(12) 发明专利申请
(10) 申请公布号 CN 102951985 A
(43) 申请公布日 2013.03.06
(21) 申请号 201110235505.2
(22) 申请日 2011.08.17
(71) 申请人 中国石油化工股份有限公司
地址 100728 北京市朝阳区朝阳门北大街22号
申请人 中国石化上海石油化工股份有限公司
(72) 发明人 孙超、傅健松、姚本镇、杨祖寿
姚亚娟、王继媛、吴忠平、张冬梅
(74) 专利代理机构 上海东方易知识产权事务所
31121
代理人 沈原
(51) Int. Cl.
C07C 13/15(2006.01)
(54) 发明名称
分离碳五馏分并制取环戊二烯的方法
(57) 摘要
一种分离碳五馏分并制取环戊二烯的方法，包括：原料碳五馏分精馏脱除轻组分杂质；物料经预热二聚反应以使部分环戊二烯转化为双环戊二烯；预热二聚反应后的物料经精馏分离提取部分异戊二烯，塔顶得富集异戊二烯的物料；前塔釜物料经第二次热二聚反应池使剩余的环戊二烯转化为双环戊二烯；物料经精馏分离提取剩余的异戊二烯，塔顶得富集异戊二烯的物料，塔釜得富集双环戊二烯和间戊二烯的物料，前塔釜物料经精馏分离双环戊二烯和间戊二烯，塔顶得富集间戊二烯的物料，塔釜得富集双环戊二烯的物料；前塔釜物料经解聚精馏得环戊二烯产品。本发明的优点在于分离过程中异戊二烯与环戊二烯的共热二聚反应被有效抑制，减少了异戊二烯和环戊二烯的损失。
1. 一种分离碳五馏分并制取环戊二烯的方法，包括以下步骤：

1) 原料碳五馏分精馏塔进行精馏以分离脱除轻组分杂质，塔釜温度控制为 60 ～
90℃，塔顶温度控制为 40 ～ 50℃，操作压力控制为 0.10 ～ 0.40MPa，回流比控制为 20 ～
40，塔顶馏出轻组分杂质，塔釜得碳五馏分物料；

2) 由步骤 1) 塔釜得到的碳五馏分物料经预热二聚反应使部分环戊二烯转化为双环
戊二烯，反应温度控制为 40 ～ 60℃，反应压力控制为 0.40 ～ 0.80MPa，物料的反应停留时
间控制为 240 ～ 600min；

3) 经步骤 2) 预热二聚反应后的碳五馏分物料经精馏塔进行精馏以分离提取部分异
戊二烯，塔釜温度控制为 60 ～ 80℃，塔顶温度控制为 35 ～ 50℃，操作压力控制为 0.10 ～
0.50MPa，回流比控制为 2 ～ 10，塔顶得富集异戊二烯的物料，塔釜得剩余的碳五馏分物
料；

4) 由步骤 3) 塔釜得到的碳五馏分物料经第二次热二聚反应使剩余的环戊二烯转化为
双环戊二烯，反应温度控制为 100 ～ 150℃，反应压力控制为 0.80 ～ 1.20MPa，物料的反
应停留时间控制为 60 ～ 120min；

5) 经步骤 4) 第二次热二聚反应后的碳五馏分物料经精馏塔进行精馏以分离提取剩
余的异戊二烯，塔釜温度控制为 70 ～ 100℃，塔顶温度控制为 50 ～ 80℃，操作压力控制为
0.20 ～ 0.40MPa，回流比控制为 10 ～ 20，塔顶得富集异戊二烯的物料，塔釜得富集双环戊
二烯和异戊二烯的物料；

6) 由步骤 5) 塔釜得到的物料经精馏塔进行精馏以分离双环戊二烯和异戊二烯，塔釜
温度控制为 100 ～ 120℃，塔顶温度控制为 35 ～ 50℃，操作压力控制为 0.010 ～ 0.040MPa，
回流比控制为 2 ～ 10，塔顶得富集双环戊二烯的物料，塔釜得富集双环戊二烯的物料；

7) 由步骤 6) 塔釜得到的物料经精馏塔进行精馏以分离双环戊二烯和异戊二烯，塔釜
温度控制为 170 ～ 200℃，塔顶温度控制为 35 ～ 50℃，操作压力控制为 0.10 ～
0.30MPa，回流比控制为 0.5 ～ 5，塔顶得环戊二烯产品，塔釜得为重组分杂质。

