

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : B29C 65/68, 65/02, A61M 25/00 // B29L 31:24		A1	(11) International Publication Number: WO 98/41384		
			(43) International Publication Date: 24 September 1998 (24.09.98)		
(21) International Application Number: PCT/US98/05067		(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).			
(22) International Filing Date: 16 March 1998 (16.03.98)					
(30) Priority Data: 08/819,965 18 March 1997 (18.03.97) US		Published <i>With international search report.</i>			
(71) Applicant: ADVANCED CARDIOVASCULAR SYSTEMS, INC. [US/US]; 3200 Lakeside Drive, P.O. Box 58167, Santa Clara, CA 95052-8167 (US).					
(72) Inventor: PETERSON, Eric, D.; 46820 Cloverleaf Court, Fremont, CA 94539 (US).					
(74) Agents: LYNCH, Edward, J.; Heller, Ehrman, White & McAuliffe, 525 University Avenue, Palo Alto, CA 94301-1900 (US) et al.					

(54) Title: BONDING A POLYMER MEMBER TO A METALLIC MEMBER

(57) Abstract

This invention is directed to a method of bonding thermoplastic catheter parts to a metallic member such as hypotubing and the product formed. The polymeric material is hot pressed against the metallic member with sufficient pressure to ensure plastic deformation of the polymeric material. A fluid tight bond is formed which can withstand pressures of up to 650 psi.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

BONDING A POLYMER MEMBER TO A METALLIC MEMBERBACKGROUND OF THE INVENTION

This invention generally relates to attachment of high strength polymeric members to a metallic member and particularly to the attachment of polymeric tubes to metallic tubes in intravascular devices such as catheters for use in percutaneous transluminal coronary angioplasty (PTCA).

In a typical PTCA procedure a dilatation balloon catheter is advanced over a guidewire to a desired location within the patient's coronary anatomy where the balloon of the dilatation catheter is properly positioned within the stenosis to be dilated. The balloon is then inflated to a predetermined size with radiopaque liquid at relatively high pressures (generally 4-20 atmospheres) to dilate the stenosed region of the diseased artery. One or more inflations may be needed to effectively dilate the stenosis. The catheter may then be withdrawn from the stenosis or advanced further into the patient's coronary anatomy to dilate additional stenoses. The inflation pressures used in PTCA procedures have increased considerably due to the utilization of high strength balloon materials. However, such higher pressures also place substantial stress on other catheter components and particularly the junctions between various catheter components. Examples of such components and junctions are the adapter and the junction with the proximal end of a metallic hypotube and the adapter and the distal end of a metallic hypotube and the polymeric tubular products which form the distal portion of a rapid exchange type dilatation catheter. Present manufacturing procedures involve the use of adhesives, heat shrinking and the like which limit the materials which can be used and the combination of materials which can be used and which complicate the manufacturing procedure. What has been needed and has heretofore been heretofore been unavailable is an uncomplicated procedure which produces high strength, hermetically sealed bonds.

SUMMARY OF THE INVENTION

The present invention is directed to a system for securely bonding a high strength polymer material to a metallic member and particularly a small diameter tubular polymeric product to a small diameter tubular metallic product.

5 In accordance with the invention the polymeric member is disposed in contact with the metallic member, the polymer member is hot pressed against the metallic member at a temperature above the glass transition temperature of the polymeric material but less than the melting point thereof to effect significant plastic deformation of the polymeric material. The result is a high strength bond and a fluid 10 tight seal which will no leak even under high pressures.

One presently preferred embodiment of the invention is directed to the bonding of small diameter tubular polymeric members to small diameter tubular metallic members. A portion of the metallic member is inserted into the inner lumen of a polymeric tubular member and a heat shrinkable collar is disposed about the 15 portion of the polymeric tubular member into which the metallic member is disposed. Heat is applied to the heat shrinkable collar, and the polymeric tubular member, causing the collar to shrink and apply sufficient pressure against the polymeric tubular member to plastically deform it and thereby bond the polymeric material to the surface of the metallic member. The heat shrinkable collar may be left in place 20 or removed from the polymeric tubular member after the bond is formed. A masking layer may be provided between the collar and the polymeric tubular member to prevent bonding and facilitate removal of the collar.

