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SELF - DEBUGGING 

FIELD 

[ 0001 ] The present disclosure relates to software security , 
particularly to protection of software such as applications or 
libraries from attacks using debugging techniques . 

BACKGROUND 
[ 0002 ] Debugging is the process by which errors in code 
can be identified . One tool for this is the debugger , a type of 
utility which many operating systems allow to be paired 
with code to be debugged . When an exception or other error 
occurs , this is reported to the debugger which is able then to 
inspect the code and identify the origin of this problem . 
[ 0003 ] The ability to pair a debugger with code has been 
utilised by malicious parties in order to compromise the 
security of that code . In particular , since a debugger is able 
to identify the operation of code , it can be a source of 
vulnerability . 
[ 0004 ] Techniques have been developed to try to protect 
code against such attack . These techniques include attempts 
to allow code to identify when an active debugger has been 
illicitly coupled to the code . Another approach is to design 
the code to itself initiate a debugger when executed ( this 
debugger can be termed a “ self - debugger ” ) . Most operating 
systems will only allow a single debugger to be paired with 
a given process , meaning the self - debugger occupies the 
space a malicious debugger may otherwise wish to use . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0005 ] FIG . 1 is a schematic illustration of the main 
features of a prior art code process , and the coupled code 
process and debugger process of a first embodiment ; 
[ 0006 ] FIG . 2 is a flow chart showing runtime steps 
according to the first embodiment ; 
[ 0007 ] FIG . 3 shows primary aspects of the generation of 
binaries according to the first embodiment ; 
[ 0008 ] FIG . 4 is a schematic illustration of the coupled 
code process and debugger process of a second embodiment ; 
[ 0009 ] FIG . 5 is a flow chart showing run time steps 
according to the second embodiment ; and 
[ 0010 ] FIG . 6 shows a hardware infrastructure for imple 
menting a preferred embodiment . 

[ 0013 ] In some aspects of the disclosure a method for 
securing software is provided . The method may comprise 
launching a software process and attaching a debugger 
process to the software process . The code process can then 
be executed such that the debugger process is invoked at 
least once . Upon invocation , one or more functions may be 
performed within the debugger process , these functions 
having an output dependent on data associated with the 
software process . Since the output can vary in dependence 
on data associated with the software process ( i.e. it is not 
predetermined ) , the overall functionality is only achieved 
when both software process and debugger process are oper 
ating correctly . This does not leave space for interference 
with the debugger process to analyse the code . 
[ 0014 ] The software process of this aspect may be con 
sidered a " debuggee ” process since it takes the place of the 
process being debugged by the debugger . The debugger 
process may be initialised when the software process is 
launched or at a later time . For example , a debugger process 
may be initialised when certain functionality ( e.g. a library ) 
is loaded into the software process ) . In some examples , the 
software process forks to initialise the debugger process . In 
other examples , the debugger process may be initialised first 
and then fork to generate the software process . 
[ 0015 ] In some embodiments , the output comprises a data 
output for use by the software process . Thus the output of the 
functions within the debugger process can directly influence 
the later operation of the software process , thereby tightly 
coupling the two processes in a way which is not easy to 
break . The output of the function in the debugger process 
comprises a data input for the software process , said data 
input being critical for the execution of the software process . 
[ 0016 ] The software process may generate a data structure 
comprising parameters required for performance of the one 
or more functions within the debugger process prior to 
invocation of the debugger process . Thus the software 
process may make preparations to allow easy access to data 
from its memory to the debugger process . This is particu 
larly applicable where source code or bitcode rewriting has 
been employed to generate the program associated with 
debugger process . Rewriting at this level can allow imple 
mentation of techniques to facilitate the generation of appro 
priate data structure for functions performed by the debug 
ger process . The data structure may be a state structure . 
[ 0017 ] In some examples , the software process acts to 
debug the debugger process . As such , a " circular ” debugging 
arrangement is provided , in which both processes act to 
debug the other . This may prevent an external debugger 
processes attaching any process . 
[ 0018 ] The method may launch an additional process to 
debug the debugger process . Further additional processes 
may be provided to continue the cascade , with each process 
being debugged by another . Again , a circular arrangement 
may be provided . For example , software process may debug 
the additional process so that no process is available for an 
external debugger . 
[ 0019 ] In some embodiments , the output of a given func 
tion may indicate multiple points of return within the 
software process for continued execution . As such , the point 
of return for at least one function is variable ( rather than 
fixed ) . The control flow is thus variable according to the 
behaviour of the debugger process and cannot be readily 
inferred or recreated . 

DETAILED DESCRIPTION OF THE DRAWINGS 

[ 0011 ] In overview , methods for securing the operation of 
code are provided . In accordance with the disclosure , a 
method may comprise launching a code process and initial 
ising a debugger process attached to the code process . 
During execution of the code process , operations critically 
relevant to the functionality of the code process can be 
carried out within the debugger process . As a result , the 
debugger process cannot be replaced or subverted without 
impinging on the functionality of the code process . The code 
process can therefore be protected from inspection by modi 
fied or malicious debugging techniques . 
[ 0012 ] In this context , “ critically " can be understood to 
mean that the output produced by those operations carried 
out in the debugger process serves as input for the remaining 
part of the code process , and that that input is necessary to 
allow the code process to generate its correct output given 
that code process ' other input . 
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[ 0020 ] In some embodiments , the debugger process pro 
vides memory support capabilities to enable the one or more 
functions to retrieve data from memory within address space 
of the software process . As such , the program - relevant 
functions can have an ability to process data as if they were 
carried out within the software process . 
[ 0021 ] The debugger process can be invoked when a break 
point within the code process is reached . The debugger 
process can be detached from the software process when the 
software process finishes . The software process may finish 
because it is complete , or otherwise ( such as when aborted ) . 
Alternatively , the debugger process may be detached from 
the software process when functionality within the software 
process finishes rather than waiting for the process as a 
whole to finish . 
[ 0022 ] In some embodiments , the software process imple 
ments an executable , such as an application . In others , the 
code process implements a library . 
[ 0023 ] In another aspect of the disclosure , there is provide 
method of generating protected code . One or more functions 
in code to be compiled for a first process is identified to be 
migrated to a second process , wherein the one of the first and 
second processes is a debugger for the other of the first and 
second processes . The migration is then carried out and the 
first process modified to allow transfer of state between the 
first and second processes . The first and second processes 
are then to generate binary code . The binary code at runtime 
may cause a debugger process to attach to a software 
process , the identified function or functions being executed 
within the debugger process 
[ 0024 ] The code to be compiled may be source code or 
bitcode . In general , it may be code at a higher level than the 
binary . 
[ 0025 ] An initializer may be injected into one of the first 
and second processes to invoke execution of the other of the 
first and second processes . This initializer may invoke 
execution of the first or second process which acts as a 
debugger to the other of the first and second process . In this 
manner , the debugger is automatically launched . 
[ 0026 ] One or more Initializers may be injected into the 
first or second program to register functions present in the 
other of the first and second process . As such , each process 
is able to account for and take steps in recognition of 
functions carried out elsewhere . For example , initializers 
may facilitate the generation of a data structure for the one 
or more functions performed in the other process . 
[ 0027 ] In some examples , each of the first and second 
processes is a debugger for the other of the first and second 
processes . As such , a “ circular ” debugging arrangement is 
provided , in which both processes act to debug the other . 
This prevents an illicit debugger attaching itself to the 
debugger program . 
[ 0028 ] The method may provide a third process which is 
a debugger for one of the first and second processes . For 
example , the second process may debug the fist , and the 
third may debug the second . Additional processes may be 
provided to continue the cascade , with each process being 
debugged by another . Again , a circular arrangement may be 
provided . For example , the where the second processes 
debugs the first and the third process debugs the second , the 
first process may debug the third . 
[ 0029 ] In another aspect of the disclosure , there is pro 
vided a method for generating protected code . Code frag 
ments within object code to be migrated to a debugger can 

