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(57) Abstract: The systems and methods described herein may be used to
implement scalable statistics counters suitable for use in systems that em-
ploy a NUMA style memory architecture. The counters may be implemen -
ted as data structures that include a count value portion and a node identi-
fier portion. The counters may be accessible within transactions. The node
identifier portion may identify a node on which a thread that most re-
cently incremented the counter was executing or one on which a thread
that has requested priority to increment the shared counter was executing.
Threads executing on identified nodes may have higher priority to incre-
ment the counter than other threads. Threads executing on other nodes
may delay their attempts to increment the counter, thus encouraging con-
secutive updates from threads on a single node. Impatient threads may at-
tempt to update the node identifier portion or may update an anti-starva-
tion variable to indicate a request for priority.
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SYSTEM AND METHOD FOR IMPLEMENTING NUMA-AWARE

STATISTICS COUNTERS

BACKGROUND

Field of the Disclosure

[0001] This disclosure relates to shared statistics counters, and more specifically to
techniques for improving the performance of applications that include accesses to shared

statistics counters.

Description of the Related Art

[0002] Current trends in multicore architecture design imply that in coming years, there will
be an accelerated shift away from simple bus-based designs towards distributed non-uniform
memory-access (NUMA) and cache-coherent NUMA (CC-NUMA) architectures. Under
NUMA, the memory access time for any given access depends on the location of the accessed
memory relative to the processor. Such architectures typically consist of collections of
computing cores with fast local memory (e.g., memory that is closely coupled to the processor
and/or that is located on the same single multicore chip), communicating with each other via a
slower (inter-chip) communication medium. In such systems, the processor can typically access
its own local memory, such as its own cache memory, faster than non-local memory. In some
systems, the non-local memory may include one or more banks of memory shared between
processors and/or memory that is local to another processor. Some systems, including many
NUMA systems, provide a non-uniform communication architecture (NUCA) property, in which
the access time to caches of other processor cores varies with their physical distance from the
requesting core. In these systems, access by a core to its local memory, and in particular to a
shared local cache, can be several (or many) times faster than access to a remote memory (e.g., a
cache located on another chip).

[0003] Most large software systems use statistics counters for performance monitoring and
diagnostics. For example, statistics counters are of practical importance for purposes such as
detecting excessively high rates of various system events, or for mechanisms that adapt based on
event frequency. While single-threaded statistics counters are trivial, commonly-used naive
concurrent implementations quickly become problematic, especially as thread counts grow. For
example, as systems grow and as statistics counters are used in increasingly Non-Uniform
Memory Access (NUMA) systems, commonly used naive counters impose scalability

bottlenecks and/or such inaccuracy that they are not useful. In particular, these counters (when
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shared between threads) can incur invalidation traffic on every modification of the counter,

which is especially costly on NUMA machines.

[0004] The ability to execute transactions in parallel is a key to scalable performance.
However, the use of shared counters for collecting statistics (e.g., statistics on how often a piece
of code is executed, how many eclements are in a hash table, etc.) can negatively impact
transactional success rates when accesses to the counters occur within transactions (since any two
updates to a shared counter by different transactions or threads will potentially conflict with each
other). Some previous approaches to solving this problem involve moving the operations that
update the counter outside of the transactions, thereby changing the semantics of the program, or
implementing complicated and expensive support for "transactional boosting", which is not
applicable in all contexts.

[0005] For these and other reasons, application designers face difficult tradeoffs involving
the latency imposed on lightly contended counters, the scalability and (in some cases) accuracy

of heavily contended counters, and various probe effects.

