(12) STANDARD PATENT (11) Application No. AU 2004279205 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(74)

(56)

Title
System and method for the presentation of items stored on a computer

International Patent Classification(s)

GOG6F 7/00 (2006.01) GOG6F 9/00 (2006.01)

GOG6F 1/00 (2006.01) GO6F 13/00 (2006.01)

GOG6F 3/00 (2006.01) GOG6F 17/00 (2006.01)

GOG6F 3/14 (2006.01) GOG6F 17/30 (2006.01)

Application No: 2004279205 (22) Date of Filing: 2004.07.30

WIPO No: WO05/045585

Priority Data

Number (32) Date (33) Country
10/691,886 2003.10.23 us
Publication Date: 2005.06.23

Publication Journal Date: 2005.06.23
Accepted Journal Date: 2010.02.18

Applicant(s)
Microsoft Corporation

Inventor(s)
Sierra, Giampiero;De Vorchik, David George;Guzak, Chris J.;Karatal, Kerem B.;McKee,
Timothy P.;Peterson, Leonard J.;Sheldon, David Joel;Moore, Jason Fergus

Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

Related Art

US 5345550 A1

Noworryz Explaining the Finder's View Options and Toolbar Visibility, 7 March 2003,
pages1-18,30-35,41.(http://www.macosxhints.com/article.php?story=20030305025744788)

woO 2005/045585 A2 |10 000 0 000 T O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

19 May 2005 (19.05.2005) PCT

(10) International Publication Number

WO 2005/045585 A2

(51) International Patent Classification’: GO6F

(21) International Application Number:
PCT/US2004/024630

(22) International Filing Date: 30 July 2004 (30.07.2004)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
10/691,886 23 October 2003 (23.10.2003) US

(71) Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors: MCKEE, Timothy, P.; 165-35th Avenue
East, Seattle, WA 98112 (US). DE VORCHIK, David,
George; 414 West Newell Street, Seattle, WA 98119 (US).
SHELDON, David, Joel; 2319 First Avenue #302, Seattle,
WA 98121 (US). GUZAK, Chris, J.; 8363 N.E. Juanita
Drive, Kirkland, WA 98034 (US). MOORE, Jason, Fer-
gus; 77643 139th Place NE, Redmond, WA 98052 (US).

(74)

(81)

(34)

KARATAL, Kerem, B.; 11251 SE 30th Street, Bellevue,
WA 98004 (US). SIERRA, Giampiero; 1808-A 14th
Avenue, Seattle, WA 98122 (US). PETERSON, Leonard,
J.; 19512 NE 129th Way, Woodinville, WA 98072 (US).

Agents: LUJIN, Patrick, A. et al.; Shook, Hardy & Bacon
L.L.P,, 2555 Grand Blvd., Kansas City, MO 64108-2613
US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR THE PRESENTATION OF ITEMS STORED ON A COMPUTER

(57) Abstract: A system and method for

; presenting a plurality of items of multiple
types to a user. A universal data store

ITEM VIEW SCHEMA 802
SHELL VIEW SCHEMA 804
TASKS 806
PREVIEW PANE 808
COLUMNS 810
DECORATIONS 812
USER VIEW SETTINGS
814

is provided which contains a plurality
of items. A portion of the items contain
metadata stored in accordance with an
item decoration schema. A shell presents
items with corresponding metadata with
an item decoration view and items without
the metadata with a default display view.
A shell display view is utilized to display a
set of heterogeneous items and an explorer
display view is provided to display items.

800 _—

WO 2005/045585 A2 | NI 0A 00 00000 O O

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — without international search report and to be republished
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, upon receipt of that report

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

08 Jan 2010

2004279205

10

15

20

25

30

CANRPonbADCC'TXB\2584176_1.DOC - 8/1/10

-1-

SYSTEM AND METHOD FOR THE PRESENTATION OF ITEMS STORED ON A
COMPUTER

TECHNICAL FIELD
Embodiments relate generally to the field of computer software. More particularly,
embodiments relate to a system and method for displaying items stored on a computer to a

user.

BACKGROUND

Providing users of computers with the ability to quickly find and display a piece of
information, no matter what the information’s format or location, is a challenge that the
computer industry has struggled with for many years. Today this problem is more salient
then ever as increasing numbers of individuals utilize computers in their daily routines and
as the types of information stored on a computer continues to diversify.

Traditionally, as in Microsoft Corporation’s WINDOWS® 98"™, this stored
information is kept within a data store on the computer in a hierarchical fashion organized
with files of information or media stored within folders. While this method of data storage
has been widely used for many years, it is limited in that some data resides outside of the
file hierarchy and users are constrained to format and locational limitations when searching
for desired pieces of information. Accordingly, providers of computer software are
currently working on data storage alternatives to the traditional file hierarchy.

An example of such a data storage alternative is disclosed in the commonly owned,
co-pending application “SYSTEM AND METHODS FOR REPRESENTING UNITS OF
INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE
SYSTEM BUT INDEPENDENT OF PHYSICAL REPRESENTATION”, U.S. Patent
Application No. 10/ 647,058. This co-pending application was filed on August 21, 2003
and discloses a data store that unifies storage into a single database. This database is the
one place where all the data is stored; there is only one way to represent data to the
database and only one way to query for data. By replacing antiquated file systems with

this modern database technology,

WO 2005/045585 PCT/US2004/024630

-2-
the data store will be easily searchable, more reliable, more accessible, and more
resilient.

Once this unified data store is in place, there becomes a need to
provide users with the appropriate tools and capabilities to interact with the

5 stored data. Conventional operating systems, such as Microsoft Corporation’s
WINDOWS® 2000™ include a shell utility that provides a user interface for
viewing various information about the computer. The shell typically includes a
file system browser which enables users to navigate through the file system and
locate and open files and folders. For example, Microsoft Corporation’s

10 WINDOWS® EXPLORER™ is a file system browser utility included with
WINDOWS® 2000™.

The shell also enables users to view non-file items such as printers
or fonts. This navigation is possible because a typical shell is programmed with
the specific functionality to display these special items as if they were located in

15 the file system. For example, in WINDOWS® ZOOOTM, a user may open a
“Printers” folder located within the Settings option on the Start Menu. Because
printers are pieces of hardware and not files, this graphical representation of the
printers is accomplished through utilization of custom code directed at displaying
the printers as if they were files residing in the “Printers” folder. However, the

20 use of custom code and custom drawing exceptions is complex for developers to
implement, can be unreliable, and reduces the resiliency of the shell browser.
Furthermore, if no custom code or custom drawing exceptions are in place for a
type of data, the shell will be unable to display items of that type. Accordingly,
conventional shells are limited in capabilities and in flexibility when displaying

25 certain items to a user.

Another limitation of conventional shell browsers is a restricted
ability to display items in a relational manner. Typically a shell browser is
operable to display items only in the hierarchical fashion in which they are stored
- organized within files stored within folders. For example, if a user desires to

30 view all the picture files stored on a computer, that user must first place all such
picture files in the same folder. Because the shell has limited capacity to
determine relationships between items, it is difficult for a user to view files in a

relationship driven context.

WO 2005/045585 PCT/US2004/024630

-3-

Furthermore, conventional shell browsers are limited in their
ability to display sets of items within a contextually tailored environment that
pairs pertinent information and tasks with the set of displayed items. Developers,
by providing such pairings, can provide users with the appropriate information

5 and tools needed to navigate among the items while facilitating the performance
of commons tasks associated with the items. The prior art, however, does not
allow developers to provide such experiences without the use of custom code.

An example of files presented in an enhanced environment
through the utilization of custom code is the My Pictures folder which is included

10 in Microsoft Corporation’s WINDOWS® xp™ operating system. When image
files are stored in the My Pictures folder, a user can view images at different
sizes, rotate them, view a slide show, print images, or copy images to a CD. The
shell in WINDOWS ® XP™ has utilized custom code to incorporate these
image-related tasks into this folder’s display so that a user, when choosing to

15 store pictures in this particular folder, will easily be able to navigate among the
pictures and to perform common tasks with respect to the files. However, only
files stored in the My Pictures folder are displayed in this environment, and
custom code is utilized to create this functionality. While the My Pictures folder
is an improvement over traditional presentation of items, developers still have

20 limited ability to define such content-rich environments without utilizing custom
code.

Accordingly, there is a need for an improved shell that is capable
of displaying each item within a universal data store, and further, there is a need
for an improved shell that is configured to present items within a universal data

25 store in a relationship driven context. There is also a need for improved
capabilities within the shell for developers to create custom environments that
display items with appropriate contextual information and related tasks without

needing custom code.

08 Jan 2010

2004279205

10

20

25

30

CANRPortbNOCC\TX3A25841760_1.DOC - 8/1/10

SUMMARY

In some embodiments, a computer system is provided which comprises a universal
data store containing a plurality of items. A portion of the items may contain metadata
stored in accordance with an item decoration schema. A shell is provided which presents
items with corresponding metadata with an item decoration view and items without the
metadata with a default display view.

Some embodiments relate to a computer system for presenting a plurality of items
of multiple types to a user, the system comprising:

a universal data store containing said plurality of items stored in accordance with a
universal data schema, wherein at least a portion of the items contain metadata defining
visual elements and listing user-selectable tasks; and

a shell for presenting said plurality of items in the universal data store to a user,
wherein the shell is configured to present a set of items containing said metadata to the
user with a visual representation and with said user-selectable tasks listed by said metadata
and further configured to present items without said corresponding metadata to the user in
accordance with a default display view, wherein said shell is further configured to launch
at least one application in response to a user input selecting one or more of said user-
selectable tasks listed by said metadata.

