用于催化剂注入的发泡喷嘴

摘要

本发明提供了一种喷嘴，其用于烯烃聚合所用的催化剂注入。在一个或多个实施例中，所述喷嘴包括第一管道，其包括主体、锥形部分、和注入末端。所述喷嘴还包括第二管道，其具有内表面和外表面。所述第一管道绕所述第二管道布置，以在其两者之间界定第一环形空间。所述喷嘴还包括支撑构件，其至少部分地绕所述第一管道的外表面布置，以在其两者之间界定第二环形空间。所述支撑构件在其第一端部处具有收缩的外表面。
1. 一种喷嘴，其中所述催化剂注入，所述喷嘴包括：第一管道，其包括主体、锥形部分、和注入末端；第二管道，其具有内表面和外表面，其中所述第一管道绕所述第二管道布置，以在其两者之间界定了第一环形空间；以及支撑构件，其至少部分地绕所述第一管道的外表面布置，以在其两者之间界定了第二环形空间，所述支撑构件在其第一端部处具有收缩的外表面。

2. 根据权利要求1所述的喷嘴，其中，所述第一管道的所述主体绕所述第二管道布置。

3. 根据权利要求1或2所述的喷嘴，其中，所述第一管道的所述注入末端的外表面收缩。

4. 根据权利要求1至3中任一项所述的喷嘴，其中，所述注入末端的内表面是恒定的。

5. 根据权利要求4所述的喷嘴，其中，所述注入末端的所述内表面界定了通过其的流路。

6. 根据权利要求1至5中任一项所述的喷嘴，其中，所述第一管道的过渡部分的内表面朝向所述注入末端收缩。

7. 根据权利要求1至6中任一项所述的喷嘴，其中，所述第一管道的所述主体的内表面是恒定的。

8. 根据权利要求1至7中任一项所述的喷嘴，其中，所述第二管道具有第一开口端部和第二封闭端部。

9. 根据权利要求1至8中任一项所述的喷嘴，其中，所述第二管道包括围绕其的径向和轴向间隔开的多个孔口。

10. 根据权利要求1至9中任一项所述的喷嘴，其中，所述第二管道包括绕所述第二管道螺旋地排列的第一列轴向间隔开的孔口。

11. 根据权利要求1至10中任一项所述的喷嘴，其中，所述第二管道包括第一列轴向间隔开的孔口和第二列轴向间隔开的孔口，其中每排都绕
所述第二管道螺旋地排列，使得在所述第一列和所述第二列中轴向对应的孔口径向地间隔开。

12. 根据权利要求 1 至 11 中任一项所述的喷嘴，其中，所述第一管道的至少一部分延伸超出所述支撑构件的所述收缩的外表面。

13. 根据权利要求 1 至 12 中任一项所述的喷嘴，其中，所述第一管道的所述锥形部分延伸超出所述支撑构件的所述收缩的外表面。

14. 根据权利要求 1 至 13 中任一项所述的喷嘴，其中，所述第一管道的所述注入末端延伸超出所述支撑构件的所述收缩的外表面。

15. 根据权利要求 8 所述的喷嘴，其中，所述第二管道的所述封闭端部延伸超出所述支撑构件的所述收缩的外表面。

16. 根据权利要求 1 至 15 中任一项所述的喷嘴，还包括布置在所述第二环形空间内的一个或多个径向间隔物。

17. 根据权利要求 16 所述的喷嘴，其中所述一个或多个径向间隔物包括绕所述支撑构件的内表面布置的三个或更多个等间隔分布的间隔物。

18. 一种喷嘴，其用于烯烃聚合所用的催化剂注入，所述喷嘴包括：

 第一管道，其包括主体、锥形部分、和注入末端；

 第二管道，其具有内表面和外表面，其中所述第一管道绕所述第二管道布置，以在两者之间界定了第一环形空间；以及

 支撑构件，其至少部分地绕所述第一管道的外表面布置，以在其两者之间界定了第二环形空间，所述支撑构件在其第一端部处具有收缩的外表面，

 其中所述第一管道和所述第二管道的至少一部分延伸超出所述支撑构件的收缩的所述外表面。

19. 根据权利要求 18 所述的喷嘴，其中，所述第一管道的所述主体绕所述第二管道布置。

20. 根据权利要求 18 或 19 所述的喷嘴，其中，所述第一管道的所述注入末端的外表面收缩。

21. 根据权利要求 20 所述的喷嘴，其中，所述注入末端的内表面是恒定的。
22. 根据权利要求 21 所述的喷嘴，其中，所述注入末端的所述内表面界定了通过其的流路。
23. 根据权利要求 18 至 22 中任一项所述的喷嘴，其中，所述第一管道的过渡部分的内表面朝向所述注入末端收缩。
24. 根据权利要求 18 至 23 中任一项所述的喷嘴，其中，所述第一管道的所述主体的内表面是恒定的。
25. 根据权利要求 18 至 24 中任一项所述的喷嘴，其中，所述第二管道具有第一开口端部和第二封闭端部。
26. 根据权利要求 18 至 25 中任一项所述的喷嘴，其中，所述第二管道包括围绕其的径向和轴向间隔开的多个孔口。
27. 根据权利要求 18 至 26 中任一项所述的喷嘴，其中，所述第二管道包括绕所述第二管道螺旋地排列的第一列轴向间隔开的孔口。
28. 根据权利要求 18 至 27 中任一项所述的喷嘴，其中，所述第二管道包括第一列轴向间隔开的孔口和第二列轴向间隔开的孔口，其中每排都绕所述第二管道螺旋地排列，使得在所述第一列和所述第二列中轴向对应的孔口径向间隔开。
29. 根据权利要求 18 至 28 中任一项所述的喷嘴，其中，所述第一管道的所述锥形部分延伸超出所述支撑构件的所述收缩的外表面。
30. 根据权利要求 18 至 29 中任一项所述的喷嘴，其中，所述第一管道的所述注入末端延伸超出所述支撑构件的所述收缩的外表面。
31. 根据权利要求 25 所述的喷嘴，其中，所述第二管道的所述封闭端部延伸超出所述支撑构件的所述收缩的外表面。
32. 根据权利要求 18 至 31 中任一项所述的喷嘴，还包括布置在所述第二环形空间内的一个或多个径向间隔物。
33. 根据权利要求 32 所述的喷嘴，其中所述一个或多个径向间隔物包括绕所述支撑构件的内表面布置的三个或更多个等间隔分布的间隔物。
34. 一种用于将催化剂注入到气相聚合反应器中的方法，包括：
向反应器提供一个或多个喷嘴，至少一个喷嘴包括：
第一管道，其包括主体、锥形部分，和注入末端；
第二管道，其具有内表面和外表面，其中所述第一管道绕所述第二管道布置，以在其两者之间界定了第一环形空间；以及
支撑构件，其至少部分地绕所述第一管道的外表面布置，以在其两者之间界定了第二环形空间，所述支撑构件在其第一端部处具有收缩的外表面；
使催化剂浆料流动通过所述第一环形空间并进入所述反应器；
使一种或多种单体流动通过所述第二环形空间并进入所述反应器；并且
使一种或多种惰性气体通过所述第二管道的环形空间流入所述第一环形空间并流入所述反应器。
35. 根据权利要求 34 所述的方法，其中，所述催化剂浆料包括一种或多种催化剂颗粒以及一种或多种液体。
36. 根据权利要求 34 或 35 所述的方法，其中，所述催化剂浆料包括选自齐格勒-纳塔催化剂、锆基催化剂、茂金属催化剂、含 15 族元素的催化剂、双金属催化剂和混合催化剂的一种或多种催化剂成分。
37. 根据权利要求 34 至 36 中任一项所述的方法，其中，所述催化剂浆料包括一种或多种含 15 族元素的催化剂。
38. 根据权利要求 34 至 37 中任一项所述的方法，其中，所述催化剂浆料包括选自 4 族亚氨基-苯酚复合物、4 族二(氨基)复合物和 4 族吲哒基-氨基复合物的一种或多种催化剂成分。
39. 根据权利要求 34 至 38 中任一项所述的方法，其中，所述一种或多种单体通过所述第二环形空间的流率为约 455kg/hr 到约 2,273kg/hr。
40. 根据权利要求 34 至 39 中任一项所述的方法，其中，所述催化剂浆料通过所述第一环形空间的流率为约 1.4kg/hr 到约 14kg/hr。
41. 根据权利要求 34 至 40 中任一项所述的方法，还包括将所述一种或多种惰性气体和所述催化剂浆料在所述第一环形空间内混合。
42. 根据权利要求 34 至 41 中任一项所述的方法，还包括使所述一种或多种惰性气体和所述催化剂浆料通过所述第一管道的所述注入末端流动到所述反应器中。
43. 根据权利要求 34 至 42 中任一项所述的方法，还包括随着所述一种或多种单体通过所述第二环形空间的的流动，使所述一种或多种惰性气体和所述催化剂浆料的混合物在所述反应器中雾化。
用于催化剂注入的发泡喷嘴

