实用新型名称

一种具有半导体光源模块的照明系统

摘要

本实用新型是关于一种具有半导体光源模块的照明系统，该系统包括具有反射弧面的反射件，与反射件相接的支架，以及具有第一发光单元与第二发光单元的半导体光源模块。支架包括第一支架部与第二支架部。第一支架部设于反射件与第二支架部之间，且半导体光源模块设于第二支架部并与反射弧面相对。其中，至少一发光单元相对于第一支架部的至少一分有一范围在145度至175度之间的夹角。
1. 一种具有半导体光源模块的照明系统，其特征在于，其包括：反射件，其具有反射弧面；支架，其与所述反射件相接，并包括第一支架部以及第二支架部，其中所述第一支架部设置于所述反射件与所述第二支架部之间；以及半导体光源模块，其设置于所述第二支架部并相对于所述反射弧面，并包括多个发光单元，且所述多个发光单元进一步包括第一发光单元与第二发光单元；其中，所述多个发光单元至少其中之一相对于所述第一支架部的至少一部分有一范围在145度至175度之间的夹角。

2. 如权利要求1所述的照明系统，其特征在于，其中所述反射弧面包括至少一种曲率的反射面。

3. 如权利要求1所述的照明系统，其特征在于，其中所述夹角更进一步介于150度至170度之间。

4. 如权利要求1所述的照明系统，其特征在于，其中所述半导体光源模块更包括基座，且所述第一发光单元与所述第二发光单元设置于所述基座上。

5. 如权利要求1所述的照明系统，其特征在于，其更包括至少一回路控制单元，其与所述第一发光单元或所述第二发光单元形成电性连接。

6. 如权利要求5所述的照明系统，其特征在于，其中所述回路控制单元系通过设置于基座上的第一模块电极组以及第二模块电极组分别与所述第一发光单元以及所述第二发光单元电性连接。

7. 如权利要求1所述的照明系统，其特征在于，其中所述第一发光单元与所述照明系统的出光口之间的距离小于所述第二发光单元与所述照明系统的所述出光口之间的距离。

8. 如权利要求1所述的照明系统，其特征在于，其中所述第一发光单元照射于所述反射弧面的入射角度小于所述第二发光单元于相同照射位置的入射角度。

9. 如权利要求1所述的照明系统，其特征在于，其中所述反射弧面表面的至少一部分或所述支架设有所述半导体光源模块的表面的至少一部分上设有波长转换层。

10. 如权利要求1所述的照明系统，其特征在于，其中所述第一发光单元与所述第二发光单元各包括至少一发光二极管芯片，且所述第一发光单元与所述第二发光单元的发光单元中心相对于距离不大于任一所述发光二极管芯片芯片的边长宽的1.6倍。

11. 如权利要求1所述的照明系统，其特征在于，其中所述支架的第二支架部与第一支架部之间至少有一转折，使所述多个发光单元至少其中之一相对于所述第一支架部的至少一部分有上述夹角。

12. 如权利要求4所述的照明系统，其特征在于，其中所述基座设有所述多个发光单元的表面包括斜面，使所述多个发光单元至少其中之一相对于所述第一支架部的至少一部分有上述夹角。

13. 如权利要求4所述的照明系统，其特征在于，其中所述基座设有所述多个发光单元的表面的至少一部分为暗色系区域，并分布于所述多个发光单元周围。

14. 如权利要求1所述的照明系统，其特征在于，其中所述支架设有所述半导体光源模块的表面的至少一部分颜色为暗色系。

15. 如权利要求4所述的照明系统，其特征在于，其中所述基座设有所述多个发光单元
的表面具有多个色度区域。

16. 一种具有半导体光源模块的照明系统，其特征在于，其包括：反射件，其具有反射弧面；以及
半导体光源模块，其相对于所述反射弧面与所述反射件耦接，且包括多个发光单元，且所述多个发光单元进一步包括第一发光单元与第二发光单元；
其中，所述第一发光单元与所述第二发光单元各包括至少一发光二极管芯片，且所述第一发光单元与所述第二发光单元之发光单元中心相距距离不大于任一所述发光二极管芯片的芯片径边宽之1.6倍。