Some embodiments relate to a computer-implemented method for presenting items
to a user. The method accesses a universal data store in response to a user input requesting
to present one or more items. The method presents the requested items; items with
metadata corresponding with an item decoration schema are presented with an item
decoration view, while items without metadata are presented in accordance with a default
display view.

Some embodiments relate to a computer-implemented method for presenting a
plurality of items stored in a universal data store to a user, the method comprising;:

accessing said universal data store in response to a request to present said plurality
of items to the user, wherein said plurality of items are stored in accordance with a
universal data schema, and wherein at least a portion of said plurality of items contain
metadata stored in accordance with an item decoration schema, wherein said metadata
defines a visual representation of an item and further lists a plurality of user-selectable

tasks that may be performed with respect to said item, wherein the metadata itself lists the

08 Jan 2010

)
-
N
o)
~
I\
ﬁ-
-
-
Q\

C\NRPorbh\DCC T XB\2584176_1 DOC - 8/1/10

user-selectable tasks;

for at least a portion of one or more requested items, accessing said metadata
contained in said one or more requested items to select tasks from said plurality of user-
selectable tasks listed in said metadata;

presenting along with the one or more requested items at least a portion of the
selected tasks obtained from the metadata of at least a portion of said one or more
requested items;

receiving a user input selecting one of said plurality of user-selectable tasks;

launching at least one application in response to said user input; and

directing said at least one application to perform the selected user-selectable task
with respect to said one or more requested items.

Some embodiments relate to a shell for presenting a plurality of items to a user.
The shell includes a data store interaction component which retrieves data from the data
store. A display presentation component is included which presents requested items
according to an item decoration or default display view.

Some embodiments relate to a shell stored on one or more computer-readable
media and executable on a computer for presenting a plurality of items stored in a
universal data store to a user, the shell comprising:

a data store interaction component which retrieves metadata contained within one
or more of said plurality of items in response to a request to present the one or more items
to the user, wherein said plurality of items are stored in accordance with a universal data
schema, and wherein at least a portion of said plurality of items contain said metadata
defining visual elements and listing user-selectable tasks;

a display presentation component which utilizes said retrieved metadata to present
at least a portion of said one or more requested items, wherein said display presentation
component is configured to present a set of items of heterogeneous types to the user with a
visual representation and with said user-selectable tasks listed by said metadata and further
configured to present a set of items of a homogenous-type in accordance with a default
display view associated with said homogenous-type, wherein said display presentation
component is further configured to launch at least one application in response to a user

input selecting one or more of said user-selectable tasks listed by said metadata.

08 Jan 2010

2004279205

10

20

25

30

CANRPortbhDCC'TXBA2584176_1.DOC - 8/1/10

-6 -

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are described in detail below with reference to the attached drawing
figures, wherein:

FIG. 1 is a block diagram of a computing system environment suitable for use in
implementing some embodiments;

FIG. 2A is a block diagram illustrating a computer system divided into three
component groups: the hardware component, the hardware/software interface system
component, and the application programs component;

FIG. 2B illustrates the traditional tree-based hierarchical structure for files grouped
in folders in a directory in a file-based operating system;

FIG. 3 is a block diagram illustrating a storage platform in accordance with some
embodiments;

FIG. 4 illustrates the structural relationship between Items, Item Folders, and
Categories in various embodiments;

FIG. 5 is a diagram of the data contained within an item according to some
embodiments;

FIG. 6 is a flow diagram showing a method for presenting one or more items to a
user in accordance with some embodiments;

FIG. 7 is a flow diagram showing a method for presenting one or more items to a
user in accordance with some embodiments;

FIG. 8 is a diagram showing a view schema hierarchy in accordance with some
embodiments;

FIG. 9 is a diagram showing a view schema hierarchy including an explorer view
schema in accordance with some embodiments;

FIG. 10 is a flow diagram showing a method for presenting items to a user in
accordance with some embodiments; and

FIG. 11 is a flow diagram showing a method for presenting related items to a user

in accordance with some embodiments.

DETAILED DESCRIPTION
L INTRODUCTION

The subject matter of the present invention is described with specificity to meet

08 Jan 2010

2004279205

10

15

20

25

30

C\NRPortbADCCATXB\2584176_1 DOC - 8/1/10

- 6A -

statutory requirements. However, the description itself is not intended to limit the scope of

this patent. Rather, the inventors have contemplated that the claimed subject matter might
also be embodied in other ways, to include different steps or combinations of steps similar
to the ones described in this document, in conjunction with other present or future
technologies. Moreover, although the term “step” may be used herein to connote different
elements of methods employed, the term should not be interpreted as implying any
particular order among or between various steps herein disclosed unless and except when

the order of individual steps is explicitly described.

A. EXEMPLARY OPERATING ENVIRONMENT

Numerous embodiments may execute on a computer. FIG. 1 and the following
discussion is intended to provide a brief general description of a suitable computing
environment in which embodiments may be implemented. Although not required, various
embodiments may be described in the general context of computer executable instructions,
such as program modules, being executed by a computer, such as a client workstation or a
server. Generally, program modules include routines, programs, objects, components, data
structures and the like that perform particular tasks or implement particular abstract data
types. Moreover, embodiments may be practiced with other computer system
configurations, including hand held devices, multi processor systems, microprocessor
based or programmable consumer electronics, network PCs, minicomputers, mainframe
computers and the like. Embodiments may also be practiced in distributed computing
environments where tasks are performed by remote processing devices that are linked
through a communications network. In a distributed computing environment, program
modules may be located in both local and remote memory storage devices.

As shown in FIG. 1, an exemplary general purpose computing system includes a
conventional personal computer 20 or the like, including a processing unit 21, a system
memory 22, and a system bus 23 that couples various system components including the
system memory to the processing unit 21. The system bus 23 may be any of several types
of bus structures including a memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. The system memory includes read
only memory (ROM) 24 and random access memory (RAM) 25. A basic input/output

system 26 (BIOS), containing the basic routines that help to transfer information between

WO 2005/045585 PCT/US2004/024630

-7-
elements within the personal computer 20, such as during start up, is stored in
ROM 24. The personal computer 20 may further include a hard disk drive 27 for
reading from and writing to a hard disk, not shown, a magnetic disk drive 28 for
reading from or writing to a removable magnetic disk 29, and an optical disk

5 drive 30 for reading from or writing to a removable optical disk 31 such as a CD
ROM or other optical media. The hard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are connected to the system bus 23 by a hard disk drive
interface 32, a magnetic disk drive interface 33, and an optical drive interface 34,
respectively. The drives and their associated computer readable media provide

10 non volatile storage of computer readable instructions, data structures, program
modules and other data for the personal computer 20. Although the exemplary
environment described herein employs a hard disk, a removable magnetic disk 29
and a removable optical disk 31, it should be appreciated by those skilled in the
art that other types of computer readable media which can store data that is

15 accessible by a computer, such as magnetic cassettes, flash memory cards, digital
video disks, Bernoulli cartridges, random access memories (RAMs), read only
memories (ROMs) and the like may also be used in the exemplary operating
environment. Likewise, the exemplary environment may also include many
types of monitoring devices such as heat sensors and security or fire alarm

20 systems, and other sources of information.

A number of program modules may be stored on the hard disk,
magnetic disk 29, optical disk 31, ROM 24 or RAM 25, including an operating
system 35, one or more application programs 36, other program modules 37 and
program data 38. A user may enter commands and information into the personal

25 computer 20 through input devices such as a keyboard 40 and pointing device 42.
Other input devices (not shown) may include a microphone, joystick, game pad,
satellite disk, scanner or the like. These and other input devices are often
connected to the processing unit 21 through a serial port interface 46 that is
coupled to the system bus, but may be connected by other interfaces, such as a

30 parallel port, game port or universal serial bus (USB). A monitor 47 or other type
of display device is also connected to the system bus 23 via an interface, such as
a video adapter 48. In addition to the monitor 47, personal computers typically

include other peripheral output devices (not shown), such as speakers and

WO 2005/045585 PCT/US2004/024630

-8-
printers. The exemplary system of FIG. 1 also includes a host adapter 55, Small
Computer System Interface (SCSI) bus 56, and an external storage device 62
connected to the SCSI bus 56.

The personal computer 20 may operate in a networked

5 environment using logical connections to one or more remote computers, such as
a remote computer 49. The remote computer 49 may be another personal
computer, a server, a router, a network PC, a peer device or other common
network node, and typically includes many or all of the elements described above
relative to the personal computer 20, although only a memory storage device 50

10 has been illustrated in Fig. 1. The logical connections depicted in Fig. 1 include a
local area network (LAN) 51 and a wide area network (WAN) 52. Such
networking environments are commonplace in offices, enterprise wide computer
networks, intranets and the Internet.

