(54) 发明名称
一种基于子块的融合颜色和方向特征的图像检索方法

(57) 摘要
本发明涉及一种基于子块的融合颜色和方向特征的图像检索方法，将图像分成 N×N 大小的子块，计算每个子块的 RGB 颜色模式下平均颜色值，并将该颜色值对应到生成的色书之中，子块颜色值与表中颜色值最近的索引号为子块的编码。利用边缘直方图方法，计算每个子块的方向性，将所得到的方向属性对应到子块的颜色属性所对应的编码之中；根据子块的颜色和方向特征，对待检索图像和查询图像的特征进行相似性的度量。
1. 一种基于子块的融合颜色和方向特征的图像检索方法，其特征在于：

将图像分成 $N \times N$ 大小的子块，计算每个子块的 RGB 颜色模式下平均颜色值，并将颜色值对应到生成的码书之中，子块颜色值与码书中颜色值最近的索引号为子块的编码；利用边缘直方图方法，计算每个子块的方向性，将所得到的方向属性对应到子块的颜色属性所对应的编码之中；

对待检索图像和查询图像的特征进行相似性的度量，设颜色码书 $K = \{k_1, k_2, \ldots\}$ 共有 t 个码字；图像库为 $D = \{d_n\}$，包含 n 幅图像；q 为待检索图像。用于相似性度量的距离函数如下：

$$
\text{dis}(q, d_n) = \frac{\sum_{i=1}^{t} S(q, d_n)_i \times |w_{id} - w_{iq}|}{1 + w_{id} + w_{iq}}
$$

其中

$$
S(q, d_n) = \left| f_{od} - f_{qd} \right| + \left| f_{id} - f_{iq} \right| + \ldots + \left| f_{sd} - f_{sq} \right|
$$

$$
\max(f_{od}, f_{id}, f_{kd}, f_{qd}, f_{kd}, f_{sd}, f_{sq})
$$

为具有相同颜色子块的方向相似度，其中包含了 5 个方向类型和 1 个无方向类型；

式中，w_{id} 为颜色码字 k_i 出现在图像 d_n 中的频率；w_{iq} 为颜色码字 k_i 出现在查询图像 q 中的频率；f_i 为空间频率。

2. 根据权利要求 1 所述的基于子块的融合颜色和方向特征的图像检索方法，其特征在于：图像分成 $2 \times 2, 2 \times 4, 4 \times 4$ 或 8×8 大小的子块。
一种基于子块的融合颜色和方向特征的图像检索方法

技术领域
[0001] 本发明涉及一种基于子块的融合颜色和方向特征的图像检索方法。

背景技术
[0002] 随着多媒体技术及 Internet 网络的发展，可获取的图像和其它多媒体数据越来越多。因此，基于内容的图像检索技术成为当今一个热门的研究课题。从基于内容的图像检索提取图像的颜色、纹理、形状等特征，并对提取的特征进行相似性度量，从而检索出相似的图像。然而，单一的图像特征并不能够很好的描述一幅图像所要表达的内容，因此将图像的多个特征有效的综合，并对图像进行检索能够达到较好的效果。但现有的多特征综合技术大多是分别计算单一的图像特征，并对不同的特征之间加以不同权重，从而达到综合多特征检索的效果，但并没有考虑到各个特征之间的内在关系。

[0003] 赵珊等人在《一种新的基于关键子块的图像检索算法》一文中提到利用方块编码的思想，首先计算子块的平均灰度值，在每个子块中，灰度值大于均值的像素点赋值为 1，反之赋为 0，这样就得到了一系列 N×N 的二进制块。这些二进制块体现了图像的边缘分布，相似的边缘分布会产生相同的索引值。定义这些二进制块为图像的关键块，并以二进制块所表示的十进制数作为子块的索引值。但该方法忽略了图像的颜色特性，仅对灰度图像检索时有较好的检索效果。

发明内容
[0004] 本发明的目的在于提供一种基于子块的融合颜色和方向特征的图像检索方法，融合颜色和方向特征进行图像检索，图像检索效果好，准确率高。

[0005] 实现本发明目的的技术方案：

[0006] 一种基于子块的融合颜色和方向特征的图像检索方法，其特征在于：

[0007] 将图像分成 N×N 大小的子块，计算每个子块的 RGB 颜色模式下平均颜色值，并将颜色值对应到生成的码书之中，子块颜色值与码书中颜色值最近的索引号为子块的编码；利用边缘直方图方法，计算每个子块的方向性，将所得到的方向属性对应到子块的颜色属性所对应的编码之中；

[0008] 对待检索图像和查询图像的特征进行相似性的度量，设颜色码书 K = {k1, k2,...} 共有 t 个码字，检索图像库为 D = {d1}, 包含 n 幅图像；q 为待检索图像；用于相似性度量的距离函数如下：

\[dis(q,d_n) = \sum_{i=1}^{t} \frac{S(q,d_n) \times |w_{id} - w_{iq}|}{1 + w_{id} + w_{iq}} \]

