Title: PROCESS FOR PREPARING INTERMEDIATES

Abstract: The present invention is directed to a process for preparing intermediates that are useful to prepare certain antibacterial N-formyl hydroxyamine compounds which are peptide deformylase inhibitors. The process makes use of β-lactam intermediate. Certain optically pure intermediates are also claimed.
PROCESS FOR PREPARING INTERMEDIATES

This invention is directed to a process for preparing intermediates that are useful to prepare certain antibacterial \(N\)-formyl hydroxylamine compounds.

Peptide deformylase is a metallopeptidase found in prokaryotic organisms such as bacteria. Protein synthesis in prokaryotic organisms begins with \(N\)-formyl methionine (fMet). After initiation of protein synthesis, the formyl group is removed by the enzyme peptide deformylase (PDF); this activity is essential for maturation of proteins. It has been shown that PDF is required for bacterial growth (see Chang et al., J. Bacteriol., Vol. 171, pp. 4071-4072 (1989); Meinnel et al., J. Bacteriol., Vol. 176, No. 23, pp. 7387-7390 (1994); Mazel et al., EMBO J., Vol. 13, No. 4, pp. 914-923 (1994)). Since protein synthesis in eukaryotic organisms does not depend on fMet for initiation, agents that will inhibit PDF are attractive candidates for development of new anti-microbial and anti-bacterial drugs.

Co-pending Application Serial No. 10/171,706, filed June 14, 2002 (incorporated herein by reference in its entirety) and WO02/102790, disclose novel \(N\)-formyl hydroxylamine compounds that inhibit PDF and are therefore useful as antibacterial agents. The compounds disclosed therein are certain \(N\)-[1-oxo-2-alkyl-3-(\(N\)-hydroxyformamido)-propyl]-[carbonylamino-aryl or -heteroaryl]-azacyclo\(_{4,7}\)-alkanes or thiazacyclo\(_{4,7}\)-alkanes which are described in more detail hereinafter. An improved process has been discovered for preparing intermediates useful for preparing these \(N\)-[1-oxo-2-alkyl-3-(\(N\)-hydroxyformamido)-propyl]-[carbonylamino-aryl or -heteroaryl]-azacyclo\(_{4,7}\)-alkanes or thiazacyclo\(_{4,7}\)-alkanes which makes use of a particular \(\beta\)-lactam intermediate.

The present invention is directed to a novel process for preparing certain intermediates which are useful to prepare certain \(N\)-formyl hydroxylamine compounds which are useful for inhibiting bacteria.

More specifically, the present invention is directed to a process for preparing a compound of the formula (VIII)
comprising Step A:

contacting a compound of the formula (I)

with a compound of the formula (II)

in the presence of a carboxy-activating agent, in a suitable solvent

under conditions suitable to form a compound of the formula (III)

followed by Step B:

contacting compound (III) with a compound of the formula (XIII)
in the presence of a base in a suitable solvent, under conditions suitable to form a compound of the formula (IV)

followed by Step C:

contacting compound (IV) with a base in a suitable solvent under conditions suitable to form a compound of the formula (V)

followed by Step D:

contacting compound (V) with a compound of the formula (VI)

in a suitable solvent optionally in the presence of an activator under conditions suitable to form a compound of the formula (VII)
followed by Step E:

contacting compound (VII) with a formylating agent in a suitable solvent under conditions suitable to form compound (VIII);

wherein

Y is a hydroxy protecting group;

each of R₂, R₃, R₄ and R₅ is independently hydrogen or an aliphatic group, or (R₂ and R₃) and/or (R₄ and R₅) collectively form a C₄₋₅cycloalkyl;

X is -CH₂-, -S-, -CH(OH)-, -CH(OR)-, -CH(SH)-, -CH(SR)-, -CF₂-, -C=N(OR)- or -CH(F)-;

wherein

R is alkyl;

G is -OH or -O⁻M⁺, wherein M is a metal or an ammonium moiety;

R₁ is aryl or heteroaryl;

X' is halo;

R' is alkyl or aryl; and

n is 0 to 3, provided that when n is 0, X is -CH₂-.

When the desired product is an N-oxide of an aromatic moiety having a nitrogen heteroatom, e.g., when R₁ is formula (X), (XⅠa) or (XⅠb), typically a pyridine derivative, it is necessary to perform an additional step after Step E, i.e., to oxidize the N of the aromatic ring (Step F). Therefore, the present invention includes Step F which comprises contacting the compound of formula (VIII), wherein R₁ is heteroaryl having an N heteroatom, with an oxidizing agent to form the corresponding N-oxide derivative.

In addition to the above process comprising Steps A through E or F, the present invention is directed to each of the steps individually, and to any two or more sequential steps.

Detailed Description of the Invention

In particular, the present invention provides a process for preparing intermediates useful in the preparation of a N-[1-oxo-2-alkyl-3-(N-hydroxyformamido)-propyl]-
(carbonylamino-aryl or -heteroaryl)-azacyclo_4,7_alkane or thiazacyclo_4,7_alkane, e.g., a compound of formula (IX)

\[
\begin{array}{c}
\text{HO} \\
\text{R}_2 \text{R}_3 \text{R}_4 \text{R}_5 \\
\text{O} \\
\text{N} \\
\text{R}_1 \\
\text{O} \\
\text{S} \\
\text{X} \\
\text{(CH}_2)_n \text{NH} \\
\text{R}_1
\end{array}
\]

wherein \(R_1, R_2, R_3, R_4, R_5, X \) and \(n \) are as defined above.

To convert the compound of formula (VIII) to the compound of formula (IX), the hydroxy protecting group is removed using conventional hydrogenolysis techniques known in the art, e.g., by contacting the compound of formula (VIII) with a palladium catalyst, such as Pd/BaSO_4.

The \(R_1 \) moiety can be a heteroaryl, e.g., an azacyclo_4,7_alkane, a thiazacyclo_4,7_alkane or an imidazacyclo_4,7_alkane. Specific examples of \(R_1 \) moieties in the compounds disclosed herein are heteroaryls of formula (X)

\[
\begin{array}{c}
\text{R}_6 \\
\text{R}_7 \\
\text{N} \\
\text{R}_8 \\
\text{R}_9
\end{array}
\quad \text{or} \quad
\begin{array}{c}
\text{R}_6 \\
\text{R}_7 \\
\text{N} \\
\text{R}_8 \\
\text{R}_9
\end{array}
\quad \text{or} \quad
\begin{array}{c}
\text{R}_6 \\
\text{R}_7 \\
\text{N} \\
\text{R}_8 \\
\text{R}_9
\end{array}
\]

wherein each of \(R_6, R_7, R_8 \) and \(R_9 \), independently, is hydrogen, alkyl, substituted alkyl, hydroxy, alkoxy, acyl, acyloxy, SCN, halogen, cyano, nitro, thioalkoxy, phenyl, heteroalkylaryl, alkylsulfanyl or formyl.

A more specific \(R_1 \) moiety is a heteroaryl of formula (Xla)

\[
\begin{array}{c}
\text{R}_6 \\
\text{R}_7 \\
\text{N} \\
\text{O}^' \\
\text{R}_8 \\
\text{R}_9
\end{array}
\]

(Xla)
wherein \(R_6, R_7, R_8 \) and \(R_9 \) are as defined above for formula (X), e.g.,

wherein

a) \(R_6 \) is nitro, alkyl, substituted alkyl, phenyl, hydroxy, formyl, heteroalkylaryl, alkoxy, acyl or acyloxy; preferably alkyl, especially C$_{1-7}$alkyl; hydroxy; or alkoxy, especially a C$_{1-7}$alkoxy; and

\(R_7, R_8 \) and \(R_9 \) are hydrogen; or

b) \(R_6, R_8 \) and \(R_9 \) are hydrogen; and

\(R_7 \) is alkyl, substituted alkyl, phenyl, halogen, alkoxy or cyano, preferably alkyl, especially C$_{1-7}$alkyl; substituted alkyl, especially substituted C$_{1-7}$alkyl, such as -CF$_3$; or alkoxy, especially C$_{1-7}$alkoxy; or

c) \(R_6, R_7 \) and \(R_9 \) are hydrogen; and

\(R_8 \) is alkyl, substituted alkyl, halogen, nitro, cyano, thioalkoxy, acyloxy, phenyl, alkylsulfonyl or carboxyalkyl, preferably alkyl, especially C$_{1-7}$alkyl; substituted alkyl, especially -CF$_3$; halogen such as chloro, bromo or fluoro; or carboxyalkyl; or

d) \(R_6, R_7 \) and \(R_8 \) are hydrogen; and

\(R_9 \) is alkyl, halogen or hydroxy; or

e) \(R_7 \) and \(R_9 \) are hydrogen; and

each of \(R_6 \) and \(R_8 \), independently, is halogen, alkyl, substituted alkyl, phenyl or cyano; or

f) Each of \(R_7 \) and \(R_9 \) is alkyl or substituted alkyl; and

\(R_6 \) and \(R_8 \) are hydrogen; or

g) \(R_6 \) and \(R_9 \) are hydrogen;

\(R_7 \) is alkyl or substituted alkyl; and

\(R_8 \) is nitro; or

h) \(R_6 \) and \(R_9 \) are hydrogen;

\(R_8 \) is cyano; and

\(R_7 \) is alkoxy; or

i) \(R_7 \) and \(R_9 \) are hydrogen; and

\(R_6 \) is alkyl, substituted alkyl, alkoxy or SCN; and

\(R_8 \) is alkyl or substituted alkyl; or
j) R_6 and R_7 are hydrogen;
 R_5 is nitro or halogen; and
 R_9 is alkyl or substituted alkyl; or

k) R_6, R_7, R_8 and R_9 are hydrogen; or

l) R_6 and R_7 together with the carbon atoms to which they are attached form a
 phenyl group, preferably substituted with hydroxy; and
 R_5 and R_6 are hydrogen; or

m) R_6 and R_7 are hydrogen; and
 R_5 and R_8 together with the carbon atoms to which they are attached form a
 phenyl group; or

n) n is 0; or

o) n is 0;
 each of R_6, R_7, R_8 and R_9, independently, is hydrogen, alkyl or halogen; and
 more particularly, R_6, R_7, R_8 and R_9 are hydrogen; or

p) n is 0;
 R_6, R_8 and R_9 are hydrogen; and
 R_7 is alkyl; or

q) n is 0;
 R_6, R_7 and R_9 are hydrogen; and
 R_8 is alkyl or halogen.