相关申请的交叉引用

本申请要求享受于 2006 年 10 月 3 日递交的申请序列号 60/848,910 的优先权，其全文通过引用而被包含于此。

技术领域

本发明的实施例一般地涉及用于催化剂注入的喷嘴及其使用方法。更具体而言，本发明的实施例涉及在聚烯烃生产中使用的用于催化剂注入的发泡喷嘴及其制造方法。

背景技术

在气相聚合中使用的液体催化剂提供了优于传统固体担载的催化剂的许多优点。例如，液体催化剂需要较少的设备和原料来生产。液体催化剂还对最终聚合物产物带来更少的杂质。此外，液体催化剂的活性不会受到担载材料的表面面积的影响。美国专利第 5,317,036 号公开了对于用于气相聚合的液体催化剂的使用的更多细节。其他背景文献包括 GB 618674A。

无论催化剂类型如何，烯烃聚合，尤其是气相聚合，依赖于均匀并可重复地将催化剂注入到化学反应中。催化剂应该均匀地分散于整个反应材料中以促进均匀的聚合。催化剂在反应器内的有效分散避免结垢并促进聚合物产品的均匀、稳定的生产。

但是，将液体催化剂注入到反应器系统产生了一些挑战。例如，液体催化剂通常可溶解于反应介质，并可以沉积于在反应器中形成的树脂或聚合物上，加速了床的颗粒表面上的聚合。随着被涂覆的树脂颗粒尺寸增大，颗粒由于增大的横截面尺寸而暴露于更多的催化剂溶液或喷雾的成分。如果太多催化剂沉积在聚合物颗粒上，则聚合物颗粒可以快速地生长
以致于可能不能流态化，导致反应器停止运行。

此外，在向反应器注入液体催化剂时，初始聚合速率可能较高，使得新形成的聚合物或树脂颗粒软化或熔化。这样软化或熔化的聚合物可以彼此粘附而在流化床上形成更大的颗粒。这些较大的颗粒不能被流态化并/或可以堵塞反应器，从而需要将反应器停止运行。相反，如果聚合物颗粒尺寸太小，则可以发生夹带。被夹带的颗粒可以污染循环管线、压缩机和冷却器。被夹带的颗粒还可以增大静电，其可以引起反应器的结片。结片要求反应器停止运行以将其去除。

已经提出了用于将液体催化剂注入到反应器系统中的各种喷嘴。美国专利第 4,163,040 号公开了一种催化剂喷洒喷嘴，其利用偏压阀构件来控制催化剂流。例如，美国专利第 5,693,727 号公开了一种催化剂喷洒喷嘴，其利用绕注入管中心的遮蔽体。美国专利第 5,962,606 号和第 6,075,101 号公开了一种垂直催化剂喷洒喷嘴和一种发泡催化剂喷洒喷嘴。美国专利第 6,211,310 号和第 6,500,905 号公开了一种催化剂喷洒喷嘴，其具有中心管以使清洁气体和偏流气体与催化剂一起流动。

其他背景文献包括 WO 98/37101、WO 98/37102 和 EP 0 844 020A。

应该改善这样的喷嘴设计以解决上述聚合物生长加速以及颗粒在喷嘴本身上生长和蓄积的问题。这样的颗粒生长和蓄积可以堵塞喷嘴，降低了催化剂注入速率（如果没有将注入完全阻断的话）。结果，催化剂注入和分散变得不可预测且不稳定，导致结垢的反应器和偏离规格的产品。

此外，新开发的具有较高催化活性的催化剂也带来了许多新的挑战。这些新的催化剂通常具有高动力学特性并被分散在反应器床中之前聚合。因此，这些高活性的催化剂甚至更易于产生不期望的结块和结垢。

因此，存在对于能够均匀并可重复地将液体催化剂输送至反应器系统的注入喷嘴的需求。还存在对于均匀地将液体催化剂输送至反应器系统的聚合方法的需求。此外，还存在对于用于使用液体催化剂并能够控制聚合物生长和颗粒尺寸的聚合方法的需求。

发明内容
本发明提供了一种喷嘴，其用于烯烃聚合的催化剂注入。在一个或多个实施例中，所述喷嘴包括第一管道，其包括主体、锥形部分、和注入末端。所述喷嘴还包括第二管道，其具有内表面和外表面。所述第一管道绕所述第二管道布置，以在其两者之间界定了第一环形空间。所述喷嘴还包括支撑构件，其至少部分地绕所述第一管道的外表面布置，以在其两者之间界定了第二环形空间。所述支撑构件在其第一端部处具有收缩的外表面。

在另一个具体实施例中，喷嘴包括：第一管道，其包括主体、锥形部分、和注入末端；第二管道，其具有内表面和外表面，其中所述第一管道绕所述第二管道布置，以在其两者之间界定了第一环形空间；以及支撑构件，其至少部分地绕所述第一管道的外表面布置，以在其两者之间界定了第二环形空间，所述支撑构件在其第一端部处具有收缩的外表面。所述第一管道和所述第二管道的至少一部分延伸超出所述支撑构件的收缩的所述外表面。