Generally, the polymeric material should be a high strength thermoplastic polymer which is at most semi-crystalline, preferably non-crystalline, and which is 25 not ethylenically cross-linked. The preferred polymeric material is an engineering polymer such as polyetheretherketone (PEEK), e.g. 581G sold by Victrex. Other polymeric materials include polyetheramide sold under the trademark ULETEM by General Electric, polyphenylene sulfide and polysulfone. The metallic member may be stainless steel, such as 304 stainless steel, or a superelastic or pseudoelastic 30 NiTi alloy. Other metallic materials may be used such as titanium and alloys thereof. There is no special surface preparation needed for the metallic members other than removing surface contaminants such as oil, grease and the like.

One of the advantages of the invention is that the bond is strong enough and the seal is sound enough so the number of parts needed to construct an intravascular catheter is reduced considerably. For example, in present conventional manufacturing practices for rapid exchange type catheters, such as the

5 LIFESTREAM Dilatation Catheter sold by Advanced Cardiovascular Systems, Inc., up to five parts are needed to attach a proximal hub or adapter to the proximal end of a hypotube shaft. With the present invention the distal end of the adapter can be bonded directly to the proximal extremity of a hypotube.

In addition to a significant reduction in the number of parts, there is no

10 adhesive used, so there is [sic] no requirements for an adhesive curing step to form an adhesive bond. The bond of the present invention between the polymeric material and metallic material is strong, durable and provides a fluid tight seal between the joined parts. These and other advantages of the invention will become more apparent from the following detailed description and the accompanying

15 exemplary drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is an elevational view, partially in section, of a rapid exchange type dilatation catheter embodying features of the invention.

20 Fig. 2 is a transverse cross-sectional view of the catheter shown in Fig. 1 taken along the lines 2-2.

Fig. 3 is a transverse cross-sectional view of the catheter shown in Fig. 1 taken along the lines 3-3

Fig. 4 is a transverse cross-sectional view of the catheter shown in Fig. 1

25 taken along the lines 4-4.

Fig. 5 is an enlarged partial elevational view of a polymeric tubular member in position to be hot pressed against the metallic tubular member to facilitate the bonding therebetween.

Fig. 6 is a longitudinal cross-sectional view of the members shown in Fig. 5

30 after the bonding procedure.

DETAILED DESCRIPTION OF THE INVENTION

Figs. 1-5 illustrate a rapid exchange type balloon dilatation catheter 10 which has an elongated shaft 11 with a dilatation balloon 12 on a distal shaft section 13 of the shaft and an adapter 14 on the proximal end of the proximal shaft section 15.

5 The proximal shaft 15 is formed of a metallic hypotube 16 with a lubricious coating 17. The distal shaft section 13 includes a distally extending tubular member 18 which has a guidewire receiving inner lumen 20 and which extends through the interior of the balloon 12 to the port 21 in the distal end of the catheter. A guidewire 22 is shown disposed within the lumen 20 and extending out the distal port 21 and 10 the proximal port 23. The inflation lumen 24 is in fluid communication with the interior of dilatation balloon 12 through inflation port 25

The distal extremity 26 of the adapter 14 is hot pressed bonded to the proximal extremity of the proximal shaft section 15 in accordance with the invention. A high strength polymeric tubular extension 27 is hot press bonded to the distal extremity of 15 the proximal shaft section 15 in the same manner as the distal extremity of the adapter is bonded to the proximal extremity of the proximal shaft section. In both cases the coating 17 is removed from the exterior of the hypotube 16 to facilitate direct bonding to the metallic surface.

Figs. 5 and 6 illustrate a presently preferred method of bonding the polymeric 20 member, tubular extension 27 to the metallic tubular member 16. As shown in Fig. 5, the distal end of the metallic tubular member 16 is inserted into the inner lumen 28 of the tubular extension 27. A heat shrinkable tubular collar 29 is disposed about the proximal extremity of the tubular extension 27 and heated to heat shrink temperatures to press the proximal extremity against the exposed surface of the 25 tubular member 16. With the high temperatures and the pressures applied, the proximal extremity is plastically deformed and is securely bonded to the metallic surface. The distal extremity of the adapter 14 is bonded to the proximal extremity of the proximal shaft section in essentially the same manner.

