comprising
aspects of the original source code, which can be pertinent
to the functionality of the source code.

[0032] Insome embodiments, the binary code comprises a
first binary code file corresponding to the source code but
excluding the identified code fragments and a second binary
code file corresponding to the debugger. Alternatively, a
single binary code file may incorporate both source code and
debugger.

[0033] Further aspects of the disclosure relate to computer
executable program products comprising computer execut-
able instructions to carry out the methods of the aspects
described above. Aspects of the disclosure may also relate to
devices configured to carry out the methods of the aspects
described above.

[0034] Some specific embodiments are now described by
way of illustration with reference to the accompanying
drawings in which like reference numerals refer to like
features.

[0035] Through, binary rewriting techniques, the present
disclosure can migrate whole chunks of functionality from
the original software to a self-debugger. This offers several
advantages. First, the input-output behaviour of the self-
debugger is no longer pre-determined: every time the self-
debugger intervenes, it executes different functionality that
is not predetermined, but that can instead vary as much as
functionality in protected programs can vary. This makes the
protection much more resilient against automated analysis,
deobfuscation, and deconstruction. Secondly, even if the
attacker can figure out the control flow and the data flow
equivalent of the original program, it becomes much harder
for an attacker to undo the protection and to reconstruct that
original program. In combination, these two strengths make
it much harder for an attacker to detach the self-debugger
while maintaining a functioning program to be traced or
live-debugged.

[0036] Overall Self-Debugger Design

[0037] FIG. 1 illustrates the basic concepts of a self-
debugging scheme according to the present disclosure. This
embodiment targets Linux (and derivatives such as
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Android), the principles may also be applied to other envi-
ronments such as Windows and OS X.

[0038] On the left of FIG. 1, an original, unprotected
application is depicted, including a small control flow graph
fragment. The shown assembly code is (pseudo) ARMv7
code. This unprotected application is converted into a pro-
tected application consisting of two parts: a debuggee that
corresponds mostly to the original application as shown in
the middle of the figure, and a debugger as shown on the
right. Apart from some new components injected into the
debuggee and the debugger, the main difference with the
original application is that the control flow graph fragment
has been migrated from the application into the debugger.
This particular embodiment supports all single-entry, mul-
tiple-exit code fragments that contain no inter-procedural
control flow such as function calls.

[0039] The migration of such fragments is more than
simple copying: memory references such as the LDR
instruction should be transformed because in the protected
application, the migrated code executing in the debugger
address space can preferably access data that still resides in
the debuggee address space. All relevant components and
transformations will be discussed in more detail in later
sections.

[0040] The migrated fragments are preferably critical to
the operation of the application. That is to say, the output
produced by those operations carried migrated to the debug-
ger process serves as input for the remaining part of the code
process, and that that input is necessary to allow the code
process to generate its correct output given that code pro-
cess’ other input. This requirement is easy to miss in
practice. For example, a typical programmer might consider
executing the initialization of variables of the code process
in the debugger context. However, in general it does not
suffice to execute the initialization of variables from the code
process in the debugger process, because in practice, in
processes it happens quite often that variable initialization
(e.g., of local variables upon entry to a function) is per-
formed as a result of good programming practices and to
meet the source programming language definition require-
ments, without actually being required for the correct func-
tioning of the process and for generating correct outputs.
This may be because variables are simply not used in the
executed paths in the code process, or because the initial
values are overwritten before they can impact the code
process’ execution or output.

[0041] At run time, the operation of this protected appli-
cation is as follows. First, the debuggee is launched at step
s21, as if it was the original application. A newly injected
initializer then forks off a new process for the debugger, in
which the debugger’s initializer immediately attaches to the
debuggee process. Thus the debugger process is launched
and attached to the dubuggee process at step s22.

[0042] When later during the program’s execution the
entry point of the migrated code fragment is reached, one
possible flow of control in the application follows the arrows
in FIG. 1. In the application/debuggee, the exception induc-
ing instruction is executed and causes an exception at step
$23 (labelled 1 in FIG. 1). The debugger is notified of this
exception and handles it in its debugger loop at step s24
(labelled 2 in FIG. 1). Amongst others, the code in this loop
is responsible for fetching the process state from the debug-
gee, looking up the corresponding, migrated code fragment,
and transferring control to the entry point of that fragment at
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step s25 (labelled 3 in FIG. 1). As stated, in that fragment
memory accesses cannot be performed as is. So they are
replaced by invocations 4 of memory support functions 5
that access memory in the debuggee’s address space at step
$26. When an exit point 6 is eventually reached in the
migrated code fragment, control is transferred to the corre-
sponding point in the debugger loop 7 at step s27, which
updates the state of the debuggee with the data computed in
the debugger at step 528, and 8 control is transferred back to
the debuggee at step s29. For code fragments with multiple
exits, such as the example in the figure, the control can be
transferred back to multiple continuation points in the
debuggee. In this regard, the debugger of the present dis-
closure behaves in a more complex manner than existing
self-debuggers, which implement a one-to-one mapping
between forward and backward control flow transfers
between debuggee and debugger.