本发明还提供了一种用于将催化剂注入到气相聚合反应器中的方法。在至少一个实施例中，所述方法包括：向反应器提供喷嘴。所述喷嘴包括：第一管道，其包括主体、锥形部分、和注入末端；第二管道，其具有内表面和外表面，其中所述第一管道绕所述第二管道布置，以在其两者之间界定了第一环形空间；以及支撑构件，其至少部分地绕所述第一管道的外表面布置，以在其两者之间界定了第二环形空间，所述支撑构件在其第一端部处具有收缩的外表面。所述方法还包括使催化剂浆料流动通过所述第一环形空间并进入所述反应器；使一种或多种单体流动通过所述第二环形空间并进入所述反应器；并且使一种或多种惰性气体通过所述第二管道的环形空间流入所述第一环形空间并流入所述反应器。

附图说明

为了能够详细理解本发明的上述特征，可以通过参考实施例对以上摘要说明的本发明进行更具体描述，实施例中的一些在附图中图示。但是，应该注意，附图仅图示了本发明的典型实施例，因此不应被视为对其范围
的限制, 因为本发明可以具有其他等同效果的实施例。

图 1 显示了根据所述的一个或多个实施例的注入喷嘴的示意图。
图 1A 显示了如图 1 所示的注入喷嘴的放大示意图。
图 2 显示了沿着图 1A 的线 2-2 所取的剖视图。
图 3 显示示例性第二管道 140 的示意图。
图 4 显示了沿着图 3 的线 4-4 所取的第二管道 140 的剖视图。
图 5 显示示例性第一管道的局部放大示意图。
图 6 显示示例性气相系统的流路图。

具体实施方式

现在将提供详细说明。各个所附权利要求都界定了单独的一项发明，它们对于侵权目的而言视为包括与权利要求中指明的各种元件或限定的等同物。取决于上下文，以下对“本发明”的引用在一些情况下仅指特定具体实施例。在其他情况下，应认识到，对“本发明”的引用表示在权利要求中的一个或多个（但不一定是全部）中涉及的主题。现在将在以下更详细说明本发明中的每个（包括具体实施例、版本和示例），但是本发明不限于这些实施例、版本或示例，其被包括以使得本领域的普通技术人员在将本专利与可获取的信息和技术结合的情况下能够实施和利用本发明。

图 1 描绘了根据所述的一个或多个实施例的注入喷嘴 100 的示意图。在一个或多个实施例中，喷嘴 100 包括第一管道 120、第二管道 140、以及支撑构件 150。第一管道 120、第二管道 140 和支撑构件 150 的横截面可以是任意形状。例如，第一管道 120、第二管道 140 和支撑构件 150 的各个横截面可以是圆形、方形、矩形、多边形、椭圆形、长圆形，这仅仅是列举了一些。优选地，第一管道 120、第二管道 140 和支撑构件 150 中的每一者是具有内径和外径的管状或环形构件。在一个或多个实施例中，第一管道 120、第二管道 140 和支撑构件 150 是同心的。

在一个或多个实施例中，第一管道 120 围绕第二管道 140 的外表面（即，外径），并且支撑构件 150 至少部分地围绕第一管道 120 的外径。因此，第一管道 120 和第二管道 140 两者都至少部分地被支撑构件 150 围
绕。

图 1A 描绘了如图 1 所示的注入喷嘴 100 的放大示意图。参考图 1 和图 1A，第一管道 120（即“外管道”）是围绕第二管道 140（即，“内管道”）的外表面的管道，这在第一管道 120 与第二管道 140 之间界定了环形空间或区域（“第一环形空间”）185。第一管道 120、第二管道 140 和环形空间 185 至少部分地布置在支撑构件 150 内。第一管道 120 的外表面（优选地，外径）和支撑构件 150 的内表面（优选地，内径）在其两者之间界定了环形空间或区域（“第二环形空间”）190。

一个或多个间隔物 160 可以绕支撑构件 150 的内表面（即，内径）或第一管道 120 的外表面（即，外径）布置。优选地，一个或多个间隔物 160 安装到第一管道 120 的外表面。一个或多个间隔物 160 将第一管道 120 伸入在环形空间 190 内。可以使用任意数量的间隔物 160。每个间隔物 160 优选地尽可能薄以避免阻挡或阻碍环形空间 190 内的流路，并由具有足够强度的材料构成以在喷嘴 100 的工作期间维持第一管道 120 与支撑构件 150 之间的固定距离。合适的材料包括例如铝和不锈钢。在一个或多个实施例中，间隔物 160 具有约 10:1 或 20:1 或 30:1 或 40:1 或 50:1 的长度与厚度比。

图 2 描绘了沿着图 1A 的线 2-2 所取的剖视图。在由支撑构件 150 和第一管道 120 界定的环形空间 190 内示出了三个间隔物 160A、160B、160C。优选地，间隔物 160A、160B、160C 绕第一管道 120 的外径等间隔分布。但是，可以使用任意径向构造和间隔。

再参考图 1A，间隔物 160A、160B、160C 可以位于距喷嘴 100 的末端约 0.5 英寸（1.27cm）、约 1 英寸（2.54cm）、约 1.5 英寸（3.81cm）、约 2 英寸（5.08cm）、或约 3 英寸（7.62cm）的位置。在一个或多个实施例中，间隔物 160A、160B、160C 位于距喷嘴 100 的末端约 0.5 英寸（1.27cm）与约 1 英寸（2.54cm）之间的位置。例如，间隔物 160A、160B、160C 可以位于距喷嘴 100 的末端约 1 又 5/8 英寸（4.1cm）的位置。在以上或本文其他部分所述的一个或多个实施例中，间隔物 160A、160B、160C 可以位于距喷嘴 100 的末端不同距离的位置。例如，每个间
隔物 160A、160B、160C 可以位于距喷嘴 100 的末端在从 0.5 英寸（1.27cm）到约 3 英寸（7.62cm）范围内的位置。

第二管道 140

图 3 描绘了如图 1 所示的第二管道 140 的示意图。在一个或多个实施例中，第二管道 140 具有封闭的第一端部 141 和开口的第二端部 142。第二端部 142 可用于接收一种或多种流体以流动经过第二管道 140 的环形空间 187（图 1）。第一端部 141 优选地被焊接封闭成为半球形末端。在第二管道是管状或环形的优选实施例中，第二管道 140 可以具有从约 1/16"（0.159cm）到 1/2"（1.27cm）（优选地从约 0.085"（0.2159cm）到约 1/4"（0.635cm））范围内的内径。

在一个或多个实施例中，第二管道 140 包括允许一种或多种流体流出第二管道 140 的多个穴、孔或孔口 145。可以绕第二管道 140 来设计并定位孔口 145，以提供将流经的流体稳定并均匀地分散到围绕其的环形空间 185 内。在一个或多个实施例中，形成在第二管道 140 中的孔口 145 的数量在从 1 到 1000 的范围内，优选地在从 10 到 100 的范围内，更优选地在从 10 到 20 的范围内。在一个或多个实施例中，每个孔口 145 具有从约 0.01cm、0.03cm 或 0.05cm 的小值到约 0.06cm、0.08cm 或 1.0cm 的大值的范围内的内径。

优选地，孔口 145 关于第二管道 140 的直径等间隔分布。在至少一个特定实施例中，两列两个以上的孔口 145 关于第二管道 140 的直径沿轴向排列，不过可以根据流率和生产要求而使用任意列数，例如三列或四列。每列可以沿第二管道 140 的长度以螺旋图形排列。换言之，一列中的每个孔口 145 可以彼此径向且轴向地间隔开。