be identified . Binary code can then be generated , where the 
binary code at runtime causes a debugger process to attach 
to a software process , the identified code fragments being 
executed within the debugger process . The software process 
and the debugger process may be forked from a single 
process . For example , the software process may initialise the 
debugger process . 
( 0030 ] The step of generating may comprise incorporating 
predefined code corresponding to generic debugger func 
tionality within the binary code . The generating step may be 
a linking step incorporating some predefined aspects of the 
debugger such aspects may be termed a “ mini - debugger ” . 
As such , the overall debugger includes some generic aspects 
as well as some aspects specific to the source code by virtue 
of the inclusion of the identified code fragments . 
[ 0031 ] The method may comprise extracting from source 
code one or more annotations identifying code fragments to 
be migrated to a debugger . The source code is then compiled 
to generate the object code . Binary code can then be 
generated from the object code , with the identified code 
fragments being integrated with a debugger in the binary 
code . In this way , the generation of binary code may be 
linking step which includes an element of re - writing to move 
identified fragments to another location . When the binary 
code is then used , a debugger is generated comprising 
aspects of the original source code , which can be pertinent 
to the functionality of the source code . 
[ 0032 ] In some embodiments , the binary code comprises a 
first binary code file corresponding to the source code but 
excluding the identified code fragments and a second binary 
code file corresponding to the debugger . Alternatively , a 
single binary code file may incorporate both source code and 
debugger . 
[ 0033 ] Further aspects of the disclosure relate to computer 
executable program products comprising computer execut 
able instructions to carry out the methods of the aspects 
described above . Aspects of the disclosure may also relate to 
devices configured to carry out the methods of the aspects 
described above . 
[ 0034 ] Some specific embodiments are now described by 
way of illustration with reference to the accompanying 
drawings in which like reference numerals refer to like 
features . 
[ 0035 ] Through , binary rewriting techniques , the present 
disclosure can migrate whole chunks of functionality from 
the original software to a self - debugger . This offers several 
advantages . First , the input - output behaviour of the self 
debugger is no longer pre - determined : every time the self 
debugger intervenes , it executes different functionality that 
is not predetermined , but that can instead vary as much as 
functionality in protected programs can vary . This makes the 
protection much more resilient against automated analysis , 
deobfuscation , and deconstruction . Secondly , even if the 
attacker can figure out the control flow and the data flow 
equivalent of the original program , it becomes much harder 
for an attacker to undo the protection and to reconstruct that 
original program . In combination , these two strengths make 
it much harder for an attacker to detach the self - debugger 
while maintaining a functioning program to be traced or 
live - debugged . 
[ 0036 ] Overall Self - Debugger Design 
[ 0037 ] FIG . 1 illustrates the basic concepts of a self 
debugging scheme according to the present disclosure . This 
embodiment targets Linux ( and derivatives such as 



US 2021/0004315 A1 Jan. 7 , 2021 
3 

Android ) , the principles may also be applied to other envi 
ronments such as Windows and OS X. 
[ 0038 ] On the left of FIG . 1 , an original , unprotected 
application is depicted , including a small control flow graph 
fragment . The shown assembly code is ( pseudo ) ARMv7 
code . This unprotected application is converted into a pro 
tected application consisting of two parts : a debuggee that 
corresponds mostly to the original application as shown in 
the middle of the figure , and a debugger as shown on the 
right . Apart from some new components injected into the 
debuggee and the debugger , the main difference with the 
original application is that the control flow graph fragment 
has been migrated from the application into the debugger . 
This particular embodiment supports all single - entry , mul 
tiple - exit code fragments that contain no inter - procedural 
control flow such as function calls . 
[ 0039 ] The migration of such fragments is more than 
simple copying : memory references such as the LDR 
instruction should be transformed because in the protected 
application , the migrated code executing in the debugger 
address space can preferably access data that still resides in 
the debuggee address space . All relevant components and 
transformations will be discussed in more detail in later 
sections . 
[ 0040 ] The migrated fragments are preferably critical to 
the operation of the application . That is to say , the output 
produced by those operations carried migrated to the debug 
ger process serves as input for the remaining part of the code 
process , and that that input is necessary to allow the code 
process to generate its correct output given that code pro 
cess ' other input . This requirement is easy to miss in 
practice . For example , a typical programmer might consider 
executing the initialization of variables of the code process 
in the debugger context . However , in general it does not 
suffice to execute the initialization of variables from the code 
process in the debugger process , because in practice , in 
processes it happens quite often that variable initialization 
( e.g. , of local variables upon entry to a function ) is per 
formed as a result of good programming practices and to 
meet the source programming language definition require 
ments , without actually being required for the correct func 
tioning of the process and for generating correct outputs . 
This may be because variables are simply not used in the 
executed paths in the code process , or because the initial 
values are overwritten before they can impact the code 
process ' execution or output . 
[ 0041 ] At run time , the operation of this protected appli 
cation is as follows . First , the debuggee is launched at step 
s21 , as if it was the original application . A newly injected 
initializer then forks off a new process for the debugger , in 
which the debugger's initializer immediately attaches to the 
debuggee process . Thus the debugger process is launched 
and attached to the dubuggee process at step s22 . 
[ 0042 ] When later during the program's execution the 
entry point of the migrated code fragment is reached , one 
possible flow of control in the application follows the arrows 
in FIG . 1. In the application / debuggee , the exception induc 
ing instruction is executed and causes an exception at step 
s23 ( labelled 1 in FIG . 1 ) . The debugger is notified of this 
exception and handles it in its debugger loop at step s24 
( labelled 2 in FIG . 1 ) . Amongst others , the code in this loop 
is responsible for fetching the process state from the debug 
gee , looking up the corresponding , migrated code fragment , 
and transferring control to the entry point of that fragment at 