17. 如权利要求16所述的照明系统，其特征在于，其更包括一支架，其与所述反射件相耦接，且所述半导体光源模块设置于所述支架上与所述反射弧面相对。

18. 如权利要求17所述的照明系统，其特征在于，其中所述支架包括第一支架部以及第二支架部，所述第一支架部设置于所述反射件与所述第二支架部之间，且所述半导体光源模块设置于所述第二支架部。

19. 如权利要求17所述的照明系统，其特征在于，其中所述反射弧面表面的至少一部分或所述支架设有所述半导体光源模块的表面的至少一部分上设有波长转换层。

20. 如权利要求18所述的照明系统，其特征在于，其中所述多个发光单元至少其中之一相对于所述第一支架部的至少一部分有一范围在145度至175度之间的夹角。

21. 如权利要求16所述的照明系统，其特征在于，其中所述半导体光源模块更包括一基座，且所述多个发光单元设置于所述基座上。

22. 如权利要求21所述的照明系统，其特征在于，其中所述基座设有所述多个发光单元的表面的至少一部分为暗色系区域，并分布于所述多个发光单元周围。

23. 如权利要求17所述的照明系统，其特征在于，其中所述支架设有所述半导体光源模块的表面的至少一部分颜色为暗色系。

24. 如权利要求21所述的照明系统，其特征在于，其中所述基座设有所述多个发光单元的表面具有多个色度区域。
一种具有半导体光源模块的照明系统

技术领域
【0001】本实用新型为关于一种具有半导体光源模块的照明系统，尤指一种使用多个发光单元的半导体光源模块搭配相应支架与反射件，使得照明距离可调整的照明系统。

背景技术
【0002】远光灯与近光灯为因应如白昼、夜间或各类不同的环境而使用，所分别运用的照明系统。其中远光灯的照明角度较高，投射的距离较远；而近光灯的照明角度则较低，同时其投射距离也较近。
【0003】以汽车应用为例，过去汽车头灯所采用光源主要有卤素灯泡，由于灯体之体积较大，因此在包括远光灯、近光灯或雾灯等光源于结构上，是将不同的灯模块各自独立地安装于各自灯座（含相应的光学镜片与机构组件）当中。由于远光灯和近光灯是各自安装于汽车车头的不同灯座当中，这就意味着汽车的照明系统需要具备足够的容置空间才能妥善安装这两种不同用途的灯具。面临这种状况，车灯模块的整体体积自然地高居不下，而且各种附加组件包括各自的散热结构、更长的灯罩、各自的二次光学系统提高其出光的效果，都促使过去车灯模块成本高昂。
【0004】因此，如何提出一种有效将远光灯和近光灯一体化，以减少所需要的模块体积以及组成组件考量，进而降低生产成本的一种兼具结构新颖及功效卓越的可调整照明范围的照明系统，即是本实用新型所要克服的技术问题。

实用新型内容
【0005】本实用新型的主要目的，在于提供一种具有半导体光源模块的照明系统，其以半导体光源模块搭配支架与具有反射弧面的反射件，达成能发出不同照明距离或范围光照的照明系统；其中半导体光源模块更包括回路控制单元，让使用者能透过单一控制台就可根据其需求选择使用不同效果的光源，达成调整照明距离或范围的功能。
【0006】本实用新型的次要目的，在于提供一种具有半导体光源模块的照明系统，其所安装的多个发光单元使用同一基座作为散热的媒介，且所述多个发光单元透过所设置的支架而使用同一反射件进行反射出光，达成缩小照明系统出光面积与所需要体积的结果，且出光效果与传统车灯技术相似而符合相关国家标准规范。
【0007】为了达到上述的目的，本实用新型揭示了一种具有半导体光源模块的照明系统，其包括反射件、其具有反射弧面；支架，其与所述反射件相接；并包括第一支架部以及第二支架部，其中所述第一支架部设置于所述反射件与所述第二支架部之间；以及半导体光源模块，其设置于所述第二支架部并相对于所述反射弧面，其包含多个发光单元，且所述多个发光单元进一步包括第一发光单元与第二发光单元；其中，所述多个发光单元至少其中之一相对于所述第一支架部的至少一部分有一范围在 145 度至 175 度之间的夹角。
【0008】接上述技术方案，其中所述反射弧面包括至少一种曲率的反射面。
【0009】接上述技术方案，其中所述夹角系更进一步介于 150 度至 170 度之间。
接上述技术方案，其中所述半导体光源模块更包括基座，且所述第一发光单元与所述第二发光单元设置于所述基座上。