类似地，一列中的每个孔口 145 可以与另一列的孔口 145 径向偏离。例如，在如图 3 所示的两列排列中，第一列的孔口 145 优选地与第二列的轴向对应孔口 145 偏离约 90 度到 180 度。在三列排列中，轴向对应孔口 145 优选地彼此偏离 120 度，不过也可以使用任意的间隔度。

图 4 描绘了沿着图 3 的线 4-4 所取的第二管道 140 的剖视图。图 4 描
绘了第一列中的孔口145A与第二列中的孔口145B的示例性径向间隔。第一列的孔口145A示出为与第二列的孔口145B偏离约90度。但是，可以使用任意间隔度。例如，不同列中的孔口可以径向间隔约5度到约180度之间，优选地约10度到约160度之间，更优选地约20度到约100度之间，并更优选地约60度到约90度之间。

参考图3和图4，每个孔口145可以彼此独立地被制成一定的形状和尺寸。在一个或多个实施例中，任意给定的孔口145的形状可以是圆形、曲线形、长圆形、椭圆形、方形、矩形或任意其他多边形。例如，在给定螺旋列中的孔口145可以是包括圆形、曲线形、长圆形、椭圆形、方形、矩形或任意其他多边形中的两个以上形状的任意组合。类似地，偏离的各列中的孔口145A、145B可以具有相同的形状组合。

在一个或多个实施例中，在给定列中的孔口145具有相同的形状和尺寸。在一个或多个实施例中，在给定列中的孔口145具有不同的形状和尺寸。在一个或多个实施例中，在给定列中的孔口145具有与一个或多个不同列中的孔口145相同的形状和尺寸。在一个或多个实施例中，在给定列中的孔口145具有与一个或多个不同列的孔口145不同的形状和尺寸。

第二管道140的钻有孔的部分在长度上可以在从约0.5到25cm的范围内，不过孔优选地存在于第二管道140的最末的（即距离第一端141的约1到2cm内。

第二管道140可以相对于第一管道120定位成使得第一端部141位于距离第一管道120的末端121（“喷酒点”）小于约3"（7.6cm）的距离处。在一个或更多实施例中，第二管道140的第一端部141位于距第一管道120的末端121约0.5英寸（1.27cm）到约3英寸（7.62cm）的位置。在一个或多个实施例中，第二管道140的第一端部141位于距第一管道120的末端121约0.5英寸（1.27cm）到约1.5英寸（3.81cm）的位置。在一个或多个实施例中，第二管道140的第一端部141位于距第一管道120的末端121约0.5英寸（1.27cm）到约1英寸（2.54cm）的位置。

第一管道120
更具体地观察第一管道 120，图 5 描绘了第一管道 120 的放大局部示意图。第一管道 120 可以包括主体 122、过渡部分 126、以及第一端部或末端部分 127。主体 122 具有界定了通过其的通路或环形空间 185 的内表面或内径 122A。内表面或内径 122A 从第一管道 120 的第二端部 120B 到过渡部分 126 相对恒定。过渡部分 126 的内表面或内径 126A 也界定了通过其的通路或环形空间，并逐渐减小或收缩（即，缩锥）到末端部分 127 的内表面或内径 128。末端部分 127 的内表面或内径 128 也界定了通过其的通路或环形空间，并沿着末端部分 127 的长度相对恒定。

内表面或内径 122A 的至少一部分和内表面或内径 126A 的至少一部分在其中界定了混合区域 180。混合区域 180 的长度取决于工艺要求，并可以由第二管道 140 的长度和相对于第一管道 120 的收缩内表面或内径 126A 的间隔来控制混合区域 180 的长度。

在第一管道 120 是管状或环形的优选实施例中，内径 126A 的斜率可以基于催化剂注入的流率和工艺要求来改变。在一个或多个实施例中，过渡部分 126 的内径 126A 的斜率 (y/x) 在从约 2:1、3:1 或 5:1 的低值到约 7:1、10:1 或 20:1 的高值的范围内。

在工作中，从喷嘴 100 出来的一种或多种流体的湍流产生了回流，其可以将催化剂沉积在第一管道 120 的外径上。这样的沉积可以随后经历聚合，并污染喷嘴 100。因此，末端部分 127 的外表面或外径 124 向末端 121（“喷嘴点”）变细或收缩。合适的锥角在从约 4°、5°或 6°的低值到约 10°、15°或 20°的高值的范围内。在朝向水平的缩锥是逐渐的情况下，可以接受更高的锥角。优选地，锥角在从约 5°到约 10°的范围内。在一个或多个实施例中，锥角为约 7°。

末端部分 127 可以具有各种横截面构造，包括但不限于圆形、椭圆形、长圆形、方形、矩形、多边形或抛物形。末端部分 127 的外表面或外径 124 的斜率可以根据工艺要求和催化剂注入的流率而改变。在一个或多个实施例中，外径 124 的斜率 (y/x) 在从约 2:1、3:1 或 5:1 的低值到约 7:1、10:1 或 20:1 的高值的范围内。

小的末端 121 可以通过对于催化剂和聚合物蓄积提供更小的表面区域
来帮助防止结垢。优选地，末端部分 127 具有在 0.01 英寸（2.54mm）与 0.062 英寸（1.57mm）之间的环形厚度，以在维持合适强度的同时最小化结垢。

第一管道 120 可以具有从约 0.125 英寸（0.318cm）到约 3 英寸（7.62cm）的范围内的直径。在一个或多个实施例中，第一管道 120 可以具有从约 0.125 英寸（0.318cm）到约 1.5 英寸（3.81cm）范围内的内径。在一个或多个实施例中，第一管道 120 可以具有从约 0.125 英寸（0.318cm）到约 0.5 英寸（1.27cm）范围内的内径。

在一个或多个实施例中，第一管道 120 位于支撑构件 150 内，使得第一管道 120 的末端 121 从支撑构件 150 的端部延伸出约 1"（2.5cm）。在一个或多个实施例中，第一管道 120 的末端 121 从支撑构件 150 的端部延伸出约 1 英寸到约 3 英寸。在一个或多个实施例中，第一管道 120 的末端 121 从支撑构件 150 的端部延伸出约 1.5 英寸，并在其他实施例中延伸出约 0.5 英寸到约 2 英寸以上。

如前所述，第一管道 120 可以定位成使得第一管道 120 的末端 121 从第二管道 140 的第一端部 141 延伸出约 3"（7.6cm）以下。在一个或多个实施例中，第一管道 120 的末端 121 从第二管道 140 的第一端部 141 延伸出约 0.5 英寸（1.27cm）到约 3 英寸（7.62cm）。在一个或多个实施例中，第一管道 120 的末端 121 从第二管道 140 的第一端部 141 延伸出约 0.5 英寸（1.27cm）到约 1.5 英寸（3.81cm）。在一个或多个实施例中，第一管道 120 的末端 121 从第二管道 140 的第一端部 141 延伸出约 0.5 英寸（1.27cm）到约 1 英寸（2.54cm）。