SUMMARY
[0006] The systems and methods described herein may in various embodiments be used to
implement scalable statistics counters. In some embodiments, the use of these counters, rather
than standard counters, may improve performance for applications executing in systems that
employ a NUMA style memory architecture and/or that exhibit NUCA properties. As used
herein, the terms “NUMA” and “NUMA style memory architecture” may be used in reference to
any systems that exhibit NUMA and/or NUCA properties. In some embodiments, the counters
may be implemented as data structures that include a count value portion and a node identifier
portion. The node identifier portion may identify a node on which a thread that most recently
incremented the counter was executing or one on which a thread that has requested priority to
increment the shared counter was executing. Threads executing on a node identified by the node
identifier portion of the counter data structure may have higher priority to increment the counter
than other threads. In some embodiments, threads executing on nodes other than the one
identified by the node identifier portion of the counter data structure may delay their attempts to
increment the counter before retrying them. This may encourage consecutive updates from
threads on a single node, thus reducing cache misses and improving overall performance. In
some embodiments, impatient threads may attempt to update the node identifier portion of the
data structure, or may update a separate anti-starvation variable (e.g., by writing an identifier of
the node on which they are executing) to indicate a request for priority to increment the shared

counter.
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[0007] In some embodiments, the systems and methods described herein may implement

probabilistic counters. As described in more detail herein, in various embodiments, these
probabilistic counters may directly store update probability values or may store other types of
probabilistic counter values (e.g., they may store one or more values that represent an update
probability and/or a projected counter value or from which an update probability and/or a
projected counter value may be computed). In some embodiments, the implementations of the
counters and/or their update mechanisms may be dependent on the value of a configurable
accuracy parameter. In such embodiments, the configurable accuracy parameter value may be
adjusted to provide fine-grained control over the tradeoff between the accuracy of the counters
and the performance of the applications that access them. For example, the counters may be
implemented as data structures that include a mantissa portion and an exponent portion that
collectively represent an update probability value. As described in more detail herein, when
updating the counters, the value of the configurable accuracy parameter may affect whether,
when, how often, and/or by what amount the mantissa portion and/or the exponent portion are
updated. In another example, updating a probabilistic counter may include multiplying its value
by a constant that is dependent on the value of a configurable accuracy parameter.

[0008] In some embodiments, the systems and methods described herein may implement
scalable statistics counters that are adaptive to the amount of contention for the counters by
multiple threads of an application. For example, methods for determining whether to increment
the counters in response to initiation of an increment operation and/or methods for updating the
counters may be selected from among multiple available methods dependent on current, recent,
or historical amounts of contention. In some embodiments, the counters may be accessible from
within atomic transactions. In various embodiments, different contention management policies
and/or retry conditions may be applied to select between multiple methods. For example, in
some embodiments, the method for determining whether or how to update a shared counter may
be changed dynamically (i.e., during execution) in response to an increase or decrease in
contention for the counter (e.g., after a pre-determined maximum number of failed attempts to
increment or update the counter using initial or default methods). In some embodiments, a
shared counter may include a precise counter portion that is incremented under low contention
and a probabilistic counter portion that is updated under high contention. In some embodiments,
the amount by which a probabilistic counter is incremented may be contention-dependent. In
other embodiments, a counter may include a node identifier portion that encourages consecutive
increments by threads on a single node only when the counter is under contention. In still other
embodiments, a relatively simple counter data structure may be inflated in response to contention

for the counter, as described in more detail below.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a flow diagram illustrating one embodiment of a method for implementing a
NUMA-aware shared counter, as described herein.

[0010] FIG. 2 is a block diagram illustrating a portion of a computer system that implements
a NUMA style memory architecture.

[0011] FIGs. 3A — 3F are block diagrams illustrating examples of various counter structures
described herein.

[0012] FIG. 4 is a flow diagram illustrating a method for incrementing a NUMA-aware
shared counter, according to one embodiment.

[0013] FIG. 5 is a flow diagram illustrating a method for incrementing a NUMA-aware
shared counter that is dependent on contention for the shared counter, according to one
embodiment.

[0014] FIG. 6 is a flow diagram illustrating a method for inflating a shared counter in
response to contention, according to one embodiment.

[0015] FIG. 7 is a flow diagram illustrating a method for incrementing a probabilistic counter
that stores a floating point value, according to one embodiment.

[0016] FIG. 8 is a flow diagram illustrating a method for incrementing a hybrid counter
dependent on contention for the counter, according to one embodiment.