When used in a LAN networking environment, the personal

15 computer 20 is connected to the LAN 51 through a network interface or adapter
53. When used in a WAN networking environment, the personal computer 20
typically includes a modem 54 or other means for establishing communications
over the wide area network 52, such as the Internet. The modem 54, which may
be internal or external, is connected to the system bus 23 via the serial port

20 interface 46. In a networked environment, program modules depicted relative to
the personal computer 20, or portions thereof, may be stored in the remote
memory storage device. It will be appreciated that the network connections
shown are exemplary and other means of establishing a communications link
between the computers may be used.

25 As illustrated in the block diagram of FIG. 2A, a computer system
200 can be roughly divided into three component groups: the hardware
component 202, the hardware/software interface system component 204, and the
applications programs component 206 (also referred to as the “user component”
or “software component” in certain contexts herein).

30 In various embodiments of a computer system 200, and referring
back to Fig. 1, the hardware component 202 may comprise the central processing
unit (CPU) 21, the memory (both ROM 24 and RAM 25), the basic input/output
system (BIOS) 26, and various input/output (I/O) devices such as a keyboard 40,

WO 2005/045585 PCT/US2004/024630

-9-
a mouse 42, a monitor 47, and/or a printer (not shown), among other things. The
hardware component 202 comprises the basic physical infrastructure for the
computer system 200.
The applications programs component 206 comprises various
5 software programs including but not limited to compilers, database systems, word
processors, business programs, videogames, and so forth. Application programs
provide the means by which computer resources are utilized to solve problems,
provide solutions, and process data for various users (machines, other computer
systems, and/or end-users).

10 The hardware/software interface system component 204 comprises
(and, in some embodiments, may solely consist of) an operating system that itself
comprises, in most cases, a shell and a kernel. An “operating system” (OS) is a
special program that acts as an intermediary between application programs and
computer hardware. The hardware/software interface system component 204

15 may also comprise a virtual machine manager (VMM), a Common Language
Runtime (CLR) or its functional equivalent, a Java Virtual Machine (JVM) or its
functional equivalent, or other such software components in the place of or in
addition to the operating system in a computer system. The purpose of a
hardware/software interface system is to provide an environment in which a user

20 can execute application programs. The goal of any hardware/software interface
system is to make the computer system convenient to use, as well as utilize the
computer hardware in an efficient manner.

The hardware/software interface system is generally loaded into a
computer system at startup and thereafter manages all of the application programs

25 in the computer system. The application programs interact with the
hardware/software interface system by requesting services via an application
program interface (API). Some application programs enable end-users to interact
with the hardware/software interface system via a user interface such as a
command language or a graphical user interface (GUI).

30 A hardware/software interface system traditionally performs a
variety of services for applications. In a multitasking hardware/software interface
system where multiple programs may be running at the same time, the

hardware/software interface system determines which applications should run in

WO 2005/045585 PCT/US2004/024630

-10 -

what order and how much time should be allowed for each application before
switching to another application for a turn. The hardware/software interface
system also manages the sharing of internal memory among multiple
applications, and handles input and output to and from attached hardware devices
5 such as hard disks, printers, and dial-up ports. The hardware/software interface
system also sends messages to each application (and, in certain case, to the end-
user) regarding the status of operations and any errors that may have occurred.
The hardware/software interface system can also offload the management of
batch jobs (e.g., printing) so that the initiating application is freed from this work
10 and can resume other processing and/or operations. On computers that can
provide parallel processing, a hardware/software interface system also manages

dividing a program so that it runs on more than one processor at a time.

A hardware/software interface system shell (simply referred to
herein as a “shell”) is an interactive end-user interface to a hardware/software

15 interface system. (A shell may also be referred to as a “command interpreter” or,
in an operating system, as an “operating system shell”). A shell is the outer layer
of a hardware/software interface system that is directly accessible by application
programs and/or end-users. A “shell browser” provides a user interface allowing
a user to view and to interact with the hardware/software interface. In contrast to

20 a shell, a kernel is a hardware/software interface system’s innermost layer that
interacts directly with the hardware components.

While it is envisioned that numerous embodiments of the present
invention are particularly well-suited for computerized systems, nothing in this
document is intended to limit the invention to such embodiments. On the

25 contrary, as used herein the term “computer system” is intended to encompass
any and all devices capable of storing and processing information and/or capable
of using the stored information to control the behavior or execution of the device
itself, regardless of whether such devices are electronic, mechanical, logical, or

virtual in nature

30 B. TRADITIONAL FILE BASED STORAGE

In most computer systems today, “files” are units of storable

information that may include the hardware/software interface system as well as

WO 2005/045585 PCT/US2004/024630

-11 -
application programs, data sets, and so forth. In all modern hardware/software
interface systems (Windows, Unix, Linux, Mac OS, virtual machine systems, and
so forth), files are the basic discrete (storable and retrievable) units of information
(e.g., data, programs, and so forth) that can be manipulated by the
5 hardware/software interface system. Groups of files are generally organized in
“folders.” In Microsoft Windows, the Macintosh OS, and other
hardware/software interface systems, a folder is a collection of files that can be
retrieved, moved, and otherwise manipulated as single units of information.
These folders, in turn, are organized in a tree-based hierarchical arrangement
10 called a “directory” (discussed in more detail herein below). In certain other
hardware/software interface systems, such as DOS, z/OS and most Unix-based
operating systems, the terms “directory” and/or “folder” are interchangeable, and
early Apple computer systems (e.g., the Apple Ile) used the term “catalog”
instead of directory; however, as used herein, all of these terms are deemed to be
15 synonymous and interchangeable and are intended to further include all other
equivalent terms for and references to hierarchical information storage structures
and their folder and file components.

Traditionally, a directory (a.k.a. a directory of folders) is a tree-
based hierarchical structure wherein files are grouped into folders and folder, in
20 turn, are arranged according to relative nodal locations that comprise the
directory tree. For example, as illustrated in FIG. 2B, a DOS-based file system
base folder (or “root directory”) 212 may comprise a plurality of folders 214,
each of which may further comprise additional folders (as “subfolders” of that
particular folder) 216, and each of these may also comprise additional folders 218
25 ad infinitum. Each of these folders may have one or more files 220 although, at
the hardware/software interface system level, the individual files in a folder have
nothing in common other than their location in the tree hierarchy. Not
surprisingly, this approach of organizing files into folder hierarchies indirectly
reflects the physical organization of typical storage media used to store these files

30 (e.g., hard disks, floppy disks, CD-ROMs, etc.).
In addition to the foregoing, each folder is a container for its
subfolders and its files—that is, each folder owns its subfolders and files. For

example, when a folder is deleted by the hardware/software interface system, that

08 Jan 2010

2004279205

15

20

25

30

C ANRPonbRDCOITXB2583176_1 DOC-Km 172010

-12-

folder’s subfolders and files are also deleted (which, in the case of each subfolder, further
includes its own subfolders and files recursively). Likewise, each file is generally owned
by only one folder and, although a file can be copied and the copy located in a different
folder, a copy of a file is itself a distinct and separate unit that has no direct connection to
the original (e.g., changes to the original file are not mirrored in the copy file at the
hardware/software interface system level). In this regard, files and folders are therefore
characteristically “physical” in nature because folders are the treated like physical
containers, and files are treated as discrete and separate physical elements inside these

containers.

IL A UNIVERSAL DATA STORE

The described storage platform extends and broadens the data platform beyond the
kinds of existing file systems discussed above, and is designed to be a store for all types of
data. A data store designed to store all types of data may be referred to as a universal data
store. An example of a universal data store suitable for use with the present invention is
described in the commonly owned, co-pending application “SYSTEM AND METHODS
FOR REPRESENTING UNITS OF INFORMATION MANAGEABLE BY A
HARDWARE/SOFTWARE INTERFACE SYSTEM BUT INDEPENDENT OF
PHYSICAL REPRESENTATION”, U.S. Patent Application No. 10/647,058 filed on

August 21, 2003, which is hereby incorporated by reference.

A. STORAGE PLATFORM OVERVIEW

Referring to FIG. 3, a storage platform 300 comprises a universal data store 302
implemented on a database engine 314. In some embodiments, the database engine 314
comprises a relational database engine with object relational extensions. In some
embodiments, the relational database engine 314 comprises the Microsoft SQL Server
relational database engine.

The universal data store 302 implements a data model 304 that supports the
organization, searching, sharing, synchronization, and security of data. Specific types of
data are described in schemas, such as schemas 340, and the storage platform 300 provides
tools 346 for deploying those schemas as well as for extending those schemas, as described

more fully below.

08 Jan 2010

2004279205

10

15

20

25

30

CANRPorbRDCQTXI32 584 176_1.DOC-R01720014

213 -

A change tracking mechanism 306 implemented within the universal data store 302
provides the ability to track changes to the data store. The universal data store 302 also
provides security capabilities 308 and a promotion/demotion capability 310. The universal
data store 302 also provides a set of application programming interfaces 312 to expose the
capabilities of the universal data store 302 to other storage platform components and
application programs (e.g., application programs 350A, 350B, and 350C) that utilize the
storage platform.

The storage platform still further comprises an application programming interfaces
(API) 322, which enables application programs, such as application programs 350A, 350B,
and 350C, to access all of the foregoing capabilities of the storage platform and to access
the data described in the schemas. The storage platform APl 322 may be used by
application programs in combination with other APIs, such as the OLE DB API 324 and
the Microsoft Windows Win32 API 326.