支撑构件 150

再参考图 1，支撑构件 150 可以包括具有凸缘部分 152 的第一端部。支撑构件 150 还可以包括第二端部，所述第二端部开口以允许流体流动通过。在一个或多个实施例中，支撑构件 150 紧固到反应器壁 110。优选地，支撑构件 150 紧固到反应器壁 110。在一个或多个实施例中，如图所示，凸缘部分 152 可以适于匹配或抵靠反应器壁 110 的凸缘部分 105。可
以使用任意其他常规的用于紧固或固定管道或管路的方式。

在优选实施例中，支撑构件 150 是管状或环形构件。支撑构件 150 优选地具有大到足以围绕第一管道 120 的内径。在一个或多个实施例中，支撑构件 150 的的内径为约 0.5 英寸（1.27cm）、约 0.625 英寸（1.59cm）或约 0.75 英寸（1.91cm）。在一个或多个实施例中，支撑构件 150 的内径在从约 0.5 英寸（1.27cm）的低值到约 0.75 英寸（1.91cm）的高值的范围内。在一个或多个实施例中，支撑构件 150 的内径在从约 0.625 英寸（1.59cm）的低值到约 0.625 英寸（1.59cm）的高值的范围内。在一个或多个实施例中，支撑构件 150 的内径在从约 0.625 英寸（1.59cm）的低值到约 0.75 英寸（1.91cm）的高值的范围内。

在一个或多个实施例中，支撑构件 150 的至少一部分具有如图 1A 所示的逐渐减小的外径 151。支撑构件 150 的第二端部（“开口端部”）优选地成锥形以减小支撑构件 150 的末端处的壁厚。如前所述第一管道 120 的末端 121 所述，使支撑构件 150 的末端处的区域最小化有助于防止结垢。可以由于聚合物在喷嘴 100 上的结块引起结垢。

供料管线

参考图 1 和图 1A，注入喷嘴 100 与一个或多个（图 1 中示出了三个）供料管线 120A、140A、150A 流体连接。每个供料管线 120A、140A、150A 提供了用于一种或多种单体、吹洗气体以及催化剂和/或催化剂体系到管道 120、140、150 中的任一者或多者的独立流路。例如供料管线（“第一供料管线”）120A 可以与由第一管道 120 的内表面和第二管道 140 的外表面界定的环形空间 185 流体连接。在以上或本文其他部分所述的一个或多个实施例中，供料管线（“第二供料管线”）140A 可以与第二管道 140 的外表面局部的环形空间 187 流体连接。在以上或本文其他部分所述的一个或多个实施例中，供料管线（“第三供料管线”）150A 可以与由支撑构件 150 的内表面和第一管道 120 的外表面界定的环形空间 190 流体连接。

一种或多种催化剂或催化剂体系、吹洗气体以及单体中的任一者可以
被注入到一个或多个供料管线 120A、140A、150A 中的任一者中。在以上或本文其他部分所述的一个或多个实施例中，一种或多种催化剂或催化剂体系可以利用第一供料管线 120A（“催化剂供料管线”）注入到第一管道 120 中。一种或多种吹洗气体或惰性气体可以利用第二供料管线 140A（“吹洗气体供料管线”）注入到第二管道 140 中。一种或多种单体可以利用第三供料管线 150A（“单体供料管线”）注入到支撑构件 150 中。供料管线 120A、140A 和 150A 可以是能够在其中运输流体的任意管道。合适的管道包括管路、柔性软管和管子。三通阀 115 可以用于引导并控制流体（即，催化剂浆料、吹洗气体和单体）向喷嘴 100 的流动。可以使用任意商业可获得的三通阀。

构成材料

除了间隔物 160 之外还描述的管道 120、140 和 150 中的任一者可以由任何在所选择的聚合条件下不反应的材料构成。合适的材料包括但不限于铝、铝铜、哈氏合金（Hastalloy）、铬镍铁合金（Inconel）、耐热镍铬铁合金（Incoloy）、蒙耐合金（monel）、碳化铬、碳化硼、铸铁、陶瓷、铜、镍、碳化硅、钽、钛、锆、碳化钨、以及某些聚合物复合材料。特别优选的是不锈钢。

喷嘴的操作

在工作时，催化剂浆料经由如图 1 所示的管线 120A 被引向喷嘴 100。催化剂浆料流动经过第一管道 120 与第二管道 140 之间的环形空间 185。催化剂浆料可以具有通过环形空间 185 的约 1 lb 每小时（lb/hr）（0.4 kg/hr）到约 50 lb/hr（23 kg/hr）的流率；或者约 3 lb/hr（1.4 kg/hr）到约 30 lb/hr（14 kg/hr）的流率；或者约 5 lb/hr（2.3 kg/hr）到约 10 lb/hr（4.5 kg/hr）的流率。优选地，催化剂浆料包含悬浮在一种或多种惰性液体中仅完全成型的催化剂颗粒。在一个或多个实施例中，催化剂颗粒至少部分地溶解在一种或多种惰性液体中。在一个或多个实施例中，催化剂颗粒基本上（如果不是完全）溶解在一种或多种惰性液体中。催化剂颗粒可以包括一
种或多种催化剂，催化剂体系或其组合。

合适的液体包括但不限于：非官能烃和脂肪烃，例如丁烷、异丁烷、乙烷、丙烷、戊烷、异戊烷、己烷、辛烷、癸烷、十二烷、十六烷、十八烷等；脂环烃，例如环戊烷、甲基环戊烷、环己烷、环辛烷、环癸烷、乙基环己烷等；芳烃，例如苯、甲苯、乙苯、丙苯、丁苯、二甲苯等；以及石油馏分，例如汽油、煤油、轻油等。类似地，也可以使用诸如二氯甲烷、氯苯等的卤代烃。对于“非官能”，其表示液体不包含诸如强极性基团那样能够使一种或多种催化剂成分的活性过渡金属位点失去活性的基团。

一个或多个惰性吹洗气体可以经由管线 140A 引向喷嘴 100。参考图 1A 和图 3，惰性吹洗气体流动经过第二管道 140 内的环形空间 187，并经由围绕第二管道 140 布置的一个或多个孔口 145 分散到环形空间 185 的至少一部分中。流出的惰性气体在环形空间 185 内与催化剂浆料接触时与催化剂浆料混合，并在混合区域 180 中进一步混合，然后进入注入末端 127（图 5 中示出）。

参考图 1A 和图 5，催化剂浆料和惰性吹洗气体流动通过注入末端 127，并经由末端 121 从喷嘴流出。催化剂浆料和惰性气体的混合物喷洒到支撑管道吹洗流中，并混合到聚物的流化床中。来自末端 121 的初始雾化和来自与支撑管流的相互作用产生的二次雾化的组合作用产生了良好的分散到流化床中的小液滴，从而减小了引入的催化剂颗粒的团聚。