2. 根据权利要求 1 所述的分离碳五馏分并制取环戊二烯的方法，其特征在于步骤 1)
所述的塔釜温度控制为 75 ～ 85℃，塔顶温度控制为 42 ～ 48℃，操作压力控制为 0.25 ～
0.35MPa，回流比控制为 25 ～ 35。

3. 根据权利要求 1 所述的分离碳五馏分并制取环戊二烯的方法，其特征在于步骤 2) 所
述的反应温度控制为 45 ～ 55℃，反应压力控制为 0.50 ～ 0.70MPa，物料的反应停留时间
控制为 400 ～ 500min。

4. 根据权利要求 1 所述的分离碳五馏分并制取环戊二烯的方法，其特征在于步骤 3) 所
述的塔釜温度控制为 65 ～ 75℃，塔顶温度控制为 40 ～ 47℃，操作压力控制为 0.25 ～
0.35MPa，回流比控制为 3 ～ 8。

5. 根据权利要求 1 所述的分离碳五馏分并制取环戊二烯的方法，其特征在于步骤 4) 所
述的反应温度控制为 120 ～ 140℃，反应压力控制为 0.90 ～ 1.10MPa，物料的反应停留时
间控制为 70 ～ 90min。

6. 根据权利要求 1 所述的分离碳五馏分并制取环戊二烯的方法，其特征在于步骤 5) 所
述的塔釜温度控制为 80 ～ 90℃，塔顶温度控制为 55 ～ 70℃，操作压力控制为 0.25 ～
0.30MPa，回流比控制为 12 ～ 18。
7. 根据权利要求1所述的分离碳五馏分并制取环戊二烯的方法，其特征在于步骤6) 所述的塔釜温度控制为105～115℃，塔顶温度控制为40～50℃，操作压力控制为0.025～0.035MPaG，回流比控制为5～8。
8. 根据权利要求1所述的分离碳五馏分并制取环戊二烯的方法，其特征在于步骤7) 所述的反应釜温度控制为180～190℃，塔顶温度控制为40～45℃，操作压力控制为0.15～0.20MPaG，回流比控制为2～4。
分离碳五馏分并制取环戊二烯的方法

技术领域
[0001] 本发明涉及分离碳五馏分的方法，特别涉及由石油裂解制乙烯副产的碳五馏分通过热二聚和精馏分离等过程获得异戊二烯和环戊二烯初步分离物料，并同时获得环戊二烯精制产品的方法。

背景技术
[0002] 石油裂解制乙烯过程中会副产出一种碳五馏分，在所有的乙烯裂解副产物料中碳五馏分占有较高的比重。碳五馏分中含有总量为40～60wt%的环戊二烯、异戊二烯和间戊二烯，这三种双烯烃化学性质活泼，能与多种有机物进行反应，在树脂、橡胶、医药或农药以及其它精细化工领域均有广泛的用途。目前，分离制取环戊二烯、异戊二烯和间戊二烯是碳五馏分中最重要也是最具经济价值的利用方法。碳五馏分成分复杂，许多组分的沸点相近，或容易形成共沸物，而三种双烯烃又较易自聚或互聚进而生成二聚物，因此通过简单的精馏过程无法将它们各自从碳五馏分中分离出高纯度的产品。现有技术中，几乎所有碳五分离工艺均是先对原料进行初步的分离（工业上习惯将此过程称为预分离或预处理），然后再对初步分离物料分别进行精馏或萃取精馏等过程以获得高纯度的产品。在三种双烯烃中，环戊二烯易发生热二聚反应生成沸点更高并热稳定性更好的双环戊二烯，而异戊二烯则与间戊二烯及双环戊二烯存在较大的沸点差。因此在初步分离阶段中，通常将环戊二烯经二聚反应转化双环戊二烯，再配合数次精馏过程使三种双烯烃从碳五馏分中实现初步的分离。