The storage platform 300 may provide a variety of services 328 to application
programs, including a synchronization service 330 that facilitates the sharing of data
among users or systems. For example, the synchronization service 330 may enable
interoperability with other data stores 340 having the same format as data store 302, as
well as access to data stores 342 having other formats. The storage platform 300 also
provides file system capabilities that allow interoperability of the universal data store 302
with existing file systems, such as the Windows NTFS files system 318.

In at least some embodiments, the storage platform 320 may also provide
application programs with additional capabilities for enabling data to be acted upon and for

enabling interaction with other systems. These capabilities may be embodied in the form

- of additional services 328, such as an Info Agent service 334 and a notification service

332, as well as in the form of other utilities 336.

In at least some embodiments, the storage platform is embodied in, or forms an
integral part of, the hardware/software interface system of a computer system. For
example, and without limitation, the storage platform may be embodied in, or form an
integral part of, an operating system, a virtual machine manager (VMM), a Common
Language Runtime (CLR) or its functional equivalent, or a Java Virtual Machine (JVM) or
its functional equivalent.

Through its common storage foundation, and schematized data, the storage

08 Jan 2010

2004279205

10

15

20

25

30

€ \NRPonbADCQ'TXI312584176_1 DOC-RAH2010

-14 -

platform enables more efficient application development for consumers, knowledge
workers and enterprises. It offers a rich and extensible programming surface area that not
only makes available the capabilities inherent in its data model, but also embraces and

extends existing file system and database access methods.

B. THE DATA MODEL

The universal data store 302 of the storage platform 300 implements a data model
that supports the organization, searching, sharing, synchronization, and security of data
that resides in the store. In the data model, the fundamental unit of storage information
may be referred to as an item. The data model provides a mechanism for declaring items
and item extensions and for establishing relationships between items and for organizing
items in folders and in categories.

In some embodiments, the data model relies on two primitive mechanisms, Types
and Relationships. Types are structures that provide a format which governs the form of
an instance of the Type. The format is expressed as an ordered set of Properties. A
Property is a name for a value or set of values of a given Type. For example, a
USPostalAddress type might have the properties Street, City, Zip, State. Properties may be
required or optional.

Relationships can be declared and represent a mapping between the sets of
instances of two types. For example, there may be a Relationship declared between the
Person Type and the Location Type called LivesAt which defines which people live at
which locations. The Relationship has a name, two endpoints, namely a source endpoint
and a target endpoint. Relationships may also have an ordered set of properties. Both the
Source and Target endpoints have a Name and a Type. For example the LivesAt
Relationship has a Source called Occupant of Type Person and a Target called Dwelling of
Type Location and in addition has properties StartDate and EndDate indicating the period
of time for which the occupant lived at the dwelling. Note that a Person may live at
multiple dwellings over time and a dwelling may have multiple occupants so the most
likely place to put the StartDate and EndDate information is on the relationship itself.

Relationships define a mapping between instances that is constrained by the types
given as the endpoint types. For example the LivesAt relationship cannot be a relationship

in which an Automobile is the Occupant because an Automobile is not a Person.

[’—V

CANRPonbRDCOT X2 554170 _1 DOC-80172010

2 -15-
-
@\
E 1. ITEMS
0% As mentioned above, the fundamental unit of storage information in a universal
< data stor¢ may be referred to as an item. An item is a unit of storable information that,
. unlike a simple file, is an object having a basic set of properties that are commonly
8 5 supported across all objects exposed to an end-user or application program by the storage
lo\\ platform. Those skilled in the art will recognize that the universality of the universal data
g store is made possible, in part, because each item in the data store includes data indicating
8 these basic properties and is stored in accordance with a data schema that is constant for
N each item.

10 The universal data schema provides a universal foundation that establishes a

conceptual framework for creating and organizing items and properties. The universal data

schema defines certain special types of items and properties, and the features of these

special foundational types from which subtypes can be further derived. The use of this

universal data schema allows a programmer to conceptually distinguish items (and their

15 respective types) from properties (and their respective types). Moreover, the universal data

schema sets forth the foundational set of properties that all items may possess as all items

(and their corresponding item Types) are derived from this foundational item in the

universal data schema (and its corresponding item Type). By storing each item according

to this universal data schema, a shell browser is able to interpret and present each item in

20 the data store along with its basic properties to the user. An example of a universal data

schema suitable for use with described embodiments is described in the commonly owned,

co-pending application “SYSTEM AND METHODS FOR REPRESENTING UNITS OF

INFORMATION MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE

SYSTEM BUT INDEPENDENT OF PHYSICAL REPRESENTATION”, U.S. Patent

25 Application No. 10/647,058 filed on August 21, 2003, which is hereby incorporated by
reference.

ltems also have properties and relationships that are commonly supported across all

item types including features that allow new properties and relationships to be introduced.

Those skilled in the art will recognize that this property and relationship data may be

30 referred to as metadata associated with an item. As described below, the metadata may be

stored in accordance with an item decoration schema. This item decoration schema may

indicate an appropriate manner in which to present the item to a user.

08 Jan 2010

2004279205

10

15

CNRPonbADCOYTXH253417G_1 DOC-RM1:2010

-16 -

Items are the objects for common operations such as copy, delete, move, open,
print, backup, restore, replicate, and so forth. Items are the units that can be stored and
retrieved, and all forms of storable information manipulated by the storage platform exist
as items, properties of items, or relationships between items, each of which is discussed in
greater detail herein below.

Items are intended to represent real-world and readily-understandable units of data
like Contacts, People, Services, Locations, Documents (of all various sorts), and so on.

Items are stand-alone objects; thus, if you delete an item, all of the item’s
properties are also deleted. Similarly, when retrieving an item, what is received is the item
and all of its properties contained in the item’s metadata. Certain embodiments may
enable one to request a subset of properties when retrieving a specific item; however, the
default for many such embodiments is to provide the item with all of its immediate and
inherited properties when retrieved. Moreover, the properties of items can also be
extended by adding new properties to the existing properties of that item’s type. These
“extensions” are thereafter bona fide properties of the item and subtypes of that item type
may automatically include the extension properties. The extensions may also be referred

to as metadata associated with a file.

WO 2005/045585 PCT/US2004/024630

-17 -
2. ITEM FOLDERS AND CATEGORIES

Groups of items can are organized into special items called item
Folders (which are not to be confused with file folders). Unlike in most file
systems, however, an item can belong to more than one item Folder, such that

5 when an item is accessed in one item Folder and revised, this revised item can
then be accessed directly from another item folder. In essence, although access to
an item may occur from different item Folders, what is actually being accessed is
in fact the very same item. However, an item Folder does not necessarily own all
of its member items, or may simply co-own items in conjunction with other

10 folders, such that the deletion of an item Folder does not necessarily result in the
deletion of the item.

Items may also belong to Categories based on common described
characteristic such as (a) an item Type (or Types), (b) a specific immediate or
inherited property (or properties), or (c) a specific value (or values)

15 corresponding to an item property. For example, an item comprising specific
properties for personal contact information might automatically belong to a
Contact Category, and any item having contact information properties would
likewise automatically belong to this Category. Likewise, any item having a
location property with a value of “New York City” might automatically belong to

20 aNewYorkCity Category.

Categories are conceptually different form item Folders in that,
whereas item Folders may comprise items that are not interrelated (i.e., without a
common described characteristic), each item in a Category has a common type,
property, or value (a “commonality”) that is described for that Category, and it is

25 this commonality that forms the basis for its relationship to and among the other
items in the Category. Moreover, whereas an item’s membership in a particular
Folder is not compulsory based on any particular aspect of that item, for certain
embodiments all items having a commonality categorically related to a Category
might automatically become a member of the Category at the hardware/software

30 interface system level. Conceptually, Categories can also be thought of as virtual
item Folders whose membership is based on the results of a specific query (such

as in the context of a database), and items that meet the conditions of this query

08 Jan 2010

2004279205

10

20

25

C ANRPonbRDCCYTXIBL2584176_1 DOC-8AI2010

-18 -

(defined by the commonalities of the Category) would thus comprise the Category’s
membership.

FIG. 4 illustrates the structural relationship between items, item Folders, and
Categories in various embodiments. A plurality of items 402, 404, 406, 408, 410, 412,
414, 416, 418, and 420 are members of various item Folders 422, 424, 426, 428, and 430.
Some items may belong to more than one item Folder, e.g., item 402 belong to item
Folders 422 and 424. Some items, e.g., item 402, 404, 406, 408, 410, and 412 are also
members of one or more Categories 432, 434, and 436, while other times, ¢.g., items 414,
416, 418, and 420, may belong to no Categories (although this is largely unlikely in certain
embodiments where the possession of any property automatically implies membership in a
Category, and thus an item would have to be completely featureless in order not to be a
member of any category in such an embodiment). In contrast to the hierarchical structure
of folders, both Categories and item Folders have structures more akin to directed graphs
as shown. In any event, the items, item Folders, and Categories are all items (albeit of
different item Types).

In contrast to files, folders, and directories, the described items, item Folders, and
Categories are not characteristically “physical” in nature because they do not have
conceptual equivalents of physical containers, and therefore items may exist in more than
one such location. The ability for items to exist in more than one item Folder location as
well as being organized into Categories provides an enhanced and enriched degree of data
manipulation and storage structure capabilities at the hardware/software interface level,

beyond that currently available in the art.