[0043] Eventually, when the application exits, the embed-
ded finalizers will perform the necessary detaching opera-
tions.

[0044] It is important to note that this scheme cannot only
be deployed to protect executables (i.e., binaries with a main
function and entry point), but also to protect shared libraries.
Just like executables, libraries can contain initializers and
finalizers that are executed when they are loaded or
unloaded by the OS loader. At that time, all of the necessary
forking, attaching and detaching can be performed as well.
[0045] Although the following description principally
refers to protecting applications, implicitly the teaching
applies equally applications and libraries. One aspect which
is particularly relevant for libraries is the need for proper
initialization and finalization of the debugger. This is nec-
essary because it is not uncommon for libraries to be loaded
and unloaded multiple times within a single execution of a
program. For example, repetitive loading and unloading
happens frequently for plug-ins of media players and brows-
ers. Furthermore, whereas main programs consist of only
one thread when they are launched themselves, they can
consist of multiple threads when libraries are loaded and
unloaded.

[0046] Tool Support

[0047] FIG. 3 depicts one possible conceptual tool flow.
[0048] Source Code Annotations

[0049] For determining the code fragments to be migrated

to the debugger, a number of options exist. One, depicted in
the figure—and also what we use in our implementation—is
to annotate source code at step s31 with pragmas, comments
or any other form of annotations that mark the beginnings
and ends of the code regions to be migrated to the debugger
process. A simple grep suffices to extract annotations and
their line numbers and to store that information in an
annotations file at step s32.

[0050] Alternative options would be to list the procedures
or source code files to be protected, or to collect traces or
profiles to select interesting fragments semi-automatically.
[0051] In that regard, it is important to note that the
fragments to be migrated to the debugger should not nec-
essarily be very hot fragments. To achieve a strong attach-
ment be-tween the debuggee and the debugger, it suffices to
raise exceptions relatively frequently, but this does not need
to be on the hottest code paths. Further considerations for the
selection of fragments will be detailed below. Since every
raised exception will introduce a meaningful amount of
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overhead (context switch, many ptrace calls, . . . ) it is
important to minimize their number without compromising
the level of protection.

[0052] Standard Compilers and Tools

[0053] For the disclosed self-debugging approach to be
deployed, any “standard” compiler can be used at step s33.
The technique does not impose any restrictions on the code
generated by the compiler. In experimental evaluations, both
GCC and LLVM have been used, in which there was no
requirement to adapt or tune the code generation.

[0054] One requirement, however, is that the compiler and
the binary utilities (the assembler and linker) provide the
link-time rewriter with sufficiently accurate symbol and
relocation information. This is required to enable reliable,
conservative link-time code analyses and transformations to
implement the whole self-debugging scheme, including the
migration and transformation of the selected code frag-
ments. Providing sufficiently accurate information is cer-
tainly within reach for commonly used tools. ARM’s pro-
prietary compilers, e.g., have done so for a long time by
default, and for the GNU binutils, GCC, and LLVM, very
simple patches suffice to prevent those tools from perform-
ing overly aggressive symbol relaxation and relocation
simplification, and to force them to insert mapping symbols
to mark data in code. These requirements have been docu-
mented before, and it has been shown that they suffice to
perform reliable, conservative link-time rewriting of code as
complex and unconventional as both CISC (x86) and RISC
(ARMvV7) versions of the Linux kernel and C libraries,
which are full of manually written assembly code.

[0055] A large, generic part of the debugger—the “mini-
debugger”—can be precompiled with the standard compiler
and then simply linked into the application to be protected.
Other parts, such as the debug loop’s prologues and epi-
logues for each of the migrated fragments, are generated by
the link-time rewriter, as they are customized for their
specific fragments.

[0056] To allow the link-time rewriter to identify the
fragments that were annotated in the source code, it suffices
to pass it the line number information extracted from the
source code files, and to let the compilers generate object
files with debug information. That debug information then
maps all addresses in the binary code to source line numbers,
which the rewriter can link to the line numbers from the
annotations.

[0057]

[0058] The link-time rewriter has two options to generate
a protected application at step s35. A first option is to
generate two binaries, one for the application/debuggee, and
one for the debugger. From a security perspective, this might
be preferable, because the application semantics and its
implementation are then distributed over multiple binaries,
which likely makes it even harder for an attacker to undo the
protection, i.e., to patch the debuggee into the original
application. This option does introduce additional run-time
overhead, however, as the launching of the debugger then
also requires loading the second binary.

[0059] The alternative option—used in the further
examples below—is to embed all debuggee code and all
debugger code into one binary. In that case, simple forking
will suffice to launch the debugger. Whether or not, and to
what extent, this eases attacks on the protection provided by
self-debugging is an open research question.