30 **EXAMPLE**

A stainless steel hypotube with an outer diameter of 0.024 inch (0.6 mm) and inner diameter of 0.016 inch (0.4 mm) was inserted into the inner lumen of a

polymeric tubular member form of polyetheretherketone (PEEK). The inner lumen of the polymeric tubular member was about 0.026 inch (0.7 mm) and the outer diameter was about 0.035 inch (0.9 mm). A short piece of a heat shrinkable tubular

FEP with an outer diameter of about 0.077 inch (2 mm) and an inner diameter of

5 about 0.055 inch (1.4 mm) was disposed about the exterior of the polymeric tubular member. The assembly was subjected to an air stream at 450° F.(232° C.) until the tubing becomes cloudy. Upon cooling, the FEP tubular collar was removed. The bond between the PEEK member and the stainless steel member was sound and leak free at internal pressures of up to 650 psi.

10 Although individual features of embodiments of the invention may be shown in some of the drawings and not in others, those skilled in the art will recognize that individual features of one embodiment of the invention can be combined with any or all the features of one or more of the other embodiments.

WHAT IS CLAIMED IS:

1. A method of securing a polymeric member to a metallic member in a high strength fluid tight relationship comprising:

5 a) mounting the polymeric member against the metallic member;

and

10 b) hot pressing the polymeric member against the metallic member at a temperature above the glass transition temperature and below the melting point of the polymeric material of the polymeric member while subjecting the polymeric material to plastic deformation.

15 2. The method of claim 1 wherein the polymeric member is a tubular element with an inner lumen extending therethrough and at least part of the metallic member is disposed within the inner lumen of the polymeric member and the polymeric material surrounding the metallic member is hot pressed against the portion of the metallic member within the inner lumen.

20 3. The method of claim 1 wherein the polymeric material from which the polymeric member is formed is a thermoplastic polymer selected from the group consisting of polyetheretherketone, polyetheramide, polyphenylene sulfide and polysulfone.

25 4. The method of claim 1 wherein the hot pressing of the polymeric member against the metallic member includes placing a heat shrinkable member about the polymeric member and the metallic member, heating the heat shrinkable member to shrink said member against the polymeric and metallic members, causing the temperatures of both the polymeric and metallic members to increase to a temperature above the glass transition temperature of the polymeric material and apply adequate pressure to cause the polymeric member to be plastically deform and bond to the metallic member.

30 5. The method of claim 4 wherein the heat shrinkable member is removed from the junction between the polymeric material and the metallic member.

6. The method of claim 4 wherein the heat shrinkable member is a polymeric collar.

5 7. The method of claim 4 wherein the polymeric collar is formed of a fluoropolymer.

8. An intravascular catheter with an elongated shaft comprising:
10 a) an elongated metallic tubular member having proximal and distal ends and an inner lumen extending between the proximal and distal ends;
b) a polymeric tubular member having proximal and distal ends and an inner lumen extending between the proximal and distal ends; and
15 c) a hot pressed bond between one part of the metallic tubular member and one part of the polymeric tubular member.

9. The intravascular catheter of claim 8 wherein the polymeric material is a thermoplastic polymer selected from the group consisting of polyetheretherketone, polyetheramide, polyphenylene sulfide and polysulfone.

20 10. The intravascular catheter of claim 8 wherein the one end of the polymeric tubular member is disposed about and hot press bonded to the exterior of one end of the metallic tubular member.

25 11. A balloon dilatation catheter comprising:
a) an elongated proximal shaft section formed at least in part of a metallic tubular member having proximal and distal ends and an inner lumen extending between the proximal and distal ends;
30 b) an elongated distal shaft section formed at least in part of a polymeric tubular member having proximal and distal ends and an inner lumen extending between the proximal and distal ends;

- c) a hot pressed bond between part of the metallic tubular member and part of the polymeric tubular member; and
- d) an inflatable dilatation balloon on the distal shaft section having an interior in fluid communication with the inner lumen of the polymeric tubular member.

12. An intravascular catheter with an elongated shaft comprising:

- a) an elongated metallic tubular member having proximal and distal ends and an inner lumen extending between the proximal and distal ends;
- b) a polymeric adapter having proximal and distal ends and an inner lumen extending between the proximal and distal ends; and
- c) a hot pressed bond between the proximal end of the metallic tubular member and the distal end of the polymeric adapter.