In another embodiment, R_1 is of formula (Xb)

![Chemical structure](image)

(Xb)

wherein

R_6, R_7, R_8 and R_9 are as defined above for formula (X); in particular, R_7 and R_8 together
with the carbon atoms to which they are attached form a phenyl group; and
R₆ and R₈ are hydrogen.

In yet another embodiment, the R₁ is of formula (XI)

wherein each of R₆, R₇, R₈ and R₉ independently is hydrogen, alkyl, substituted alkyl, phenyl, halogen, hydroxy or alkoxy, e.g.,

wherein

a) R₆ and R₈ are hydrogen;
R₉ is hydrogen or alkyl; and
R₇ is alkyl, substituted alkyl or phenyl; or

b) R₆, R₇ and R₈ are hydrogen; and
R₉ is halogen, alkyl or substituted alkyl; or

c) R₇, R₈ and R₉ are hydrogen; and
R₆ is hydroxy.

In a particularly useful embodiment the heteroaryl is of the formula (XⅠa)

wherein R₆, R₇, R₈ and R₉ are as defined above for formula (XI), in particular where R₆, R₇, and R₉ are hydrogen and R₈ is fluoro.

In another embodiment, R₁ is an unsubstituted phenyl or the phenyl is substituted with alkoxy, e.g., methoxy; or aryloxy, e.g., phenoxy.
In another embodiment, the R₁ is of formula (XII)

wherein each of R₁₀ and R₁₁, independently, is hydrogen or halogen. In particular, R₁₀ and R₁₁ are both either hydrogen or both halogen.

In the compound of formula (I), M is a metal, typically a mono- or di-valent metal or an ammonium moiety. Typical metals include Mg, Ca, Na, K, Li and the like. The ammonium moiety is of the formula

wherein R" is hydrogen, alkyl, substituted alkyl, aryl or substituted aryl.

The ammonium moiety can be racemic or chiral. An example of an ammonium moiety is R-α-methylbenzylammonium. Examples of R" groups include hydrogen, methyl, ethyl, propyl, butyl, phenyl, benzyl, methylbenzyl and the like.

Unless otherwise stated, the following terms as used in the specification have the following meaning.

The term "cycloalkane" or "cycloalkyl" contains from 3- to 7-ring carbon atoms, and is, e.g., cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term "azacyclo₄,₇-alkane" contains 1-ring heteroatom which is a nitrogen. It contains from 4-7, and especially 4- or 5-ring atoms including the heteroatom.

The term "thiazacyclo₄,₇-alkane" contains 2-ring heteroatoms, nitrogen and sulfur. It contains from 4-7, and especially 5-ring atoms including the heteroatoms.

The term "imidazacyclo₄,₇-alkane" contains 2-ring heteroatoms which are both nitrogen. It contains from 4-7, and especially 5-ring atoms including the heteroatoms.
The term "aliphatic group" refers to saturated or unsaturated aliphatic groups, such as alkyl, alkenyl or alkynyl, cycloalkyl or substituted alkyl including straight-chain, branched-chain and cyclic groups having from 1-10 carbons atoms. Preferably "alkyl" or "alk", whenever it occurs, is a saturated aliphatic group or cycloalkyl, more preferably C₁₋₄ alkyl, particularly C₁₋₄ alkyl. Examples of "alkyl" or "alk" include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, neopentyl, n-hexyl or n-heptyl, cyclopropyl and especially n-butyl.

The term "substituted alkyl" refers to an alkyl group that is substituted with one or more substituents preferably 1-3 substituents including, but not limited to, substituents, such as halogen, lower alkoxy, hydroxy, mercapto, carboxy, cycloalkyl, aryl, heteroaryl and the like. Examples of substituted alkyl groups include, but are not limited to, -CF₃, -CF₂CF₃, hydroxymethyl, 1- or 2-hydroxyethyl, methoxymethyl, 1- or 2-ethoxyethyl, carboxymethyl, 1- or 2-carboxyethyl and the like.

The term "aryl" or "Ar" refers to an aromatic carbocyclic group of 6-14 carbon atoms having a single ring including, but not limited to, groups, such as phenyl; or multiple condensed rings including, but not limited to, groups, such as naphthyl or anthrnyl; and is especially phenyl.

The term "heteroaryl" or "HetAr" refers to a 4- to 7-membered, monocyclic aromatic heterocycle or a bicycle that is composed of a 4- to 7-membered, monocyclic aromatic heterocycle and a fused-on benzene ring. The heteroaryl has at least one hetero atom, preferably one or two heteroatoms including, but not limited to, heteroatoms, such as N, O and S, within the ring. A preferred heteroaryl group is pyridinyl, pyrimidinyl or benzodioxolanyl.

The aryl or heteroaryl may be unsubstituted or substituted by one or more substituents including, but not limited to, C₁₋₄ alkyl, particularly C₁₋₄ alkyl, such as methyl, hydroxy, alkoxy, acyl, acyloxy, SCN, halogen, cyano, nitro, thioalkoxy, phenyl, heteroalkylaryl, alkylsulfonyl and formyl.

The term "carbonylamine", as used herein, refers to a -NHC(O)- group wherein the amino portion of the group is linked to the aryl/heteroaryl and the carbonyl portion of the group is linked to the azacyclo₄₋₇alkane, thiazacyclo₄₋₇alkane or imidazacyclo₄₋₇alkane.
The term "heteroalkyl" refers to saturated or unsaturated C₁₋₁₀ alkyl as defined above, and especially C₁₋₄ heteroalkyl which contain one or more heteroatoms, as part of the main, branched or cyclic chains in the group. Heteroatoms may independently be selected from the group consisting of -NR-, where R is hydrogen or alkyl, -S-, -O- and -P-; preferably -NR-, where R is hydrogen or alkyl; and/or -O-. Heteroalkyl groups may be attached to the remainder of the molecule either at a heteroatom (if a valence is available) or at a carbon atom. Examples of heteroalkyl groups include, but are not limited to, groups such as -O-CH₃, -CH₂-O-CH₃, -CH₂-CH₂-O-CH₃, -S-CH₂-CH₂-CH₃, -CH₂-CH(CH₃)-S-CH₃ and -CH₂-CH₂-NH-CH₂-CH₂-.

The heteroalkyl group may be unsubstituted or substituted with one or more substituents, preferably 1-3 substituents including, but not limited to, alkyl, halogen, alkoxy, hydroxyl, mercapto, carboxy and especially phenyl. The heteroatom(s) as well as the carbon atoms of the group may be substituted. The heteroatom(s) may also be in oxidized form.

The term "alkoxy", as used herein, refers to a C₁₋₁₀ alkyl linked to an oxygen atom, or preferably C₁₋₄ alkoxy, more preferably C₁₋₄ alkoxy. Examples of alkoxy groups include, but are not limited to, groups such as methoxy, ethoxy, n-butoxy, tert-butoxy and allyloxy.

The term "acyl", as used herein, refers to the group -(O)CR, where R is alkyl, especially C₁₋₄ alkyl, such as methyl. Examples of acyl groups include, but are not limited to, acetyl, propanoyl and butanoyl.

The term "acyloxy", as used herein, refers to the group -OC(O)R, wherein R is hydrogen, alkyl, especially C₁₋₄ alkyl, such as methyl or ethyl, or phenyl or substituted alkyl as defined above.

The term "alkoxycarbonyl", as used herein, refers to the group -COOR, wherein R is alkyl, especially C₁₋₄ alkyl, such as methyl or ethyl.

The term "halogen" or "halo", as used herein, refers to chlorine, bromine, fluorine, iodine and is especially fluorine.

The term "thioalkoxy", as used herein, means a group -SR, where R is an alkyl as defined above, e.g., methylthio, ethylthio, propylthio, butylthio and the like.
The term "heteroalkylaryl", as used herein, means a heteroalkyl group, e.g., \(-\text{O-CH}_2\)-substituted with an aryl group, especially phenyl. The phenyl group itself may also be substituted with one or more substituents, such as halogen, especially fluoro and chloro; and alkoxy, such as methoxy.