Binaries, Libraries, and Processes
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[0060] Implementation
[0061] Initialization & Finalization
[0062] An extra initialization routine can be added to a

protected binary. This routine is invoked as soon as the
binary has been loaded (because it assigned a high priority),
after which all the other routines listed in the .init section of
the binary are executed.

[0063] This initialization routine invokes fork( ), thus
creating two processes called the parent and the child. Once
the initialization routine is finished the parent process will
continue execution, typically by invoking the next initial-
ization routine.

[0064] Two options exist for assigning the debugger and
debuggee roles: After the fork, either the child process
attaches to the parent process, or vice versa. In the former
case, the child becomes the debugger and the parent
becomes the debuggee, in the latter case the roles are
obviously reversed.

[0065] The former option is preferred. The parent process
(i.e. debuggee) remains the main application process, and it
keeps the same process ID (PID). This facilitates the con-
tinuing execution or use of all external applications and
inter-process communication channels that rely on the origi-
nal PID, e.g., because they were set up before the loading
and forking of a protected library.

[0066] This scheme does come with its own problems,
however. As already mentioned, shared libraries can be
loaded and unloaded (using dlopen( ) and dlclose( )) at any
moment during the execution of a program. There is hence
the potential problem that a protected shared library can be
unloaded and loaded again while the originally loaded and
forked off debugger hasn’t finished its initialization yet. This
can result in the simultaneous existence of two debugger
processes, both attempting (and one failing) to attach to the
debuggee. In order to avoid this situation, we block the
execution of the thread that called dlopen( ). So until that
time, that thread cannot invoke dlclose( ) using the handle it
got with dlopen( ) and it cannot pass the handle to another
thread either. An infinite loop in the debuggee’s initialization
routine prevents the loading thread from exiting the initial-
ization routine before the debugger allows it to proceed.
[0067] The initialization routine also installs a finalizer in
the debuggee. This finalizer does not do much. At program
exit (or when the shared library is unloaded) it simply
informs the mini-debugger of this fact by raising a
SIGUSRI1 signal, causing the mini-debugger to detach from
all the debuggee’s threads and to shut down the debugger

process.
[0068] Multithreading Support
[0069] Attaching the debugger is not trivial, in particular

in the case of protected shared libraries. When a library is
loaded, the application might consist of several threads.
Only one of them will execute the debuggee initialization
routine during its call to dlopen. This is good, as only one
fork will be executed, but it also comes with the downside
that only one thread will enter the infinite loop mentioned in
the previous section. The other threads in the debuggee
process will continue running, and might create new threads
at any point during the execution of the debuggee initial-
ization routine or of the debugger initialization routine. To
ensure proper protection, the debugger should attach to
every thread in the debuggee process as part of its initial-
ization. To ensure that the debugger does not miss any
threads created in the debuggee in the meantime, we use the
/proc/[pid]/task directory, which contains an entry for every
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thread in a process. The debugger process attaches to all the
threads by iterating over the entries in this directory, and by
keeping iterating until no new entries are found. Upon
attachment to the thread, which happens by means of a
PTRACE_ATTACH request, the thread is also stopped (and
the debugger is notified of this event by the OS), meaning
that it can no longer spawn new threads from then on. So for
any program that spawns a finite number of threads, the
iterative procedure to attach to all threads is guaranteed to
terminate. Once all threads have been attached to, the
infinite loop in the debuggee is ended and its stopped threads
are allowed to continue.

[0070] When additional threads are created later during
the program execution, the debugger is automatically
attached to them by the OS, and it gets a signal such that all
the necessary bookkeeping can be performed.

[0071]

[0072] Transforming the control flow in and out of the
migrated code fragments consists of several parts. We dis-
cuss the raising of exceptions to notify the debugger, the
transferring of the ID informing the debugger of what
fragment is to be executed, and the customized pro- and
epilogues that are added to every code fragment.

[0073]

[0074] The actual notification of the debugger can happen
through any instruction that causes an exception to be raised.
In our implementation, we use a software breakpoint (i.e., a
BKPT instruction on ARMv7) for simplicity. Other, less
conspicuous exceptions can of course be used, such as those
caused by illegal or undefined instructions. When such
instructions are reachable via direct control flow (direct
branch or fall-through path), they can of course easily be
detected statically. But when indirect control flow transfers
are used to jump to data in the code sections, and the data
bits correspond to an illegal or undefined instruction, static
detection can be made much harder. Likewise, legal instruc-
tions that throw exceptions only when their operands are
“invalid” can be used to conceal the goal of the instructions.
Such instructions include division by zero, invalid memory
accesses (i.e., a segmentation fault), or the dereferencing of
an invalid pointer (resulting in a bus error).

[0075]

[0076] We call the thread in the debuggee that raises an
exception the requesting thread, as it is essentially asking the
debugger to execute some code fragment.