15

13. The intravascular catheter of claim 12 wherein the distal end of the polymeric adapter is bonded to the exterior of the proximal end of the metallic tubular member.

20

14. The intravascular catheter of claim 13 wherein the inner lumen of the metallic tubular member is in fluid communication with the inner lumen of the adapter.

15. A rapid exchange type balloon dilatation catheter comprising:

25

a) an elongated proximal shaft section formed at least in part of a metallic tubular member having proximal and distal ends and a first inner lumen extending therein;

30

b) an elongated distal shaft section, which is formed at least in part of a polymeric tubular member, having proximal and distal ends, a first port in the distal end and a second port spaced proximal to the distal end, a dilatation balloon with an interior, a second inner lumen extending therein which is in fluid communication with the first inner lumen in the metallic

tubular member and the interior of the dilatation balloon and a third inner lumen which is in fluid communication with the first and second ports; and

c) a hot pressed bond between part of the metallic tubular member and part of the polymeric tubular member.

1/2

FIG. 1

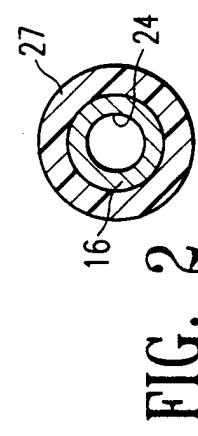
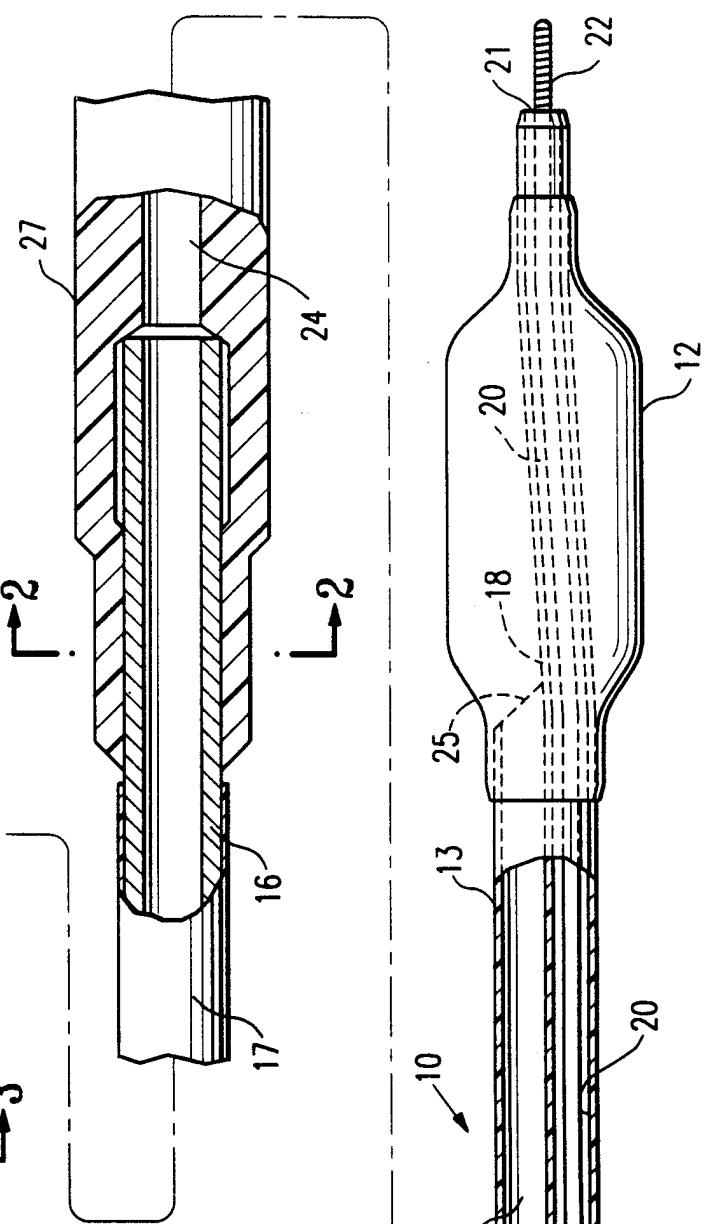
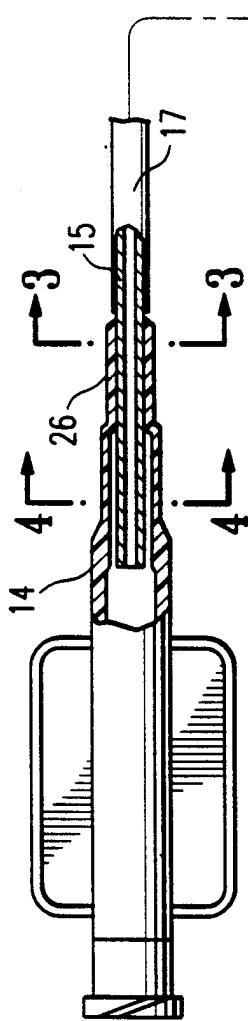