[0003] 传统的碳五馏分分离工艺流程在初步分离阶段通常都是先进行环戊二烯的热二聚反应，将环戊二烯转化为双环戊二烯，再通过精馏实现异戊二烯与间戊二烯及双环戊二烯的分离，有些则在热二聚前再增加精馏脱轻，以除去原料中的碳四组分和炔烃等轻组分。工业上常将此称为前热二聚法，典型的常见美国专利US3,510,405、中国专利ZL96116289.9及ZL96102485.2描述的技术方案。由于异戊二烯与环戊二烯共热二聚反应的活化能和环戊二烯热二聚反应的活化能较为接近，环戊二烯热二聚的同时，很容易伴随发生异戊二烯与环戊二烯的共热二聚反应。传统的前热二聚法流程由于热二聚反应系统中异戊二烯浓度较高，加之要求经一次热二聚反应完成环戊二烯向二聚物的转化，采用的反应条件较为剧烈，因此会生成较多量的异戊二烯与环戊二烯共聚物生成。这不仅导致异戊二烯和环戊二烯的大量损失，还会影响双环戊二烯产品纯度，因异戊二烯与环戊二烯二聚物和双环戊二烯的沸点很近，两者较难分离。中国专利ZL200710043976.7提出了一种后热二聚的碳五馏分分离方法，它在碳五馏分物料进行环戊二烯热二聚反应前先通过精馏将异戊二烯从碳五馏分物料中分离出来，以避免热二聚反应过程中异戊二烯与环戊二烯二聚物的生成。后热二聚工艺一定程度上克服了前热二聚工艺的缺陷，但其缺点是在分离提取异戊二烯时物料中环戊二烯尚未转化为双环戊二烯，经一次精馏将异戊二烯分离出来操作难度较大，精馏塔塔顶馏出物容易夹带环戊二烯。然而更为重要的是，分离异戊二烯的精馏塔塔釜及提馏段因环戊二烯浓度及物料所处温度均较高，这些部位的异戊二烯与环戊二
烯极易发生共热二聚反应，因此系统中仍有相当数量的异戊二烯与环戊二烯二聚物生成。中国专利申请 200910176552.7 针对后热二聚工艺的缺陷提出了一种多次分离提取异戊二烯的碳五馏分分离方法，它在传统的前热二聚工艺流程的热二聚反应器前再设置一个精馏塔，在热二聚反应的前后分两次分离提取异戊二烯。该方法较好地解决了后热二聚工艺异戊二烯精馏分离塔塔顶馏出物易夹带环戊二烯的问题。但是，在第一异戊二烯精馏分离塔的釜及提馏段仍不可避免地发生异戊二烯与环戊二烯的共热二聚反应，在这优点上它几乎是重蹈后热二聚工艺覆辙的。

由此可见，现有的碳五馏分分离方法均无法很好地解决分离过程中异戊二烯与环戊二烯因共热二聚而生成二聚物这一技术问题。

发明内容

本发明提供了一种分离碳五馏分并制取环戊二烯的方法。碳五馏分经分离后得到富集异戊二烯和间戊二烯两种初步分离物料以及环戊二烯精制产品。本发明对分离流程作了进一步的改进，所解决的技术问题是不仅克服后热二聚工艺分离异戊二烯时精馏塔塔顶出料易夹带环戊二烯的缺陷，而且基本避免分馏过程中异戊二烯与环戊二烯共二聚物的生成。

以下是本发明解决上述技术问题的技术方案：

一种分离碳五馏分并制取环戊二烯的方法，包括以下步骤：

1) 原料碳五馏分精馏塔进行精馏以分离除去轻组分杂质，塔釜温度控制为 60 ～ 90°C，塔顶温度控制为 40 ～ 50°C，操作压力控制为 0.10 ～ 0.40MPaG，回流比控制为 20 ～ 40。塔顶排出轻组分杂质，塔釜得碳五馏分物料；

2) 由步骤 1) 塔釜得到的碳五馏分物料经预热二聚反应以使部分环戊二烯转化为双环戊二烯，反应温度控制为 40 ～ 60°C，反应压力控制为 0.40 ～ 0.80MPaG，物料的反应停留时间控制为 240 ～ 600min；

3) 经步骤 2) 预热二聚反应后的碳五馏分物料经精馏塔进行精馏以分离提取部分异戊二烯，塔釜温度控制为 60 ～ 80°C，塔顶温度控制为 35 ～ 50°C，操作压力控制为 0.10 ～ 0.50MPaG，回流比控制为 2 ～ 10。塔顶得富集异戊二烯的物料，塔釜得剩余的碳五馏分物料；

4) 由步骤 3) 塔釜得到的碳五馏分物料经第二次热二聚反应以使剩余的环戊二烯转化为双环戊二烯，反应温度控制为 100 ～ 150°C，反应压力控制为 0.80 ～ 1.20MPaG，物料的反应停留时间控制为 60 ～ 120min；