[0077] The debugger, after being notified about the request
by the OS, needs to figure out which fragment to execute. To
enable this, the debuggee can pass an ID of the fragment in
a number of ways. One option is to simply use the address
of the exception inducing instruction as an ID. Another
option is to pass the ID by placing it in a fixed register right
before raising the exception, or in a fixed memory location.
In our implementation, we used the latter option. As multiple
threads in the debuggee can request a different fragment
concurrently, the memory location cannot be a global loca-
tion. Instead, it needs to be thread-local. As each thread has
its own stack, we opted to pass the fragment’s ID via the top
of the stack of the requesting thread.

[0078] Depending on the type of instruction used to raise
the exception, other methods can be envisioned as well. For
example, the divisor operand of a division (by zero) instruc-
tion could be used to pass the ID as well.

Control Flow

Raising Exceptions

Transferring IDs
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[0079] Prologues and Epilogues

[0080] The debugger loop in the mini-debugger is respon-
sible for fetching the program state of the debuggee before
a fragment is executed, and for transferring it back after its
execution. Standard ptrace functionality is used to do this.
[0081] For every migrated code fragment, the debug loop
also contains a custom prologue and epilogue to be executed
before and after the code fragment resp. The prologue loads
the necessary values from the struct into registers, the
epilogue writes the necessary values back into the struct.
The prologue is customized in the sense that it only loads the
registers that are actually used in the fragment (the so-called
live-in registers). The epilogue only stores the values that are
live-out (i.e., that will be consumed in the debuggee) and
that were overwritten in the code fragment.

[0082] Memory Accesses

[0083] For every load or store operation in a migrated
code fragment, an access to the debuggee’s memory is
needed. There exist multiple options to implement such
accesses.

[0084] The first is to simply use ptrace functionality: the
debugger can perform PTRACE_PEEKDATA and PTRA-
CE_POKEDATA requests to read and write in the debug-
gee’s address space. In this case, per word’ to be read or
written, a ptrace system call is needed, which results in a
significant overhead. Some recent Linux versions support
wider accesses, but those are not yet available everywhere,
such as on Android.

[0085] The second option is to open the /proc/[pid]/mem
file of the debuggee in the debugger, and then simply read
or write in this file. This is easier to implement, and wider
data can be read or written with a single system call, so often
this method is faster. Writing to another process’s /proc/
[pid]/mem is not supported on every version of the Linux/
Android kernels, however, so in our prototype write requests
are still implemented with the first option.

[0086] A third option builds on the second one: if the
binary-rewriter can determine which memory pages will be
accesses in a migrated code fragment, the debug loop can
actually copy those pages into the debugger address space
using option 2. The fragment in the debugger then simply
executes regular load and store operations to access the
copied pages, and after the fragment has executed, the
updated pages are copied back to the debuggee. This option
can be faster if, e.g., the code fragment contains a loop to
access a buffer on the stack. Experiments we conducted to
compare the third option with the previous two options
revealed that this technique might be worthwhile for as few
as 8 memory accesses. We did not implement reliable
support for it in our prototype, however: A conservative
link-time analysis for determining which pages will be
accessed by a code fragment remains future work at this
point.

[0087] A fourth potential option is to adapt the debuggee,
e.g., by providing a custom heap memory management
library (malloc, free, . . . ) such that all allocated memory (or
at least the heap) is allocated as shared memory between the
debuggee and the debugger processes. Then the code frag-
ments in the debugger can access the data directly. Of
course, the fragments still need to be rewritten to include a
translation of addresses between the two address spaces, but
likely the overhead of this option can be much lower than the
overhead of the other options. Implementing this option and
evaluating it remains future work at this point.
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[0088] Security-wise, the different options will likely also
have an different impact, in the sense that they will impact
the difficulty for an attacker to reverse-engineer the original
semantics of the program and to deconstruct the self-
debugging version into an equivalent of the original pro-
gram.

[0089]

[0090] To provide strong software protection against
MATE attacks, additional protection techniques may be
employed. For example, on top of self-debugging, obfusca-
tion to prevent static analysis may be employed, together
with anti-tampering techniques to prevent all kinds of
attacks.

[0091] For example, the binary rewriter that implements
the self-debugging approach may also applies a number of
other protections, such as one or more of:

[0092] Control flow obfuscations: the well-known
obfuscations of opaque predicates, control flow flatten-
ing, and branch functions;

[0093] Code layout randomization: during code layout,
code from all functions is mingled and the layout is
randomized;

[0094] Code mobility: a technique in which code frag-
ments are removed from the static binary and only
down-loaded, as so-called mobile code, into the appli-
cation at run time;

[0095] Code guards: online and offline implementations
of techniques in which hashes are computed over the
code in the process address space to check that the code
has not been altered.

[0096] Control flow integrity: a lightweight technique
in which return addresses are checked to prevent that
internal functions are invoked from external code.

