DUAL GRAPHICS LABEL FOR AN INPUT AREA OF CONTROL DEVICE

Abstract: The application provides dual graphic label for an input element of a control device for selectively displaying a first graphic information and a second graphic information. The display device includes a first light source, a second light source, an optical masking shield, a light conducting body, and a display face. The optical masking shield has a light blocking surface with a light permeable area in a shape of the first graphic information. The light conducting body has a surface with a light diffusing area in a shape of the second graphic information. The first light source is provided for emitting a first light ray while the second light source is provided for emitting a second light ray. The optical masking shield is provided between the first light source and the light conducting body, and the light conducting body is provided between the display face and the optical masking shield.
DUAL GRAPHICS LABEL FOR AN INPUT AREA OF CONTROL DEVICE

The application relates to an input area of a control device that shows dual graphic patterns. In particular, the application relates to a control device for a faceplate or a center console of a vehicle, wherein the control device selectively shows dual graphic patterns.

A motor vehicle often has control panels with input areas for controlling elements of the vehicle, such as cooling parameters, heating parameters, parameters as well as vehicle warning signals and vehicle operating states. The input areas have switches or otherwise sensitive areas which receive an input operation of the driver of the vehicle.

In order to decrease the number of input areas, one would seek to provide two different switching functions to one input area, providing dual graphic labels for indicating the current functions of the input areas.

In order to avoid leakage of light between the adjacent control panels, which impairs the readability of the control panel, each control panel has a dedicated light source with a focusing hood, which prevents the abovementioned leakage of light.

The recent use of driving aids, such as antiskid systems, occupant airbags, and traction control devices, which have risen considerably, has necessitated a correspondingly high number of control panels. This has rendered necessary a large area for mounting the control panels.

Vehicle manufacturers have used different methods to reduce the number of the control panels. The methods include a method
that uses a touch screen to serve as control panels. In another method, display units with soft-keys buttons are used to act as control panels. In a further method, buttons with dual selective graphic displays are used to serve as control panels.

US 7,581,342 B2 discloses a display device. The display device includes an ultraviolet light source, a color light source, and a filter is selectively hit by lights from these sources. The filter has a first area part, a second area part, and a third display part. A portion of the first area part overlaps a portion of the second area part.

In particular, the first area part that excludes its overlapped parts is provided for displaying first display contents when the ultraviolet light is emitted. When the ultraviolet light hits the first area part, the first area part produces visible light. The first area part blocks the color light.

The second area part that excludes its overlapped part is provided for displaying second display contents when the color light is emitted. The second area part allows the ultraviolet and color lights to pass through.

The third display part is provided for displaying the overlapped parts when one of the ultraviolet and color light is emitted. The third display part allows the ultraviolet and color lights to pass through and produces the visible light when the ultraviolet light hits the third display part.

US 6,417,779 B1 discloses a display for a motor vehicle. The display has a transilluminable display panel with an illuminating device. The illuminating device is arranged on the rear side of the display panel such that the illuminating device is
verted from an observer while transilluminating the display panel. In order to create a compact display, the illuminating device can emit light of a first and/or a second wavelength region. The light of the first wavelength region can essentially pass through only a first region of the display panel while the light of the second wavelength region can essentially pass through only a second region of the display panel, wherein the second region differs at least partially from the first region of the display panel.

It is an object of the application to provide an improved dual graphic label for an input element of a control device.

The application provides dual graphic label for an input element of a control device. The control device can be an anti-skid systems, occupant airbag control module or and a traction control module of a vehicle.

The dual graphic label is provided for selectively displaying a first graphic information and a second graphic information of a component of a vehicle, which is related to the input element. The center stack is also called a center console.

The center stack refers to a cover or to a surface for displaying a status of a component of the vehicle, such as an engine status, a window status, and an audio system status. The cover can also serve to receive an input from a user. The cover is positioned inside the vehicle, usually in a center of a front part of the vehicle, between a dashboard and a transmission of the vehicle, even though it can also be positioned in a rear part of the vehicle.

The graphic information, as an example, can relate to an engine status of the vehicle. The graphic information can in-
clude a symbol, an alphabet, and a number for displaying the engine status.

Referring to the dual graphic label, it includes a first light source, a second light source, an optical masking shield, a light conducting body, and a display face, such as black panel or a smoked glass.

In particular, the optical masking shield includes a light blocking surface with a light permeable area in a shape of the first graphic information.

The light conducting body includes a surface with a light diffusion area in a shape of the second graphic information.

The optical masking shield is provided between the first light source and the light conducting body, while the light conducting body is provided between the display face and the optical masking shield.

When energized, the first light source emits a first light ray.

A portion of the first light ray travels from the first light source to hit or to illuminate the light blocking surface of the optical masking shield, wherein the light blocking surface blocks the first light ray from travelling through light blocking surface.

In contrast, another portion of the first light ray travels from the first light source to hit the light permeable area of the optical masking shield, wherein the light permeable area allows the first light ray to travel through the light permeable area. This first light ray travels pass the light permea-
ble area with the shape of the first graphic information, which is the shape of the light permeable area.

This transmitted first light ray then travels to the light conducting body, passes through the light conducting body, and then travels to the display face for illuminating the display face with the shape of the first graphic information.

Similarly, when energized, the second light source emits a second light ray.