因此，吹洗气体的流率应该足以从喷嘴的末端 121 输运精确喷洒的催化剂的混合物。在一个和多个实施例中，吹洗气体流率在约 1 lb/hr (0.4 kg/hr) 到约 20 lb/hr (9.1 kg/hr) 之间。在一个或多个实施例中，吹洗气体流率在约 3 lb/hr (1.3 kg/hr) 到约 15 lb/hr (6.8 kg/hr) 之间。在一个或多个实施例中，吹洗气体流率在从约 1 lb/hr (0.4 kg/hr)、2 lb/hr (0.8 kg/hr)、或 4 lb/hr (1.6 kg/hr) 的低值到约 8 lb/hr (3.2 kg/hr)、13 lb/hr (5.9 kg/hr) 或 20 lb/hr (9.1 kg/hr) 的高值之间。

所得的从喷嘴 100 出来的每液滴的催化剂颗粒数量优选地足够小，以防止或减少团块的形成。例如，所得的从喷嘴 100 出来的液滴尺寸优选地
大于约 30 微米并小于约 200 微米。在一个或多个实施例中，所得的从喷嘴 100 出来的液滴尺寸可以在从约 50 微米到约 150 微米的范围内。

再参考图 1 和图 1A，一个或多个单体流动通过界定在支撑管 150 与第一管道 120 之间的环形空间 190。一个或多个单体通过管线 150A 引向喷嘴 100。单体流通常第一管道 120 的外表面的催化剂蓄积和结垢，而保持催化剂注入区域的清洁并提供了稳定的操作。单体应该以足以扫掠第一管道 120 的外径的速率流动。如果单体流较慢，则可能在第一管道 120 的端部形成富含催化剂的聚合物块。这将降低催化剂的效率，其将表现为生产率的降低。示例性的流率可以是从 2,000 到 2,500 lb/hr。在所述喷嘴系统中在环形空间 190 中的新单体流的另一功能是其以减少或去除反应器中的聚合物团块的方式将催化剂分散到反应器中。

在一个或多个实施例中，单体流率在约 1,000 lb/hr 与约 5,000 lb/hr (455 kg/hr 到 2,273 kg/hr) 之间。在一个或多个实施例中，单体流率在约 2,000 lb/hr 与约 3,000 lb/hr (907 kg/hr 到 1,360 kg/hr) 之间。在一个或多个实施例中，单体流在从约 1,000 lb/hr (455 kg/hr)、1500 lb/hr (682 kg/hr) 或 2,000 lb/hr (907 kg/hr) 的低值到约 2,200 lb/hr (1,000 kg/hr)、2,500 lb/hr (1,136 kg/hr) 或 3,000 lb/hr (1,360 kg/hr) 的高值的范围内。

聚合

注入喷嘴 100 适用于任意聚合工艺。合适的聚合工艺包括溶液、气相、浆相和高压工艺，或其组合。优选的工艺是一种或多种烯烃（其中至少一种是乙烯或丙烯）的气相或浆相聚合。

图 6 描绘了用于制造聚烯烃的示例性气相系统的流路图。在一个或多个实施例中，系统 200 包括：与一个或多个排出罐 255（仅示出了一个）、缓冲罐 260（仅示出了一个）、循环压缩机 270（仅示出了一个）以及热交换器 275（仅示出了一个）流体连通的反应器 240。聚合系统 200 还可以包括串联、并联或与其他反应器彼此独立的方式布置的多于一个反应器 240，每个反应器都具有其自身相关的罐 255、260、压缩机 270、循环压缩机 270 以及热交换器 275，或可替换地，共用相关的罐 255、260、
压缩机 270、循环压缩机 270 以及热交换器 275 中的一个或多个。为了说明的简化和方便，将就单个反应器的内容说明本发明的实施例。

在一个或多个实施例中，反应器 240 可以包括与减速区域 250 流体连通的反应区 245。反应区 245 可以包括正在生长的聚合物颗粒、已形成的聚合物颗粒和催化剂颗粒的床，其被以补充供料和的循环流体的的形式经过反应区 245 的可聚合且可变的气体组分的连续流体系化。

供料流或补充流 210 可以在任意点引入到聚合系统。例如，供料流或补充流 210 可以被引入到反应区域 245 中的反应器流化床或被引入到膨胀区域 250，或被引导到循环流 215 内的任意点。优选地，供料流或补充流 210 在热交换器 275 之前或之后被引入到循环流 215。在图 6 中，供料流或补充流 210 被描绘为在冷却器 275 之后进入循环流 215。

如此处所用的术语“供料流”表示在聚合工艺中用于产生聚合物产物的气相或液相的原料。例如，供料流可以是任何烯烃单体，包括具有二至十二个碳原子的被取代或未被取代的烯烃，例如乙烯、丙烯、丁烯、戊烯、4-甲基-1-戊烯、已烯、辛烯、癸烯、1-十二烯、苯乙烯，及其衍生物。供料流还可以包括非烯烃气体，例如氮气和氢气。供料流可以在多个不同位置进入反应器。例如，单体能够以各种方式引入到聚合区域，这些方式包括直接通过喷嘴（图中未示出）进入到床中。供料流还可以包括可在聚合工艺中凝结以去除反应热的一种或多种非反应性烷烃。示例性的非反应性烷烃包括但不限于丙烷、丁烷、异丁烷、戊烷、异戊烷、己烷、及其异构体和衍生物。

流化床一般表现为随着气体穿流经过床而产生的大量密集的各自移动的颗粒。经过床的压降等于或略大于床的重量除以横截面积得到的值。这种因其依赖于反应器的几何形状。为了维持反应区域 245 中可实现的流化床，经过床的表观气体速率必须超过流体化所需的最低流率。优选地，表观气体速率至少是最低流动速率的两倍。通常，表观气体速率不超过 5.0ft/sec，并且通常 2.5ft/sec 以下就足够了。

一般来说，反应区域 245 的高度与直径的比例可以在从约 2:1 到约 5:1 的范围内改变。当然，该范围可以改变为更大或更小的比率，并取决于所
期望的生产能力。减速区域 250 的横截面面积通常在反应区域 245 的横截面面积乘以约 2 到约 3 的范围内。

减速区域 250 具有比反应区域 245 更大的内径。如其名称所表示的，减速区域 250 由于增大的横截面面积而使气体的速率减慢。气体速率的这种减慢允许在向上移动的气体中被带动的颗粒回落入床中，可以使得主要仅仅是气体经过循环气流 215 从反应器 240 上方排出。

循环气流 215 可以在压缩机/压缩器 270 中被压缩，接着经过热交换器 275，在热交换器 275 处，在循环气流返回到床之前将热量传走。热交换器 275 可以是水平式或竖直式的。如果期望，可以采用数个热交换器以分级的方式来降低循环气流的温度。还可以将压缩机布置在热交换器下游或布置在数个热交换器之间的中间点。在冷却之后，循环气流 215 返回到反应器 240。冷却后的循环气流吸收由聚合反应产生的热。

优选地，循环气流 215 返回到反应器 240，并通过气体分配板 280 返回到流化床。气体分配板 280 优选地安装在反应器的入口处，以防止所包含的聚合物沉降并团聚成为固体物质，并防止反应器底部处的液体积聚，便于在循环气流中包含液体的工艺与在循环气流中不包含液体的工艺之间（反之亦然）的容易转换。在美国专利第 4,933,415 和 6,627,713 中描述了适用于此目的的示例性导流板。