[0097] Instruction set virtualization: a technique with
which native code is translated to bytecode that is
inter-preted by an embedded virtual machine instead of
executed natively.

[0098] Combining the self-debugging technique with all
of those protections poses no problem in practice. In the
link-time rewriter, it is not difficult to determine a good order
to perform all the transformations for all of the protections,
and to prevent that multiple techniques are applied on the
same code fragments when those techniques do not actually
compose.

[0099] For example, mobile code is relocated to random-
ized locations. Handling all protections correctly requires
some bookkeeping, but nothing complex.

[0100] As for the run-time behaviour, the techniques com-
pose as well. Multiple techniques require initializers and
finalizers, but in the debugger process we do not want to
execute the initializers of the other protections, as that
debugger process should only be a debugger, and not another
client for code mobility or any other technique. To prevent
the other initializers from executing, the self-debugger ini-
tializers are given the highest priority. They are executed
first when a binary or library is loaded, and the debugger
initialization routine implements in fact both the real ini-
tializer, as well as the debug loop. The routine therefore
never ends (that is, as long as the finalizer is not invoked),
and hence control is never transferred to the other initializers
that might be present in the binary.

Combining Self-Debugging with Other Protections
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[0101] Evaluation
[0102] Evaluation Platform
[0103] One implementation of the self-debugger targets

ARMvV7 platforms. Concretely, this implementation targeted
and extensively evaluated the implementation on Linux 3.15
and (unrooted) Android 4.3+4.4. It has further been con-
firmed that the techniques still work on the latest versions of
Linux (4.7) and Android (7.0), and that is indeed the case.
[0104] The testing hardware consisted of several devel-
oper boards. For Linux, a Panda Board was used featuring
a single-core Texas Instruments OMAP4 processor, an Arn-
dale Board featuring a double-core Samsung Exynos pro-
cessor, and a Boundary Devices Nitrogen6X/SABRE Lite
Board featuring a single-core Freescale 1.MX6q processor.
The latter board was also used for the Android versions.
[0105] In the tool chain, GCC 4.8, LLVM 3.4, and GNU
binutils 2.23 were used. Code was compiled with the fol-
lowing flags: -Os-march=armv7-a-marm-mfloat-abi=softfp-
mfpu=neon-msoft-float.

[0106] Use Cases

[0107] The self-debugging scheme has been shown to
function in multiple use cases. For example, in a digital
rights management scenario, the following practical consid-
erations were encountered.

[0108] This use case consisted of two plugins, written in
C and C++, for the Android media framework and the
Android DRM framework. These libraries are necessary to
obtain access to encrypted movies and to decrypt them. A
video app programmed in Java is used as a GUI to access the
videos. This app communicates with the mediaserver and
DRM frameworks of Android, informing the frameworks of
the vendor of which it needs plug-ins. On demand, these
frameworks then load the plug-ins. Concretely, these servers
are the mediaserver and drmserver processes running on
Android.

[0109] During experiments and development, several fea-
tures were observed that make this use case a perfect stress
test for this technique. First, the mediaserver is multi-
threaded, and creates and kills new threads all the time.
Secondly, the plug-in libraries are loaded and unloaded
frequently. Sometimes the unloading is initiated even before
the initialization of the library is finished. Thirdly, as soon as
the process crashes, a new instance is launched. Sometimes
this allows the Java video player to continue functioning
undisrupted, sometimes it doesn’t. This makes debugging
the implementation of our technique even more complex
than it already is for simple applications. Fourthly, the
mediaserver and drmserver are involved in frequent inter-
process communications. Nevertheless, successful imple-
mentation was achieved based on the principles described
above.

[0110] The techniques of the present disclosure may be
applied in many other use case scenarios. For example, in
mobile banking on any other scenario in which security is
desirable.

Second Embodiment

[0111] In the examples presented above with respect to
FIGS. 1 to 3, the binary file is rewritten to transfer elements
to the debugger process. In a second embodiment, the
technique can be deployed at source-level or at another
higher level than the binary (e.g. at bitcode level) during the
build process of the software. This will be described below
with reference to FIGS. 4 and 5. This process transfers
program state between debugger and debuggee in a different
manner to the example presented above.
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[0112] In this approach, the application may be sliced into
two or more parts at source, or bitcode, level using a
rewriting tool. This slicing may be carried out at a function
level, such that the rewriting process transfer certain func-
tions from the initial program to another program and the
initial program is modified to be able to transfer state to the
other program. The initial program may take the role of
debuggee during later execution while the other program can
take the role of debugger. Alternatively, the separation of
roles of debugger and debuggee may be reversed.

[0113] Furthermore, additional code is injected in the
program which is to be first launched (which may be either
program within the sliced application) to act as an initializer
which allows the application to fork itself or launch another
process to enable attachment of the debugger to the debug-
gee. Moreover, additional initializers may be incorporated
into the program which is to be first launched to register
those functions which are to be carried out by the other
program.