5) 经步骤 4) 第二次热二聚反应后的碳五馏分物料经精馏塔进行精馏以分离提取剩余的异戊二烯，塔釜温度控制为 70 ～ 100°C，塔顶温度控制为 50 ～ 80°C，操作压力控制为 0.20 ～ 0.40MPaG，回流比控制为 10 ～ 20。塔顶得富集异戊二烯的物料，塔釜得富集双环戊二烯和间戊二烯的物料；

6) 由步骤 5) 塔釜得到的物料经精馏塔进行精馏以分离双环戊二烯和间戊二烯，塔釜温度控制为 100 ～ 120°C，塔顶温度控制为 35 ～ 50°C，操作压力控制为 0.010 ～ 0.040MPaG，回流比控制为 2 ～ 10。塔顶得富集间戊二烯的物料，塔釜得富集双环戊二烯的物料；
7) 由步骤 6) 塔釜得到的物料经解聚精馏塔进行双环戊二烯解聚及环戊二烯精制，反应釜温度控制为 170 ～ 200°C，塔顶温度控制为 35 ～ 50°C，操作压力控制为 0.10 ～ 0.30MPaG，回流比控制为 0.5 ～ 5。塔顶得环戊二烯产品，塔釜排出重组分杂质。

上述步骤 1) 所述的塔釜温度最好控制为 75 ～ 85°C，塔顶温度最好控制为 42 ～ 48°C，操作压力最好控制为 0.25 ～ 0.35MPaG，回流比最好控制为 25 ～ 35。

上述步骤 2) 所述的反应温度最好控制为 45 ～ 55°C，反应压力最好控制为 0.50 ～ 0.70MPaG，物料的反应停留时间最好控制为 400 ～ 500min。

上述步骤 3) 所述的塔釜温度最好控制为 65 ～ 75°C，塔顶温度最好控制为 40 ～ 47°C，操作压力最好控制为 0.25 ～ 0.35MPaG，回流比最好控制为 3 ～ 8。

上述步骤 4) 所述的反应温度最好控制为 120 ～ 140°C，反应压力最好控制为 0.90 ～ 1.10MPaG，物料的反应停留时间最好控制为 70 ～ 90min。

上述步骤 5) 所述的塔釜温度最好控制为 80 ～ 90°C，塔顶温度最好控制为 55 ～ 70°C，操作压力最好控制为 0.25 ～ 0.30MPaG，回流比最好控制为 12 ～ 18。

上述步骤 6) 所述的塔釜温度最好控制为 105 ～ 115°C，塔顶温度最好控制为 40 ～ 50°C，操作压力最好控制为 0.025 ～ 0.035MPaG，回流比最好控制为 5 ～ 8。

上述步骤 7) 所述的反应釜温度最好控制为 180 ～ 190°C，塔顶温度最好控制为 40 ～ 45°C，操作压力最好控制为 0.15 ～ 0.20MPaG，回流比最好控制为 2 ～ 4。

本发明的实质是在两次分离提取异戊二烯工艺的基础上将环戊二烯的热二聚反应分两段来进行。第一和第二段热二聚反应分别处于第一次分离提取异戊二烯的前后。发明人通过实验结果发现，按此流程进行碳五馏分的分离能很好地克服现有技术存在的缺陷。