The term "alkylsulfonyl", as used herein, means a group \(-\text{SO}_2\text{R}\), wherein R is alkyl, especially C\(_{1-7}\)-alkyl, such as methyl sulfonyl.

"Protecting group" refers to a chemical group that exhibits the following characteristics: 1) reacts selectively with the desired functionality in good yield to give a protected substrate that is stable to the projected reactions for which protection is desired; 2) is selectively removable from the protected substrate to yield the desired functionality; and 3) is removable in good yield by reagents compatible with the other functional group(s) present or generated in such projected reactions. Examples of suitable protecting groups may be found in Greene et al., "Protective Groups in Organic Synthesis", 3\(^{rd}\) Ed., John Wiley & Sons, Inc., NY (1999). Preferred hydroxy protecting groups include benzyl, Fmoc, TBDMS, photolabile protecting groups, such as Nvom, Mom and Mem. Other preferred protecting groups include NPEOC and NPEOM.

It will be appreciated that the compounds disclosed herein may exist in the form of optical isomers, racemates or diastereoisomers. In particular, in the compounds disclosed herein where R\(_4\) and R\(_5\) are different, the carbon atom to which the R\(_4\) and R\(_5\) groups are bonded is a chiral center and such compounds can exist in the R, S or racemic forms. It is preferred that the process of the invention prepares the R optically pure form. By "optically pure" is meant that the enantiomeric purity is greater than 50%, preferably greater than 80%, more preferably greater than 90%, and most preferably greater than 95%. The optically pure R isomer of compound (I) can be used, in which case all subsequent compounds in the synthesis will remain in the R optically pure form, with respect to the same chiral carbon atom. If an optically pure compound is used as the starting material, purification from the undesired diastereomer can be avoided at later steps. Such R form of compound (I) is represented below:
wherein R₂, R₃, R₄ and R₅ are as defined above. The optically pure form of compound (I) is novel provided that when either R₄ or R₅ is hydrogen, the other substituent, i.e., R₄ or R₅, is not hydrogen or methyl. In a particular embodiment of the novel compound of formula (I), R₅ is hydrogen and R₄ is C₂₋₁₀ alkyl, in a more particular embodiment C₂₋₇ alkyl, and in a even more particular embodiment C₄ alkyl.

In a further embodiment an optically pure compound of formula (I) t R₂, R₃, and R₅ are hydrogen and R₄ is alkyl; such a compound has the structure (Ia):

```
      (Ia)
```

Another embodiment in compound (I) is where R₄ is n-butyl, where such compound has the structure (Ib):

```
      (Ib)
```

Another embodiment is where R₂, R₃ and R₅ are hydrogen and R₄ is n-butyl; such compound has the structure (Ic):

```
      (Ic)
```

More particular examples of the optically pure compound of formula (I) are as follows:
Alternatively, the racemate form of compound (I) can be used and then the \(R \) form can be resolved at a later step and the \(R \) form used for subsequent steps. For example, the compound formed after opening the \(\beta \)-lactam ring, i.e., compound (VII), the product of Step D, can be resolved into its \(RS \) and \(SS \) diastereomers and only the \(RS \) diastereomer used for subsequent steps. The \(RS \) diastereomer of compound (VII) is depicted below:

\[
\text{(VII)}
\]

wherein \(R_2, R_3, R_4, R_5, Y, X, R_1 \) and \(n \) are as defined above, provided that \(R_4 \) and \(R_5 \) are different.

The diastereoisomers are resolved using standard techniques known in the art, for example, using silica gel column chromatography and an ethyl acetate/hexane solvent system (see, e.g., the methods taught in Chapter 4 of "Advanced Organic Chemistry", 5th edition, J. March, John Wiley and Sons, NY (2001)).
In the compounds disclosed herein, the following significances are specific embodiments individually or in any sub-combination:

1. \(R_1 \) is a heteroaryl of formula (IIa), wherein \(R_6, R_7 \) and \(R_8 \) are hydrogen and \(R_9 \) is methyl or trifluoromethyl; or \(R_6, R_7 \) and \(R_8 \) are hydrogen and \(R_9 \) is fluoro; or \(R_6, R_7 \) and \(R_8 \) are hydrogen and \(R_7 \) is ethyl or methoxy; or \(R_7, R_8 \) and \(R_9 \) are hydrogen and \(R_9 \) is hydroxy; or \(R_7 \) and \(R_8 \) are hydrogen, \(R_8 \) is methoxy and \(R_9 \) is methyl; or \(R_7 \) is a heteroaryl of formula (IIa), wherein \(R_6, R_7 \) and \(R_9 \) are hydrogen and \(R_9 \) is fluoro or trifluoromethyl; or \(R_6, R_7 \) and \(R_8 \) are hydrogen and \(R_7 \) is ethyl; preferably \(R_1 \) is a heteroaryl of formula (IIa), wherein \(R_6, R_8 \) and \(R_9 \) are hydrogen and \(R_7 \) is ethyl or a heteroaryl of formula (IIIa), wherein \(R_6, R_7 \) and \(R_9 \) are hydrogen and \(R_9 \) is fluoro.

2. \(X \) is -CH\(_2\)-, -CH(OH)-, -CH(OR)-, -CF\(_2\)- or -CH(F)-, preferably \(X \) is -CH\(_2\)-;

3. \(R_4 \) is alkyl, preferably \(C_{1,7} \)alkyl, such as \(n \)-butyl;

4. \(n \) is 1.

Temperature and pressure are not known to be critical for carrying out any of the steps of the invention, i.e., Steps A through E. Generally, for any of the steps, a temperature of about -10°C to about 150°C, preferably about 0°C to about 80°C, is typically employed. Typically about atmospheric pressure is used for convenience; however, variations to atmospheric pressure are not known to be detrimental. Oxygen is not known to be detrimental to the process, therefore for convenience the various steps can be performed under ambient air, although an inert atmosphere, such as nitrogen or argon, can be used if desired. For convenience equimolar amounts of reactants are typically used; however molar ratios can vary from about 1 to 2 equivalents, relative to the other reactant. The pH for the various steps is typically about 2 to about 12. The solvent used for the various steps are typically organic solvents, although in some situations aqueous/organic solvents can be used. Examples of suitable solvents include dioxane; methylene chloride; dichloromethane; toluene, acetone; methyl ethyl ketone; THF; isopropyl acetate; DMF; alcohols, especially higher branched alcohols, such as \(t \)-butanol; and the like.

For Step A, a typical temperature is about 0°C to about 50°C, preferably about 5°C to about 35°C; and a typical reaction time is about 1 hour to about 10 hours, preferably about 2 hours to about 5 hours. A pH of about 2 to about 7, preferably about 3 to about 5, more preferably about 4, is typically employed. The carboxy-activating agent can be for
example, DCC, CDIMT, EDCI and the like. The amount of carboxy-activating agent employed is typically about 0.5 to about 2 molar equivalents relative to compound (I). The solvent is water or a mixture of water and one or more organic solvents, such as THF, dioxane, alcohols, such as methanol, ethanol and the like. Specific examples of solvents include THF/water and water. In the event that an ammonium salt of compound (I) is used in the process, the salt will be dissolved in water containing at least a molar equivalent amount of base, such as alkaline metal hydroxide, such as NaOH and KOH; the base is added to liberate the free amine which is extracted into the organic phase, the aqueous phase is used for the coupling reaction.

For Step B, a typical temperature is about -20°C to about 25°C, more typically about -5°C to about 5°C; and a typical reaction time is about 1 hour to about 2 hours, more typically about 2 hours to about 5 hours. For Step B, an alcoholic solvent should not be used. For reactant (XIII), X' is preferably chloro and R' is preferably lower alkyl or phenyl, with CH₃SO₂Cl and tosyl chloride being most typical. The pH for Step B is basic and is typically about 9 to about 10. The base used for Step B can be any conventional base known in the art that will activate the hydroxy group of compound (III), and such base will be used in a hydroxyl-activating amount which is at least about 1 molar equivalent relative to compound (III). The base can also act as solvent in which case it will be present in a solvating amount which is in excess of the above amount. Examples of bases that can be employed include pyridine; DMAP; a trialkylamine, e.g., trimethylamine; resin-bound bases; Hunig bases; and the like. A particular solvent is pyridine, THF or EtOAc.

For cyclization Step C, a typical temperature is about 20°C to about 150°C, more typically about 40°C to about 80°C; and a typical reaction time is about 1 hour to about 20 hours, more typically about 2 hours to about 4 hours. The pH for Step C is basic, typically, about 8 to about 12. The base used in Step C can be any base known in the art that is capable of de-protonating the amide group of compound (IV). Examples of suitable bases include inorganic or organic bases, such as potassium carbonate; lithium carbonate; sodium carbonate; lithium bicarbonate; sodium bicarbonate; alkyl lithium, e.g., butyl lithium; and the like. The amount of base employed is a de-protonating amount which is typically in molar excess to the amount of compound (IV), e.g., about 1-5 equivalents relative to compound (IV). For certain solvents, such as THF, dioxane, dimethoxyethane and the like, it may be necessary to use a catalytic amount of a phase transfer catalyst, such as trialkylarylammominium salt or a tetraalkylaminonium salt, e.g., tetrabutylammonium chloride.
or tetrabutylammonium bromide. The examples of solvents are ketones, such as acetone or methylethylketone.