[0010] 其中

\[S(q,d_n) = \frac{|f_{id} - f_{0d}| + |f_{id} - f_{0g}| + \ldots + |f_{id} - f_{0y}|}{\max(f_{0d}, \ldots, f_{0d}, f_{0g}, \ldots, f_{0y})} \]
为具有相同颜色子块的方向相似度，其中包含了 5 个方向类型和 1 个无方向类型；

式中，为颜色码字 k 出现在图像 d 中的频率；为颜色码字 k 出现在待检索图像 q 中的频率；为空间频率。

图像分成 $2 \times 2, 4 \times 4$ 或 8×8 大小的子块。

本发明具有的有益效果：

本发明将图像分成 $N \times N$ 大小的子块，计算子块的颜色和方向特征；利用颜色特征对图像进行检索，并将颜色特征所在子块的方向特征作为颜色特征的权值。本发明在层上融合了颜色和方向特征，经实验表明，本发明能够获得更佳的图像检索效果。

附图说明

图 1 是 4×4 大小分块两种方向模式的检索效果图；

图 2 是 8×8 大小分块三种方向模式的检索效果图；

图 3 是 $2 \times 2, 4 \times 4, 8 \times 8$ 大小分块的检索效果比较图；

图 4 是不同算法的查全 / 查准率曲线图。

具体实施方式

将图像分成 $N \times N$ 大小的子块（本实施例中将图像分为 $2 \times 2, 4 \times 4, 8 \times 8$ 大小的子块），计算每个子块的 RGB 颜色模式下平均颜色值，并将颜色值对应到生成的 128 大小的码字表中，子块颜色值与码表中颜色值最近的索引号就是子块的编码。

（2）利用边缘直方图方法，计算每个子块的方向性，并将得到的方向性对应到子块颜色属性所对应的编码之中。2 个子块只有 1 种方向模式，4 个子块有 2 种方向模式，8 个子块有 3 种方向模式，分别是 1、4、16 个方向属性。

相似性度量

在生成子块的颜色和纹理特征之后，将要对待检索图像和查询图像的特征进行相似性的度量。相似性度量采用矢量模型中的直方图模型。假设颜色码表 K 有 k_1, k_2, \ldots 共有 t 个码字，检索图像库为 $D = \{d_n\}$，包含 n 幅图像；为待检索图像，为颜色码字 k_i 出现在图像 d_n 中的频率；为颜色码字 k_i 出现在待检索图像 q 中的频率。相似性的度量定义如下：

$$S(q, d_n) = \frac{1}{1 + dis(q, d_n)}$$

$$dis(q, d_n) = \sum_{i=1}^{t} \frac{|w_{id} - w_{iq}|}{w_{id} + w_{iq}}$$

其中 $w_{id} - w_{iq}$ 只是具有相同颜色码字的子块在图像出现频率的比较，而一些子块具有相同颜色特性，但形状特性却有很大差别，因此将具有相同颜色子块的方向特性融入到距离函数之中，同时考虑了整幅图像的颜色和形状特性。

改进后的距离函数如下：
dis(q,d_n) = \sum_{i=1}^{r} \frac{S(q,d_n)}{1 + w_{id} \times w_{iq}}

其中

S(q,d_n) = \frac{|f_{id} - f_{iq}| + |f_{id} - f_{1q}| + \cdots + |f_{id} - f_{5q}|}{\max(f_{id}, f_{1d}, f_{0q}, f_{5d}, f_{5q})}

式中的 S(q,d_n) 为具有相同颜色子块的方向相似度，其中包含了五个方向类型和一个无方向类型。

3. 结果检测

为了验证本文提出的算法的检索性能，本实施例选取 SIMPLicity 采用的 Corel 图像库进行实验，选取了图像库中的 10 类图像，其中每类包含 100 幅图像，一共 1000 幅图像。

文中使用查准率（Precision）、查全率（recall）曲线来评价图像检索系统的检索性能。查全率和查准率的定义如下：

\[\text{recall} = \frac{a}{a+b} \]
\[\text{precision} = \frac{a}{a+c} \]

其中，a 代表正确检索出的相关图像，b 为检索出的非相关图像，c 表示未检索出来的相关图像。

对不同大小分块下的不同方向分块模式进行了实验。从图 1、图 2 可以看出，在提取子块的方向属性时，对方向属性的超像素划分越小，越能够充分的反应图像的纹理特征，检索效果越好。从图 3 可以看出，4×4 大小分块的检索效果最好。从图 4 中可以看出，本发明图像检索方法优于关键块检索方法和直方图检索方法。
图 3

图 4