The second light ray travels from the second light source to the light conducting body. A portion of second light ray later travels through the light diffusion area. The portion of the second light ray that travels through the light diffusion area has the shape of the second graphic information, which is the shape of the light diffusion area.

The second light ray later travels to the display face for illuminating the display face with the shape of the second graphic information.

The display face provides an area, which is illuminated by the first light ray or by the second light ray, for displaying the first and the second graphic information to a user.

This dual graphic label has an advantage in that it can be produced easily at a low cost.

In practice, the light permeable area is often provided by a hollow opening or by a light transparent sheet, such as a clear glass or plastic sheet.
The surface of the light conducting body often includes a smooth area that surrounds the light diffusion area. The smooth area does not allow the second light ray to exit the light conducting body, in other words, the smooth area enables total internal reflection of second light ray. The smooth area can allow the first light ray to enter or exit the light conducting body.

A first portion of the display face, which is illuminated by the first light ray with the shape of the first graphic information, can overlap a second portion of the display face, which is illuminated by the second light ray with the shape of the second graphic information. This overlap has a benefit of saving display space, which is important for space constraint areas like the interior of a vehicle.

In one implementation, the color of the first light ray and the color of the second light ray are the same for easy viewing.

In another implementation, the color of the first light ray and the color of the second light ray are different for showing different status.

Different ways of placing the light diffusion area are possible. In one aspect of the application, the light diffusion area faces the light permeable area.

The dual graphic label often includes a controller for selectively energizing the first light source and selectively energizing the second light source.

Each of the first and the second light sources can include one or more light emitting diodes (LEDs) for emitting light rays.
The dual graphic label can also include a light guiding unit being placed between the second light source and the light conducting body for guiding or channeling a light ray from the second light source to the light conducting body.

Different ways of implementing the light diffusion area are possible.

In one implementation, the light diffusion area comprises an etched area. A portion of a surface of the light conducting body can be etched by a chemical to serve as the etched area.

In another implementation, the light diffusion area includes a light diffusion sheet or film that is attached or pasted to a surface of the light conducting body.

The display face is provided by a smoked optical element such as a smoked sheet and a smoked lens. The smoked sheet comprises flat surfaces that allow a light ray to transmit without magnifying an image of the light ray. In contrast, the smoked lens includes a curve surface that allows a light ray to transmit while magnifying an image of the light ray.

The display face often light ray scattering elements for scattering a light ray that passes through the display face in several directions to produce a wide radiation pattern of the light ray.

The application also provides an input element of a control device. The input element includes the above dual graphic label as well as an input element for receiving a user input.
The dual graphic label displays dual graphic information while a user can provide an input to the input element according to the displayed graphic information.

In one aspect of the application, the input element includes a mechanical button that is provided inside the dual graphic label for receiving an actuation by a user when the display face is pushed by the user.

In one implementation, the button and the optical masking shield are provided as one integrated unit, although other implementations are possible.

In another aspect of the application, the input element includes a capacitive touch sensor that is provided inside the dual graphic label for detecting an actuation by a user when the display face is pushed by the user. As an example, the capacitive touch sensor can be provided between the display face and the optical masking shield.

The application also provides a faceplate or a center plate for a vehicle. The center plate is also called a center console. The faceplate is intended for placing inside the vehicle and it includes one or more of the above-mentioned input elements. Each input element has a dual graphic label and an input element.

In use, the dual graphic label selectively displays a first graphic information and a second graphic information of a component of the vehicle to a user of the vehicle. Examples of the vehicle component include a heating device, a cooling device, an engine control module, and a transmission control module. A user can then provide input the input element according the graphic information of the dual graphic label.
The application provides a vehicle. The vehicle includes a two or more components and the above faceplate. The faceplate is provided inside the vehicle. The faceplate includes one or more input units. Each input unit is provided for selectively displaying a first graphic information and a second graphic information of one component of the vehicle to a user of the vehicle and is provided for receiving a user input regarding the component.

Fig. 1 illustrates an exploded view of a touch input front panel of a faceplate of a vehicle with a front smoked glass for displaying dual graphic patterns,

Fig. 2 illustrates a top sectional-view of the touch input front panel of Fig. 1,

Fig. 3 illustrates paths of light rays of a light source of the touch input front panel of Fig. 1,

Fig. 4 illustrates paths of light rays of a source light guide of the touch input front panel of Fig. 1,

Fig. 5 illustrates a smooth surface of a graphic light guide of the touch input front panel of Fig. 1 reflecting light rays from a light source of the source light,

Fig. 6 illustrates a textured surface of the graphic light guide of the touch input front panel of Fig. 1 refracting light rays from a light source of the source light,

Fig. 7 illustrates the smooth surface of the graphic light guide of the touch input front panel of Fig. 1 reflecting light rays from a light source,

Fig. 8 illustrates the textured surface of the graphic light guide of the touch input front panel of Fig. 1 refracting light rays from the second light source,
Fig. 9 illustrates a first display mode of the touch input front panel of Fig. 1 to show a first graphic pattern,

Fig. 10 illustrates a front smoked glass of the touch input front panel of Fig. 1 displaying the first graphic pattern,

Fig. 11 illustrates a second display mode of the touch input front panel of Fig. 1 to show a second graphic pattern,

Fig. 12 illustrates the front smoked glass of the touch input front panel of Fig. 1 displaying the second graphic pattern,

Fig. 13 illustrates a first display mode of a faceplate of a vehicle, the faceplate includes multiple touch input front panels of Fig. 1,

Fig. 14 illustrates a second display mode of the faceplate of Fig. 11,

Fig. 15 illustrates a top sectional-view of another touch input front panel of a faceplate of a vehicle,

Fig. 16 illustrates an exploded view of a push button with a cover of a faceplate of a vehicle for displaying dual graphic patterns, and

Fig. 17 illustrates a top sectional-view of a further touch input front panel, which is a variant of the touch input front panel of Fig. 1.