step s25 ( labelled 3 in FIG . 1 ) . As stated , in that fragment 
memory accesses cannot be performed as is . So they are 
replaced by invocations 4 of memory support functions 5 
that access memory in the debuggee's address space at step 
s26 . When an exit point 6 is eventually reached in the 
migrated code fragment , control is transferred to the corre 
sponding point in the debugger loop 7 at step s27 , which 
updates the state of the debuggee with the data computed in 
the debugger at step s28 , and 8 control is transferred back to 
the debuggee at step s29 . For code fragments with multiple 
exits , such as the example in the figure , the control can be 
transferred back to multiple continuation points in the 
debuggee . In this regard , the debugger of the present dis 
closure behaves in a more complex manner than existing 
self - debuggers , which implement a one - to - one mapping 
between forward and backward control flow transfers 
between debuggee and debugger . 
[ 0043 ] Eventually , when the application exits , the embed 
ded finalizers will perform the necessary detaching opera 
tions . 
[ 0044 ] It is important to note that this scheme cannot only 
be deployed to protect executables ( i.e. , binaries with a main 
function and entry point ) , but also to protect shared libraries . 
Just like executables , libraries can contain initializers and 
finalizers that are executed when they are loaded or 
unloaded by the OS loader . At that time , all of the necessary 
forking , attaching and detaching can be performed as well . 
[ 0045 ] Although the following description principally 
refers to protecting applications , implicitly the teaching 
applies equally applications and libraries . One aspect which 
is particularly relevant for libraries is the need for proper 
initialization and finalization of the debugger . This is nec 
essary because it is not uncommon for libraries to be loaded 
and unloaded multiple times within a single execution of a 
program . For example , repetitive loading and unloading 
happens frequently for plug - ins of media players and brows 
ers . Furthermore , whereas main programs consist of only 
one thread when they are launched themselves , they can 
consist of multiple threads when libraries are loaded and 
unloaded . 
[ 0046 ] Tool Support 
[ 0047 ] FIG . 3 depicts one possible conceptual tool flow . 
[ 0048 ] Source Code Annotations 
[ 0049 ] For determining the code fragments to be migrated 
to the debugger , a number of options exist . One , depicted in 
the figure — and also what we use in our implementation — is 
to annotate source code at step s31 with pragmas , comments 
or any other form of annotations that mark the beginnings 
and ends of the code regions to be migrated to the debugger 
process . A simple grep suffices to extract annotations and 
their line numbers and to store that information in an 
annotations file at step s32 . 
[ 0050 ] Alternative options would be to list the procedures 
or source code files to be protected , or to collect traces or 
profiles to select interesting fragments semi - automatically . 
[ 0051 ] In that regard , it is important to note that the 
fragments to be migrated to the debugger should not nec 
essarily be very hot fragments . To achieve a strong attach 
ment be - tween the debuggee and the debugger , it suffices to 
raise exceptions relatively frequently , but this does not need 
to be on the hottest code paths . Further considerations for the 
selection of fragments will be detailed below . Since every 
raised exception will introduce a meaningful amount of 
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overhead ( context switch , many ptrace calls , . ) it is 
important to minimize their number without compromising 
the level of protection . 
[ 0052 ] Standard Compilers and Tools 
[ 0053 ] For the disclosed self - debugging approach to be 
deployed , any “ standard ” compiler can be used at step s33 . 
The technique does not impose any restrictions on the code 
generated by the compiler . In experimental evaluations , both 
GCC and LLVM have been used , in which there was no 
requirement to adapt or tune the code generation . 
[ 0054 ] One requirement , however , is that the compiler and 
the binary utilities ( the assembler and linker ) provide the 
link - time rewriter with sufficiently accurate symbol and 
relocation information . This is required to enable reliable , 
conservative link - time code analyses and transformations to 
implement the whole self - debugging scheme , including the 
migration and transformation of the selected code frag 
ments . Providing sufficiently accurate information is cer 
tainly within reach for commonly used tools . ARM's pro 
prietary compilers , e.g. , have done so for a long time by 
default , and for the GNU binutils , GCC , and LLVM , very 
simple patches suffice to prevent those tools from perform 
ing overly aggressive symbol relaxation and relocation 
simplification , and to force them to insert mapping symbols 
to mark data in code . These requirements have been docu 
mented before , and it has been shown that they suffice to 
perform reliable , conservative link - time rewriting of code as 
complex and unconventional as both CISC ( x86 ) and RISC 
( ARMv7 ) versions of the Linux kernel and C libraries , 
which are full of manually written assembly code . 
[ 0055 ] A large , generic part of the debugger — the “ mini 
debugger " can be precompiled with the standard compiler 
and then simply linked into the application to be protected . 
Other parts , such as the debug loop's prologues and epi 
logues for each of the migrated fragments , are generated by 
the link - time rewriter , as they are customized for their 
specific fragments . 
[ 0056 ] To allow the link - time rewriter to identify the 
fragments that were annotated in the source code , it suffices 
to pass it the line number information extracted from the 
source code files , and to let the compilers generate object 
files with debug information . That debug information then 
maps all addresses in the binary code to source line numbers , 
which the rewriter can link to the line numbers from the 
annotations . 
[ 0057 ] Binaries , Libraries , and Processes 
[ 0058 ] The link - time rewriter has two options to generate 
a protected application at step s35 . A first option is to 
generate two binaries , one for the application / debuggee , and 
one for the debugger . From a security perspective , this might 
be preferable , because the application semantics and its 
implementation are then distributed over multiple binaries , 
which likely makes it even harder for an attacker to undo the 
protection , i.e. , to patch the debuggee into the original 
application . This option does introduce additional run - time 
overhead , however , as the launching of the debugger then 
also requires loading the second binary . 
[ 0059 ] The alternative option used in the further 
examples below — is to embed all debuggee code and all 
debugger code into one binary . In that case , simple forking 
will suffice to launch the debugger . Whether or not , and to 
what extent , this eases attacks on the protection provided by 
self - debugging is an open research question . 