[0114] Run-time operation of the sliced application can be
understood with reference to FIGS. 4 and 5. In particular,
FIG. 4 is a schematic illustration of the coupled code process
and debugger process of a second embodiment while FIG. 5
is a flow chart showing run time steps according to the
second embodiment.

[0115] In the example shown in FIGS. 4 and 5, the
program first launched carries out the debuggee process. As
such, at run time, the debuggee is launched at step s51, as if
it was the original application. The initializers injected
during the build process then register the functions targeted
by the debugger at step s52 and fork off a new process for
the debugger. Since the initializers can be generated above
the binary level in knowledge of the division of functions
between the debugger and debuggee processes, beneficially
the registration of functions can be suitably targeted.

[0116] Once the new debugger process is forked, the
debugger’s initializer immediately attaches to the debuggee
process. Thus the debugger process is launched and attached
to the dubuggee process at step s53.

[0117] When later during the program’s execution the
entry point of a function which has been placed in the
debugger is reached, one possible flow of control in the
application follows the arrows in FIG. 4. Firstly, prologue
(preferably architecture independent) code may serialize
function parameters into a state structure at step s54 (la-
belled 1 in FIG. 4). An exception inducing instruction is then
executed, which causes an exception at step s55 (i.e. a
breakpoint, labelled “bkpt” in FIG. 4). This triggers the
debugger at step s56 (labelled 2 in FIG. 4), which identifies
the debuggee location of the exception/breakpoint.

[0118] The mini-debugger routine/loop in the debugger
process is able to infer from the debuggee location of the
exception/breakpoint both the target code (i.e. function “f”
to be carried out within debugger process) and how to
retrieve parameters serialized to the state structure from
debuggee memory. It then fetches parameters from the
debuggee at step s57 (labelled 3 in FIG. 4). In addition, since
the state structure can reference elements elsewhere in the
dubuggee memory, these extended state elements can be
identified at source level such that they can also be retrieved
from the debuggee memory to be available to the debugger.

[0119] As the execution through the mini-debugger of the
correct function and retrieval of state parameters is condi-
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tional on the location of the breakpoint/exception this pro-
vides additional security as an incorrect trigger point would
not cause proper execution.

[0120] With the parameters successfully retrieved, the
mini-debugger may invoke the function “f” at step s58
(labelled 4 in FIG. 4). This function “f” was migrated from
the debuggee application during source-code rewriting as
described above. The function “f” is performed and returns
results to mini-debugger at step s59 (labelled 5 in FIG. 4).
Parameters can then be updated in the state structure,
including extended state parameters at step s60 (labelled 6 in
FIG. 4). The mini-debugger then returns control to the
debuggee at step s61 (labelled 7 in FIG. 4), and the debuggee
writes state and extended state parameters back into debug-
gee memory through a process of de-serialization at step s62
(labelled 8 in FIG. 4). At step s63, the debuggee may run
epilogue code in order to restore system parameters and/or
variables. While such code may be reliant on current archi-
tecture, elements can be formulated based on portable com-
plier intrinsic aspects.

[0121] In the example described above with reference to
FIGS. 4 and 5, an initial program is associated with one of
the debugger or debuggee and a second program is associ-
ated with the other. However, the skilled person will recog-
nise that in some architectures it may not be necessary to
assign processes in this way. For example, a single program
may launch two processes, one of which debugs the other.
[0122] Moreover, it is recognised that in some environ-
ments, such as Linux or Android for example, a “forking”
procedure may be adopted. For example, Fork( ) is a system
call that will duplicate the process from which it is called. It
will copy the process memory, and then both processes will
continue in parallel. As such, in this approach a single
program is run twice. The program can be implemented as
such that it has a different behaviour in case it is the parent
or in case it is the child. For example, the child process may
act as debugger of the parent process, or vice versa.
[0123] Accordingly, within the ambit of the present dis-
closure is provided the possibility of different programs
being associated with debugger and debuggee processes, a
single program generating independent debugger and
debuggee processes, and a single program being forked into
multiple (identical) processes where one of these assumes
the role of debugger and one the role of debuggee. In another
alternative, a new (idenitical) process can be created from
scratch not using the forking procedure, again with one
process carrying out debugging functions for the other. Any
alternative division between programs and processes may
also be adopted as appropriate.