In the following description, details are provided to describe embodiments of the application. It shall be apparent to one skilled in the art, however, that the embodiments may be practiced without such details.

Some parts of the embodiments have similar parts. The similar parts may have the same names or similar part numbers. The description of one part also applies by reference to another
similar part, where appropriate, thereby reducing repetition of text without limiting the disclosure.

Fig. 1 shows a touch input front panel 10 for a faceplate or a center stack of a vehicle. The center stack is also called a center console.

The touch input front panel 10 comprises a light source module 13, a light guide module 16 with a textured surface for showing a first graphic pattern, an opaque carrier 19 with a cut-out for showing a second graphic pattern, a capacitive touch sensor 21, and a smoked glass 24.

The light source module 13 is placed next to the light guide module 16 while a part of the light guide module 16 is inserted in the carrier 19. The carrier 19 is placed next to the capacitive touch sensor 21 while the capacitive touch sensor 21 is placed next to the smoked glass 24.

In particular, the light source module 13 includes a first light guide Light Emitting Diode (LED) 26, a second light guide LED 28, and a carrier LED 30. The first light guide LED 26 and the second light guide LED 28 together with the carrier LED 30 are mounted on a printed circuit board (PCB) 32 while the carrier LED 30 are placed between the two light guide LEDs 26 and 28.

The light guide module 16 has two source light guides 35 and 37 as well as a thin graphic light guide 40.

One end of the source light guide 35 is placed next to the first light guide LED 26 while another end of the said source light guide 35 is placed next to a first-end of the graphic light guide 40. Similarly, one end of the other source light
guide 37 is placed next to the second light guide LED 28 while another end of the said source light guide 37 is placed next to a second-end of the graphic light guide 40.

Referring to the graphic light guide 40, it has an outer major surface that includes a smooth area 42 and a textured area 44. The textured area 44 is also called a light diffusion area. The textured area 44 has an uneven surface with a number of small portions, wherein the small portions have different inclinations. The textured area 44 has the shape of the letter "E". The smooth area 42 surrounds the textured area 44 and is placed next to the textured area 44. The textured area 44 and the smooth area 42 are placed on the side of the graphic light guide 40 that is facing the cutout 59. In other words, the textured area 44 and the smooth area 42 are pointing towards the cutout 59.

The opaque carrier 19 comprises a casing 50. The casing 50 has a flat outer surface 52, wherein two slots 54 and 56 together with a hollow cutout 59 are placed on the outer surface 52. The source light guides 35 and 37 are inserted respectively in the slots 54 and 56. The hollow cutout 59 has a shape of the letter "V" and is placed in the vicinity of the textured area 44 of the graphic light guide 40.

As seen in Fig. 2, the casing 50 also has a light shield 61. The light shield 61 is placed inside the casing 50 and it encloses the carrier LED 30.

The capacitive touch sensor 21 has a central hollow portion 66 that is placed next to the textured area 44 of the graphic light guide 40, as shown in Fig. 1.
To produce the touch input front panel 10, the source light guides 35 and 37 as well as the thin graphic light guide 40 are molded from a clear optical grade material, such as Polymethyl Methacrylate (PMMA), acrylic resin, polycarbonate epoxies, and glass.

In particular, to produce the thin graphic light guide 40, a mold with internal smooth areas and with internal textured area is provided. A clear optical grade material is then heated and is injected into the mold, wherein the mold shapes the material to form the thin graphic light guide 40. The internal smooth areas of the mold forms the smooth area 42 of the light guide 40 while the internal textured areas of the mold forms the textured area 44 of the light guide 40.

This method to produce the thin graphic light guide 40 has an advantage in that the thin graphic light guide 40 with its smooth area 42 and with its textured area 44 is produced in one step. This is unlike printing, wherein the light guide is produced in a first step and its textured area is produced in a second step.

In a general sense, the textured area 44 can also be produced by other methods, such as etching the surface of the graphic light guide 40 with a chemical, laser, and Electrical Discharge Machining (EDM).

The opaque carrier 19 is molded from an opaque plastic material, such as Polycarbonate (PC) or Acrylonitrile Butadiene Styrene (ABS).

The smoked glass 24 is molded from a tinted plastic material.
In use, the PCB 32 selectively energizes the first light guide LED 26, the second light guide LED 28, and the carrier LED 30.

When energized, the first light guide LED 26, the second light guide LED 28, and the carrier LED 30 emit light rays of the same red color.

Fig. 3 shows different possible paths of light rays at a boundary between two optical mediums. Fig. 3 depicts light rays 70, 72, and 74 from a light source in a first medium 76 being directed to a second medium 78. The first medium 76 can refer to air while the second medium 78 can refer to a plastic layer.