接上述技术方案，其更包括至少回路控制单元，其与所述第一发光单元或所述第二发光单元电性连接。

接上述技术方案，其中所述回路控制单元设有设置于基座上的第一模块电极组以及第二模块电极组，面分别与所述第一发光单元以及所述第二发光单元电性连接。

接上述技术方案，其中所述第一发光单元与所述照明系统的一出光口之间的距离小于所述第二发光单元与所述照明系统的一出光口之间的距离。

接上述技术方案，其中所述第一发光单元照射于所述反射弧面的入射角度小于所述第二发光单元于相同照射位置的入射角度。

接上述技术方案，其中所述反射弧面表面的至少一部分或所述支架设有所述半导体光源模块的表面的至少一部分上设有波长转换层。

接上述技术方案，其中所述第一发光单元与所述第二发光单元各包括至少一发光二极管芯片，且所述第一发光单元与所述第二发光单元的发光单元中心相对距离不大于所述发光二极管芯片的芯片纵边宽的1.6倍。

接上述技术方案，其中所述支架的第二支架部与第一支架部之间至少有一转角，使所述多个发光单元至少其中之一相对第一支架部的至少一部分有所述夹角。

接上述技术方案，其中所述基座设有所述多个发光单元的表面包括一斜面，使所述多个发光单元至少其中之一相对第一支架部的至少一部分有所述夹角。

接上述技术方案，其中所述基座设有所述多个发光单元的表面的至少一部分为暗色系区域，并分布于所述多个发光单元周围。

接上述技术方案，其中所述支架设有所述半导体光源模块的表面的至少一部分颜色为暗色系。

接上述技术方案，其中所述基座设有所述多个发光单元的表面具有一个以上的色度区域。

本实用新型还提供了一种具有半导体光源模块的照明系统，其包括：

一反射件，其具有一反射弧面；以及

半导体光源模块，其相对于所述反射弧面与所述反射件相接，且包括二个以上的发光单元，且所述多个发光单元进一步包括一第一发光单元与一第二发光单元；

其中，所述第一发光单元与所述第二发光单元各包括至少一发光二极管芯片，且所述第一发光单元与所述第二发光单元之发光单元中心相对距离不大于所述发光二极管芯片的芯片纵边宽的1.6倍。

接上述技术方案，其更包括一支架，其于与所述反射件相接，且所述半导体光源模块设置于所述支架上与所述反射弧面相对。

接上述技术方案，其中所述支架包括一第一支架部以及一第二支架部，所述第一支架部设置于所述反射件与所述第二支架部之间，且所述半导体光源模块设置于所述第二支架部。

接上述技术方案，其中所述反射弧面表面的至少一部分或所述支架设有所述半导体光源模块的表面的至少一部分上设有一波长转换层。
附图说明

附图说明

图 1: 其为本实用新型一较佳实施例的结构侧面剖视示意图；
图 2A-2C: 其为本实用新型中，半导体光源模块的结构示意图；
图 3: 其为本实用新型一较佳实施例的光线路径示意图；
图 4: 其为本实用新型中，发光单元开关控制路程示意图；
图 5A-5B: 其为本实用新型安装于汽车车头的光线路径示意图；
图 6: 其为本实用新型另一较佳实施例的倒置设计的结构侧面剖视示意图；
图 7: 其为本实用新型另一较佳实施例使用具斜面的基座的结构侧面剖视示意图；以及
图 8: 其为本实用新型另一较佳实施例的设置具有深色系区域的基座的示意图。