FIG. 2

FIG. 3

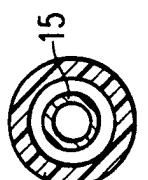


FIG. 4

FIG. 5

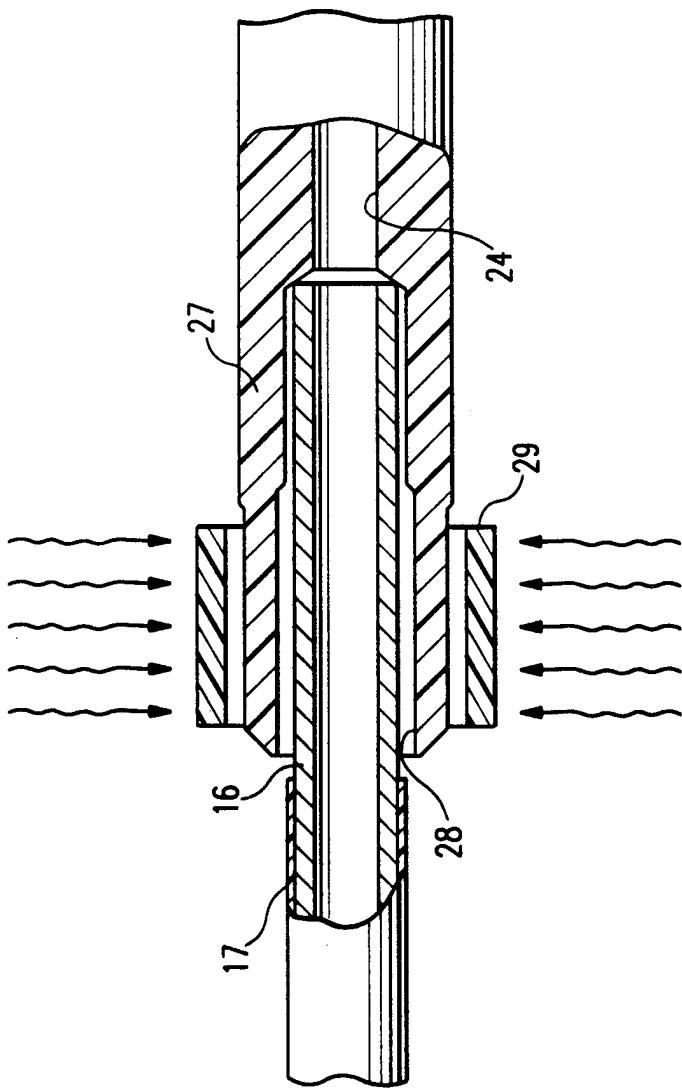
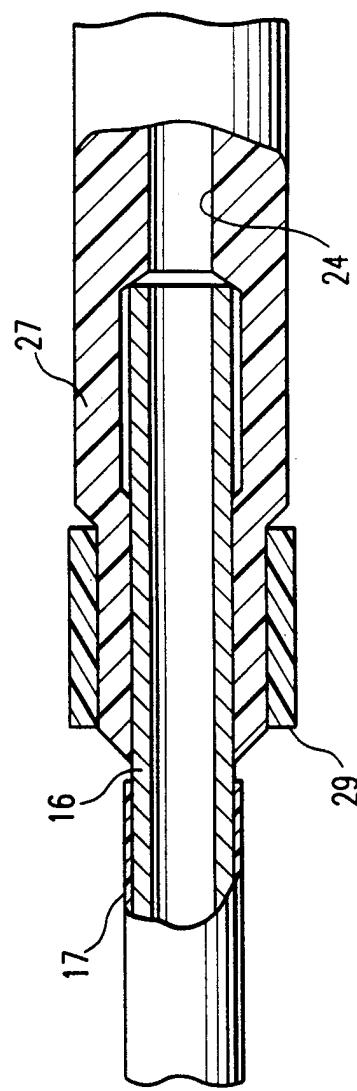