The light rays 70, 72, and 74 are directed to a boundary 80 between the two mediums 76 and 78. The angles at which the light rays 70, 72, and 74 are directed at the boundary 80 are called incident angles ϕ_1.

In detail, the light ray 72 travels from the light source to the boundary 80 and the light ray 72 reaches the boundary 80 with a first incident angle ϕ_1 that is equals to a critical incident angle ϕ_c. The light ray 72 then exits the first medium 76 and then travels along the boundary 80.

Referring to the light ray 70, it travels from the light source to the boundary 80 and the light ray 70 reaches the boundary 80 with a second incident angle ϕ_2, which is less than the critical incident angle ϕ_c. The light ray 70 then leaves the first medium 76 and enters the second medium 78. In other words, the light ray 70 refracts at the boundary 80 when its incident angle is less than the critical incident angle ϕ_c.
The angle at which the light ray 70 leave the boundary 80 is called a refraction angle φ_r.

The light ray 74 travels from the light source to the boundary 80 and the light ray 74 reaches the boundary 80 with a third incident angle φ_i that is more than the critical incident angle φ_c. The light ray 74 then leaves the boundary 80 and remains in the first medium 76. In other words, internal reflection of the light rays takes place. The light ray 74 reflects at the boundary 80 when its incident angle is more the critical incident angle φ_c.

Referring to the source light guides 35 and 37 and to the graphic light guide 40, they act guiding devices to couple effectively light rays from a light source into the guiding device with little optical loss. The guiding device then transmits these light rays to an exit surface of the guiding device, thereby allowing the light rays to leave through the exit surface with little optical loss.

Fig. 4 shows paths of light rays of the source light guide 35.

The first LED 26 is positioned such that most light rays emitted by the first LED 26 are directed at a smooth first-end 82 of the source light guide 35.

The smooth first-end 82 is oriented such that most light rays from the first LED 26 illuminates the first-end 82 at incident angles φ_i that are less than a first critical incident angle φ_c. This then causes these light rays to be refracted into the source light guide 35. In other words, most light rays that illuminate the first-end 82 also enter the source light guide 35.
The source light guide 35 allows most light rays to travel from the first-end 82 to a smooth second-end 84 of the source light guide 35 with little optical loss. The second-end 84 is placed opposite to the first-end 82 and is also placed next to the graphic light guide 40.

A portion 86 of these light rays from the first-end 82 travels directly to the second-end 84. Another portion 88 of these light rays from the first-end 82 travels to a longitudinal surface 90 of the source light guide 35 and is reflected towards the second-end 84. These light rays reaches the surface 90 at incident angles ϕ_1 that are more a second critical incident angle ϕ_c, thereby allowing the longitudinal surface 90 to reflect these light rays towards the second-end 84.

Most light rays from the first-end 82 illuminate the smooth second-end 84 at incident angles ϕ_1 that are less than a third critical incident angle ϕ_c. Most of these light rays are later refracted and enters the graphic light guide 40.

In a special embodiment, the longitudinal surface 90 is coated with a reflective layer for reflecting the light rays towards the second-end 84 of the source light guide 35 to reduce optical loss.

In like manner, the second LED 28 emits light rays, wherein most of the light rays are directed at a smooth first-end of the source light guide 37. The source light guide 37 allows most light rays to travel from the first-end to a smooth second-end of the source light guide 37 with little optical loss. The second-end is positioned opposite to the first-end and is
positioned next to the graphic light guide 40. Most light rays from the second-end also travel to the graphic light guide 40.

Fig. 5 shows the smooth area 42 of the graphic light guide 40 reflecting light rays 92 and 95 from the LED 26. These light rays 92 and 95 do not exit the graphic light guide 40 and remain in the graphic light guide 40.

The light rays 92 and 95 travel from the LED 26 to the source light guide 35 and to the graphic light guide 40. The LED 26, the source light guide 35 and the graphic light guide 40 are arranged such that these light rays 92 and 95 reaches the smooth area 42 at incident angles φ_i that are more than a particular critical incident angle φ_c. The smooth area 42 afterwards reflects these light rays 92 and 95.

No light rays or only some light rays from the graphic light guide 40 travel to the central hollow portion 66 or to the smoked glass 24. In short, none or some light rays from the LED 26 irradiate the smoked glass 24.

Fig. 6 shows the textured surface 44 of the graphic light guide 40 reflecting and scattering a light ray 99 that originates from the LED 26. These scattered light rays 99 then exit the graphic light guide 40.

The light ray 99 travels from the LED 26 to the source light guide 35 to enter into the graphic light guide 40. The light ray 99 later travels to the textured area 44, wherein the textured area 44 reflects the light ray 99.

The uneven surface of the textured area 44 then reflects and scatters the light ray 99 in different directions towards the central hollow portion 66 of the capacitive touch sensor 21.
The scattered light rays 99 then exit the graphic light guide 40 with the shape of the letter “E”, which is the shape of the textured area 44.

Fig. 7 shows the smooth area 42 of the graphic light guide 40 refracting a light ray 106 from the carrier LED 30. The light ray 106 then exits the graphic light guide 40.