【图号对照说明】

反射件
反射弧面
支架
第一支架部
第二支架部
半导体光源模块
第一发光单元
第二发光单元
发光二极管芯片
基座
斜面
具体实施方式

[0067] 为了使本实用新型的结构特征及所达成的功效有更进一步的了解与认识，特有用较佳的实施例及配合详细的说明，说明如下：

[0068] 首先，请参考图1，本实用新型的一实施例在结构上包括：一反射件1、一支架2以及一半导体光源模块4。其中，所述反射件1具有反射功能的一面为反射弧面10，且所述反射弧面10为具有的至少一种曲率的反射面；所述支架2与所述反射件1相耦接，且包括一第一支架部21以及一第二支架部22，所述第一支架部21设置于所述反射件1与所述第二支架部22之间；所述半导体光源模块4设置于所述第二支架部22并与所述反射弧面10相接面对。其中设有所述半导体光源模块4的所述第二支架部22的至少一部分与所述第一支架部21的至少一部分之间具有一转折，使得所述第二支架部22的至少一部分与所述第一支架部21的至少一部分之间有一范围最大在145度至175度之间，最佳在150度至170度之间的一夹角θ，且所述第一支架部21的至少一部分可与水平方向平行。

[0069] 本实施例的半导体光源模块4所发出的光，至少一部分透过反射弧面10反射，并经由支架2与反射件1所构成的一出光口8出光。在这过程中，由于支架2的第二支架与第一支架间具有弯折夹角θ，使得本实用新型的照明系统的出光口可以进一步缩小。以车灯应用来说，本实用新型即为传统车灯技术更少车体面积，同时本实用新型的支架2可遮挡部分由反射弧面10反射的光线，可作为挡板使用，将车辆水平方向直接发散出灯具模块的光线，而有减低炫光的效果。另外本实施例的半导体光源模块4发出光线在反射弧面10上的位置，相较于无夹角θ的情形，更靠近反射件1与支架2耦合处，从而使主要光线使用率得以增加，而减少所需使用反射弧面10的面积，进而缩小整体照明系统体积。

[0070] 请参考图2A，其为本实用新型的半导体光源模块4的其中一个实施例。如图所示，半导体光源模块4包括多个发光单元40以及一基座45，而所述发光单元40又可进一步区分为一第一发光单元41、一第二发光单元42。其中所述第一发光单元41与所述第二发光单元42分别包括相同数量的发光二极管芯片43并设置于所述基座45的同一面上。所述基座45可包括较佳导热效果的金属材质基板或陶瓷基板等。所述第一发光单元41与一第二发光单元42之间的发光亮度可以不同，例如第一发光单元41具有较弱的发光亮度而第二发光单元42具有较第一发光单元41弱的发光亮度，而于应用时即可分别作为随照明范
国不同而有不同光强效果的灯源，例如照明范围大时用强光，照明范围小时用弱光，前述实施例反之亦可，本实用新型并不以此为限，于应用上述实施例时，因为第二支架部 22 的至少一部分与第一支架部 21 的至少一部分间有一夹角 θ 的关系，设置于第二支架部 22 上的半导体光源模块 4 的至少一发光单元相对于所述第一支架部 21 的至少一部分为呈一夹角或斜角 θ

[0071] 另外与前述实施例相较，图 2B 的实施例与图 2A 的差异在于第一发光单元 41 与第二发光单元 42 分别包括单一发光二极管芯片 43，图 2C 的实施例与图 2C 的差异在于第一发光单元 41 与第二发光单元 42 分别包括不同数量的发光二极管芯片 43。如此，可使第一发光单元 41 与第二发光单元 42 之间的发光亮度产生落差，而使本实用新型的照明系统可呈现发光亮度不同的效果。

[0072] 本实用新型的照明系统的又一实施例请参照图 2A 与图 3 所示，本实施例的半导体光源模块 4 的第一发光单元 41 与第二发光单元 42 在基座 45 上具有一发光单元中心相对距离 D，因此不同发光单元发出光时，对应反射弧面 10 的相同位置有不同的入射角度，使得不同发光单元从本实用新型的照明系统出光口 8 所发出光线方向不同，例如本实施例的第一发光单元 41 通过出光口 8 所发出的光线 L\textsubscript{mm} 较第二发光单元 42 通过出光口 8 所发出的光线 L\textsubscript{mm} 更远离地平面，故 L\textsubscript{mm} 可照射或照明的距离较 L\textsubscript{mm} 更远，而于车灯应用时将第一发光单元 41 作为远光灯源（如图 5A 所示），第二发光单元 42 则作为近光灯源（如图 5B 所示）；前述举例反之亦可，如图 6 所示，此举例的照明系统相较前述实施例为颠倒设置，同时第一发光单元 41 通过出光口 8 所发出的光线 L\textsubscript{mm} 较第二发光单元 42 通过出光口 8 所发出的光线 L\textsubscript{mm} 更贴近地平面，故此较于车灯应用上第一发光单元 41 可作为远光灯源，第二发光单元 42 则作为近光灯源。本实用新型的一实施例在于发光单元中心相对距离 D 需不大于任一发光二极管芯片 43 的芯片缆直径 L 的 1.6 倍，如此本实用新型的照明系统在车灯应用时，可使本实用新型的照明系统在体积缩小的情形下，仍保有与传统车灯模块相似的照明效果，符合理个国家光于相关车灯规范的规定。