[ 0060 ] Implementation 
[ 0061 ] Initialization & Finalization 
[ 0062 ] An extra initialization routine can be added to a 
protected binary . This routine is invoked as soon as the 
binary has been loaded ( because it assigned a high priority ) , 
after which all the other routines listed in the .init section of 
the binary are executed . 
[ 0063 ] This initialization routine invokes fork ( ) , thus 
creating two processes called the parent and the child . Once 
the initialization routine is finished the parent process will 
continue execution , typically by invoking the next initial 
ization routine . 
[ 0064 ] Two options exist for assigning the debugger and 
debuggee roles : After the fork , either the child process 
attaches to the parent process , or vice versa . In the former 
case , the child becomes the debugger and the parent 
becomes the debuggee , in the latter case the roles are 
obviously reversed . 
[ 0065 ] The former option is preferred . The parent process 
( i.e. debuggee ) remains the main application process , and it 
keeps the same process ID ( PID ) . This facilitates the con 
tinuing execution or use of all external applications and 
inter - process communication channels that rely on the origi 
nal PID , e.g. , because they were set up before the loading 
and forking of a protected library . 
[ 006 ] This scheme does come with its own problems , 
however . As already mentioned , shared libraries can be 
loaded and unloaded ( using dlopen ( ) and dlclose ( ) ) at any 
moment during the execution of a program . There is hence 
the potential problem that a protected shared library can be 
unloaded and loaded again while the originally loaded and 
forked off debugger hasn't finished its initialization yet . This 
can result in the simultaneous existence of two debugger 
processes , both attempting ( and one failing ) to attach to the 
debuggee . In order to avoid this situation , we block the 
execution of the thread that called dlopen ( ) . So until that 
time , that thread cannot invoke dlclose ( ) using the handle it 
got with dlopen ( ) and it cannot pass the handle to another 
thread either . An infinite loop in the debuggee's initialization 
routine prevents the loading thread from exiting the initial 
ization routine before the debugger allows it to proceed . 
[ 0067 ] The initialization routine also installs a finalizer in 
the debuggee . This finalizer does not do much . At program 
exit ( or when the shared library is unloaded ) it simply 
informs the mini - debugger of this fact by raising a 
SIGUSR1 signal , causing the mini - debugger to detach from 
all the debuggee's threads and to shut down the debugger 
process . 
[ 0068 ] Multithreading Support 
[ 0069 ] Attaching the debugger is not trivial , in particular 
in the case of protected shared libraries . When a library is 
loaded , the application might consist of several threads . 
Only one of them will execute the debuggee initialization 
routine during its call to dlopen . This is good , as only one 
fork will be executed , but it also comes with the downside 
that only one thread will enter the infinite loop mentioned in 
the previous section . The other threads in the debuggee 
process will continue running , and might create new threads 
at any point during the execution of the debuggee initial 
ization routine or of the debugger initialization routine . To 
ensure proper protection , the debugger should attach to 
every thread in the debuggee process as part of its initial 
ization . To ensure that the debugger does not miss any 
threads created in the debuggee in the meantime , we use the 
proc / [ pid ] / task directory , which contains an entry for every 
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[ 0079 ] Prologues and Epilogues 
[ 0080 ] The debugger loop in the mini - debugger is respon 
sible for fetching the program state of the debuggee before 
a fragment is executed , and for transferring it back after its 
execution . Standard ptrace functionality is used to do this . 
[ 0081 ] For every migrated code fragment , the debug loop 
also contains a custom prologue and epilogue to be executed 
before and after the code fragment resp . The prologue loads 
the necessary values from the struct into registers , the 
epilogue writes the necessary values back into the struct . 
The prologue is customized in the sense that it only loads the 
registers that are actually used in the fragment ( the so - called 
live - in registers ) . The epilogue only stores the values that are 
live - out ( i.e. , that will be consumed in the debuggee ) and 
that were overwritten in the code fragment . 
[ 0082 ] Memory Accesses 
[ 0083 ] For every load or store operation in a migrated 
code fragment , an access to the debuggee's memory is 
needed . There exist multiple options to implement such 
accesses . 

thread in a process . The debugger process attaches to all the 
threads by iterating over the entries in this directory , and by 
keeping iterating until no new entries are found . Upon 
attachment to the thread , which happens by means of a 
PTRACE_ATTACH request , the thread is also stopped ( and 
the debugger is notified of this event by the OS ) , meaning 
that it can no longer spawn new threads from then on . So for 
any program that spawns a finite number of threads , the 
iterative procedure to attach to all threads is guaranteed to 
terminate . Once all threads have been attached to , the 
infinite loop in the debuggee is ended and its stopped threads 
are allowed to continue . 
[ 0070 ] When additional threads are created later during 
the program execution , the debugger is automatically 
attached to them by the OS , and it gets a signal such that all 
the necessary bookkeeping can be performed . 
[ 0071 ] Control Flow 
[ 0072 ] Transforming the control flow in and out of the 
migrated code fragments consists of several parts . We dis 
cuss the raising of exceptions to notify the debugger , the 
transferring of the ID informing the debugger of what 
fragment is to be executed , and the customized pro- and 
epilogues that are added to every code fragment . 
[ 0073 ] Raising Exceptions 
[ 0074 ] The actual notification of the debugger can happen 
through any instruction that causes an exception to be raised . 
In our implementation , we use a software breakpoint ( i.e. , a 
BKPT instruction on ARMv7 ) for simplicity . Other , less 
conspicuous exceptions can of course be used , such as those 
caused by illegal or undefined instructions . When such 
instructions are reachable via direct control flow ( direct 
branch or fall - through path ) , they can of course easily be 
detected statically . But when indirect control flow transfers 
are used to jump to data in the code sections , and the data 
bits correspond to an illegal or undefined instruction , static 
detection can be made much harder . Likewise , legal instruc 
tions that throw exceptions only when their operands are 
" invalid ” can be used to conceal the goal of the instructions . 
Such instructions include division by zero , invalid memory 
accesses ( i.e. , a segmentation fault ) , or the dereferencing of 
an invalid pointer ( resulting in a bus error ) . 
[ 0075 ] Transferring IDs 
[ 0076 ] We call the thread in the debuggee that raises an 
exception the requesting thread , as it is essentially asking the 
debugger to execute some code fragment . 
[ 0077 ] The debugger , after being notified about the request 
by the OS , needs to figure out which fragment to execute . To 
enable this , the debuggee can pass an ID of the fragment in 
a number of ways . One option is to simply use the address 
of the exception inducing instruction as an ID . Another 
option is to pass the ID by placing it in a fixed register right 
before raising the exception , or in a fixed memory location . 
In our implementation , we used the latter option . As multiple 
threads in the debuggee can request a different fragment 
concurrently , the memory location cannot be a global loca 
tion . Instead , it needs to be thread - local . As each thread has 
its own stack , we opted to pass the fragment’s ID via the top 
of the stack of the requesting thread . 
[ 0078 ] Depending on the type of instruction used to raise 
the exception , other methods can be envisioned as well . For 
example , the divisor operand of a division ( by zero ) instruc 
tion could be used to pass the ID as well . 