[0124] Additional Features

[0125] The features below headed as “Circular Debug-
ging”, “Nested Debugging”, “Re-entrance”, “Re-attaching”,
“Detaching detection” and “Mutual Checking” may be pro-
vided in combination with any example or embodiment
described above and in any combination with one another.
[0126] Circular Debugging

[0127] Attaching a debugger to the debuggee does not
prevent the debugger from being debugged by a third-party.
To prevent this, the debuggee can itself debug the debugger,
creating a debugging loop, where each process prevents
other debuggers from attaching to its debuggee. This is
because each process will have a debugger attached and
there is therefore no opportunity for an external debugger to
attach itself.
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[0128] Nested Debugging

[0129] In the example of circular debugging above, there
are only two processes operating, with process P1 debug-
ging process P2, and process P2 debugging process P1.
However, additional processes may be provided, in order to
provide a cascade of debugging relationships between a
process Pn and a subsequent process Pn+1. For example,
where n is the integer sequence from 1 to N, process Pn may
debugging process Pn+1 where n does not equal N. More-
over, process PN may debug process P1, thus closing the
loop and ensuring that every process has a debugger
attached.

[0130] Re-Entrance

[0131] After the performance of a function, the debugger
code can transfer control to the debuggee at locations other
than the one near the exception inducing instruction, for
example by calling functions in the debuggee context. This
has the benefit of hiding the control flow from static analy-
sis, as the flow decision is delegated to the debugger process.
For example, Function Debuggeel triggers function Debug-
ger2, which calls Debuggee2; no call from Debuggeel to
Debugee2 is visible by static analysis of the debuggee alone.
[0132] Reattaching

[0133] To complicate analysis, the debugger process can
continuously attempt to re-attach to the debuggee. This
would ensure that, should the debugger ever be detached
from the debuggee, it would likely re-attach before another
debugger attaches.

[0134] Detaching Detection

[0135] To complicate analysis, if the debugger process
cannot attach to the debuggee because another debugger is
attached, it can try to detach/kill this other debugger.
[0136] Mutual Checking

[0137] Debugger and debuggee, once attached, can check
that their respective process ids are consistent. This would
detect debugger substitution and/or insertion in the chain.
Consistency checks could include whether the debugger/
debuggee pid changes, whether the debugger/debuggee pid
are parent/child (extended to nesting)

[0138] FIG. 6 illustrates a block diagram of one imple-
mentation of a computing device 400 within which a set of
instructions, for causing the computing device to perform
any one or more of the methodologies discussed herein, may
be executed. In alternative implementations, the computing
device may be connected (e.g., networked) to other
machines in a Local Area Network (LAN), an intranet, an
extranet, or the Internet. The computing device may operate
in the capacity of a server or a client machine in a client-
server network environment, or as a peer machine in a
peer-to-peer (or distributed) network environment. The
computing device may be a personal computer (PC), a tablet
computer, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, switch or bridge, or any machine capable of
executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine. Further, while
only a single computing device is illustrated, the term
“computing device” shall also be taken to include any
collection of machines (e.g., computers) that individually or
jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

[0139] The example computing device 400 includes a
processing device 402, a main memory 404 (e.g., read-only
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memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM)
or Rambus DRAM (RDRAM), etc.), a static memory 406
(e.g., flash memory, static random access memory (SRAM),
etc.), and a secondary memory (e.g., a data storage device
418), which communicate with each other via a bus 430.
[0140] Processing device 402 represents one or more
general-purpose processors such as a microprocessor, cen-
tral processing unit, or the like. More particularly, the
processing device 402 may be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, processor implementing
other instruction sets, or processors implementing a combi-
nation of instruction sets. Processing device 402 may also be
one or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. Processing device 402
is configured to execute the processing logic (instructions
422) for performing the operations and steps discussed
herein.

[0141] The computing device 400 may further include a
network interface device 408. The computing device 400
also may include a video display unit 410 (e.g., a liquid
crystal display (LCD) or a cathode ray tube (CRT)), an
alphanumeric input device 412 (e.g., a keyboard or touch-
screen), a cursor control device 414 (e.g., a mouse or
touchscreen), and an audio device 416 (e.g., a speaker).
[0142] The data storage device 418 may include one or
more machine-readable storage media (or more specifically
one or more non-transitory computer-readable storage
media) 428 on which is stored one or more sets of instruc-
tions 422 embodying any one or more of the methodologies
or functions described herein. The instructions 422 may also
reside, completely or at least partially, within the main
memory 404 and/or within the processing device 402 during
execution thereof by the computer system 400, the main
memory 404 and the processing device 402 also constituting
computer-readable storage media.

[0143] The various methods described above may be
implemented by a computer program. The computer pro-
gram may include computer code arranged to instruct a
computer to perform the functions of one or more of the
various methods described above. The computer program
and/or the code for performing such methods may be
provided to an apparatus, such as a computer, on one or more
computer readable media or, more generally, a computer
program product. The computer readable media may be
transitory or non-transitory. The one or more computer
readable media could be, for example, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, or a propagation medium for data transmission, for
example for downloading the code over the Internet. Alter-
natively, the one or more computer readable media could
take the form of one or more physical computer readable
media such as semiconductor or solid state memory, mag-
netic tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag-
netic disc, and an optical disk, such as a CD-ROM, CD-R/W
or DVD.