For Step D, a typical temperature is about 30°C to about 150°C, more typically about 60°C to about 80°C; and a typical reaction time is about 3 hours to about 20 hours, more typically about 5 hours to about 10 hours. The pH for Step D is typically about 5 to about 11. The activator for Step D is a compound which protonates the β-lactam keto oxygen; such activators include, e.g., mild (weak) organic acids, such as branched or unbranched carboxylic acids, e.g., 2-ethylhexanoic acid, acetic acid, isobutyric acid and the like. If an aqueous alcoholic solvent is used an activator is not needed; examples ofd aqueous alcoholic solvents include MeOH·H₂O, EtOH·H₂O and the like. If an activator is used a typical solvent is THF, dioxane or dimethoxyethane. If an activator is used it is used in an protonating amount which is typically about 0.1 molar equivalents to about 2 molar equivalents relative to compound (V).

For Step E, a typical temperature is about -30°C to about 50°C, more typically about 0°C to about 25°C; and a typical reaction time is about 10 minutes to about 5 hours, more typically about 20 minutes to about 1 hour. The pH for Step E is not critical and can vary considerably. For Step E the solvent should not be an alcoholic solvent. The formylating agent can be, for example, HCO₂H·Ac₂O, trifluoroethylformate, and the like, and is present in a formylating amount which is typically about 1 molar equivalent to about 2 molar equivalents relative to compound (VII). A typical solvent is EtOAc, isopropylacetate, t-butylacetate or THF.

For Step F, a typical temperature is about 10°C to about 35°C, more typically about 20°C to about 22°C; and a typical reaction time is about 60 minutes to about 18 hours, more typically about 4 hours to about 8 hours. The pH for Step F is typically about 4 to about 8. The solvent for Step F is typically an organic solvent, i.e., ethyl acetate, iso-propyl acetate, methylene chloride, and the like. The oxidizing agent can be a conventional agent known in the art, e.g., as disclosed in March, "Advanced Organic Chemistry", Chapter 19, 5th edition, Wiley Interscience, NY, incorporated herein by reference. Typical oxidizing agents include urea/hydrogen peroxide with phthalic anhydride; magnesium monoperoxophthalate (MMPP); MCPBA, Oxone (available from Aldrich), and the like.
Insofar as the production of starting materials is not particularly described, the compounds are known or may be prepared analogously to methods known in the art or as disclosed in the examples hereinafter.

The following abbreviations are used:

Ac = acetyl
CDMT = chlorodimethoxy triazine
DIEA = diisopropylethylamine
DCC = dicyclohexylcarbodiimide
DMAP = dimethylaminopyridine
DMF = dimethylformamide
EDCI = 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
2-EHA = 2-ethylhexanoic acid
EtOAc = ethyl acetate
EtOH = ethanol
Fmoc = 9-fluorenlymethyl-oxycarbonyl
HPLC = high performance liquid chromatography
MeOH = methanol
Mom = methoxy methyl ether
Mem = methoxy ethoxy methyl ether
NPEOC = 4-nitrophenethoxy carbonyl
NPEOM = 4-nitrophenethoxy-methyl oxycarbonyl
Nvom = nitroveratryl oxymethyl ether
TBDMS = t-butyldimethylsilyl,
TMSCI = trimethylsilyl chloride
RT = room temperature
THF = tetrahydrofuran
The following examples illustrate the process of the invention but should not be interpreted as a limitation thereon.

Reaction Scheme I

![Chemical reactions diagram]

Product numbers in the following examples refer to reaction scheme I depicted immediately above.

Product A3

A flask was charged with 2.80 g (19.2 mmol) of A1, 80 mL of THF, 20 mL of water, and 4.73 g (38.4 mmol) of A2. The resulting solution was stirred at RT and the pH of the solution was adjusted to 4.2-4.5 with 2N HCl acid solution.

5.52 g (28.8 mmol) of EDCI was added in three portions (2.12 g, 2.26 g, 1.14 g) within 15 minutes. The resulting solution was stirred at RT for 2 hours, and the pH of the solution was adjusted to 4.2-4.5 during the reaction. The progress of the reaction was monitored by HPLC. After the reaction was completed, THF was evaporated under reduced pressure, and the residue was extracted with 3 x 70 mL of ethyl acetate and the combined organic phase was washed sequentially with 2 x 50 mL of 10% citric acid solution, 50 mL of
water, 2 x 50 mL of 5% sodium bicarbonate solution and 50 mL brine dried over MgSO₄. The evaporation of organic solvent afforded 2.4 g of A3 (94% yield).

Product A4

A flask was charged with 7.53 g (30 mmol) of A3 and 30 mL of pyridine. The resulting solution was cooled to 0 ± 2°C with ice-salt bath. Then, 2.78 mL (36 mmol) of methanesulfonyl chloride was slowly added and maintained the temperature at 0 ± 2°C for 1.5 hours. After the reaction monitored by HPLC was completed, the mixture was poured into cold 120 mL of 1N HCl acid, and extracted with 2 x 100 mL of ethyl acetate. The organic phase was washed sequentially with 2 x 70 mL of 1N HCl acid until the aqueous solution was acidic, 100 mL of saturated sodium bicarbonate solution, 100 mL of brine and dried over MgSO₄. The evaporation of organic solvent gave 9.87 g of A4 (~100% yield).

Product A5

A flask was charged with 16.07 g (116 mmol) of potassium carbonate (powdered), 631 mL of acetone. The suspension was heated to reflux. Then, 12.49 g (38 mmol) of A4 in 91 mL of acetone was slowly added (30 minutes). The resulting mixture was stirred at reflux for 1 hour. After the reaction monitored by HPLC was completed, the suspension was filtered through celite, and washed with 200 mL of ethyl acetate. The organic solvent was concentrated and diluted with 400 mL of ethyl acetate and washed with 100 mL of 1N HCl acid, 100 mL of saturated sodium bicarbonate solution, 100 mL of brine and dried over MgSO₄. The concentration of organic solvent under reduced pressure afforded 7.96 g of A5 (liquid, 90% yield).

When the A5 is racemic, attacking with chiral A6 results in two diastereomers A7 and A7’. They can be separated by silica gel column using EtOAc and hexanes (1:1) as eluent system. A7 was the second fraction from column and it was identified by comparing with the authentic sample from the other approach.
There are several methods to open the \(\beta \)-lactam ring in A5. The results for opening the lactam ring are summarized in Table 1.

Table 1. Reaction Conditions and Results for Coupling A5 and A6

<table>
<thead>
<tr>
<th>A5</th>
<th>A6</th>
<th>Solvent</th>
<th>Additives</th>
<th>Temp (^\circ \text{C})</th>
<th>Time (h)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mmol</td>
<td>6 mmol</td>
<td>MeOH (25 mL)</td>
<td>0.1 mL - 2 EHA</td>
<td>22</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 mL - H2O</td>
<td>66</td>
<td>1</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 mL - H2O</td>
<td>22</td>
<td>15</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MeOH (5 mL)</td>
<td>2 mL - H2O</td>
<td>70</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100% conversion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mmol</td>
<td>7.5 mmol</td>
<td>Toluene</td>
<td>0.5 mL - TMSCl</td>
<td>115</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5 mL - TMSCl</td>
<td>116</td>
<td>4</td>
<td>3% conversion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 mL - 2EHA</td>
<td>115</td>
<td>3</td>
<td>100% conversion one bypd.</td>
</tr>
<tr>
<td>5 mmol</td>
<td>6 mmol</td>
<td>THF</td>
<td>0.2 mL - 2EHA</td>
<td>70</td>
<td>7</td>
<td>98% conversion</td>
</tr>
</tbody>
</table>

Product A7 and A7’

A flask was charged with 1.165 g (5 mmol) of A5, 10 mL of THF, 1.24 g (6 mmol) of A6 and 0.2 mL (1.25 mmol) of 2-ethyl hexanoic acid. The resulting solution was heated to reflux (70°C) for 7 hours, and the reaction was monitored by HPLC. THF was evaporated and the residue was dissolved in 100 mL of ethyl acetate. The organic layer was washed sequentially with 25 mL of water, 25 mL of saturated sodium bicarbonate, 25 mL of brine and dried over MgSO\(_4\). The concentration of organic solvent gave oil which was further purified by column separation on silica gel to give 0.95 g of A7 and 0.85 g of A7’ (84% total yield).

Product A8
A small flask was charged with 0.35 g (3.43 mmol) of acetic anhydride, and cooled to <10°C. Then, 0.50 g (10.8 mmol) of formic acid (96%) was slowly added to the (25 minutes). After the addition, the solution was warmed to RT and stirred at this temperature for 30 minutes.

A flask was charged with 0.62 g (1.40 mmol) of A7 and 5 mL of ethyl acetate. The solution was cooled to -3 to 0°C with ice-salt bath. Then, the solution prepared from above procedure was slowly added (30 minutes). After addition, the reaction was completed (monitored by HPLC). The solution was diluted with 100 mL of ethyl acetate, and washed sequentially with 25 mL of water, 2 x 25 mL of saturated sodium bicarbonate, 25 mL of brine and dried over MgSO₄. The organic solvent was evaporated to give 0.61 g of A8.