3. RELATIONSHIPS

Items may also contain relational information which allows relationships between
two or more items to be determined. Relationships are binary relationships where one item
is designated as source and the other item as target. The source item and the target item
are related by the relationship. Relationships may be classified into: Containment and

Reference relationships.

WO 2005/045585 PCT/US2004/024630

-19-
The containment relationships control the life-time of the target items, while the
reference relationships do not provide any life-time management semantics.

The Containment relationship types are further classified into
Holding and Embedding relationships. A holding relationship controls the life-

5 time of the target through a reference counting mechanism. Holding
relationships do not contain their targets but control the life-time of the targets.
When all holding relationships to an item are removed, the item is deleted. The
embedding relationships enable modeling of compound items and can be thought
of as exclusive holding relationships. An item can be a target of one or more

10 holding relationships, but an item can be target of exactly one embedding
relationship. An item that is a target of an embedding relationship cannot be a
target of any other holding or embedding relationships. Embedded relationships
contain their targets and control life-time of the targets. Those skilled in the art
will recognize that a single target can be in at most one embedded relationship,

15 while a single target can be in multiple holding relationships.

Reference relationships do not control the lifetime of the target
item. They may be dangling — the target item may not exist. Reference
relationships can be used to model references to items anywhere in the global
item name space (i.e. including remote data stores).

20 Fetching an item does not automatically fetch its relationships.
Applications or the shell must explicitly request the relationships of an item. In
addition, modifying a relationship does not modify the source or the target item;
similarly, adding a relationship does not affect the source/target item.
Relationships between two items may be declared and stored with an item or the

25 shell or an application, through utilization of the relational information, may
determine the two items are related.

The Reference relationship does not control life time of the item it
references. Even more, the reference relationships do not guarantee the existence
of the target, nor do they guarantee the type of the target as specified in the

30 relationship declaration. This means that the Reference relationships can be
dangling. Also, the reference relationship can reference items in other data stores.

Reference relationships can be thought of as a concept similar to links in web

pages.

08 Jan 2010

2004279205

10

15

20

25

30

CANRPonbDCC\TXBA2584176_1.DOC - 8/1/10

220 -

In at least one embodiment, the storage platform supports ordering of relationships.
The ordering is achieved through a property named “Order.” There is no uniqueness
constraint on the Order field. The order of the relationships with the same “order”
property value is not guaranteed, however it is guaranteed that they may be ordered after
relationships with lower “order” value and before relationships with higher “order” field
value. It should be noted that property “Order” is not in the base relationship definition.
Rather, this is an extrinsic property which is stored as part of the relationship between
source and target.

As previously mentioned, an item may be a member of an item Folder. In terms of
Relationships, an item may have a relationship with an item Folder. In several
embodiments, certain relationships are represented by Relationships existing between the

items.

4. EXTENSIBILITY

Referring to FIG. 3, the storage platform is provided with an initial set of schemas
340, as described above. In addition, however, in at least some embodiments, the storage
platform allows customers, including independent software vendor (ISVs), to create new

schemas 344,

C. DATABASE ENGINE

As mentioned above, the data store is implemented on a database engine. In some
embodiments, the database engine comprises a relational database engine that implements
the SQL query language, such as the Microsoft SQL Server engine, with object relational
extensions. It is understood, however, that different database engines may be employed.
Indeed, in addition to implementing the storage platform conceptual data model on a
relational database engine, it can also be implemented on other types of databases, e.g.

object-oriented and XML databases.

III. PRESENTMENT OF ITEMS TO A USER
[tems in the universal data store are presented to a user by a shell browser. Such

browsers are well-known in the art and, as explained above, a

WO 2005/045585 PCT/US2004/024630

=21 -
shell browser provides a user interface allowing a user to view and to interact

with the hardware/software interface.

A. DEFAULT DISPLAY VIEW

As noted above, each item in the universal data store is stored in

5 accordance with a universal data schema. This schema includes a mechanism for

describing items called type associations. Each type association has a basic

representation in the shell; by storing an item in accordance with a type

association, the shell is able to display an item according to at least a basic or
default display view.

10 A type association is a property associated with an item; when
placing data into the universal data store one or more properties associated with
the data must be declared so as to determine what type of item it is. These
properties may be included as metadata associated with the data. The shell has a
set of default type associations which represent the most basic and minimal

15 properties which must be declared for an item.

FIG. 5 displays an item 500. The item 500 is stored in accordance
with the universal data schema and includes a set of item data 502 and a set of
metadata 504 including property declarations. The item data 502 may be any set
of data appropriate for inclusion within the data store. For example the item data

20 502 may be associated with a word processing document. The property
declarations metadata 504 includes at least a basic type declaration for the item
500. For example, a default type association may be a Document type and the
metadata 504 may set forth that the item 500 is a Document type item. Because
the shell includes a default display view for each default type association, the

25 shell may display the item 500 according the default display view for the
Document type. The default display view for Documents types may, for
example, include an icon used only with Document type items. By presenting the
word processing item with this icon, a user can quickly recognize that the item
500 is a document. Those skilled in the art will recognize that any variety of

30 default type associations and default display attributes are acceptable for the

present invention.

WO 2005/045585 PCT/US2004/024630

-22.
B. ITEM DECORATION VIEW

Beyond property declarations, metadata associated with an item
may include data indicating how the shell should decorate an item’s presentation,
Decorations, in this case can be though of as “hints” as to how to represent the

5 item to a user. This metadata may be stored in accordance with an item
decoration schema. The item decoration schema defines the item decoration view
that the shell may utilize to present the item. For example, the item decoration
data may describe the most important declared properties for an item. These
“high value” properties may be the most desirable for presentation in the shell.

10 Item 500 may optionally include item decoration data 506 stored
in accordance with an item decoration schema. To present the item 500, the item
decoration data 506 may indicate a set of view fields appropriate for the
presentation of the item 500. View fields are projections of declared properties,
and common view fields may include “title,” “author,” “date of creation” or “last

15 edited.” The shell includes a set of standard view fields and independent
software venders (ISVs) may define view fields which are appropriate for
presentation of their data. When developing new item types, ISVs can either map
item properties they define to the shell’s view fields or they can provide their
own view fields.

20 For example, the item data 502 may contain song data. The set of
declared properties 506 may include properties such as song title, artist, date
recorded, album, song length, and other declarations appropriate for such a song
item. The item decoration data 506 may indicate that view fields “Title,” “Artist”
and “Album” should be displayed to the user when presenting the item 500 in the

25 shell.

The item decoration data 506 may describe more truly decorative
items regarding the item data 502 such as text presented with a declared property.
For instance, one of the property declarations 504 may indicate a bitrate value to
describe the quality of the recording. This property may be stored an integer

30 BITRATE. The item decoration data 506 may request that the bitrate be
displayed and also may decorate this field as “[BITRATE] kilobytes per second.”
In this method the bitrate field is appropriately decorated so that a user can easily

understand the meaning of the bitrate value in a view field.

08 Jan 2010

2004279205

10

15

20

25

CANRPonbNICC TXBA2584176 1. DOC - 8/1/10

223 -

Those skilled in the art will recognize that the item decoration data 506 and its
corresponding item decoration view may dictate a wide variety of presentation attributes.
Item decorations can be any aspect of the display supported by the shell. Some common
other item decorations are, for example, data formatting, default sort order, and default
icon size. Additionally, the item decoration data 506 may describe common controls to
use in displaying a given item. For example, a Ratings field might use a ratings control
that represents the rating as a series of stars. The item decoration data 506 may describe
tasks or verbs appropriate for use with an item. Those skilled in the art will recognize that
the terms “task” and “verb” describe some action to be undertaken with regard to an item
and such terms may be used interchangeable. For example, “Edit” or “Preview” may be
appropriate tasks/verbs associated with an item. The shell may be furthered configured to
launch applications in support of these tasks upon a user selection to perform the action
with respect to the item.

Those skilled in the art will recognize that item decorations will change and grow
over time. Embodiments contemplate that, when the new item decorations are
implemented, new items can utilize these decorations, while older items will continue to
display properly by utilizing the older display attributes provided by the shell.

FIG. 6 displays a flow diagram illustrating a method 600 for presenting items to the
user. At 602, the method 600 accesses a universal data store in response to a request to
present one or more items to the user. At 604, the method considers one or more items
selected for presentation. Items containing metadata stored in accordance with an item
decoration schema are presented to the user according to an item decoration view as
indicated at 606. Items which do not contain such metadata are presented according to a
default display view as indicated at 608. Those skilled in the art will recognize that, as
discussed above, these schemas and presentation views may include various display

attributes which may be used in the presentation of each item in the data store.

WO 2005/045585 PCT/US2004/024630

_24 -
C. SHELL VIEW

As described above, an item decoration view is sufficient to fully
present a given item or a homogeneous set of items, comprised of items having
like item decoration views. To display items with different item decoration

5 schemas, the shell provides shell view schemas that present items according to
shell decoration views. A shell view schema allows the shell or ISVs to declare
appropriate views for given sets of heterogeneous data.