A portion of the light shield 61 from the LED 30 to the light shield 61, wherein the light shield 61 blocks the light ray 106 from travelling through the light shield 61. In contrast, another portion of the light-ray 106 travels from the LED 30 to the cutout 59 and passes through the cutout 59 with shape of the cutout 59, which is the shape of the letter “V”.

The light ray 106, which passes through the cutout 59, later hits the smooth area 42 of the graphic light guide 40. The LED 30, the cutout 59 and the graphic light guide 40 are arranged such that the light ray 106 reaches the smooth area 42 at incident angles φ; that are less than a particular critical incident angle φ_c. The smooth area 42 afterwards refracts the light ray 106 into the graphic light guide 40. The refracted light ray 106 then exits the graphic light guide 40 towards the hollow portion 66 of the capacitive touch sensor 21.

Fig. 8 shows the textured surface 44 of the graphic light guide 40 refracting light rays 107 from the LED 30 in different directions.

The light ray 107 travels from the LED 30 to the cutout 59 and to the graphic light guide 40. The light ray 107 travelling pass the cutout 59 has the shape of the letter “V”, which is the shape of the cutout 59.
After this, the light ray 107 hits the textured area 44. The uneven surface of the textured area 44 then refracts and scatters the light ray 107 in different directions. The different directions of the refracted light rays 107 provide a high probability that some, if not most, of the refracted light rays 107 would later exit the graphic light guide 40 towards the hollow portion 66 of the capacitive touch sensor 21.

Referring to the capacitive touch sensor 21, it is used for detecting a touch from a user via the smoked glass 24, when the user touches the smoked glass 24 to indicate a selection of the user to a computer controller. The capacitive touch sensor 21 then generates a signal for sending to the computer controller to indicate to the selection.

Referring to the smoked glass 24, a portion of the light rays from the graphic light guide 40, which hits the smoked glass 24, transmits through the smoked glass 24 for viewing by a user of the touch input front panel 10. In this case, the smoked glass 24 allows about 30% of light rays to pass through. The smoked glass 24 also scatters the transmitted light rays to provide a wide radiation of the transmitted light rays.

In a general sense, the LED 26, 28, and 30 can each emit light rays of the same color or of different colors. Each LED 26, 28, and 30 can be replaced by two or more light sources, which can be an LED light source. The LED 26 and 28 can be epoxied respectively onto the light guide 35 and 37 for reducing optical loss.

The texture area 44 can be provided by a light ray diffusion film with an uneven surface, wherein the diffusion film is pasted or is attached to a surface of the graphic light guide 40.
The cutout 59 can have different shapes beside the letter "\text{V}". The letter "\text{V}" is a form of a graphic pattern. Similarly, the textured area 44 can have different shapes, instead of the letter "\text{E}". The letter "\text{E}" is also a form of a graphic pattern.

A method of using the touch input front panel 10 is described below. The method provides a non-display mode, a first display mode, a second display mode and an error display mode.

In the non-display mode, the LED 26, 28, and 30 are not energized and do not emit any light rays. This causes the smoked glass 24 to provide a dark display.

Fig. 9 shows the first display mode of the touch input front panel 10 to show a first graphic pattern, namely the letter "\text{V}".

In the first display mode, the carrier LED 30 is energized and it emits light rays 101, 102, and 103 while the LEDs 26 and 28 are not energized.

The opaque carrier 19 blocks the emitted light rays 101 and 102 such that only the light ray 103 that travel through the cutout 59 exits the carrier 19. The light ray 103 then has the shape of the letter "\text{V}" which is the shape of the cutout 59.

The light ray 103 then travels to the graphic light guide 40. A portion of the light ray 103 reaches the smooth area 40 while another portion of the light ray 103 reaches the textured area 44 of the graphic light guide 40.
The portion of the transmitted light rays 103 that reaches the smooth area 40 is refracted into the graphic light guide 40. Most of the refracted light ray 103 then travel to exit the graphic light guide 40 for travelling towards the central hollow portion 66 to reach the smoked glass 24.

Similarly, the portion of the transmitted light rays 103 that reaches the textured area 44 is also refracted in different directions into the graphic light guide 40. Most of the refracted light rays 103 then travel to exit the graphic light guide 40 for travelling towards the central hollow portion 66 to reach the smoked glass 24.

These light rays 103 then reach the smoked glass 24 to illuminate the smoked glass 24 with the letter "V". A portion of the light rays 103 then transmits through the smoked glass 24 to display the letter "V" to a user, as illustrated in Fig. 10.

Fig. 11 shows the second display mode of the touch input front panel 10 to show a second graphic pattern, namely the letter "E".

In the second display mode, the carrier LED 30 is not energized while the LEDs 26 and 28 are energized.

The LEDs 26 and 28 then emit light rays 92 and 99, wherein most of the light rays 92 and 99 are transmitted to the source light guides 35 and 37.

The source light guides 35 and 37 afterward direct these light rays 92 and 99 to the graphic light guide 40 with little optical loss.
After this, the smooth area 42 of the graphic light guide 40 reflects the light ray 99, which hits the smooth area 42, such that most of the light ray 99 do not exit the graphic light guide 40. In other words, the smooth area 42 allows total internal reflection of the light ray 99.