催化剂或催化剂体系优选地通过所述与流 230 流体连通的一个或多个注入喷嘴 100 被引入反应器 240 内的流化床。催化剂或催化剂体系优选地作为在一种或多种液体载体中的预先形成的颗粒（例如，催化剂浆料）来被引入。合适的液体载体包括矿物油和液体烃（包括但不限于丙烷、丁烷、异戊烷、己烷、庚烷和辛烷、或其混合物）。对于催化剂浆料而言是惰性的气体（例如，氮气或氩气）也可以用于将催化剂浆料运输到反应器 240 内。在一个或多个实施例中，催化剂或催化剂体系可以是干粉。在一个或多个实施例中，催化剂或催化剂体系可以溶解在液体载体中并作为溶液被引入反应器 240。

在给定的一组操作条件下，通过以颗粒聚合物产品的形成速率来取出床中的一部分作为产品，将流化床维持在基本恒定高度。因为热产生速率
正比如产品形成的速率，所以如果在入口流体中不存在或存在可忽略的可蒸发液体，则在恒定流体速率的情况下反应器两端的流体温度升高（入口流体温度与出口流体温度之间的差）的测量值指示颗粒聚合物形成的速率。

在从反应器 240 排出颗粒聚合物产品时，期望并优先的是，将流体与产品分离，并将流体返回到循环管线 215。在一个或多个实施例中，当流体和产品离开反应器 240 并通过阀 257 进入排出罐 255（示出了一个）时实现此分离，阀 257 可以是被设计为当打开时具有对流动的最小限制的球阀。位于产品排出罐 255 的上方和下方的是常规的阀 259、267。阀 267 允许产品经过以进入产品缓冲罐 260（仅示出了一个）。

在至少一个实施例中，为了从反应器 240 排出颗粒聚合物，阀 257 打开，而阀 259、267 处于关闭位置。产品和流体进入到产品排出罐 255。阀 257 关闭，并使得产品在产品排出罐 255 中沉降。接着，阀 259 打开，允许流体从产品排出罐 255 流动到反应器 240。接着，阀 259 关闭，且阀 267 打开，产品排出罐 255 中的任何产品都流入产品缓冲罐 260。然后，阀 267 关闭。接着，产品通过阀 264 从产品缓冲罐 260 排出。产品还可以经由吹洗流 263 进一步吹洗，以除去残留的烃并输送到造粒系统（pelletizing system）或储存器（未示出）。通过使用本领域公知的常规可编程控制器，来实现阀 257、259、267、265 的具体时序。

能够可替换地采用的另一种优选的产品排出系统是美国专利第 4,621,952 号中公开并要求保护的一种。这种系统采用至少一对（并联的）罐，包括串联布置的沉降罐和转移罐，并将分离的气相从沉降罐的顶部返回到反应器中位于流化床的顶部附近的点。

流化床反应器配备有合适的通风系统（未示出），以在起动和关闭期间对床进行通风。反应器不需要使用搅拌和/或壁的刮擦。循环管线 215 和其中的元件（压缩机 270、热交换器 275）应该是表面光滑的，并且不会不必要地阻塞，以不会阻挡循环流体或所夹带的颗粒的流动。

可以使用用于防止反应器的结垢和聚合物结块的各种技术。这些技术的示例是：如美国专利第 4,994,534 和 5,200,477 号所述，引入细分颗粒物
质以防止结块的技术；如美国专利第 4,803,251 所述，添加负电荷产生化学物质以平衡正电势或添加正电荷产生化学物质以中和负电势。也可以连续或间歇地添加抗静电物质，以防止静电荷产生或中和静电荷。还可以使用如美国专利第 4,543,399 和 4,588,790 号所公开的冷凝模式工作来帮助从流化床聚合反应器去除热。

用于聚合的条件根据单体、催化剂、催化剂体系以及设备可用性而改变。具体条件对于本领域的技术人员是公知或容易获取的。例如，温度在从约-10℃到约 120℃的范围内，通常在约 15℃到约 110℃的范围内。压力在约 0.1bar 到约 100bar 的范围内，例如约 5bar 到约 50bar。可以在美国专利第 6,627,713 号中找到关于聚合的额外细节，其中至少将其所公开的关于聚合的细节结合于此。

催化剂体系

催化剂体系可以包括齐格勒-纳塔催化剂（Ziegler-Natta catalysts）、铬基催化剂、茂金属催化剂和其他单活性中心催化剂（包括含 15 族元素催化剂）、双金属催化剂，以及混合催化剂。催化剂体系还可以包括 AlCl₃、钴、铁、钯、铬/氧化铬、或“菲利普”催化剂。任何催化剂均可以单独使用或与其他催化剂组合使用。在一个或多个实施例中，“混合”的催化剂是优选的。

术语“催化剂体系”包括至少一种“催化剂成分”和至少一种“活化石”（可替换地为至少一种助催化剂）。催化剂体系还可以包括其他成分（例如载体），并不限于单独或组合的催化剂成分和/或活化石。催化剂系统可以包括以根据期望的任意方式组合的任意数量的催化剂成分，以及以根据期望的任意方式组合的活化石。

术语“催化剂成分”包括一旦被合适地活化就能够对烯烃的聚合或低聚进行催化的任意成分。优选地，催化剂成分包括至少一个 3 族或 12 族原子，并可选地包括键合于其的至少一个离去基团。

术语“离去基团”表示键合于催化剂成分的金属中心的一个或多个化学基团，其可以由活化石从催化剂成分离去，从而产生对于烯烃聚合或低
聚的活性种。以下详细说明合适的活化剂。

术语“取代”表示该术语后跟着的基团具有替代任意位置中的一个或多个氢的至少一个基团，这些基团选自例如卤素基（例如，Cl、F、Br）、羟基、羰基、羧基、胺基、膦基、烷氧基、苯基、萘基、Cl 至 C10 烷基、C2 至 C10 烯烃基及其组合。被取代的烷基和芳基的示例包括但不限于酰基、烷氨基、烷氧基、芳氧基、烷基硫基、二烷氨基、烷氧羰基、芳氧羰基、氨基甲酰基、烷基和二烷氨基甲酰基、酰氧基、酰氨基、芳氨基、及其组合。

铬催化剂

合适的铬催化剂可以包括二取代铬酸酯，例如 CrO₂(OR)₂；其中 R 是三苯硅烷或叔聚脂环族烷基（tertiary polycyclic alkyl）。铬催化剂体系还可以包括 CrO₃、二茂铬（chromocene）、铬酸甲硅烷酯、二氯二氧化铬（CrO₂Cl₂）、铬-2-己酸乙酯（chromium-2-ethyl-hexanoate）、乙酰丙酮化铬（Cr(AcAc)₃）等。