Items chosen for representation within a shell decoration view
may include a common characteristic. Those skilled in the art will recognize that

10 a wide variety of common characteristics may be acceptable for a shell decoration
view. For example, a shell view schema could define a “Picture” view used to
display common and appropriate fields and metadata for all known picture types
(e.g., .GIF, JPEG, .BMP, .TIFF, etc). The shell view schema overrides
conflicting display attributes for a given item decoration view and presents each

15 picture item according the shell view schema. As another example, the shell
could provide a “Document” shell view that is optimized around appropriate
columns and metadata for the items produced by typical productivity
applications, such a word processing documents, spreadsheets, or databases, even
though the item decorations for each of these items may vary greatly from each

20 other. Such a view has value by providing common properties among each of
these documents. Those skilled in the art will recognize that, when later
document types are installed, the shell view will be able to present these new
items according to the consistent shell view even though the new type may not
have been considered when the view was first created.

25 In addition to shaping the view fields appropriate for a given set of
heterogeneous items, shell view schema may define further display attributes.
For example, the view state, including icons properties, the size of the preview
pane, and default sort order may be defined by the shell view schema. The view
schema also contains property decorations, such as data formatting, to apply to

30 various columns.

In cases where the shell view schema and the item decoration
schema conflict, the shell view schema acts as an override. In cases where a

display element is missing from a shell view schema, the shell view will fall back

08 Jan 2010

2004279205

10

20

25

C:ANRPonbADCCOYTXE25X3176_1 DOC-8AH /2010

-25.

to the item decoration view for an appropriate display. In this way, the shell view can craft
an appropriate view when displaying data not originally anticipated. Additionally, in some
embodiments, the shell view can defer to the item decoration view to provide a non-
conflicting decorative element. For example, the shell view may make use of the “high
value”” metadata from the set of items it contains to construct an appropriate set of columns
and metadata to display the items.

Those skilled in the art will recognize that the shell view schemas may provide a
wide variety of display attributes and that ISVs may want to provide such shell views. The
display attributes may include, without limitation: the size of the preview pane, metadata
to display within the preview pane, custom controls to be used, and tasks and verbs
appropriate for the presented items.

FIG. 7 displays a flow diagram illustrating a method 700 for presenting items to the
user according to some embodiments. At 702, the method 700 accesses the data store in
response 1o a request to present one or more items to a user. At 704, a determination is
made whether each item selected for presentation includes the same item decoration
schema. If all items have such a common schema, the items are presented according to
that schema as indicated at 706. If the presented items include items having different or no
item display schemas, at 708 the set of items is presented according to a shell decoration
view. As discussed above, such a shell view may be appropriate for presentation of a
heterogeneous set of items. An optional step of presenting one or more of the selected
items with display elements from an item decoration view is included at 710. While these
display elements may not conflict with the shell decoration view, the elements may
enhance the presentation of items by the shell.

Turning to FIG. 8, a diagram of an exemplary view schema hierarchy 800 is
presented. The bottom layer of the hierarchy is the item view schema 802. The item view
schema 802 provides the basic display needed to represent an item or, if no view schema is
supplied, provides a default display. Schemas that are above the item view schema 802
can defer or fall back upon its display elements when required.

Shell view schema 804 resides above the item view schema 802. As discussed

above, a shell view schema may be utilized to display a set of items

WO 2005/045585 PCT/US2004/024630

-26 -
with diverse item views. The shell view schema defines tasks 806, preview pane
characteristics 808, columns 810 and decorations 812 which are used to display
items according to the shell view 804. The shell view may fall back upon the
item view schema 802 to provide non-conflicting item decorations for use with

5 the shell view 804. Additionally, user view settings 814 may reside within the
shell view. These setting represent a user’s desired presentation format for the
shell items. Those skilled in the art will recognize that any number is display
attributes may be defined within a display schema and that a user may be

presented with numerous options and controls in relation to display settings.

10 D. EXPLORER DISPLAY VIEW

The shell may also be configured to present items according to
an explorer display view. An “explorer” may be referred to as a storage
application and may be provide by the shell or by an ISVs. In one embodiment
of the current invention, an explorer may be created to provide a holistic

15 experience that aids users managing a large set of items. For example, the
explorer may enable a user to view, query, navigate, launch into tasks, or
organize selected items in a data store. The term “explorer” should not imply a
location where the displayed items reside, and terms such as “activity center,”
“viewer” and “library” may be used interchangeably with “explorer” to describe a

20 storage application according to the present invention.

FIG. 9 shows an exemplary explorer schema hierarchy 900. The
bottom layer of the hierarchy is the item view schema 902. The item view
schema 902 provides the basic display needed to represent an item, and the
explorer view schema 904 can defer or fall back upon its display elements when

25 required.

The explorer view schema includes a shell view schema 906 and
explorer decorations 908. The explorer decorations 908 decorate the explorer as
a whole and provide display elements such as distinctive colors and branding
elements. These explorer decorations 908 persist among the various views the

30 explorer provides. Those skilled in the art will recognize that a wide variety of
display attributes may be appropriate for the explorer decorations 908. For

example, data queries or tasks/verbs associated with the explorer items may be

‘ CANRPonbI\DCCITX132584176_1 DOC-8:111/2010

= 27-

S

§ appropriate for display with an explorer. Displayed tasks will preferably be coupled with

| ; an application capable of performing the task.

< The explorer view schema may optionally include a shell view schema 906 or
. multiple shell view schemas. The shell view schema 906 may be configured to provide a
8 S shell view for a subset of explorer items. For example, an explorer may be configured to
lo\\ display song items to a user. A first shell view schema may be included to provide a
g display of albums and a second shell view schema may be included to provide a display of
8 song tracks. In this manner, both types of items will have appropriate views within the
Q\

explorer. As discussed above, the utilization of shell view relates to the presentation of a
10 set of items which, optionally, may share a common characteristic.

The explorer may also rely on shell views included within the shell. If items
selected for presentation within an explorer are not supported by any of the shell views
included by the explorer, the shell may provide an appropriate shell view for use within the
explorer. Similarly and as discussed above, the explorer may also fall back to an item

15 display view or a default display view provided by the shell. This functionality insures
that any item which can be displayed by the shell is also capable of display within the
explorer. The explorer can be configured to defer to these shell provided display schemas
or may rely upon them to, for example, provide a display for unanticipated data.

FIG. 10 presents a method 1000 for presenting items in an explorer display. At

20 1002, the method 1000 accesses the data store and, at 1004, selects items to be displayed in
the explorer. The selection of explorer items may rely on consideration of item
declarations also referred to as field entries. As discussed above, items in a data store may
contain property information. This information is declared when an item is placed in the
data store and may be updated throughout the life of the item. Such declarations may be

25 considered field entries corresponding to a set of property fields. For example entries in a
property field “author” may contain the authorship information for a given item.

It may be desirable to present items sharing one or more field entries. For example,
an explorer including each item authored by a particular person may be desired. By

considering the field entries of the author field, the

WO 2005/045585

10

15

20

25

30

-28-
explorer is able select such explorer items authored by that particular person from
the data store. Those skilled in the art will recognize that the mechanics of such a
database query are well known.

At 1006, a determination is made whether the explorer includes a
shell view which is appropriate for the presentation of an explorer item. If no
such appropriate shell view is found in the explorer, the method 1008 utilizes a
view contained in the shell as indicated at 1008. If a proper shell view is
included in the explorer, the method 1000, at 1010, utilizes that shell view to
present the item. At 1012, an optional step of utilizing decorative elements from
an item display schema is performed. As described above, the explorer may use
non-conflicting decorations from an item view schema to enhance the
presentation of an item. At 1014, the explorer item is presented to the user
according to the shell and items views. The explorer decorative properties are
presented at 1016. These properties may be a wide variety of display attributes

annd may include data queries or task associated with the explorer items.

E. EXPLORER DEVELOPMENT

Explorers may be created for a wide variety of item types. In one
embodiment of the present invention, explorers can be defined with little or no
ﬁprogramming. By allowing explorers to be created in a data-driven way, ease of
development is enhanced while providing a consistent look and feel across
explorers.

In certain embodiments, explorers may allow restrictions on what
types (including item extensions and file extensions) of items they can present or
explorers can choose to allow items of all types. Also explorers can choose to
allow items types with a specific set of item extensions. For example, a Legal
Item Explorer may display all items with a “LegalltemExtension” attached.
Explorers can choose to allow items of a certain type and any file extension that
maps to that type. For example, a Music Item Explorer can show all music file
extensions such as mp3 or wma. Furthermore, explorers can choose to allow
items of a certain set of file extensions only. If an explorer is restricted to a
certain set of types, then items of other types cannot be saved or dropped into this

ex plorer. Explorers can redefine type associations for the types that they allow,

PCT/US2004/024630

WO 2005/045585 PCT/US2004/024630

-29 -
and explorers may choose to selectively disallow overrides or may choose to
disallow addition of new commands. Furthermore explorers can decide whether
they will let end-users override type associations within the explorer.
Considering the foregoing, those skilled in the art will recognize
5 that by providing data-driven development techniques for creating an explorer for
use within an item-type environment, explorers may be defined a declarative
manner and without the use of custom code.
FIG. 11 displays a method 1100 for presenting items according to
an explorer display schema. At 1102, the method 1100 selects a desired field
10 entry. As discussed above, this desired field entry may correspond to a declared
property associated with an item. For example, a “photo album” explorer may
have a desired field entry requiring inclusion of items containing picture data.
At 1104, an explorer display schema is defined. This display
schema may include a shell view schema and explorer decorations. The explorer
15 decorations decorate the explorer as a whole and provide display elements such
as distinctive colors and branding elements. These explorer decorations persist
among the various views the explorer provides. A wide variety of display
attributes may be appropriate for the explorer decorations. For example, data
queries or tasks/verbs associated with the explorer items may be appropriate for
20 display with an explorer. Displayed tasks will preferably be coupled with an
application capable of performing the task. The explorer view schema may
include a shell view schema or multiple shell view schemas. The shell view
schema may be configured to provide a shell view for a subset of explorer items.
At 1106, the method 1100 accesses the data store to select the
25 explorer items. The explorer items are associated with the desired field entry.
Those skilled in the art will recognize that the selection of such items in a
database are well known in the art. Those skilled in the art will further recognize
that developers may create explorers configured for such interaction.
Development of explorers capable of accessing a data store is contemplated by
30 the instant invention.
At 1108, the explorer items are displayed according to an explorer
display schema. The explorer display schema is described above, and this

display may also include interaction with a shell browser. For example the shell

08 Jan 2010

2004279205

10

15

20

25

30

CANRPonbROCQITX3\28%4176_1.DOC-8M1/2010

-30 -

may provide one or more shell views. In addition, item decoration elements from an item
decoration schema may be utilized to enhance the presentation of the explorer items.