[0073] 本实用新型的另一实施例如图 4 所示，照明系统在控制第一发光单元 41 与第二发光单元 42 时，透过与之电性连接的多个回路控制单元 5 分别控制其开关。其中使用者可透过所操控的中控台 6 与手令，然后经由回路控制单元 5 分别控制第一发光单元 41 与第二发光单元 42；同时参考图 2A～2C，此回路控制单元 5 包括设置于半导体光源模块 4 的基座 45 上的第一模块电极组 51 和第二模块电极组 52，且所述模块电极组 51 与 52 分别与第一发光单元 41 和第二二发光单元 42 电性连接。藉由此种设计，使用者可以藉由单一中控台控制本实用新型的照明系统的第一发光单元 41 与第二发光单元 42，而选择所需的发光效果，例如两者可以同时发光或不同时发光。另外，前述实施例的照明系统所使用回路控制单元 5 可以为不同电子组件或透过模拟化整合于一 IC 组件中。

[0074] 图 7 为本实用新型的照明系统的另一实施例，在前前述所述的本实用新型照明系统实施例基础上，其中半导体光源模块 4 的基座 45 设有发光单元的表面至少一部分为斜面 46，使得第一支架 21 与第二支架 22 之间并不一定需要有一夹角 θ，而至少一发光单元 40 仍同样相对于第一支架 21 的至少一部分有一范围最大在 145 度至 175 度，最佳在 150 度至 170 度之间的一夹角 θ。

[0075] 图 8 为本实用新型的照明系统的另一实施例，同样在前述所述的本实用新型照明
系统实施例基础上，其中在基座 45 设置所述多个发光单元 40 的表面上至少有一部分为暗色系区域 9，分布于发光单元 40 周围，使得基座 45 具有单一或多个色度区域。其中在暗色系区域 9 的范围中，其涂色包括至少一暗色系颜色，例如黑色、灰色、深红色、深绿色、深蓝色或深紫色等颜色之一或是其组合。另外，支架 2 设有所述半导体光源模块 4 的表面的至少一部分颜色也可为暗色系颜色，例如黑色、灰色、深红色、深绿色、深蓝色或深紫色等颜色之一或是其组合。籍此，本实施例的照明系统在车灯应用时，可以吸收更多的杂散光源，而有最佳发光效果。而本实施例的照明系统于不同应用时，在基座 45 设有发光单元 40 的表面的至少一部分、反射弧面 10 表面的至少一部分或支架 2 设有半导体光源模块 4 的表面的至少一部分上的颜色可根据需求改用或增加浅色系颜色涂布，或设置波长转换层，如包含黄色、红色或绿色荧光粉的胶体等，以达成不同发光效果的需求。

[0076] 综上所述，本实用新型详细揭示了一种可调整照明范围的照明系统，其将多个发光单元设置于同一个基座之上，使得这些发光单元得以共享所述基座进行散热，且这些发光单元共同照射于一个反射件的反射弧面，得以被应用于需要有不同照明距离或范围的各种固定或移动工具如探照灯、舞台灯、手电筒、脚踏车、汽车、机车、飞机、船舰等。在减少照明系统的模块体积并保有与传统照明系统的照明功能需求下，总结而言，本实用新型无疑提供了一种充分展现实用价值的一种可调整照明范围的照明系统。

[0077] 上文仅为本实用新型的较佳实施例而已，并非用来限定本实用新型实施的范围，凡依本实用新型权利要求范围所述的形状、构造、特征及精神所为的均等变化与修饰，均应包括于本实用新型的权利要求范围内。