按反应动力学分析，异戊二烯与环戊二烯浓度是影响其热二聚反应速率的重要因素，异戊二烯与环戊二烯共热二聚反应的反应速率与异戊二烯、环戊二烯两者浓度乘积成正比，无论降低异戊二烯或环戊二烯的浓度均可抑制它们的热二聚的反应速率。现有技术后热二聚工艺中两次分离提取异戊二烯工艺就是试图通过降低异戊二烯浓度来抑制异戊二烯与环戊二烯共热二聚反应的发生，但它们往往忽视了在未降低环戊二烯浓度的情况下进行异戊二烯的分离提取，在塔釜或精馏段的温度下异戊二烯与环戊二烯共热二聚反应很容易发生，加之物料在精馏塔中停留时间往往很难均匀一致，部分异戊二烯因停留时间过长而增加与环戊二烯发生二聚的机会。本发明采取的策略是将脱除轻组分杂质后的碳五馏分原料首先进行一次预热二聚，使相当一部分的环戊二烯完成二聚，但将工艺条件控制在无法满足异戊二烯与环戊二烯发生共热二聚反应。因为异戊二烯与环戊二烯共热二聚反应具有相对较高的活化能，只要温度和停留时间控制适当，加之热二聚反应通常采用管式反应器，温度在反应区停留时间的均匀性能够得到保证，上述目标是容易实现的。经预热二聚后环戊二烯浓度已明显降低，这使得第一次分离提取异戊二烯时异戊二烯与环戊二烯共热二聚反应被有效抑制。第二次热二聚反应在相对较低的温度下进行，当然反应条件仍然控制在适当的范围，以保证尽可能高的双环戊二烯选择性。实验结果表明，物料经此三个步骤后，环戊二烯的转化率和双环戊二烯的选择性一般都可达到 95% 以上，第二次分离提取异戊二烯时系统中残余的环戊二烯量已非常少，异戊二烯与环戊二烯共热二聚反应基本上已不会发生。
本发明提供的技术方案本质上属于碳五馏分分离的初步分离阶段，或可称为碳五馏分的预分离。加上脱除轻组分杂质后，原料碳五馏分经前六个步骤的处理后得到富集异戊二烯、间戊二烯和双环戊二烯的三种初步分离物料，富集异戊二烯或间戊二烯的初步分离物料可分别再采用已知的方法进行后续精制处理得到高纯度的产品。富集双环戊二烯的物料经解聚精馏后得到环戊二烯精制产品，该流程更适合需要直接利用环戊二烯进行后续加工的厂商，这样可省却双环戊二烯的精制过程。

解聚精馏塔本质上是一种上部带有精馏分离装置的解聚反应釜，或者说是底部为解聚反应器的精馏塔。该类设备在有机化工加工领域经常被采用。双环戊二烯在反应釜中完成解聚，解聚反应产物以气态直接上升至上部的精馏塔进行精馏分离，釜底排出重组分杂质，其中主要为碳五馏分物料在前道工序中产生的多聚物。

与现有技术相比，本发明显著的进步在于无论在热二聚或异戊二烯的分离提取过程异戊二烯与环戊二烯的共热二聚反应均被有效抑制，从而使异戊二烯和环戊二烯的收率都得到明显提高。其另一优点是三种双烯烃的分离更为彻底，富集异戊二烯或间戊二烯的初步分离物料以及双环戊二烯解聚前的物料中夹带其它双烯烃的量被控制在很低的程度，这一方面减轻了后续处理的负担，同时也更容易得到高纯度的产品。

附图是本发明的工艺流程示意图。

原料碳五馏分 W1 经精馏塔 1（理论塔板数为 85）进行精馏以分离脱除轻组分杂质，塔顶排出轻组分杂质 W3，塔釜得碳五馏分物料 W2；W2 进入一管式反应器 2 进行预热二聚反应以使部分环戊二烯转化为双环戊二烯；W4 经精馏塔 3（理论塔板数为 54）进行精馏以分离提取部分异戊二烯，塔顶得富集异戊二烯的物料 W6，塔釜得其余的碳五馏分物料 W5；W5 进入一管式反应器 4 进行第二次热二聚反应以使剩余的环戊二烯转化为双环戊二烯。第二次热二聚反应后的碳五馏分物料 W7 经精馏塔 5（理论塔板数为 80）进行精馏以分离提取剩余的异戊二烯，塔顶得富集异戊二烯的物料 W8，W8 与 W6 合并后可送后续的异戊二烯精制工序，塔釜得富集双环戊二烯和间戊二烯的物料 W9。

W9 经精馏塔 6（理论塔板数为 50）进行精馏以分离双环戊二烯和间戊二烯，塔顶得富集间戊二烯的物料 W11，W11 可送后续的间戊二烯精制工序，或直接作为粗间戊二烯产品，塔釜得富集双环戊二烯的物料 W10。

W10 进入解聚精馏塔 7（理论塔板数为 30）进行双环戊二烯的解聚和环戊二烯的精制，塔顶得精制的环戊二烯产品 W13，釜底定期排出重组分杂质 W12。

下面将通过具体的实施例对本发明作进一步的描述，在实施例中，环戊二烯转化率、双环戊二烯选择性（选择性 I）、异戊二烯与双环戊二烯二聚物选择性（选择性 II）、环戊二烯产品收率的定义分别为：

\[
\text{转化率} = \frac{\text{单位时间环戊二烯摩尔进料量} - \text{单位时间环戊二烯摩尔出料量}}{\text{单位时间环戊二烯摩尔进料量}} \times 100\%.
\]

\[
\text{选择性 I} = \frac{\text{单位时间双环戊二烯摩尔出料量} \times 2}{\text{单位时间环戊二烯摩尔进料量} - \text{单位时间环戊二烯摩尔出料量}} \times 100\%.
\]
单位时间异戊二烯与环戊二烯二聚物摩尔出料量
选择性 $II = \frac{\text{单位时间环戊二烯摩尔进料量 - 单位时间环戊二烯摩尔出料量}}{\text{单位时间环戊二烯摩尔进料量}} \times 100\%$。