The lactam ring can also be opened by a base, such as lithium hydroxide. As depicted below, the opening ring product was obtained in 91.5% yield with high purity after work-up.

A flask was charged with 1.165 g (5mmol) of A5, 15 mL of THF, 5 mL of methanol. The resulting solution was cooled to 0°C. Then, 0.25 g of lithium hydroxide monohydrate in 5 mL of water was added. The solution was stirred and allowed to warm to 22°C for 18 hours. After the reaction monitored by HPLC was completed, the pH of the mixture was adjusted to 2 with 2N HCl acid. The organic solvents were removed, and the residue was extracted with 2 x 50 mL of ethyl acetate, and washed with 2 x 30 mL of brine and dried over MgSO₄. The evaporation the organic solvent gave 1.15 g of desired product in 91.5% yield with high purity.
Reaction Scheme II

The product numbers in the following examples refer to Reaction Scheme II depicted immediately above.
Compound C3

From (2R)-2-(hydroxymethyl)hexanoic acid:

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{C} \quad \text{OH} \quad + \\
\text{H}_2\text{C} & \quad \text{C} \quad \text{OH} \\
\text{HCl} & \quad \text{N} \quad \text{O} \\
\text{H}_2\text{N} & \quad \text{O} \quad \text{N} \\
\text{H}_2\text{O} & \quad \text{N} \quad \text{O}
\end{align*}
\]

A 5 L, 4-necked, round-bottomed flask, equipped with a mechanical stirrer, digital thermometer and nitrogen inlet-outlet, is charged with 102.39 g of (2R)-2-(hydroxymethyl)hexanoic acid, 123.0 g of O-benzylhydroxylamine hydrochloride and 2.25 L of water. Adjust the pH by adding one equivalent of NaOH to a pH of 4-5. Stir the reaction mixture at 18°C ± 3°C (external temperature: 15-18°C) for 30 minutes to give a cloudy solution. Add 161.3 g of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDCI) over a period of 60 minutes in 6 portions, while maintaining the internal temperature at 18°C ± 3°C (external temperature: 10°C ± 3°C). Wash the funnel once with 50 mL of water. Stir the thick suspension at 20°C ± 3°C for 2 hours. Filter the solids through a polypropylene filter cloth and a Büchner funnel then wash the flask and filter cake once with 0.5 L of water. Air-dry the cake at 20°C ± 3°C (house vacuum) for 2 hours, then dry the wet cake (~265 g weight) at 65°C ± 3°C (15 mbar) for 24 hours to give 162 g of (2R)-2-(hydroxymethyl)-N-(phenylimethoxy)hexanamide (C3) as a white solid in 95% yield. m.p. 100-102°C; \([\alpha]_D^{25} = +0.556\) (c,1.0,MeOH).

From sodium salt:

A 5 L, 4-necked, round-bottomed flask, equipped with a mechanical stirrer, digital thermometer and nitrogen inlet-outlet, is charged with 117.8 g of (2R)-2-(hydroxymethyl)hexanoic acid sodium salt, 123.0 g of O-benzylhydroxylamine hydrochloride, and 2.25 L of water.

Stir the reaction mixture at 18°C ± 3°C (external temperature: 15-18°C) for 30 minutes to give a cloudy solution. Add 161.3 g of 1-[3-(dimethylamino)propyl]-3-EDCI over a period of 60 minutes in 6 portions, while maintaining the internal temperature at 18°C ± 3°C (external temperature: 10°C ± 3°C). Wash the funnel once with 50 mL of water. Stir the
thick suspension at 20°C ± 3°C for 2 hours. Filter the solids through a polypropylene filter cloth and a Büchner funnel then wash the flask and filter cake once with 0.5 L of water. Air-dry the cake at 20°C ± 3°C (house vacuum) for 2 hours, then dry the wet cake (~265 g weight) at 65°C ± 3°C (15 mbar) for 24 hours to give 162 g of (2R)-2-(hydroxymethyl)-N-(phenylmethoxy)hexanamide (C3) as a white solid in 95% yield. m.p. 100-102°C; [α]D25 = +0.556 (c,1.0,MeOH).

From R-α-methylbenzylammonium salt:

A 12 L, 4-necked, round-bottomed flask, equipped with a mechanical stirrer, digital thermometer and nitrogen inlet-outlet, is charged with 300 g of (2R)-2-(hydroxymethyl)hexanoic acid R-α-methylbenzylammonium salt and 1.12 L of water and 2.2 L of tert-butyl methyl ether. Cool the suspension to an internal temperature at 18-22°C over a period of 20 minutes and add a solution of 94.24 g aqueous NaOH (50% w/w). Stir the solution for 30 minutes and separate layers. Wash the aqueous layer with 2.2 L of tert-butyl methyl ether. Separate layers and save the aqueous layer containing the (2R)-2-(hydroxymethyl)hexanoic acid sodium salt and proceed as mentioned in Example 1 to get compound 3 in 91% yield; m.p. 100-102°C; [α]D25 = +0.556 (c,1.0,MeOH).

Alternatively the corresponding potassium, lithium or calcium salts of (2R)-2-(hydroxymethyl)hexanoic acid were also used in this step as described in Example 2.

In addition, any other ammonium salts of (2R)-2-(hydroxymethyl)hexanoic acid can be used after removing the amine component as described in Example 3.

Compounds C3 → C4

![Diagram of C3 and C4](image)

A flask was charged with 7.53 g (30 mmol) of C3, and 15 mL of pyridine. The resulting solution was cooled to 0 ± 4°C with ice-salt bath. Then, 2.78 mL (42 mmol) of methanesulfonyl chloride was slowly added and maintained temperature at 0 ± 4°C for 2 hours. After the reaction monitored by HPLC was completed, the mixture was quenched by slow addition of 95 mL of 2N HCl at -5 ± 5°C, then warmed to RT and stirred at this
temperature for 2 hours. The solids were filtered and washed with water (30 mL), dried in an oven at 50°C for 14 hours to give 9.86 g of C4 (~100% yield); [α]_D^{25} = +5.901 (c, 1.0, MeOH).

Compound C5

A flask was charged with 3.86 g (27.8 mmol) of potassium carbonate, 50 mL of THF and 0.3 g of tetrabutylammonium bromide. The suspension was heated to 40°C and stirred at this temperature for 30 minutes. Then, 3.0 g (9.1 mmol) of C4 was added in one portion. The mixture was heated to 60°C and stirred at this temperature for 1 hour. After the reaction is completed as monitored by HPLC, the solid was filtered and washed with 20 mL of THF. The organic solvent was concentrated to 8.58 mL/g (THF/C5) for the following step without further purification. The pure C5: [α]_D^{25} = +24.63 (c, 1.0, MeOH).

Compound C6

A flask was charged with 2.12 g (9.1 mmol) of C5 from previous experiment in 20 mL of THF, 2.26 g (10.9 mmol) of Y5a and 0.8 mL of 2-ethyl hexanoic acid. The resulting solution was heated to reflux (70°C) for 8 hours, and the reaction was monitored by HPLC. THF was evaporated and the residue was dissolved in 50 mL of ethyl acetate.

The organic layer was washed sequentially with 20 mL of water 2 x 20 mL of 1 N HCl solution, 20 mL of saturated sodium bicarbonate and 20 mL of brine. The concentration of organic solvent gave 3.78 g of C6 (94% yield) in 21 mL of ethyl acetate which was used for the following step. The pure C6: [α]_D^{25} = -74.43 (c, 1.0, MeOH).
Step C6 + C7 → C8

A flask was charged with 22.6 g (0.22 mole) of acetic anhydride, and cooled to <10°C. Then, 32.3 g (0.674 mole) of formic acid (96%) was slowly added to the flask (25 minutes), and maintained the temperature between 5-10°C. After addition, the solution was warmed to RT and stirred at this temperature for 30 minutes.