In contrast, the textured area 44 of the graphic light guide 40 reflects the light ray 92, which hits the textured area 44, in different directions such that the entire reflected light ray 92 or a portion of the reflected light ray 92 exits the graphic light guide 40. The exiting light rays 92 have a shape of the letter “E”, which is the shape of the textured area 44. These light rays 92 later reach the smoked glass 24 to illuminate the smoked glass 24 with the shape of the letter “E”. A portion of the light rays 103 then transmits through the smoked glass 24 to display the letter “E” to a user, as illustrated in Fig. 12.

In the error display mode, all LEDs 26, 28, and 30 are energized at the same time such that they simultaneous emit light rays. This causes the smoked glass 24 to both display the letter “E” and the letter “V”, which overlaps the letter “V”.

Figs. 13 and 14 show a faceplate of a vehicle displaying dual graphic patterns.

Fig. 13 shows a first display 100 of a faceplate 108 with multiple touch input front panels 10a-10f. A user had pushed a button for showing audio functions. The faceplate 108 then show the first display 100, wherein a bottom part of the display 100 shows the front panels 10a-10f displaying several graphic patterns for the audio functions.
Fig. 14 shows a second display 105 of the faceplate 108. A user had pushed a button for showing climate control functions. The same faceplate 108 then show the second display 105, wherein a bottom part of the display 105 shows the front panels 10a-10f displaying multiple graphic patterns for the climate control.

Fig. 15 shows another touch input front panel 10′ for a faceplate or a center stack of a vehicle.

The touch input front panel 10′ and the touch input front panel 10 have similar parts. The touch input front panel 10′ includes a light source module 13′ and a light guide module 16′. The light source module 13 includes a first light guide LED 26′ and a second light guide LED 28′. The light guide module 16 has a thin graphic light guide 40′, wherein the LED 26′ and 28′ are placed next to end portions of the light guide 40′.

Fig. 16 shows a push button 110 for a faceplate or a center stack of a vehicle.

The push button 110 comprises a light source module 13, a light guide module 16, a button reflector 115, an opaque carrier 117, and a panel button cap 119.

The light source module 13 is placed next to the light guide module 16 and next to the carrier 117. The button reflector 115 is inserted in the carrier 117. A part of the light guide module 16 is inserted in the button reflector 115. The panel button cap 119 is placed near to the button reflector 115.

In particular, the light source module 13 includes a first light guide LED 26, a second light guide LED 28, and a carrier LED 30, which are mounted on a printed circuit board (PCB) 32.
The light guide module 16 has two source light guides 35 and 37 as well as a thin graphic light guide 40. The light guide 40 has a textured area 44 with a shape of the letter “E” and a smooth area 42.

The button reflector 115 includes a casing 122. The casing 122 has a flat outer surface 125, wherein two slots 130 and 132 and a hollow cutout 135 are placed on the outer surface 125. The source light guides 35 and 37 are inserted in the respective slots 130 and 132. The hollow cutout 135 has a shape of the letter “V” and is placed next to the textured area 44 of the graphic light guide 40.

The panel button cap 119 covers the graphic light guide 40.

In use, a user selectively pushes the panel button cap 119 to indicate a user selection. The pushed panel button cap 119 also pushes the button reflector 115 to generate an actuation signal for sending to a computer controller to indicate reception of a button actuation from the user.

The panel button cap 119 also acts a smoked glass or a smoked lens for illuminating by light rays from the graphic light guide 40 and light rays from the cutout 59. The panel button cap 119 allows a portion of these light rays to transmit for viewing by a user of the panel button cap 119.

A method of using the push button 110 is provided below. The method provides a non-display mode, a first display mode, and a second display mode.
In the non-display mode, the LED 26, 28, and 30 are not energized and do not emit any light rays. This causes the smoked glass 24 to provide a dark display.

In the first display mode, the carrier LED 30 is energized and it emits light rays while the LEDs 26 and 28 are not energized. The carrier 117 blocks the emitted light rays such that only light rays that travel through the cutout 135 exits the carrier 117. These light rays have the shape of the letter “V”. These light rays then travel to the graphic light guide 40 and to the panel button cap 119 to display the letter “V”.

In the second display mode, the carrier LED 30 is not energized while the LEDs 26 and 28 are energized. The LED 26 then emits light rays. Most of the light rays are transmitted to the source light guide. Similarly, the LED 28 emits light, wherein most of the light rays are transmitted to the source light guide 37. The source light guides 35 and 37 direct these light rays to the graphic light guide 40 with little optical loss. These light rays later reach the panel button cap 119 to display the letter “E” to a user of the push button 110.

Fig. 17 shows a further touch input front panel 10′′, which is a variant of the touch input front panel 10. The touch input front panel 10′′ includes a graphic light guide 40 with a major surface that includes a smooth area 42 and a textured area 44. The textured area 44 and the smooth area 42 are placed on the side of the graphic light guide 40 that is facing a central hollow portion 66 of a capacitive touch sensor 21.

The embodiments can also be described with the following lists of features or elements being organized into items. The respective combinations of features, which are disclosed in the item list, are regarded as independent subject matter, respec-
tively, that can also be combined with other features of the application.