As those skilled in the art will recognize, the explorer storage application may be
considered an application and/or an extension of the shell browser. Consequently, the
foregoing description is appropriate for both depictions. As an application, the explorer
program may include a shell interaction module that is configured to interact with the shell
browser. Such interaction allows the program to communicate information with the shell
and allows the software to work together to present items. The shell interaction module
may facilitate the accessing of the data store and may provide display attributes. Such

interaction between an application and the shell is well known in the art.

E. PRESENTATION OF RELATED ITEMS

Embodiments may also display related items in the data store to the user. As
described above, the items in a data store may include items having one or more declared
properties. An item may have declared relationships which elucidate the other items in the
data store which share a relationship. For instance, an item containing an email address
may declare a relationship to an item containing other contact information for the owner of
the email address. The shell may utilize this declared relationship to present the other
contact information upon a user request. The shell may also determine relationships by
considering an item’s declared properties. For example, a set of documents may be related
if they share a common property; items with an extension “LegalltemExtension” may be
related if a common value is stored as part of the extension. Such a relationship may be
determined by a data query well known in the art.

FI1G. 12 displays a method 1200 for presenting related items. At 1202, the method
1200 accesses the data store and, at 1204, relationships between items in the data store are
determined. As described above, such a determination utilizes the declared properties
included with an item. This determination may be in response to a user input. For
example, an item having a set of declared item characteristics may be displayed to a user.
The item characteristic and relational information may be displayed with the item. The
user may select one of the characteristics and input a request to see other items sharing the
item characteristic. At 1206, the method 1200 presents related items to the user. Such

presentation may include any display schema known in the art.

.

} CANRPotbADCQOTXBRSAIT6_1.DOC-RAI1I2010

= 31

-

Q\

§ Alternative embodiments and implementations of described embodiments may
; become apparent to those skilled in the art to which it pertains upon review of the
< specification, including the drawing figures. Accordingly, embodiments of the present
. invention are not intended to be limited to only those embodiments described herein.

8 5 Throughout this specification and claims which follow, unless the context requires
lo\\ otherwise, the word "comprise”, and variations such as "comprises" and "comprising", will
g be understood to imply the inclusion of a stated integer or step or group of integers or steps
8 but not the exclusion of any other integer or step or group of integers or steps.

Q\

The reference in this specification to any prior publication (or information derived

10 from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

08 Jan 2010

2004279205

CANRPorbRDCCYTXBA2584176_1.DOC - 8/1/10

-32-
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer system for presenting a plurality of items of multiple types to a user,
the system comprising:

a universal data store containing said plurality of items stored in accordance with a
universal data schema, wherein at least a portion of the items contain metadata defining
visual elements and listing user-selectable tasks; and

a shell for presenting said plurality of items in the universal data store to a user,
wherein the shell is configured to present a set of items containing said metadata to the
user with a visual representation and with said user-selectable tasks listed by said metadata
and further configured to present items without said corresponding metadata to the user in
accordance with a default display view, wherein said shell is further configured to launch
at least one application in response to a user input selecting one or more of said user-

selectable tasks listed by said metadata.

2. The computer system of claim 1, wherein said universal data schema includes one

or more declared properties.

3. The computer system of claim 2, wherein each of said plurality of items includes

declarations associated with said one or more declared properties.

4. The computer system of claim 2 or claim 3, wherein said shell utilizes said one or
more declared properties to present the items without said corresponding metadata in

accordance with said default display view.

5. The computer system of any one of claims 1 to 4, wherein said metadata includes

item decoration data.

6. The computer system of claim 5, wherein said item decoration data identifies a

subset of said metadata containing high value data.

08 Jan 2010

2004279205

C \NRPortbADCCYTXBA2584176_1 DOC - 8/1/10

-33-
7. The computer system of claim 6, wherein said high value data is associated with
information to be displayed to a user.

8. The computer system of any one of claims 5 to 7, wherein said item decoration data

includes data indicating a format aspect associated with presentment of said metadata to a

user.

9. The computer system of claim 8, wherein said format aspect is selected from the

group consisting of data formatting, sort order, icon formatting, and associated controls.

10. The computer system of claim 8 or claim 9, wherein said format aspect includes
one or more verbs, said verbs being associated with operations to be performed on selected

items.

11 The computer system of claim 10, wherein said operations are performed by one or

more applications launched to perform said verbs with respect to said selected items.

12, The computer system of any one of claims 1 to 11, wherein said shell is further
configured to present a set of items selected from said plurality of items according to a

shell decoration view,

13. The computer system of claim 12, wherein said set of items includes one or more
items having metadata stored in accordance with a first item decoration schema and further
includes one or more items having metadata stored in accordance with a second item

decoration schema.

14, The computer system of claim 12 or claim 13, wherein said shell decoration view
includes one or more display aspects appropriate for displaying each of said set of items to

a uscr.

08 Jan 2010

2004279205

CANRPortb ARDCCVIXB\2584176_1 DOC - 8/1/10

-34 -

15. The computer system of claim 14, wherein each of said set of items include a

common characteristic.

16. The computer system of claim 15, wherein said common characteristic is selected

from the group consisting of document file, image file, audio file, and video file.

17. The computer system of claim 12, wherein one or more of said set of items are

associated with an item decoration view that conflicts with said shell decoration view.

18. The computer system of claim 12, wherein said shell is further configured to
present one or more of said set of items with decorative elements associated with an item
decoration view and wherein said decorative elements do not conflict with said shell

decoration view.

19. The computer system of any one of claims 1 to 18, wherein said shell is further
configured to present items selected from said plurality of items according to an explorer

display view.

20. The computer system of claim 19, wherein said explorer display view includes one

or more decorative properties.

21. The computer system of claim 19 or claim 20, wherein said explorer display view
includes one or more shell display views, and wherein one of said shell display views is

utilized to display a set of explorer items.

22. The computer system of claim 21, wherein said shell display view includes one or

more display aspects appropriate for displaying each of said set of explorer items to a user.

23. The computer system of claim 22, wherein each of said set of explorer items

include a common characteristic.

08 Jan 2010

2004279205

CANRPonbADCCAYTXBA2584176_1.DOC - 8/1/10

-35-

24. The computer system of any one of claims 21 to 23, wherein said explorer display
view is configured to utilize a shell display view not included with an explorer to display
an item which cannot be displayed according to said one or more shell display views

included with said explorer display view.

25. The computer system of claim 21, wherein said explorer display view is configured
to display an explorer item which is not associated with a shell display view according to
an item decoration view or which is not associated with an item decoration view according

to said default display view.

26. The computer system of any one of claims 19 to 25, wherein said explorer display

view includes one or more data queries associated with said explorer display view,

27. The computer system of any one of claims 19 to 26, wherein said explorer display
view includes one or more verbs, said verbs being associated with an operation to be

performed on a selected explorer item.

28. The computer system of claim 27, wherein said operation is performed by an
application launched to perform at least one of said one or more verbs with respect to said

selected explorer item.

29. A computer-implemented method for presenting a plurality of items stored in a
universal data store to a user, the method comprising;:

accessing said universal data store in response to a request to present said plurality
of items to the user, wherein said plurality of items are stored in accordance with a
universal data schema, and wherein at least a portion of said plurality of items contain
metadata stored in accordance with an item decoration schema, wherein said metadata
defines a visual representation of an item and further lists a plurality of user-selectable
tasks that may be performed with respect to said item, wherein the metadata itself lists the
user-selectable tasks;

for at least a portion of one or more requested items, accessing said metadata

contained in said one or more requested items to select tasks from said plurality of user-

r————————-—-—ﬁ

CANRPonb\DCCVIXBA2584176_1.DOC - 8/1/10

-

— -36 -

-

(Q\

§ selectable tasks listed in said metadata;

= : :

0% presenting along with the one or more requested items at least a portion of the ‘
— selected tasks obtained from the metadata of at least a portion of said one or more
P requested items;

8 receiving a user input selecting one of said plurality of user-selectable tasks;

lo\\ launching at least one application in response to said user input; and

g directing said at least one application to perform the selected user-selectable task
8 with respect to said one or more requested items.