单位时间环戊二烯产品摩尔出料量
环戊二烯产品收率 $= \frac{\text{单位时间环戊二烯产品摩尔出料量}}{\text{单位时间环戊二烯摩尔进料量}} \times 100\%$。

具体实施方式

【实施例 1 ~ 10】

实施例 1 ~ 10 的工艺流程见附图，原料碳五馏分 W1 为石油裂解制乙烯副产得到，其主要组成见表 1。各实施例精馏塔 1、3、5 和 6 以及解聚精馏塔 7 的工艺操作条件，预热二聚反应器和二聚反应器 2、4 的工艺操作条件分别见表 2、3、4 和 5。采用气相色谱法分析物料 W6, W8, W10, W11 和 W13 的组成，各物料中富集组分的含量见表 6。再结合各物料的流量计算环戊二烯转化率、双环戊二烯选择性（选择性 I）、异戊二烯与环戊二烯二聚物选择性（选择性 II）、环戊二烯产品的收率，结果见表 7。
<table>
<thead>
<tr>
<th>组分</th>
<th>含量 (wt. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>总碳四</td>
<td>5.18</td>
</tr>
<tr>
<td>异戊烷</td>
<td>5.54</td>
</tr>
<tr>
<td>3-甲基丁烯-1</td>
<td>0.72</td>
</tr>
<tr>
<td>2-甲基丁烯-1</td>
<td>4.7</td>
</tr>
<tr>
<td>正戊烷</td>
<td>7.59</td>
</tr>
<tr>
<td>戊烯-1</td>
<td>3.52</td>
</tr>
<tr>
<td>反式-戊烯-2</td>
<td>2.33</td>
</tr>
<tr>
<td>顺式-戊烯-2</td>
<td>1.48</td>
</tr>
<tr>
<td>2-甲基丁烯-2</td>
<td>2.33</td>
</tr>
<tr>
<td>环戊烷</td>
<td>1.26</td>
</tr>
<tr>
<td>环戊烯</td>
<td>3.31</td>
</tr>
<tr>
<td>戊二烯-1, 4</td>
<td>2.26</td>
</tr>
<tr>
<td>丁炔-2</td>
<td>0.95</td>
</tr>
<tr>
<td>异戊二烯</td>
<td>21.75</td>
</tr>
<tr>
<td>顺式-间戊二烯</td>
<td>4.94</td>
</tr>
<tr>
<td>反式-间戊二烯</td>
<td>9.08</td>
</tr>
<tr>
<td>环戊二烯</td>
<td>16.53</td>
</tr>
<tr>
<td>异戊烯炔</td>
<td>0.01</td>
</tr>
<tr>
<td>双环戊二烯</td>
<td>3.33</td>
</tr>
<tr>
<td>其他二聚体以及 C6、C10</td>
<td>余量</td>
</tr>
</tbody>
</table>

[0046]
[0047] 表 2.
[0048]
表 3.

<table>
<thead>
<tr>
<th>实施例</th>
<th>精馏塔 1</th>
<th>精馏塔 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>塔釜温度（℃）</td>
<td>塔顶温度（℃）</td>
</tr>
<tr>
<td>实施例 1</td>
<td>90.0</td>
<td>50.0</td>
</tr>
<tr>
<td>实施例 2</td>
<td>85.0</td>
<td>48.0</td>
</tr>
<tr>
<td>实施例 3</td>
<td>82.5</td>
<td>46.6</td>
</tr>
<tr>
<td>实施例 4</td>
<td>80.1</td>
<td>45.2</td>
</tr>
<tr>
<td>实施例 5</td>
<td>78.5</td>
<td>43.7</td>
</tr>
<tr>
<td>实施例 6</td>
<td>76.2</td>
<td>43.5</td>
</tr>
<tr>
<td>实施例 7</td>
<td>75.0</td>
<td>42.0</td>
</tr>
<tr>
<td>实施例 8</td>
<td>69.5</td>
<td>41.2</td>
</tr>
<tr>
<td>实施例 9</td>
<td>65.4</td>
<td>40.9</td>
</tr>
<tr>
<td>实施例 10</td>
<td>60.0</td>
<td>40.0</td>
</tr>
</tbody>
</table>

表 4.