1. A dual graphic label for an input element of a control device for selectively displaying a first graphic information and a second graphic information, the dual graphic label comprising
 a first light source for emitting a first light ray,
 a second light source for emitting a second light ray,
 an optical masking shield comprising a light blocking surface with a light permeable area in a shape of the first graphic information,
 a light conducting body comprising a surface with a light diffusion area in a shape of the second graphic information, and
 a display face,
wherein the optical masking shield is provided between the first light source and the light conducting body, and the light conducting body is provided between the display face and the optical masking shield,
wherein the first light ray travels from the first light source to the light permeable area of the optical masking shield, to the light conducting body, and to the display face for illuminating the display face with the shape of the first graphic information, and
wherein the second light ray travels from the second light source to the light conducting body, through the light diffusion area, and to the display face for illuminating the display face with the shape of the second graphic information.

2. The dual graphic label according to item 1, wherein
the surface of the light conducting body comprises a smooth area that surrounds the light diffusion area.

3. The dual graphic label according to item 1 or 2, wherein a first portion of the display face for illuminating by the first light ray with the shape of the first graphic information overlaps a second portion of the display face for illuminating by the second light ray with the shape of the second graphic information.

4. The dual graphic label according to one of the above-mentioned items, wherein the color of the first light ray and the color of the second light ray are the same.

5. The dual graphic label according to one of items 1 to 3, wherein the color of the first light ray and the color of the second light ray are different.

6. The dual graphic label according to one of above-mentioned items, wherein the light diffusion area faces the light permeable area.

7. The dual graphic label according to one of the above-mentioned items further comprising a controller for selectively energizing the first light source and selectively energizing the second light source.

8. The dual graphic label according to one of the above-mentioned items further comprising a light guiding unit being provided between the second light source and the light conducting body for guiding a
light ray from the second light source to the light conducting body.

9. The dual graphic label according to one of the above-mentioned items, wherein
the light diffusion area comprises an etched area.

10. The dual graphic label according to one of items 1 to 8, wherein
the light diffusion area comprises a light diffusion sheet.

11. The dual graphic label according to one of the above-mentioned items, wherein
the display face is provided by a smoked optical element, such as a smoked sheet or a smoked lens.

12. The dual graphic label according to one of the above-mentioned items, wherein
the display face comprises light ray scattering elements.

13. An input element of a control device comprising
 a dual graphic label according to one of the above-mentioned items and
 an input element for receiving a user input.

14. The input element according to item 13, wherein
 the input element comprises a mechanical button for
 providing inside the dual graphic label for receiving an
 actuation by a user when the display face is pushed.

15. The input element according to item 13 further comprising
the input element comprises a capacitive touch sensor for providing inside the dual graphic label for detecting an actuation by a user when the display face is pushed.

16. A faceplate for a vehicle, the faceplate comprising at least one input element according to one of the above-mentioned items, wherein the input element comprises a dual graphic label for selectively displaying a first graphic information and a second graphic information of the vehicle and comprises an input unit for receiving a user input.

17. A vehicle comprising at least two components, and a faceplate according to item 16 being provided inside the vehicle, the faceplate comprises at least one input element, wherein each input element is provided for selectively displaying a first graphic information of one component of the vehicle and a second graphic information of another component of the vehicle, and is provided for receiving a user input regarding the component.

Although the above description contains much specificity, this should not be construed as limiting the scope of the embodiments but merely providing illustration of the foreseeable embodiments. The above stated advantages of the embodiments should not be construed especially as limiting the scope of the embodiments but merely to explain possible achievements if the described embodiments are put into practice. Thus, the scope of the embodiments should be determined by the claims and their equivalents, rather than by the examples given.
REFERENCE LIST

10	touch input front panel
13	light source module
16	light guide module
19	carrier
21	capacitive touch sensor
24	smoked glass
26	first light guide LED
28	second light guide LED
30	carrier LED
32	printed circuit board
35	source light guide
37	source light guide
40	graphic light guide
42	smooth area
44	textured area
50	casing
52	outer surface
54	slot
56	slot
59	cutout
61	light shield
66	central hollow portion
70	light ray
72	light ray
74	light ray
76	first medium
78	second medium
80	boundary
82	first-end
84	second-end
86	portion
88	portion
90	longitudinal surface
light ray
light ray
light ray
light ray

5
display
display

10
light ray
light ray
faceplate
push button
button reflector

15
opaque carrier
panel button cap
casing
outer surface

20
slot

25
cutout
touch input front panel
touch input front panel
touch input front panel
light source module
light guide module
first light guide LED
second light guide LED

30
graphic light guide

φc critical incident angle
φi incident angle
φr refraction angle
CLAIMS

1. A dual graphic label for an input element of a control device for selectively displaying a first graphic information and a second graphic information, the dual graphic label comprising
 a first light source for emitting a first light ray,
 a second light source for emitting a second light ray,
 an optical masking shield comprising a light blocking surface with a light permeable area in a shape of the first graphic information,
 a light conducting body comprising a surface with a light diffusion area in a shape of the second graphic information, and
 a display face, wherein the optical masking shield is provided between the first light source and the light conducting body, and the light conducting body is provided between the display face and the optical masking shield,
 wherein the first light ray travels from the first light source to the light permeable area of the optical masking shield, to the light conducting body, and to the display face for illuminating the display face with the shape of the first graphic information, and
 wherein the second light ray travels from the second light source to the light conducting body, through the light diffusion area, and to the display face for illuminating the display face with the shape of the second graphic information.