[ 0084 ] The first is to simply use ptrace functionality : the 
debugger can perform PTRACE_PEEKDATA and PTRA 
CE_POKEDATA requests to read and write in the debug 
gee's address space . In this case , per word ' to be read or 
written , a ptrace system call is needed , which results in a 
significant overhead . Some recent Linux versions support 
wider accesses , but those are not yet available everywhere , 
such as on Android . 
[ 0085 ] The second option is to open the / proc / [ pid ] / mem 
file of the debuggee in the debugger , and then simply read 
or write in this file . This is easier to implement , and wider 
data can be read or written with a single system call , so often 
this method is faster . Writing to another process's / proc / 
[ pid ] / mem is not supported on every version of the Linux / 
Android kernels , however , so in our prototype write requests 
are still implemented with the first option . 
[ 0086 ] A third option builds on the second one : if the 
binary - rewriter can determine which memory pages will be 
accesses in a migrated code fragment , the debug loop can 
actually copy those pages into the debugger address space 
using option 2. The fragment in the debugger then simply 
executes regular load and store operations to access the 
copied pages , and after the fragment has executed , the 
updated pages are copied back to the debuggee . This option 
can be faster if , e.g. , the code fragment contains a loop to 
access a buffer on the stack . Experiments we conducted to 
compare the third option with the previous two options 
revealed that this technique might be worthwhile for as few 
as 8 memory accesses . We did not implement reliable 
support for it in our prototype , however : A conservative 
link - time analysis for determining which pages will be 
accessed by a code fragment remains future work at this 
point . 
[ 0087 ] A fourth potential option is to adapt the debuggee , 
e.g. , by providing a custom heap memory management 
library ( malloc , free , ... ) such that all allocated memory ( or 
at least the heap ) is allocated as shared memory between the 
debuggee and the debugger processes . Then the code frag 
ments in the debugger can access the data directly . Of 
course , the fragments still need to be rewritten to include a 
translation of addresses between the two address spaces , but 
likely the overhead of this option can be much lower than the 
overhead of the other options . Implementing this option and 
evaluating it remains future work at this point . 
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[ 0088 ] Security - wise , the different options will likely also 
have an different impact , in the sense that they will impact 
the difficulty for an attacker to reverse - engineer the original 
semantics of the program and to deconstruct the self 
debugging version into an equivalent of the original pro 
gram . 

[ 0089 ] Combining Self - Debugging with Other Protections 
[ 0090 ] To provide strong software protection against 
MATE attacks , additional protection techniques may be 
employed . For example , on top of self - debugging , obfusca 
tion to prevent static analysis may be employed , together 
with anti - tampering techniques to prevent all kinds of 
attacks . 
[ 0091 ] For example , the binary rewriter that implements 
the self - debugging approach may also applies a number of 
other protections , such as one or more of : 

[ 0092 ] Control flow obfuscations : the well - known 
obfuscations of opaque predicates , control flow flatten 
ing , and branch functions ; 

[ 0093 ] Code layout randomization : during code layout , 
code from all functions is mingled and the layout is 
randomized ; 

[ 0094 ] Code mobility : a technique in which code frag 
ments are removed from the static binary and only 
down - loaded , as so - called mobile code , into the appli 
cation at run time ; 

[ 0095 ] Code guards : online and offline implementations 
of techniques in which hashes are computed over the 
code in the process address space to check that the code 
has not been altered . 

[ 0096 ] Control flow integrity : a lightweight technique 
in which return addresses are checked to prevent that 
internal functions are invoked from external code . 

[ 0097 ] Instruction set virtualization : a technique with 
which native code is translated to bytecode that is 
inter - preted by an embedded virtual machine instead of 
executed natively . 

[ 0098 ] Combining the self - debugging technique with all 
of those protections poses no problem in practice . In the 
link - time rewriter , it is not difficult to determine a good order 
to perform all the transformations for all of the protections , 
and to prevent that multiple techniques are applied on the 
same code fragments when those techniques do not actually 
compose . 

[ 0099 ] For example , mobile code is relocated to random 
ized locations . Handling all protections correctly requires 
some bookkeeping , but nothing complex . 
[ 0100 ] As for the run - time behaviour , the techniques com 
pose as well . Multiple techniques require initializers and 
finalizers , but in the debugger process we do not want to 
execute the initializers of the other protections , as that 
debugger process should only be a debugger , and not another 
client for code mobility or any other technique . To prevent 
the other initializers from executing , the self - debugger ini 
tializers are given the highest priority . They are executed 
first when a binary or library is loaded , and the debugger 
initialization routine implements in fact both the real ini 
tializer , as well as the debug loop . The routine therefore 
never ends ( that is , as long as the finalizer is not invoked ) , 
and hence control is never transferred to the other initializers 
that might be present in the binary . 

[ 0101 ] Evaluation 
[ 0102 ] Evaluation Platform 
[ 0103 ] One implementation of the self - debugger targets 
ARMv7 platforms . Concretely , this implementation targeted 
and extensively evaluated the implementation on Linux 3.15 
and ( unrooted ) Android 4.3 + 4.4 . It has further been con 
firmed that the techniques still work on the latest versions of 
Linux ( 4.7 ) and Android ( 7.0 ) , and that is indeed the case . 
[ 0104 ] The testing hardware consisted of several devel 
oper boards . For Linux , a Panda Board was used featuring 
a single - core Texas Instruments OMAP4 processor , an Arn 
dale Board featuring a double - core Samsung Exynos pro 
cessor , and a Boundary Devices Nitrogen6X / SABRE Lite 
Board featuring a single - core Freescale i.MX6 processor . 
The latter board was also used for the Android versions . 
[ 0105 ] In the tool chain , GCC 4.8 , LLVM 3.4 , and GNU 
binutils 2.23 were used . Code was compiled with the fol 
lowing flags : -Os - march - armv7 - a - marm - mfloat - abi - softfp 
mfpu = neon - msoft - float . 
[ 0106 ] Use Cases 
[ 0107 ] The self - debugging scheme has been shown to 
function in multiple use cases . For example , in a digital 
rights management scenario , the following practical consid 
erations were encountered . 
[ 0108 ] This use case consisted of two plugins , written in 
C and C ++ , for the Android media framework and the 
Android DRM framework . These libraries are necessary to 
obtain access to encrypted movies and to decrypt them . A 
video app programmed in Java is used as a GUI to access the 
videos . This app communicates with the mediaserver and 
DRM frameworks of Android , informing the frameworks of 
the vendor of which it needs plug - ins . On demand , these 
frameworks then load the plug - ins . Concretely , these servers 
are the mediaserver and drmserver processes running on 
Android . 
[ 0109 ] During experiments and development , several fea 
tures were observed that make this use case a perfect stress 
test for this technique . First , the mediaserver is multi 
threaded , and creates and kills new threads all the time . 
Secondly , the plug - in libraries are loaded and unloaded 
frequently . Sometimes the unloading is initiated even before 
the initialization of the library is finished . Thirdly , as soon as 
the process crashes , a new instance is launched . Sometimes 
this allows the Java video player to continue functioning 
undisrupted , sometimes it doesn't . This makes debugging 
the implementation of our technique even more complex 
than it already is for simple applications . Fourthly , the 
mediaserver and drmserver are involved in frequent inter 
process communications . Nevertheless , successful imple 
mentation was achieved based on the principles described 
above . 
[ 0110 ] The techniques of the present disclosure may be 
applied in many other use case scenarios . For example , in 
mobile banking on any other scenario in which security is 
desirable . 