A flask was charged with 36 g (81.4 mmol) of C6 and 200 mL of ethyl acetate. The solution was cooled to -5°C to -10°C with methanol-ice bath. Then, the solution prepared from above procedure was slowly added (30 minutes). After the reaction was completed (monitored by HPLC). The solution was diluted with 100 mL of water and warmed to 10°C, and stirred for 20 minutes. The organic layer was washed sequentially with 3 x 100 mL of saturated sodium bicarbonate, 100 mL of brine. Added 374 mL of ethyl acetate, and distilled ethyl acetate under vacuum in house vacuum until the residue volume about 274 mL. Heated the solution >50°C, and added 822 mL of heptane while maintaining the temperature <50°C. Cooled the solution to 10°C, and seeded with Plant A11. Maintained the temperature of the suspension at 0-5°C for 4 hours, then warmed to RT (24°C) for 14 hours, cooled to -5°C to -10°C for 3 hours. The solid was filtered and washed with 100 mL of cold heptane/ethyl acetate (4/1 by volume) and dried to give 24.0 g of C8 in 63% yield. The pure C8: \([\alpha]_D^{20} = -97.02\) (c,1.0, MeOH).
WHAT IS CLAIMED IS:

1. A process for preparing a compound of the formula (VIII)

 \[
 \text{(VIII)}
 \]

 comprising step A:

 contacting a compound of the formula (I)

 \[
 \text{(I)}
 \]

 with a compound of the formula (II)

 \[
 \text{(II)}
 \]

 in the presence of a carboxy activating agent, in a suitable solvent

 under conditions suitable to form a compound of the formula (III)

 \[
 \text{(III)}
 \]
followed by step B:

contacting compound (III) with a compound of the formula (XIII)

\[R' \text{SO}_2 X' \]

(XIII)

in the presence of a base in a suitable solvent, under conditions suitable to form a compound of the formula (IV)

\[
\begin{array}{c}
\text{O} \\
\text{R}_4 \\
\text{R}_3 \\
\text{OSO}_2\text{CH}_3 \\
\text{NH} \text{O} \text{Y} \\
\end{array}
\]

(IV)

followed by Step C:

contacting compound (IV) with a base in a suitable solvent under conditions suitable to form a compound of the formula (V)

\[
\begin{array}{c}
\text{O} \\
\text{R}_4 \\
\text{R}_3 \\
\text{N} \text{O} \text{Y} \\
\end{array}
\]

(V)

followed by Step D:

contacting compound (V) with a compound of the formula (VI)

\[
\begin{array}{c}
\text{H} \\
\text{N} \text{S} \left(\text{CH}_2\right)_n \\
\text{O} \text{NH} \text{R}_1 \\
\end{array}
\]

(VI)
in a suitable solvent optionally in the presence of an activator under conditions suitable to form a compound of the formula (VII)

followed by Step E:

contacting compound (VII) with a formylating agent in a suitable solvent under conditions suitable to form compound (VIII);

wherein

- Y is a hydroxy protecting group;
- Each of R_2, R_3, R_4 and R_5, independently, is hydrogen or an aliphatic group, or (R_2 and R_3) and/or (R_4 and R_5) collectively form a C$_{4-7}$cycloalkyl;
- X is -CH$_2$-, -S-, -CH(OH)-, -CH(OR)-, -CH(SH)-, -CH(SR)-, -CF$_2$-, -C=N(OR)- or -CH(F)-;
 wherein
 - R is alkyl;
- G is -OH or $-O^{\text{M}}$, wherein M is a metal or an ammonium moiety;
- R_1 is aryl or heteroaryl;
- X' is halo;
- R' is alkyl or aryl; and
- n is 0 to 3, provided that when n is 0, X is -CH$_2$-.

2. The process of Claim 1, followed by additional Step F which comprises contacting the compound of formula (VIII), wherein R_1 is heteroaryl having an N heteroatom, with an oxidizing agent to form the corresponding N-oxide derivative.
3. The process of Claim 1, followed by the additional step of removing the hydroxyl-protecting group by contacting compound (VIII) with a palladium catalyst to form the compound of formula (IX)

![Chemical Structure IX](image)

wherein \(R_1, R_2, R_3, R_4, R_5, X \) and \(n \) are as defined above.

4. The process of Claim 1, wherein each of \(R_2, R_3 \) and \(R_5 \) is hydrogen; \(R_4 \) is butyl; \(X \) is \(-CH_2\); \(n \) is 1; \(Y \) is benzyl or \(t \)-butyldimethylsilyl; and \(R_1 \) is of the formula

![Chemical Structure](image)

wherein

- \(R_6 \) and \(R_9 \) are hydrogen;
- \(R_7 \) is hydrogen or \(C_{1-7} \)-alkyl; and
- \(R_8 \) is hydrogen, halogen or \(C_{1-7} \)-alkyl.

5. The process of Claim 2, wherein \(R_7 \) is hydrogen; and \(R_8 \) is fluoro.

6. The process of Claim 2, wherein \(R_7 \) is \(C_{1-7} \) alkyl; and \(R_8 \) is hydrogen.

7. The process of Claim 1, wherein \(R_1 \) is of the formula (Xla)

![Chemical Structure Xla](image)

wherein

- \(R_6, R_7 \) and \(R_9 \) are hydrogen; and
- \(R_8 \) is halogen or \(C_{1-7} \)-alkyl.
8. The process of Claim 7, wherein R₈ is fluoro.

9. The process of Claim 1, carried out at a temperature of about 0°C to about 80°C, a pH of about 2 to about 12, and in one or more solvents selected from the group consisting of dioxane, methylene chloride, dichloromethane, toluene, acetone, methyl ethyl ketone, THF, isopropyl acetate, DMF and an alcohol.

10. A process comprising contacting a compound of the formula (I)

![Chemical Structure](image)

with a compound of the formula (II)

![Chemical Structure](image)

in the presence of a carboxy activating agent, in a suitable solvent under conditions suitable to form a compound of the formula (III)

![Chemical Structure](image)

wherein

each of R₂, R₃, R₄ and R₅, independently, is hydrogen or alkyl, or (R₂ and R₃) and/or (R₄ and R₅) collectively form a C₄₋₇ cycloalkyl; and

Y is a hydroxy-protecting group.

11. The process of Claim 10, wherein R₂, R₃ and R₅ are hydrogen; R₄ is n-butyl; and Y is benzyl or t-butyldimethylsilyl.

12. The process of Claim 10 carried out at a temperature of about 5°C to about 35°C for about 2 hours to about 5 hours, at a pH of about 3 to about 5, wherein the carboxy-activating agent is DCC, CDMT or EDCI and the solvent is THF/water.
13. A process comprising contacting a compound of the formula (III)

\[
\begin{array}{c}
\text{R}_1 \text{R}_2 \text{R}_3 \text{R}_4 \text{N} - \text{O} - \text{Y} \\
\text{O} \\
\text{R}_5 \text{OH}
\end{array}
\]

(III)

with a compound of the formula (XIII)

\[
\begin{array}{c}
\text{R'} \text{SO}_2 \text{X'}
\end{array}
\]

(XIII)

in the presence of a base in a suitable solvent, under conditions suitable to form a compound of the formula (IV)

\[
\begin{array}{c}
\text{R}_1 \text{R}_2 \text{R}_3 \text{OSO}_2 \text{CH}_3 \text{N} - \text{O} - \text{Y} \\
\text{O} \\
\text{R}_5 \text{OH}
\end{array}
\]

(IV)

wherein

- each of \(R_2, R_3, R_4 \), and \(R_5 \), independently, is hydrogen or alkyl, or \((R_2 \text{ and } R_3) \) and/or \((R_4 \text{ and } R_5) \) collectively form a \(C_{4,7} \)-cycloalkyl;
- \(Y \) is a hydroxy-protecting group;
- \(X' \) is halo; and
- \(R' \) is alkyl or aryl.

14. The process of Claim 13, wherein each of \(R_2, R_3 \), and \(R_5 \) are hydrogen; \(R_4 \) is \(C_{1,7} \)-alkyl; \(X' \) is chloro; \(R' \) is methyl or phenyl or toluyl; and \(Y \) is benzyl or \(t \)-butyl(dimethyl)silyl.

15. The process of Claim 10, wherein \(R_4 \) is \(n \)-butyl; and \(R' \) is methyl.

16. The process of Claim 10 carried out at a temperature of about -5°C to about 5°C for about 2 hours to about 5 hours at a pH of about 9 to about 10, wherein the base is pyridine, DMAP, a trialkylamine, a resin-bound bases or a Hunig bases, and the solvent is pyridine, THF or EtOAc.
17. A process comprising contacting a compound of the formula (IV)

\[
\begin{array}{c}
\text{O} \\
\text{R}_2 \\
\text{R}_3 \\
\text{OSO}_2\text{CH}_3 \\
\text{R}_4 \\
\text{R}_5 \\
\text{NH}--\text{O}---\text{Y} \\
\text{(IV)}
\end{array}
\]

with a base in a suitable solvent under conditions suitable to form a compound of the formula (V)

\[
\begin{array}{c}
\text{O} \\
\text{R}_2 \\
\text{R}_3 \\
\text{N}---\text{O}---\text{Y} \\
\text{(V)}
\end{array}
\]

wherein

- each of \(R_2, R_3, R_4 \) and \(R_5 \), independently, is hydrogen or alkyl, or \((R_2 \text{ and } R_3) \) and/or \((R_4 \text{ and } R_5) \) collectively form a \(\text{C}_{4-7}\)cycloalkyl; and
- \(Y \) is a hydroxy-protecting group.

18. The process of Claim 17, wherein each of \(R_2, R_3 \) and \(R_5 \) are hydrogen; \(R_4 \) is \(\text{C}_{1-2}\)alkyl; \(\text{X}' \) is chloro; \(\text{R}' \) is methyl or phenyl; and \(Y \) is benzyl or \(t\)-butyldimethylsilyl.

19. The process of Claim 17 wherein \(R_4 \) is \(n\)-butyl; and \(R' \) is methyl.

20. The process of Claim 17 carried out at a temperature of about 40°C to about 80°C for about 2 hours to about 4 hours at a pH of about 8 to about 12, wherein the base is potassium carbonate, lithium carbonate, sodium carbonate, lithium bicarbonate, sodium bicarbonate or an alkyl lithium, and the solvent is acetone or methylethylketone.