茂金属

催化剂成分在一个实施例中被担载在载体材料上，并可以与其他催化剂成分一起被担载，或者不与其他催化剂成分一起被担载。

Cp 配体是单环或多环或环体系，其至少一部分包括 π 键体系，例如环二烯（cycloalkadienyl）配体和杂环配体。（一个或多个）环或（一个或多个）环系催化剂体系通常包括选自 13 族到 16 族原子的原子，或者构成 Cp 配体的原子选自碳、氮、氧、硅、硫、磷、锗、硼和铝及其组合，其中碳构成环部分的至少 50%。或者，一个或多个 Cp 配体选自被取代或未被取代的环戊二烯（cyclopentadienyl）配体和环戊二烯等键的配体，其非限制性的示例包括环戊二烯基、茚基、芴基和其他结构。这种配体的其他非限制性示例包括环戊二烯基、环戊菲基（cyclopentaphenanthrenyl）、茚基、苯并茚基、芴基、八氢芴基、环辛四烯基、环戊并环十二烯基（cyclopentacyclododecene）、菲基（phenanthridenyl）、3,4-苯并芴基（3,4-benzofluorenyl）、9-芴基（9-phenylfluorenyl）、8-H-环戊[a]茚烯基（8-H-cyclopent[a]acenaphthylrn））、7H-二苯并芴基（7H-dibenzofluorenyl）、谓并 [1,2-9] 蒽烯（indenol[1,2-9]anthrene）、噻吩并芴基（thiophenofluorenyl）、其氢化形式（例如，4,5,6,7-四氢化茚基，或 “H4Ind” ）、其被取代的形式，以及其杂环形式。

含 15 族元素的催化剂

活化剂

术语“活化剂”包括被担载或未被担载的任意化合物或化合物的组合，其能够例如通过由催化剂成分产生阳离子种来使单活性中心催化剂化合物（例如，茂金属、含15族元素的催化剂）活化。通常，这涉及从催化剂成分的金属中心减去至少一个离去基团（在以上化学式/结构中的X基团）。因此使用这种活化剂将所述实施例的催化剂成分对于烯烃聚合反应进行活化。这些活化剂的实施例包括诸如环化或低聚的聚合物（烃基铝氧烷）之类的路易斯酸和所谓非配位的活化剂（“NCA”）（或者，“电离活化剂”或“化学能量活化剂”），或者能够将中性茂金属催化剂成分转变为对于烯烃聚合反应而言活性的茂金属阳离子的任意其他成分。

如所述的，路易斯酸可以用于活化茂金属。示例性的路易斯酸包括但不限于铝氧烷（alumoxane，例如，“MAO”）、改性的铝氧烷（例如，“TIBAO”）、以及烷基铝化合物。还可以使用例如四(五氟苯基)硼酸三(n-丁基)铵之类的电离活化剂（中性或离子的）。此外，可使用三氟苯基硼酸金属前躯体。这些活化剂/前躯体中的任一者均可以单独使用或与其他成分组合使用。

齐格勒-纳塔催化剂

4,302,565；US 5,518,973；US 5,525,678；US 5,288,933；US 5,290,745；US 5,093,415 和 US 6,562,905 中公开。这些催化剂的示例包括 4、5 或 6 族过渡金属氧化物、氧化物和卤化物，或者钛、锆或钒的氧化物、氧化物和卤化物。可选地与镁化合物、内部或外部给电子体（乙醇、乙醚、硅氧烷等）、铝或硼烷和卤代烷及无机氧化物载体组合使用。

常规类型的过渡金属催化剂是本领域公知的那些传统的齐格勒-纳塔催化剂。常规类型的过渡金属催化剂在美国专利第 4,115,639、4,077,904、4,482,687、4,564,605、4,721,763、4,879,359 和 4,960,741 号中进行了讨论。可以使用的常规类型的过渡金属催化剂化合物包括元素周期表中从 3 族到 17 族、或从 3 族到 6 族的过渡金属化合物。

这些常规类型的过渡金属催化剂可以由分子式 MRx 表示，其中 M 是从 3 族到 17 族的金属，或者从 3 族到 6 族的金属，或者 4 族的金属，或者钛；R 是卤素或烃氧基团；并且 x 是金属 M 的化合价。R 的示例包括烷氧基、苯氧基、溴、氯和氟。在 M 是钛的情况下常规类型的过渡金属催化剂包括 TiCl4、TiBr4、Ti(OC2H5)3Cl、Ti(OC2H5)2Cl3、Ti(OCH3)2Cl2、Ti(OC2H5)2Br2、TiCl3·1/3AlCl3 以及 Ti(OCl2H23)Cl3。

基于镁/钛给电子体复合物的常规类型的过渡金属催化剂化合物在例如美国专利第 4,302,565 和 4,302,566 号中描述。也可以想到从 Mg/Ti/Cl/THF 得到的催化剂，其对本领域的普通技术人员是公知的。制备这种催化剂的通用方法的一个示例包括以下步骤：将 TiCl4 溶解在 THF 中，使用 Mg 将成分还原为 TiCl3，添加 MgCl2，以及去除溶剂。

用于以上传统类型的金属催化剂化合物的常规类型的催化剂化合物可以由分子式 M3M4vX2cR3b-c 表示，其中 M3 是元素周期表的从 1 族到 3 族和 12 族到 13 族的金属；M4 是元素周期表的 1 族的金属；v 是 0 到 1 的数值；每个 X2 是任意卤素；c 是从 0 到 3 的数值；每个 R3 是单价烃基团或氢；b 是从 1 到 4 的数值；并且其中 b 减 c 至少为 1。用于以上常规类型的过渡金属催化剂的其他常规类型的有机金属催化剂化合物具有 M3R3k 的分子式，其中 M3 是 IA、IIA、IIB 或 IIA 族金属，例如锂、钠、铍、钡、硼、铝、锌、镉和镓；k 取决于 M3 的化合价而等于 1、2 或 3，M3 的
化合价又接着通常取决于 M3 所属的特定族；并且每个 R3 可以是任意单价基团，包括烃基团和包含 13 到 16 族元素（例如氯、铝或氧，或其组合）的烃基团。

混合催化剂体系

混合催化剂可以是双金属催化剂组合物或多催化剂组合物。如本文所使用的，术语“双金属催化剂组合物”和“双金属催化剂”包括含有两种或更多种不同催化剂成分且每种催化剂成分都具有不同的金属基团的任意组合物、混合物或体系。术语“多催化剂组合物”和“多催化剂”包括含有两种或更多种不同催化剂成分但无论是否含有金属的任意组合物、混合物或体系。因此，除非另外注明，术语“双金属催化剂组合物”、“双金属催化剂”、“多催化剂组合物”和“多催化剂”将在本文统称为“混合催化剂”。在一个优选实施例中，混合催化剂包括至少一种茂金属催化剂成分和至少一种非茂金属成分。

已经使用一组数字上限和一组数字下限描述了某些实施例和特征。应该理解，除非另外指明的，其意在表示从任一下限到任一上限的范围。某些下限、上限和范围在一个或多个权利要求中出现。全部数值是所表示值的“大约”或“近似”，并且将本领域的普通技术人员能够预计的实验误差和波动考虑在内。

以上界定了各种术语。对于权利要求中使用的以上未定义的术语，应该赋予已经由本领域的技术人员如在至少一个已印刷的公开或授权专利中所反映的那样所赋予该术语的最宽定义。此外，全部专利、测试过程、以及本申请涉及的其他文献均在该公开不会与此申请不一致的程度上并在允许结合的权限内被完整地结合于此。

虽然前文针对本发明的实施例，但是在不偏离本发明的基本范围的情况下可构思本发明的其他和进一步的实施例，并且本发明的范围由所附权利要求确定。