Second Embodiment 
[ 0111 ] In the examples presented above with respect to 
FIGS . 1 to 3 , the binary file is rewritten to transfer elements 
to the debugger process . In a second embodiment , the 
technique can be deployed at source - level or at another 
higher level than the binary ( e.g. at bitcode level ) during the 
build process of the software . This will be described below 
with reference to FIGS . 4 and 5. This process transfers 
program state between debugger and debuggee in a different 
manner to the example presented above . 
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[ 0112 ] In this approach , the application may be sliced into 
two or more parts at source , or bitcode , level using a 
rewriting tool . This slicing may be carried out at a function 
level , such that the rewriting process transfer certain func 
tions from the initial program to another program and the 
initial program is modified to be able to transfer state to the 
other program . The initial program may take the role of 
debuggee during later execution while the other program can 
take the role of debugger . Alternatively , the separation of 
roles of debugger and debuggee may be reversed . 
[ 0113 ] Furthermore , additional code is injected in the 
program which is to be first launched ( which may be either 
program within the sliced application ) to act as an initializer 
which allows the application to fork itself or launch another 
process to enable attachment of the debugger to the debug 
gee . Moreover , additional initializers may be incorporated 
into the program which is to be first launched to register 
those functions which are to be carried out by the other 
program . 
[ 0114 ] Run - time operation of the sliced application can be 
understood with reference to FIGS . 4 and 5. In particular , 
FIG . 4 is a schematic illustration of the coupled code process 
and debugger process of a second embodiment while FIG . 5 
is a flow chart showing run time steps according to the 
second embodiment . 
[ 0115 ] In the example shown in FIGS . 4 and 5 , the 
program first launched carries out the debuggee process . As 
such , at run time , the debuggee is launched at step s51 , as if 
it was the original application . The initializers injected 
during the build process then register the functions targeted 
by the debugger at step s52 and fork off a new process for 
the debugger . Since the initializers can be generated above 
the binary level in knowledge of the division of functions 
between the debugger and debuggee processes , beneficially 
the registration of functions can be suitably targeted . 
[ 0116 ] Once the new debugger process is forked , the 
debugger's initializer immediately attaches to the debuggee 
process . Thus the debugger process is launched and attached 
to the dubuggee process at step s53 . 
[ 0117 ] When later during the program's execution the 
entry point of a function which has been placed in the 
debugger is reached , one possible flow of control in the 
application follows the arrows in FIG . 4. Firstly , prologue 
( preferably architecture independent ) code may serialize 
function parameters into a state structure at step s54 ( la 
belled 1 in FIG . 4 ) . An exception inducing instruction is then 
executed , which causes an exception at step s55 ( i.e. a 
breakpoint , labelled “ bkpt ” in FIG . 4 ) . This triggers the 
debugger at step s56 ( labelled 2 in FIG . 4 ) , which identifies 
the debuggee location of the exception / breakpoint . 
[ 0118 ] The mini - debugger routine / loop in the debugger 
process is able to infer from the debuggee location of the 
exception / breakpoint both the target code ( i.e. function “ f ” 
to be carried out within debugger process ) and how to 
retrieve parameters serialized to the state structure from 
debuggee memory . It then fetches parameters from the 
debuggee at step s57 ( labelled 3 in FIG . 4 ) . In addition , since 
the state structure can reference elements elsewhere in the 
dubuggee memory , these extended state elements can be 
identified at source level such that they can also be retrieved 
from the debuggee memory to be available to the debugger . 
[ 0119 ] As the execution through the mini - debugger of the 
correct function and retrieval of state parameters is condi 

tional on the location of the breakpoint / exception this pro 
vides additional security as an incorrect trigger point would 
not cause proper execution . 
[ 0120 ] With the parameters successfully retrieved , the 
mini - debugger may invoke the function “ f ” at step s58 
( labelled 4 in FIG . 4 ) . This function “ f ” was migrated from 
the debuggee application during source - code rewriting as 
described above . The function “ f ' is performed and returns 
results to mini - debugger at step s59 ( labelled 5 in FIG . 4 ) . 
Parameters can then be updated in the state structure , 
including extended state parameters at step s60 ( labelled 6 in 
FIG . 4 ) . The mini - debugger then returns control to the 
debuggee at step s61 ( labelled 7 in FIG . 4 ) , and the debuggee 
writes state and extended state parameters back into debug 
gee memory through a process of de - serialization at step s62 
( labelled 8 in FIG . 4 ) . At step s63 , the debuggee may run 
epilogue code in order to restore system parameters and / or 
variables . While such code may be reliant on current archi 
tecture , elements can be formulated based on portable com 
plier intrinsic aspects . 
[ 0121 ] In the example described above with reference to 
FIGS . 4 and 5 , an initial program is associated with one of 
the debugger or debuggee and a second program is associ 
ated with the other . However , the skilled person will recog 
nise that in some architectures it may not be necessary to 
assign processes in this way . For example , a single program 
may launch two processes , one of which debugs the other . 
[ 0122 ] Moreover , it is recognised that in some environ 
ments , such as Linux or Android for example , a “ forking ” 
procedure may be adopted . For example , Fork ( ) is a system 
call that will duplicate the process from which it is called . It 
will copy the process memory , and then both processes will 
continue in parallel . As such , in this approach a single 
program is run twice . The program can be implemented as 
such that it has a different behaviour in case it is the parent 
or in case it is the child . For example , the child process may 
act as debugger of the parent process , or vice versa . 
[ 0123 ] Accordingly , within the ambit of the present dis 
closure is provided the possibility of different programs 
being associated with debugger and debuggee processes , a 
single program generating independent debugger and 
debuggee processes , and a single program being forked into 
multiple ( identical ) processes where one of these assumes 
the role of debugger and one the role of debuggee . In another 
alternative , a new ( idenitical ) process can be created from 
scratch not using the forking procedure , again with one 
process carrying out debugging functions for the other . Any 
alternative division between programs and processes may 
also be adopted as appropriate . 
[ 0124 ] Additional Features 
[ 0125 ] The features below headed as “ Circular Debug 
ging ” , “ Nested Debugging ” , “ Re - entrance ” , “ Re - attaching " , 
“ Detaching detection ” and “ Mutual Checking ” may be pro 
vided in combination with any example or embodiment 
described above and in any combination with one another . 
[ 0126 ] Circular Debugging 
[ 0127 ] Attaching a debugger to the debuggee does not 
prevent the debugger from being debugged by a third - party . 
To prevent this , the debuggee can itself debug the debugger , 
creating a debugging loop , where each process prevents 
other debuggers from attaching to its debuggee . This is 
because each process will have a debugger attached and 
there is therefore no opportunity for an external debugger to 
attach itself . 
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one or 