<table>
<thead>
<tr>
<th>实施例</th>
<th>预热二聚反应器 2</th>
<th>热二聚反应器 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>反应温度（℃）</td>
<td>反应压力（MPaG）</td>
</tr>
<tr>
<td>实施例 1</td>
<td>40</td>
<td>0.80</td>
</tr>
<tr>
<td>实施例 2</td>
<td>45</td>
<td>0.71</td>
</tr>
<tr>
<td>实施例 3</td>
<td>50</td>
<td>0.70</td>
</tr>
<tr>
<td>实施例 4</td>
<td>50</td>
<td>0.65</td>
</tr>
<tr>
<td>实施例 5</td>
<td>51</td>
<td>0.63</td>
</tr>
<tr>
<td>实施例 6</td>
<td>52</td>
<td>0.62</td>
</tr>
<tr>
<td>实施例 7</td>
<td>52</td>
<td>0.60</td>
</tr>
<tr>
<td>实施例 8</td>
<td>55</td>
<td>0.50</td>
</tr>
<tr>
<td>实施例 9</td>
<td>58</td>
<td>0.45</td>
</tr>
<tr>
<td>实施例 10</td>
<td>60</td>
<td>0.40</td>
</tr>
</tbody>
</table>
精馏塔 5

<table>
<thead>
<tr>
<th>实施例</th>
<th>塔釜温度（℃）</th>
<th>塔顶温度（℃）</th>
<th>操作压力（MPaG）</th>
<th>回流比</th>
</tr>
</thead>
<tbody>
<tr>
<td>例 1</td>
<td>100.0</td>
<td>80.0</td>
<td>0.40</td>
<td>20</td>
</tr>
<tr>
<td>例 2</td>
<td>95.0</td>
<td>76.8</td>
<td>0.37</td>
<td>19</td>
</tr>
<tr>
<td>例 3</td>
<td>90.0</td>
<td>70.0</td>
<td>0.35</td>
<td>18</td>
</tr>
<tr>
<td>例 4</td>
<td>87.7</td>
<td>67.3</td>
<td>0.30</td>
<td>16</td>
</tr>
<tr>
<td>例 5</td>
<td>85.6</td>
<td>64.5</td>
<td>0.27</td>
<td>14</td>
</tr>
<tr>
<td>例 6</td>
<td>83.1</td>
<td>60.4</td>
<td>0.26</td>
<td>13</td>
</tr>
<tr>
<td>例 7</td>
<td>80.0</td>
<td>56.8</td>
<td>0.25</td>
<td>13</td>
</tr>
<tr>
<td>例 8</td>
<td>75.0</td>
<td>55.0</td>
<td>0.25</td>
<td>12</td>
</tr>
<tr>
<td>例 9</td>
<td>73.5</td>
<td>53.9</td>
<td>0.23</td>
<td>10</td>
</tr>
<tr>
<td>例 10</td>
<td>70.0</td>
<td>50.0</td>
<td>0.20</td>
<td>10</td>
</tr>
</tbody>
</table>

精馏塔 6

<table>
<thead>
<tr>
<th>实施例</th>
<th>塔釜温度（℃）</th>
<th>塔顶温度（℃）</th>
<th>操作压力（MPaG）</th>
<th>回流比</th>
</tr>
</thead>
<tbody>
<tr>
<td>例 1</td>
<td>120.0</td>
<td>50.0</td>
<td>0.040</td>
<td>10</td>
</tr>
<tr>
<td>例 2</td>
<td>117.8</td>
<td>49.1</td>
<td>0.036</td>
<td>8</td>
</tr>
<tr>
<td>例 3</td>
<td>115.0</td>
<td>48.0</td>
<td>0.035</td>
<td>8</td>
</tr>
<tr>
<td>例 4</td>
<td>112.4</td>
<td>47.5</td>
<td>0.028</td>
<td>7.5</td>
</tr>
<tr>
<td>例 5</td>
<td>110.7</td>
<td>46.2</td>
<td>0.025</td>
<td>7</td>
</tr>
<tr>
<td>例 6</td>
<td>108.1</td>
<td>45.1</td>
<td>0.022</td>
<td>6</td>
</tr>
<tr>
<td>例 7</td>
<td>107.2</td>
<td>44.2</td>
<td>0.020</td>
<td>5</td>
</tr>
<tr>
<td>例 8</td>
<td>105.0</td>
<td>42.0</td>
<td>0.020</td>
<td>5</td>
</tr>
<tr>
<td>例 9</td>
<td>103.5</td>
<td>40.0</td>
<td>0.018</td>
<td>4</td>
</tr>
<tr>
<td>例 10</td>
<td>100.0</td>
<td>35.0</td>
<td>0.010</td>
<td>2</td>
</tr>
</tbody>
</table>