21. A process comprising contacting a compound of the formula (V)

\[
\begin{array}{c}
\text{O} \\
\text{R}_2 \\
\text{R}_3 \\
\text{N}---\text{O}---\text{Y} \\
\text{(V)}
\end{array}
\]
with a compound of the formula (VI)

\[
\begin{align*}
\text{H} & \text{N} \quad \text{(CH}_2\text{n)} \\
\text{S} & \\
\text{O} & \text{NH}\text{-R}_1 \\
\hline
\text{(VI)}
\end{align*}
\]

in a suitable solvent optionally in the presence of an activator under conditions suitable to form a compound of the formula (VII)

\[
\begin{align*}
Y & \text{-O} \text{-N} \quad \text{R}_4 \text{R}_5 \\
\text{R}_2 & \text{R}_3 \quad \text{O} \\
\text{S} & \text{O} \quad \text{NH}\text{-R}_1 \\
\hline
\text{(VII)}
\end{align*}
\]

wherein

- each of \(R_2, R_3, R_4 \) and \(R_5 \), independently, is hydrogen or alkyl, or \((R_2 \text{ and } R_3) \text{ and/or } (R_4 \text{ and } R_5) \) collectively form a \(C_{4-7}\)-cycloalkyl;
- \(Y \) is a hydroxy-protecting group;
- \(X \) is \(-\text{CH}_2-, -\text{S}-, -\text{CH(OH)}-, -\text{CH(OR)}-, -\text{CH(SH)}-, -\text{CH(SR)}-, -\text{CF}_2-, -\text{C=N(OR)}- \text{ or } -\text{CH(F)}- \);

wherein

- \(R \) is alkyl;
- \(R_1 \) is aryl or heteroaryl; and
- \(n \) is 0 to 3, provided that when \(n \) is 0, \(X \) is \(-\text{CH}_2- \).

22. The process of Claim 21, wherein each of \(R_2, R_3 \) and \(R_5 \) are hydrogen; \(R_4 \) is \(C_{1-7}\)-alkyl; \(X \) is \(-\text{CH}_2- \); \(Y \) is benzyl or \(t\)-butyldimethylsilyl; and \(R_1 \) is a moiety of the formula (Xla)

\[
\begin{align*}
\text{R}_6 & \text{N} \quad \text{R}_7 \\
\text{R}_8 & \text{R}_9 \\
\text{or} \\
\text{R}_6 & \text{E} \\
\text{R}_7 & \text{R}_8 \\
\text{R}_9 & \text{R}_{10} \\
\hline
\text{(Xla)}
\end{align*}
\]

wherein

- \(R_6 \) and \(R_9 \) are hydrogen;
- \(R_7 \) is hydrogen or \(C_{1-7}\)-alkyl; and
R₉ is hydrogen, halogen or C₁₋₂-alkyl.

23. The process of Claim 22, wherein R₄ is n-butyl; and R₁ is a moiety of the formula

\[
\begin{array}{c}
\text{N} \\
\text{R₆} \\
\text{R₇} \\
\text{R₈} \\
\end{array}
\]

wherein

- R₇ is hydrogen; and
- R₈ is fluoro.

24. The process of Claim 21 carried out at a temperature is of about 60°C to about 80°C for about 5 hours to about 10 hours at a pH of about 5 to about 11, wherein the activator is 2-ethylhexanoic acid, acetic acid or isobutyric acid and the solvent is THF, dioxane or dimethoxyethane.

25. The process of Claim 24 carried out in the absence of an activator and wherein the solvent is MeOH·H₂O or EtOH·H₂O.

26. A process comprising contacting a compound of the formula (VII)

\[
\begin{array}{c}
\text{Y-O-N} \\
\text{R₂} \\
\text{R₃} \\
\text{R₄} \\
\text{R₅} \\
\text{X} \\
\end{array}
\]

(VII)

with a formylating agent in a suitable solvent under conditions suitable to form a compound of the formula (VIII)

\[
\begin{array}{c}
\text{O} \\
\text{R₂} \\
\text{R₃} \\
\text{R₄} \\
\text{R₅} \\
\text{X} \\
\end{array}
\]

(VIII)
wherein

each of \(R_2, R_3, R_4 \) and \(R_5 \), independently, is hydrogen or alkyl, or \(R_2 \) and \(R_3 \) and/or \(R_4 \) and \(R_5 \) collectively form a \(C_{4-7}\)-cycloalkyl;

\(Y \) is a hydroxy-protecting group;

\(X \) is \(-\text{CH}_2-\), \(-\text{S}-\), \(-\text{CH(OH)}-\), \(-\text{CH(OR)}-\), \(-\text{CH(SH)}-\), \(-\text{CH(SR)}-\), \(-\text{CF}_2-\), \(-\text{C}=\text{N(OR)}-\) or \(-\text{CH(F)}-\);

wherein

\(R \) is alkyl;

\(R_1 \) is aryl or heteroaryl; and

\(n \) is 0 to 3, provided that when \(n \) is 0, \(X \) is \(-\text{CH}_2-\).

27. The process of Claim 26, wherein each of \(R_2, R_3 \) and \(R_5 \) are hydrogen; \(R_4 \) is \(C_{1-7}\)-alkyl; \(X \) is \(-\text{CH}_2-\); \(Y \) is benzyl or \(t\)-butyldimethylsilyl; and \(R_1 \) is a moiety of the formula (X1a)

\[\text{[Diagram showing molecular structure]} \]

wherein

\(R_6 \) and \(R_9 \) are hydrogen;

\(R_7 \) is hydrogen or \(C_{1-7}\)-alkyl; and

\(R_8 \) is hydrogen, halogen or \(C_{1-7}\)-alkyl.

28. The process of Claim 26 wherein \(R_4 \) is \(n\)-butyl; and \(R_1 \) is a moiety of the formula

\[\text{[Diagram showing molecular structure]} \]

wherein

\(R_7 \) is hydrogen; and

\(R_8 \) is fluoro.
29. The process of Claim 26 carried out at a temperature of about 0°C to about 25°C for about 20 minutes to about 1 hour, wherein the formylating agent is HCO₂H/Ac₂O or trifluoroethylformate, and the solvent is EtOAc, isopropylacetate, t-butylacetate or THF.

30. A compound of the formula (I)

![Chemical Structure](image)

wherein each of R₂, R₃, R₄ and R₅, independently, is hydrogen or alkyl, or (R₂ and R₃) collectively form a C₄₋₅cycloalkyl, provided that when either R₄ or R₅ is hydrogen, the other substituent, i.e., R₄ or R₅, is not hydrogen or methyl.

31. The compound of Claim 30, wherein R₅ is hydrogen; and R₄ is C₂₋₇alkyl.

32. The compound of Claim 30 having the formula (Ib)

![Chemical Structure](image)

wherein

G is -OH or -O⁻M⁺, wherein M is a metal or an ammonium moiety; and
each of R₂, R₃ and R₅, independently, is hydrogen or alkyl, or (R₂ and R₃) collectively form a C₄₋₅cycloalkyl, provided that R₅ is not n-butyl.

33. The compound of Claim 30 having the formula (Ia)

![Chemical Structure](image)
34. A compound selected from the group consisting of formulae (Ig)-(Ih)

\[
\begin{align*}
\text{(Ig)} & :
\begin{array}{c}
\text{\begin{tikzpicture}
\draw (0.0,0.0) -- (0.5,0.0) node[below]{R};
\draw (0.0,0.0) -- (0.0,-0.5) node[right]{OH};
\draw (0.0,0.0) -- (0.0,0.5) node[left]{\text{C}-\text{O}};
\draw (0.5,0.0) -- (1.0,0.0) node[below]{R};
\draw (1.0,0.0) -- (1.5,0.0) node[below]{\text{C}-\text{O}};
\draw (1.5,0.0) -- (2.0,0.0) node[below]{\text{Na}^\ominus};
\end{tikzpicture}}
\end{array} \\
\text{(Ih)} & :
\begin{array}{c}
\text{\begin{tikzpicture}
\draw (0.0,0.0) -- (0.5,0.0) node[below]{R};
\draw (0.0,0.0) -- (0.0,-0.5) node[right]{OH};
\draw (0.0,0.0) -- (0.0,0.5) node[left]{\text{C}-\text{O}};
\draw (0.5,0.0) -- (1.0,0.0) node[below]{R};
\draw (1.0,0.0) -- (1.5,0.0) node[below]{\text{C}-\text{O}};
\draw (1.5,0.0) -- (2.0,0.0) node[below]{\text{NH}_3};
\end{tikzpicture}}
\end{array}
\end{align*}
\]