[ 0128 ] Nested Debugging 
[ 0129 ] In the example of circular debugging above , there 
are only two processes operating , with process P1 debug 
ging process P2 , and process P2 debugging process P1 . 
However , additional processes may be provided , in order to 
provide a cascade of debugging relationships between a 
process Pn and a subsequent process Pn + 1 . For example , 
where n is the integer sequence from 1 to N , process Pn may 
debugging process Pn + 1 where n does not equal N. More 
over , process PN may debug process P1 , thus closing the 
loop and ensuring that every process has a debugger 
attached . 
( 0130 ] Re - Entrance 
[ 0131 ] After the performance of a function , the debugger 
code can transfer control to the debuggee at locations other 
than the one near the exception inducing instruction , for 
example by calling functions in the debuggee context . This 
has the benefit of hiding the control flow from static analy 
sis , as the flow decision is delegated to the debugger process . 
For example , Function Debuggeel triggers function Debug 
ger2 , which calls Debuggee2 ; no call from Debuggeel to 
Debugee2 is visible by static analysis of the debuggee alone . 
[ 0132 ] Reattaching 
[ 0133 ] To complicate analysis , the debugger process can 
continuously attempt to re - attach to the debuggee . This 
would ensure that , should the debugger ever be detached 
from the debuggee , it would likely re - attach before another 
debugger attaches . 
[ 0134 ] Detaching Detection 
[ 0135 ] To complicate analysis , if the debugger process 
cannot attach to the debuggee because another debugger is 
attached , it can try to detach / kill this other debugger . 
[ 0136 ] Mutual Checking 
[ 0137 ] Debugger and debuggee , once attached , can check 
that their respective process ids are consistent . This would 
detect debugger substitution and / or insertion in the chain . 
Consistency checks could include whether the debugger / 
debuggee pid changes , whether the debugger / debuggee pid 
are parent / child ( extended to nesting ) 
[ 0138 ] FIG . 6 illustrates a block diagram of one imple 
mentation of a computing device 400 within which a set of 
instructions , for causing the computing device to perform 
any one or more of the methodologies discussed herein , may 
be executed . In alternative implementations , the computing 
device may be connected ( e.g. , networked ) to other 
machines in a Local Area Network ( LAN ) , an intranet , an 
extranet , or the Internet . The computing device may operate 
in the capacity of a server or a client machine in a client 
server network environment , or as a peer machine in a 
peer - to - peer ( or distributed ) network environment . The 
computing device may be a personal computer ( PC ) , a tablet 
computer , a set - top box ( STB ) , a Personal Digital Assistant 
( PDA ) , a cellular telephone , a web appliance , a server , a 
network router , switch or bridge , or any machine capable of 
executing a set of instructions ( sequential or otherwise ) that 
specify actions to be taken by that machine . Further , while 
only a single computing device is illustrated , the term 
“ computing device ” shall also be taken to include any 
collection of machines ( e.g. , computers ) that individually or 
jointly execute a set ( or multiple sets ) of instructions to 
perform any one or more of the methodologies discussed 
herein . 
[ 0139 ] The example computing device 400 includes a 
processing device 402 , a main memory 404 ( e.g. , read - only 

memory ( ROM ) , flash memory , dynamic random access 
memory ( DRAM ) such as synchronous DRAM ( SDRAM ) 
or Rambus DRAM ( RDRAM ) , etc. ) , a static memory 406 
( e.g. , flash memory , static random access memory ( SRAM ) , 
etc. ) , and a secondary memory ( e.g. , a data storage device 
418 ) , which communicate with each other via a bus 430 . 
[ 0140 ] Processing device 402 represents one or more 
general - purpose processors such as a microprocessor , cen 
tral processing unit , or the like . More particularly , the 
processing device 402 may be a complex instruction set 
computing ( CISC ) microprocessor , reduced instruction set 
computing ( RISC ) microprocessor , very long instruction 
word ( VLIW ) microprocessor , processor implementing 
other instruction sets , or processors implementing a combi 
nation of instruction sets . Processing device 402 may also be 
one or more special - purpose processing devices such as an 
application specific integrated circuit ( ASIC ) , a field pro 
grammable gate array ( FPGA ) , a digital signal processor 
( DSP ) , network processor , or the like . Processing device 402 
is configured to execute the processing logic ( instructions 
422 ) for performing the operations and steps discussed 
herein . 
[ 0141 ] The computing device 400 may further include a 
network interface device 408. The computing device 400 
also may include a video display unit 410 ( e.g. , a liquid 
crystal display ( LCD ) or a cathode ray tube ( CRT ) ) , an 
alphanumeric input device 412 ( e.g. , a keyboard or touch 
screen ) , a cursor control device 414 ( e.g. , a mouse or 
touchscreen ) , and an audio device 416 ( e.g. , a speaker ) . 
[ 0142 ] The data storage device 418 may include one or 
more machine - readable storage media ( or more specifically 