解聚精馏塔 7

<table>
<thead>
<tr>
<th>实施例</th>
<th>反应釜温度（℃）</th>
<th>塔顶温度（℃）</th>
<th>操作压力（MPaG）</th>
<th>回流比</th>
</tr>
</thead>
<tbody>
<tr>
<td>例 1</td>
<td>170.0</td>
<td>35.0</td>
<td>0.15</td>
<td>0.5</td>
</tr>
<tr>
<td>例 2</td>
<td>180.0</td>
<td>37.6</td>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td>例 3</td>
<td>180.0</td>
<td>38.9</td>
<td>0.10</td>
<td>1</td>
</tr>
<tr>
<td>例 4</td>
<td>182.4</td>
<td>40.0</td>
<td>0.10</td>
<td>1.5</td>
</tr>
<tr>
<td>例 5</td>
<td>184.7</td>
<td>40.6</td>
<td>0.18</td>
<td>2</td>
</tr>
<tr>
<td>例 6</td>
<td>186.1</td>
<td>41.4</td>
<td>0.20</td>
<td>2.5</td>
</tr>
<tr>
<td>例 7</td>
<td>188.5</td>
<td>43.1</td>
<td>0.24</td>
<td>3</td>
</tr>
<tr>
<td>例 8</td>
<td>190.0</td>
<td>45.0</td>
<td>0.25</td>
<td>3</td>
</tr>
<tr>
<td>例 9</td>
<td>195.8</td>
<td>48.1</td>
<td>0.28</td>
<td>4</td>
</tr>
<tr>
<td>例 10</td>
<td>200.0</td>
<td>50.0</td>
<td>0.30</td>
<td>5</td>
</tr>
</tbody>
</table>

[0054] 表 5.

<table>
<thead>
<tr>
<th></th>
<th>W6 异戊二烯含量 (wt%)</th>
<th>W8 异戊二烯含量 (wt%)</th>
<th>W10 双环戊二烯含量 (wt%)</th>
<th>W11 间戊二烯含量 (wt%)</th>
<th>W13 环戊二烯含量 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>36.18</td>
<td>51.88</td>
<td>75.32</td>
<td>64.32</td>
<td>98.13</td>
</tr>
<tr>
<td>实施例 2</td>
<td>37.52</td>
<td>51.37</td>
<td>74.14</td>
<td>64.14</td>
<td>98.42</td>
</tr>
<tr>
<td>实施例 3</td>
<td>38.64</td>
<td>51.14</td>
<td>75.65</td>
<td>64.61</td>
<td>98.61</td>
</tr>
<tr>
<td>实施例 4</td>
<td>40.17</td>
<td>49.24</td>
<td>76.16</td>
<td>64.38</td>
<td>98.75</td>
</tr>
<tr>
<td>实施例 5</td>
<td>40.63</td>
<td>48.86</td>
<td>75.21</td>
<td>63.89</td>
<td>98.53</td>
</tr>
<tr>
<td>实施例 6</td>
<td>40.51</td>
<td>49.23</td>
<td>74.69</td>
<td>62.91</td>
<td>98.48</td>
</tr>
<tr>
<td>实施例 7</td>
<td>39.26</td>
<td>51.67</td>
<td>74.76</td>
<td>63.87</td>
<td>99.11</td>
</tr>
<tr>
<td>实施例 8</td>
<td>39.16</td>
<td>50.85</td>
<td>73.92</td>
<td>63.96</td>
<td>99.27</td>
</tr>
<tr>
<td>实施例 9</td>
<td>38.21</td>
<td>51.29</td>
<td>74.47</td>
<td>64.31</td>
<td>98.98</td>
</tr>
<tr>
<td>实施例 10</td>
<td>38.69</td>
<td>50.75</td>
<td>74.48</td>
<td>64.88</td>
<td>98.56</td>
</tr>
</tbody>
</table>

[0058] 表 7.

[0059]