(Q\

. 30. The method of claim 29, wherein said metadata includes data indicating one or

more decorative aspects associated with presentment of said metadata to a user.

31. The method of claim 30, wherein presenting a requested item with said ‘
corresponding metadata includes presenting said metadata according to one or more of said

decorative aspects. ‘

32. The method of any one of claims 29 to 31, further comprising presenting a set of
items according to a shell decoration view, wherein said set of items includes one or more

items having metadata stored in accordance with a first item decoration schema and further

includes one or more items having metadata stored in accordance with a second item !

decoration schema.

33. The method of claim 32, wherein said shell decoration view includes one or more

display aspects appropriate for displaying each of said set of items to a user.

34. The method of claim 32 or claim 33, wherein presenting said set of items according

to a shell decoration view includes presenting items having an item decoration schema

which conflicts with said shell decoration view according to said shell decoration view

35. The method of any one of claims 29 to 34, wherein said method further comprises

presenting items according to an explorer display view.

08 Jan 2010

2004279205

CANRPonb\DCCVTXB\2584176_1 DOC - 8/1/10

-37-

36. The method of claim 35, wherein said explorer display view includes one or more
decorative properties and one or more shell display views, and wherein one or more of said

shell display views are utilized to display a set of explorer items.

37. The method of claim 36, wherein an item which cannot be displayed according to
said one or more shell display views included with said explorer display view is presented

according to a shell display view not included with said explorer display view.

38. The method of claim 36, wherein an item which cannot be displayed according to a

shell display view is presented according to an item decoration view.

39. The method of any one of claims 35 to 38, wherein said explorer display view
includes one or more verbs, said verbs being associated with an operation to be performed

on a selected explorer item.

40. A shell stored on one or more computer-readable media and executable on a
computer for presenting a plurality of items stored in a universal data store to a user, the
shell comprising:

a data store interaction component which retrieves metadata contained within one
or more of said plurality of items in response to a request to present the one or more items
to the user, wherein said plurality of items are stored in accordance with a universal data
schema, and wherein at least a portion of said plurality of items contain said metadata
defining visual elements and listing user-selectable tasks;

a display presentation component which utilizes said retrieved metadata to present
at least a portion of said one or more requested items, wherein said display presentation
component is configured to present a set of items of heterogeneous types to the user with a
visual representation and with said user-selectable tasks listed by said metadata and further
configured to present a set of items of a homogenous-type in accordance with a default
display view associated with said homogenous-type, wherein said display presentation
component is further configured to launch at least one application in response to a user

input selecting one or more of said user-selectable tasks listed by said metadata.

CANRPorth\DCCYTXBA2584176_1 . 1DOC - 8/1/10

methods of any one of claims 29 to 39 or for implementing the system of any one of claims

= |

— -38-

S
B

% 41. Computer-readable storage storing executable instructions for performing the

'

o0

-

| 1 to 28 or the shell of claim 40.

2004279205

PCT/US2004/024630

1/11

WO 2005/045585

9¢
0S aAauq Addoj4 suoieoljddy
T

Ei==—— e

6z 9BrI0)S sjgenoway

A

0¢Z emdwio)

517 OF pleoghay] cy ®SNON <6
(s)1eindwion) sjowsy le ﬂ Fww MMM_ mm mw:mhn_ ogsddy | gesO
wm \ //DWHUMUMHUG\\! “ 0€ @AuQ |eondo gz enug Addoj4
= < 25 NYM | = e Lz enq preH
PRVAN I | |E== x
o LSPOW < | A
A e L
ﬁl [\ 4 Y) 4 4
_
1G NV'1 |
9F -/l Hod [eLes ve €¢ 4/l anug ze 4N
[>| €S A/PHOMION 4/l anuq [eondo ssiqopeuBey | | eAuQ>isia pieH e,
! y
| r A A A 1€ SNVYO0Hd
| HIHIO
| 3
(I — : £g sng waisAg d g€ SNVHOO0Yd
i v v v NOILVYOIddv
29 !
« i Sg 8y Iz e SO
5 I ogsngiSOs >
90ln8(] ODEIOIS _ Jeydepy 1soH Jeydepy 08pIA nun Buisseooid (sz2WNvy)
[
_ 9z sold
¥ JONuO _ (v2 noY)
1
= — “ 22 MowBpy WSjSAS
_
]
_
_
_
[
_
_
_

PCT/US2004/024630

WO 2005/045585

2/11

V¢ "Old

ININOdINOD FAVMAUVH

w)
\ /

ININOJINOD WILSAS FOVAUILNI FUVMLAOS / IUVMANVH

LNINOdINOD NVHOOUd NOILYOIIddV

0¢

00¢

WO 2005/045585 PCT/US2004/024630

3/11

/)
20
FIG. 2B

N o
N
< N
-—
N
(o)
N
N
OI
N
N
<O
N
N o
u N
N © ~
b S - FI
[N o [N »

(o]
98
[aV]
| | O N
~—| | /1N
(] Nl | | N

o\

v

220

N

PCT/US2004/024630

WO 2005/045585

4/11

e
SBWBYOS AS] MON

e

e
Sewayog
ULojjeld PapusIXg

e e ore
soedsewepN 2l01g eleq alojlgeeq |
ZSUIA JeuLio Jeuyl0 J2ULIOS UOLULWOD)
4 8EE SIUOLS V.LVA JLOWTY
V1€ INION3
8l0
Sd1N 1S T0S Isvaviva
[o]%3] S RS e —
uonotisq b_w%%mm mc_v_omm_.o Mmcmco _muow‘owumo < e
juonowo.d : ; S|00L
uswiholdeq
_ BWaYOS
¢0€ JHO1S VY.Lvd
_ e e
[433 oEE SUOCHEILHON uoneziuoyoukg |
Idv 81015 somnN oo
#) —
190y oMl 82€ STOINYTS
00¢g
oce vee e
IdV Z€ NIM ga 310 IdV wuoje|d abelo}s
02€ SADVAHILNI ONINWVIOOHd NOILYDITddV
o0se d0g¢ v0ge

weibold uoneoyddy

welboid uoneoddy

weiboid uoneoiddy

ove
sewsayog wioge|d

WO 2005/045585 PCT/US2004/024630

5/11

5
o
=

q.

CATORGORIES

ITEMS

o|
N
<

<\ ITEM FOLDERS

PCT/US2004/024630

WO 2005/045585

6/11

g Old

c0g

V1va N3l

V1vd NOILVaVY'104d
ALld3d0Odd

920G

V1vd NOILVHOO3d WAL

00S \\\\\

PCT/US2004/024630

WO 2005/045585

711

809

M3IN AV1dSIA L1Nv43d
O1 ONIHOIIV LNISTHd

s

A

O

N

9 "Old

MJIA NOILVHOO3d

WELINV HLIM W31l IN3S34d 909

& VINFHOS 009

NOILVYHOOdd
WALl

¢09
44018 V.1vd SS300V

PCT/US2004/024630

WO 2005/045585

8/11

904

M3IANOILYHOO3Ad

W31l O1 ONIGHOOJV INIS3dd

7

A

MIIANOILYHOO3d WAL
NY WOH4 LNIINT T3 AV'1dSId
V HLM N1 INJSHHd

0L

M3IA NOILYHOO3A T13HS
V HLIM SINFLI INISTHd

801

¢ VINGHOS

NOILvYH023d
W31l FNVS

c0L

34018 V1va SS300V

\| 004

L "Old

6 9OIld 8 "OId
L 006 e 008

PCT/US2004/024630

9/11

WO 2005/045585

VI8
SONILIIS MIIA ¥ISN
k453 SNOLLY:003a
6 SNOLLYH0030 ¥3-O01dX3 018 SNINTOD
m 808 3NV MIINTY
906 VYWZHOS MIIA TI3HS :
| 908 SMSVL
¥08 VWIHOS MIIA TI3HS
6 VYWIHOS MAIA H3HO 1A L
208 VYWIHOS MIIA WAL
206 VYWIHOS MIIAWALLI |

WO 2005/045585 PCT/US2004/024630

10/11

ACCESS DATA STORE

SELECT EXPLORER ITEMS

FIG. 10
1006

DOES EXPLORER NO
INCLUDE
SHELL VIEW ?

UTILIZE SHELL VIEW
CONTAINED IN THE
EXPLORER

1010

/‘ 1012

1002

1004

UTILIZE DECORATIVE ELEMENTS FROM AN ITEM
DISPLAY SCHEMA

PRESENT EXPLORER ITEM
ACCORDING TO SHELL AND ITEM
VIEWS

PRESENT EXPLORER
DECORATIVE PROPERTIES

1000

UTILIZE SHELL
VIEW
CONTAINED IN
THE SHELL

1008

1014

1016

PCT/US2004/024630

WO 2005/045585

SWHL1l A31V13d ONIAVIdSId

SW3LIN3IML3g
dIHSNOILV 134 ONININYFL3A

JY01S V.1vd ONISSIOOV

VINIHOS
AV1dSIA 43407TdX3 OL ONIQHOI2V
SWA LI ¥43401dX3 ONIAVYIASIA

v0clL SWILI H3HOdX3 LO33S
Ol 340LS V1vad V ONISSIOV

YIWNIHOS W
AV1dSIA Y340 14X NV ONINIHIA

AYLINT 7314 d34IS3d ONILOFTIS

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