more non - transitory computer - readable storage 
media ) 428 on which is stored one or more sets of instruc 
tions 422 embodying any one or more of the methodologies 
or functions described herein . The instructions 422 may also 
reside , completely or at least partially , within the main 
memory 404 and / or within the processing device 402 during 
execution thereof by the computer system 400 , the main 
memory 404 and the processing device 402 also constituting 
computer - readable storage media . 
[ 0143 ] The various methods described above may be 
implemented by a computer program . The computer pro 
gram may include computer code arranged to instruct a 
computer to perform the functions of one or more of the 
various methods described above . The computer program 
and / or the code for performing such methods may be 
provided to an apparatus , such as a computer , on one or more 
computer readable media or , more generally , a computer 
program product . The computer readable media may be 
transitory or non - transitory . The one or more computer 
readable media could be , for example , an electronic , mag 
netic , optical , electromagnetic , infrared , or semiconductor 
system , or a propagation medium for data transmission , for 
example for downloading the code over the Internet . Alter 
natively , the one or more computer readable media could 
take the form of one or more physical computer readable 
media such as semiconductor or solid state memory , mag 
netic tape , a removable computer diskette , a random access 
memory ( RAM ) , a read - only memory ( ROM ) , a rigid mag 
netic disc , and an optical disk , such as a CD - ROM , CD - R / W 
or DVD . 
[ 0144 ] In an implementation , the modules , components 
and other features described herein ( for example control unit 
410 in relation to FIG . 6 ) can be implemented as discrete 
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components or integrated in the functionality of hardware 
components such as ASICS , FPGAs , DSPs or similar 
devices as part of an individualization server . 
[ 0145 ] A “ hardware component ” is a tangible ( e.g. , non 
transitory ) physical component ( e.g. , a set of one or more 
processors ) capable of performing certain operations and 
may be configured or arranged in a certain physical manner . 
A hardware component may include dedicated circuitry or 
logic that is permanently configured to perform certain 
operations . A hardware component may be or include a 
special - purpose processor , such as a field programmable 
gate array ( FPGA ) or an ASIC . A hardware component may 
also include programmable logic or circuitry that is tempo 
rarily configured by software to perform certain operations . 
[ 0146 ] Accordingly , the phrase “ hardware component ” 
should be understood to encompass a tangible entity that 
may be physically constructed , permanently configured 
( e.g. , hardwired ) , or temporarily configured ( e.g. , pro 
grammed ) to operate in a certain manner or to perform 
certain operations described herein . 
[ 0147 ] In addition , the modules and components can be 
implemented as firmware or functional circuitry within 
hardware devices . Further , the modules and components can 
be implemented in any combination of hardware devices and 
software components , or only in software ( e.g. , code stored 
or otherwise embodied in a machine - readable medium or in 
a transmission medium ) . 
[ 0148 ] Unless specifically stated otherwise , as apparent 
from the following discussion , it is appreciated that through 
out the description , discussions utilizing terms such as 
“ receiving ” , “ determining ” , “ comparing ” , “ enabling ” , 
“ maintaining , ” “ identifying , ” “ replacing , " or the like , refer 
to the actions and processes of a computer system , or similar 
electronic computing device , that manipulates and trans 
forms data represented as physical ( electronic ) quantities 
within the computer system's registers and memories into 
other data similarly represented as physical quantities within 
the computer system memories or registers or other such 
information storage , transmission or display devices . 
[ 0149 ] It is to be understood that the above description is 
intended to be illustrative , and not restrictive . Many other 
implementations will be apparent to those of skill in the art 
upon reading and understanding the above description . 
Although the present disclosure has been described with 
reference to specific example implementations , it will be 
recognized that the disclosure is not limited to the imple 
mentations described , but can be practiced with modification 
and alteration within the spirit and scope of the appended 
claims . Accordingly , the specification and drawings are to be 
regarded in an illustrative sense rather than a restrictive 
sense . The scope of the disclosure should , therefore , be 
determined with reference to the appended claims , along 
with the full scope of equivalents to which such claims are 
entitled . 

1. A method of generating protected code , comprising : 
identifying one or more functions in code to be compiled 

for a first process to be migrated to a second process , 
wherein the one of the first and second processes is a 
debugger for the other of the first and second processes ; 

migrating the identified function or functions to the sec 

compiling the first and second processes to generate 
binary code . 

2. A method according to claim 1 , wherein the code to be 
compiled is source code or bitcode . 

3. A method according to either claim 1 or claim 2 , further 
comprising injecting an initializer into one of the first and 
second processes to invoke execution of the other of the first 
and second processes . 

4. A method according to any one of the preceding claims , 
further comprising injecting one or more initializers into the 
first or second processes to register functions present in the 
other of the first and second process . 

5. A method according to any one of the preceding claims , 
wherein each of the first and second processes is a debugger 
for the other of the first and second processes . 

6. A method according to any one of the preceding claims , 
further comprising providing a third process which is a 
debugger for one of the first and second processes . 

7. A computer executable program product comprising 
computer executable code for carrying out the method of 
any one of the preceding claims . 

8. A device configured to carry out the method of any one 
of claims 1 to 6 . 

9. A method for securing software , comprising : 
launching a software process ; 
attaching a debugger process to the software process ; 
executing the software process such that the debugger 

process is invoked at least once ; 
performing one or more functions within the debugger 

process in response to invocation of the debugger 
process , the one or more functions having an output 
dependent on data associated with the software process , 

wherein the software process generates a data structure 
comprising parameters required for performance of the 
one or more functions within the debugger process 
prior to invocation of the debugger process . 

10. A method according to claim 9 , wherein the output 
comprises a data output for use by the software process . 

11. A method according to claim 9 or claim 10 , wherein 
the data structure is a state structure . 

12. A method according to any one of claims 9 to 11 , 
wherein the software process acts to debug the debugger 
process . 

13. A method according to any one of claims 9 to 12 , 
further comprising launching an additional process to debug 
the debugger process . 

14. A method according to any one of claims 9 to 13 , 
wherein the output of a given function may indicate multiple 
points of return within the software process for continued 
execution . 

15. A method according to any one of claims 9 to 14 , 
wherein the debugger process provides memory support 
capabilities to enable the one or more functions to retrieve 
data from memory within address space of the software 
process . 

16. A method according to any one of claims 9 to 15 , 
wherein the debugger process is invoked when a break point 
within the software process is reached . 

17. A method according to any one of claims 9 to 16 , 
further comprising detaching the debugger process from the 
software process when the software process is complete . 

18. A method according to any one of claims 9 to 17 , 
wherein the software process implements an executable , 
such as an application . 

ond process ; 
modifying the first process to allow transfer of state 

between the first and second processes ; and 
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19. A method according to any one of claims 9 to 17 , 
wherein the software process implements a library . 

20. A computer executable program product comprising 
computer executable code for carrying out the method of 
any one of claims 9 to 19 . 

21. A device configured to carry out the method of any one 
of claims 9 to 19 . 