35. A compound having the formula (VII)

\[
\begin{align*}
\text{(VII)} & :
\begin{array}{c}
\text{\begin{tikzpicture}
\draw (0.0,0.0) -- (0.5,0.0) node[below]{R};
\draw (0.0,0.0) -- (0.0,-0.5) node[right]{\text{Y}};
\draw (0.0,0.0) -- (0.0,0.5) node[left]{\text{N}};
\draw (0.5,0.0) -- (1.0,0.0) node[below]{R};
\draw (1.0,0.0) -- (1.5,0.0) node[below]{\text{R}_4};
\draw (1.0,0.0) -- (1.0,-0.5) node[right]{\text{R}_5};
\draw (1.5,0.0) -- (2.0,0.0) node[below]{\text{X}};
\draw (2.0,0.0) -- (2.5,0.0) node[below]{(\text{CH}_2)_n};
\draw (2.0,0.0) -- (2.0,-0.5) node[right]{\text{O}};
\draw (2.0,0.0) -- (2.0,0.5) node[left]{\text{S}};
\draw (2.0,0.0) -- (2.5,0.0) node[below]{\text{O}};
\draw (2.5,0.0) -- (3.0,0.0) node[below]{\text{NH}};
\draw (3.0,0.0) -- (3.5,0.0) node[below]{\text{R}_6};
\end{tikzpicture}}
\end{array}
\end{align*}
\]

wherein

- each of R_2, R_3, R_4 and R_6, independently, is hydrogen or alkyl, or (R_2 and R_3) can collectively form a C_{4-7}-cycloalkyl;
- Y is a hydroxy-protecting group;
- X is -\text{CH}_2-, -\text{S}-, -\text{CH(OH)}-, -\text{CH(OR)}-, -\text{CH(SH)}-, -\text{CH(SR)}-, -\text{CF}_2-, -\text{C=N(OR)}- or -\text{CH(F)}-;
- R is alkyl;
- R_1 is aryl or heteroaryl; and
- n is 0 to 3, provided that when n is 0, X is -\text{CH}_2-, and that R_4 and R_5 are different.
36. The compound of Claim 35, wherein each of \(R_2, R_3 \) and \(R_5 \) are hydrogen; \(R_4 \) is \(\text{C}_{1,2}\text{-alkyl} \); \(X \) is \(-\text{CH}_2-\); \(Y \) is benzyl or \(t\)-butyldimethylsilyl; and \(R_1 \) is a moiety of the formula (Xla)

\[
\begin{align*}
\text{or}
\end{align*}
\]

wherein

\(R_6 \) and \(R_9 \) are hydrogen;
\(R_7 \) is hydrogen or \(\text{C}_{1,2}\text{-alkyl} \); and
\(R_8 \) is hydrogen, halogen or \(\text{C}_{1,2}\text{-alkyl} \).

37. The compound of Claim 36, wherein \(R_4 \) is \(n\)-butyl; and \(R_1 \) is a moiety of the formula

\[
\text{wherein}
\]

\(R_7 \) is hydrogen; and
\(R_8 \) is fluoro.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C07D207/16</td>
<td>C07D205/08</td>
</tr>
<tr>
<td>C07C271/16</td>
<td>C07C59/01</td>
</tr>
<tr>
<td>C07C309/65</td>
<td></td>
</tr>
</tbody>
</table>

According to international Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Minimum documentation searched (classification system followed by classification symbols)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 7 C07D C07C</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EPO-Internal, WPI Data, PAJ, CHEM ABS Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JUN-IICHI SAKAKI ET AL: "Synthesis of 1,3-Dioxin-4-ones and Their Use in Synthesis. XVIII. Synthesis of Azetidin-2-ones from 1,3-Dioxin-4-ones via 3-Hydroxythioamides" CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 37, no. 11, 1989, pages 2952-2960, XP002266977 chart 2: examples 3d,4d,5</td>
<td>13,17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

Date of the actual completion of the international search

15 January 2004

Date of mailing of the international search report

10/02/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5018 Patentlaan 2 NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 apc nl, Fax: (+31-70) 340-3016

Authorized officer
Seitner, I
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | MARVIN J. MILLER ET AL: "Synthesis of beta-Lactams from Substituted Hydroxamic Acids"
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 102, no. 23, 1980, pages 7026-7032,
XP002266979
Scheme V: example 37 | 10,30 |
| A | JIN Y ET AL: "Inhibition stereochemistry of hydroxamate inhibitors for thermolysin"
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB,
vol. 8, no. 24,
ISSN: 0960-894X
Scheme 1 | 21 |
| A | GRAF VON ROEDERN E ET AL: "DESIGN AND SYNTHESIS OF MALONIC ACID-BASED INHIBITORS OF HUMAN NEUTROPHIL COLLAGENASE (MMP8)"
JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US,
vol. 41, no. 3, 1998, pages 339-345,
XP000919359
ISSN: 0022-2623
page 342, column 2
example 14; table 1 | 3 |
| A | WO 99 39704 A (BRITISH BIOTECH PHARM; DAVIES STEPHEN JOHN (GB); HUNTER MICHAEL GE) 12 August 1999 (1999-08-12)
Scheme 1
example 12 | 1 |
| X | EP 0 354 529 A (EASTMAN KODAK CO)
14 February 1990 (1990-02-14)
examples 2A,3A | 30-34 |
| X | RAMASWAMI, SURYAKUMARI ET AL: "Terpenoids. II. The Prins reaction on the isopropylidine-type double bonds"
JOURNAL OF ORGANIC CHEMISTRY (1964),
29(8), 2245-8,
XP002266980
page 2247, column 1, paragraph 1; example VIII | 30 |

Form PCT/SA/010 (continuation of second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>PFEFFER, PHILIP E. ET AL: "alpha. Anions of carboxylic acids. V. Simple high yield preparation of alpha.-alkylacyrlc acids and alpha.-alkylacrylic acids" JOURNAL OF ORGANIC CHEMISTRY (1972), 37(8), 1256-8, XP002266981 table I</td>
<td>30-34</td>
</tr>
<tr>
<td>X</td>
<td>US 4 115 417 A (VALENTINE JR DONALD HERMAN) 19 September 1978 (1978-09-19) column 16, line 11</td>
<td>30</td>
</tr>
<tr>
<td>X</td>
<td>US 4 384 139 A (OHASHI TAKEHISA ET AL) 17 May 1983 (1983-05-17) column 7, line 66 -column 8, line 6</td>
<td>30</td>
</tr>
<tr>
<td>X</td>
<td>WO 02 070541 A (CHRISTENSEN SIEGFRIED B; SMITHKLINE BEECHAM CORP (US); LEE JINHWA) 12 September 2002 (2002-09-12) preparations 4-6 schemata 1-3</td>
<td>10,13, 17,30,31</td>
</tr>
<tr>
<td>X</td>
<td>DETLEF GEFFKEN ET AL: "Darstellung von Derivaten der 3-Hydroxypropiohydroxamsäure unter Anwendung der Carbodiimid-Methode" CHEMISCHE BERICHTE, vol. 106, 1973, pages 2246-2254, XP008026435 Scheme 1; examples 1a,1d,1e</td>
<td>10,30</td>
</tr>
<tr>
<td>X</td>
<td>YONGHAO JIN ET AL: "A Practical Method for the Conversion of beta-Hydroxy Carboxylic Acids into the Corresponding beta-Amino Acids" SYNLETT, vol. 11, 1998, pages 1189-1190, XP008026436 Scheme 1; examples 1a,1b,1c</td>
<td>10,17,30</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. ☑ Claims Nos.: 30-32 (all partially) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

 see FURTHER INFORMATION sheet PCT/ISA/210

3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☐ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☑ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest.

☐ No protest accompanied the payment of additional search fees.
Continuation of Box I.2

Claims Nos.: 30-32 (all partially)

The initial phase of the search of claims 30-34 revealed a very large number of documents relevant to the issue of novelty. So many documents were retrieved that it is impossible to determine which parts of the claims may be said to define subject-matter for which protection might legitimately be sought (Article 6 PCT).

For these reasons it appears impossible to execute a meaningful search and/or to issue a complete search report over the whole breadth of the above mentioned claims.

The search and the report for those claims can only be considered as complete for compounds according to claim 33 and 34.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9939704</td>
<td>12-08-1999</td>
<td>AU 749699 B2</td>
<td>04-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2529299 A</td>
<td>23-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9907689 A</td>
<td>14-11-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2320476 A1</td>
<td>12-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1298299 T</td>
<td>06-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2349884 A</td>
<td>15-11-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9939704 A1</td>
<td>12-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0102901 A2</td>
<td>28-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002502815 T</td>
<td>29-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20003969 A</td>
<td>28-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 505675 A</td>
<td>26-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 521033 A</td>
<td>31-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 342296 A1</td>
<td>04-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 200002311 T2</td>
<td>21-11-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002165167 A1</td>
<td>07-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6423690 B1</td>
<td>23-07-2002</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3935889 A</td>
<td>15-03-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0354529 A2</td>
<td>14-02-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2076591 A</td>
<td>15-03-1990</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>US 4115417</td>
<td>19-09-1978</td>
<td>US 4123465 A</td>
<td>31-10-1978</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 57038768 A</td>
<td>03-03-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60030666 B</td>
<td>17-07-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3132332 A1</td>
<td>15-04-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2488888 A1</td>
<td>26-02-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2082174 A,B</td>
<td>03-03-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 51505 B1</td>
<td>07-01-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1171468 B</td>
<td>10-06-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 8103863 A,B</td>
<td>16-03-1982</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>WO 02070541</td>
<td>12-09-2002</td>
<td>CA 2439827 A1</td>
<td>12-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1363873 A2</td>
<td>26-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20033828 A</td>
<td>06-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02070541 A2</td>
<td>12-09-2002</td>
</tr>
</tbody>
</table>