FIG. 6

INTERNATIONAL SEARCH REPORT

Int'l Application No

PCT/US 98/05067

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 B29C65/68 B29C65/02 A61M25/00 //B29L31:24

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 B29C A61M C08J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 390 668 A (EDWARD B. GARVER, SR.) 28 June 1983	1,2,8,10
Y	see column 3, line 9 - column 7, line 43; examples 1-3 ---	3-7,9, 11-15
X	EP 0 352 955 A (BAXTER INTERNATIONAL INC.) 31 January 1990 see column 5, line 10 - line 35; figure 1 ---	1,2
X	US 5 108 525 A (RAMSIN GHARIBADEH ET AL) 28 April 1992 see column 3, line 57 - column 4, line 21; figures 1-4 ---	1,2
Y	WO 96 20752 A (ADVANCED CARDIOVASCULAR SYSTEMS, INC.) 11 July 1996 see page 16, paragraph 1; claims 17,18 ---	3,9, 11-15
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

^a Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

19 June 1998

02/07/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Van Nieuwenhuize, O

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 98/05067

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 4 636 272 A (GARY T. RIGGS) 13 January 1987 see claims 1,12; figures 4-7 ----	4-7
Y	GB 2 182 110 A (CONTINENTAL GUMMI-WERKE AKTIENGESELLSCHAFT) 7 May 1987 see page 2, line 24 - line 41; figure 1 ----	4,6
Y	EP 0 513 818 A (ADVANCED CARDIOVASCULAR SYSTEMS, INC.) 19 November 1992 see column 7, line 1 - line 39; figure 6 ----	11
A	WO 93 20882 A (ADVANCED CARDIOVASCULAR SYSTEMS, INC.) 28 October 1993 see page 15, paragraph 2 ----	8-15
A	US 4 419 169 A (LAWRENCE F. BECKER ET AL) 6 December 1983 see figures 4-8 ----	4
A	US 5 480 383 A (CELSO S.J. BAGAOISAN ET AL) 2 January 1996 see claim 15 ----	8-15
A	PATENT ABSTRACTS OF JAPAN vol. 97, no. 1, 31 January 1997 & JP 08 247371 A (OLYMPUS OPTICAL CO LTD), 27 September 1996, see abstract; figures 1-4 ----	1,2
A	PATENT ABSTRACTS OF JAPAN vol. 7, no. 169 (M-231), 26 July 1983 & JP 58 074295 A (SHIN NIPPON SEITETSU KK), 4 May 1983, see abstract -----	1,2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 98/05067

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 4390668	A	28-06-1983	NONE		
EP 352955	A	31-01-1990	JP	2074244 A	14-03-1990
US 5108525	A	28-04-1992	NONE		
WO 9620752	A	11-07-1996	CA	2209633 A	11-07-1996
			EP	0801582 A	22-10-1997
			US	5743875 A	28-04-1998
US 4636272	A	13-01-1987	NONE		
GB 2182110	A	07-05-1987	DE	3534620 A	02-04-1987
			FR	2587933 A	03-04-1987
EP 513818	A	19-11-1992	CA	2068483 A	16-11-1992
			JP	5137793 A	01-06-1993
			US	5496275 A	05-03-1996
			US	5533968 A	09-07-1996
			US	5743875 A	28-04-1998
WO 9320882	A	28-10-1993	CA	2116038 A	28-10-1993
			EP	0590140 A	06-04-1994
			US	5743875 A	28-04-1998
US 4419169	A	06-12-1983	US	4251305 A	17-02-1981
US 5480383	A	02-01-1996	NONE		