[0144] In an implementation, the modules, components
and other features described herein (for example control unit
410 in relation to FIG. 6) can be implemented as discrete
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components or integrated in the functionality of hardware
components such as ASICS, FPGAs, DSPs or similar
devices as part of an individualization server.

[0145] A “hardware component” is a tangible (e.g., non-
transitory) physical component (e.g., a set of one or more
processors) capable of performing certain operations and
may be configured or arranged in a certain physical manner.
A hardware component may include dedicated circuitry or
logic that is permanently configured to perform certain
operations. A hardware component may be or include a
special-purpose processor, such as a field programmable
gate array (FPGA) or an ASIC. A hardware component may
also include programmable logic or circuitry that is tempo-
rarily configured by software to perform certain operations.
[0146] Accordingly, the phrase “hardware component”
should be understood to encompass a tangible entity that
may be physically constructed, permanently configured
(e.g., hardwired), or temporarily configured (e.g., pro-
grammed) to operate in a certain manner or to perform
certain operations described herein.

[0147] In addition, the modules and components can be
implemented as firmware or functional circuitry within
hardware devices. Further, the modules and components can
be implemented in any combination of hardware devices and
software components, or only in software (e.g., code stored
or otherwise embodied in a machine-readable medium or in
a transmission medium).

[0148] Unless specifically stated otherwise, as apparent
from the following discussion, it is appreciated that through-
out the description, discussions utilizing terms such as
“receiving”, “determining”, “‘comparing”, “enabling”,
“maintaining,” “identifying,” “replacing,” or the like, refer
to the actions and processes of a computer system, or similar
electronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.
[0149] It is to be understood that the above description is
intended to be illustrative, and not restrictive. Many other
implementations will be apparent to those of skill in the art
upon reading and understanding the above description.
Although the present disclosure has been described with
reference to specific example implementations, it will be
recognized that the disclosure is not limited to the imple-
mentations described, but can be practiced with modification
and alteration within the spirit and scope of the appended
claims. Accordingly, the specification and drawings are to be
regarded in an illustrative sense rather than a restrictive
sense. The scope of the disclosure should, therefore, be
determined with reference to the appended claims, along
with the full scope of equivalents to which such claims are
entitled.

1. A method of generating protected code, comprising:

identifying one or more functions in code to be compiled
for a first process to be migrated to a second process,
wherein the one of the first and second processes is a
debugger for the other of the first and second processes;

migrating the identified function or functions to the sec-
ond process;

modifying the first process to allow transfer of state
between the first and second processes; and
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compiling the first and second processes to generate

binary code.

2. A method according to claim 1, wherein the code to be
compiled is source code or bitcode.

3. A method according to either claim 1 or claim 2, further
comprising injecting an initializer into one of the first and
second processes to invoke execution of the other of the first
and second processes.

4. A method according to any one of the preceding claims,
further comprising injecting one or more initializers into the
first or second processes to register functions present in the
other of the first and second process.

5. A method according to any one of the preceding claims,
wherein each of the first and second processes is a debugger
for the other of the first and second processes.

6. A method according to any one of the preceding claims,
further comprising providing a third process which is a
debugger for one of the first and second processes.

7. A computer executable program product comprising
computer executable code for carrying out the method of
any one of the preceding claims.

8. A device configured to carry out the method of any one
of claims 1 to 6.

9. A method for securing software, comprising:

launching a software process;

attaching a debugger process to the software process;

executing the software process such that the debugger

process is invoked at least once;
performing one or more functions within the debugger
process in response to invocation of the debugger
process, the one or more functions having an output
dependent on data associated with the software process,

wherein the software process generates a data structure
comprising parameters required for performance of the
one or more functions within the debugger process
prior to invocation of the debugger process.

10. A method according to claim 9, wherein the output
comprises a data output for use by the software process.

11. A method according to claim 9 or claim 10, wherein
the data structure is a state structure.

12. A method according to any one of claims 9 to 11,
wherein the software process acts to debug the debugger
process.

13. A method according to any one of claims 9 to 12,
further comprising launching an additional process to debug
the debugger process.

14. A method according to any one of claims 9 to 13,
wherein the output of a given function may indicate multiple
points of return within the software process for continued
execution.

15. A method according to any one of claims 9 to 14,
wherein the debugger process provides memory support
capabilities to enable the one or more functions to retrieve
data from memory within address space of the software
process.

16. A method according to any one of claims 9 to 15,
wherein the debugger process is invoked when a break point
within the software process is reached.

17. A method according to any one of claims 9 to 16,
further comprising detaching the debugger process from the
software process when the software process is complete.

18. A method according to any one of claims 9 to 17,
wherein the software process implements an executable,
such as an application.
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19. A method according to any one of claims 9 to 17,
wherein the software process implements a library.

20. A computer executable program product comprising
computer executable code for carrying out the method of
any one of claims 9 to 19.

21. A device configured to carry out the method of any one
of claims 9 to 19.