2. The dual graphic label according to claim 1, wherein the surface of the light conducting body comprises a smooth area that surrounds the light diffusion area.
3. The dual graphic label according to claim 1, wherein a first portion of the display face for illuminating by the first light ray with the shape of the first graphic information overlaps a second portion of the display face for illuminating by the second light ray with the shape of the second graphic information.

4. The dual graphic label according to claim 1, wherein the color of the first light ray and the color of the second light ray are the same.

5. The dual graphic label according to claim 1, wherein the color of the first light ray and the color of the second light ray are different.

6. The dual graphic label according to claim 1, wherein the light diffusion area faces the light permeable area.

7. The dual graphic label according to claim 1 further comprising a controller for selectively energizing the first light source and selectively energizing the second light source.

8. The dual graphic label according to claim 1 further comprising a light guiding unit being provided between the second light source and the light conducting body for guiding a light ray from the second light source to the light conducting body.

9. The dual graphic label according to claim 1, wherein the light diffusion area comprises an etched area.
10. The dual graphic label according to claim 1, wherein the light diffusion area comprises a light diffusion sheet.

11. The dual graphic label according to claim 1, wherein the display face is provided by a smoked optical element, such as a smoked sheet or a smoked lens.

12. The dual graphic label according to claim 1, wherein the display face comprises light ray scattering elements.

13. An input element of a control device comprising a dual graphic label according to claim 1 and an input element for receiving a user input.

14. The input element according to claim 13, wherein the input element comprises a mechanical button for providing inside the dual graphic label for receiving an actuation by a user when the display face is pushed.

15. The input element according to claim 13 further comprising the input element comprises a capacitive touch sensor for providing inside the dual graphic label for detecting an actuation by a user when the display face is pushed.

16. A faceplate for a vehicle, the faceplate comprising at least one input element according to claim 1, wherein the input element comprises a dual graphic label for selectively displaying a first graphic information and a second graphic information of the vehicle and comprises an input unit for receiving a user input.
17. A vehicle comprising
 at least two components, and
 a faceplate according to claim 16 being provided inside the vehicle, the faceplate comprises at least one
 input element,
 wherein each input element is provided for selectively displaying a first graphic information of one component
 of the vehicle and a second graphic information of another component of the vehicle, and is provided for receiving a user input regarding the component.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
G06F 3/00(2006.01), G06F 3/14(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
G06F 3/00; G06F 3/14; B04K 35/00; G03F 5/00; B60R 11/02; B60R 16/033; B60R 16/02; G06F 3/01; G06F 3/041

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: dual, graphic, label, input, optical masking, light conducting

C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category
g | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2007-106392 A (DENS0 CORP.) 26 April 2007 See paragraphs [0071]-[0072], [0076], claim 1, and figures 8, 16.</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>EP 2544072 A2 (ALPINE ELECTRONICS, INC.) 08 March 2012 See abstract, claim 1, and figures 6A-6D.</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0029185 A1 (TAKASHI AOKI et al.) 03 February 2011 See abstract, paragraphs [0141]-[0151], and figures 9-14.</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>JP 2010-064670 A (TOKAI RHA CO., LTD.) 25 March 2010 See abstract, paragraphs [0018]-[0028], and figures 4-5.</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>US 2013-0135237 A1 (HAI-LONG LI et al.) 30 May 2013 See paragraph [0029], claim 1, and figure 6.</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
A document defining the general state of the art which is not considered to be of particular relevance
E earlier application or patent but published on or after the international filing date
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O document referring to an oral disclosure, use, exhibition or other means
P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search
22 July 2014 (22.07.2014)

Date of mailing of the international search report
24 July 2014 (24.07.2014)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
199 Cheonggye-ro, Seo-gu, Daegu Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer
JANG, Ho Keun
Telephone No. +82-42-481-8187

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN 1932744 A</td>
<td>21/03/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1932744 C</td>
<td>21/03/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102006042701 A1</td>
<td>29/03/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04830550 B2</td>
<td>14/12/2011</td>
</tr>
<tr>
<td>EP 2544072 A2</td>
<td>09/01/2013</td>
<td>JP 2013-020334 A</td>
<td>31/01/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013-0009759 A1</td>
<td>10/01/2013</td>
</tr>
<tr>
<td>US 2011-0029185 A1</td>
<td>03/02/2011</td>
<td>CN 101977796 A</td>
<td>16/02/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101977796 B</td>
<td>08/05/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103076949 A</td>
<td>01/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2258587 A1</td>
<td>08/12/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2258587 A4</td>
<td>07/08/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2700528 A2</td>
<td>26/02/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05077773 B2</td>
<td>21/11/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05077774 B2</td>
<td>21/11/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05257779 B2</td>
<td>07/08/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009-255903 A</td>
<td>05/11/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009-255904 A</td>
<td>05/11/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010-140458 A</td>
<td>24/06/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1267378 B1</td>
<td>24/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1297144 B1</td>
<td>21/08/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2010-0120705 A</td>
<td>16/11/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2012-0132561 A</td>
<td>05/12/2012</td>
</tr>
<tr>
<td>JP 2010-064670 A</td>
<td>25/03/2010</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US 2013-0135237 A1</td>
<td>30/05/2013</td>
<td>CN 103135678 A</td>
<td>05/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201329719 A</td>
<td>16/07/2013</td>
</tr>
</tbody>
</table>