[0017] FIG. 9 is a flow diagram illustrating a method for incrementing a probabilistic counter
that stores a binary floating point value, according to one embodiment.

[0018] FIG. 10 is a flow diagram illustrating a method for incrementing a probabilistic
counter that includes multiple update options, according to one embodiment.

[0019] FIG. 11 is a flow diagram illustrating a method for incrementing a probabilistic
counter dependent on a configurable accuracy parameter, according to one embodiment.

[0020] FIG. 12 is a flow diagram illustrating a method for incrementing a probabilistic
counter that stores a floating point value dependent on contention for the shared counter,
according to one embodiment.

[0021] FIG. 13 is a flow diagram illustrating a method for determining whether to increment
a shared counter and for incrementing the shared counter dependent on contention for the shared
counter, according to one embodiment.

[0022] FIG. 14 is a block diagram illustrating one embodiment of a computing system
configured to implement one or more of the shared counters described herein.

[0023] While the disclosure is described herein by way of example for several embodiments

and illustrative drawings, those skilled in the art will recognize that the disclosure is not limited
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to embodiments or drawings described. It should be understood that the drawings and detailed

description hereto are not intended to limit the disclosure to the particular form disclosed, but on
the contrary, the disclosure is to cover all modifications, equivalents and alternatives falling
within the spirit and scope as defined by the appended claims. Any headings used herein are for
organizational purposes only and are not meant to limit the scope of the description or the claims.
As used herein, the word “may” is used in a permissive sense (i.c., meaning having the potential
to) rather than the mandatory sense (i.c. meaning must). Similarly, the words “include”,

“including”, and “includes” mean including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

[0024] As noted above, the use of statistics counters is very common in most large software
systems. Accesses to shared statistics counters can be a source of contention between concurrent
threads of a multithreaded application, including those that execute in systems that support
hardware and/or software transactional memory. Multicore machines are growing in size, and
accordingly shifting from simple bus-based designs to NUMA and CC-NUMA style memory
architectures. With this shift, there is an increased need for scalable statistics counters. The
system and methods described herein may in some embodiments be used to implement scalable
statistics counters. In different embodiments, the scalable statistics counters described herein
achieve this scalability by splitting a counter into multiple components, thereby reducing
contention on each component, or by employing techniques by which the counter is updated less
frequently. Both classes of techniques may significantly reduce conflicts between concurrently
executing atomic transactions that use them, thus improving their chances of success and helping
to achieve scalable performance.

[0025] In different embodiments, the techniques described herein may be used to implement
precise and/or probabilistic (statistical) counters that are non-blocking and that provide
dramatically better scalability and accuracy properties when compared to commonly used naive
counters. Although probabilistic counters may not provide an exact count, they may have
statistical properties such that, with high probability, they do not deviate from the precise count
by “too much”, e.g., according to a configurable accuracy parameter. In some embodiments, the
counters described herein may be competitive with the naive counters even when contention is
low. In general, the statistics counters described herein may be suitable for applications in which
they are used to count events that are likely to occur with high frequency, while the value of the
counter may be read infrequently, as is common for performance monitoring and diagnostics.

While many of the counters described herein are assumed to be incremented only by one and



10

15

20

25

30

WO 2014/100395 PCT/US2013/076509
never decremented, the techniques described herein may in other embodiments be generalized to

weaken and/or avoid these assumptions.

[0026] In some embodiments, the techniques described herein may encourage multiple
consecutive increments of a contended statistics counter on one node of a NUMA system before
counter updates occur on another. Avoiding cross-node communication between these
consecutive updates may in some embodiments dramatically reduce expensive communication
traffic between NUMA nodes, thus improving throughput and scalability. In some embodiments,
these techniques may provide accurate statistics counters that scale better than commonly used
naive approaches, while adding little or no space overhead.

[0027] In general, simply incrementing a shared counter without synchronization does not
work well in multithreaded applications, because an update by one thread may be overwritten by
an update by another thread, thereby losing the effects of one or more increments on the counter.
In some cases, such counters can be made thread-safe by protecting them with a lock. However,
in most modern shared memory multiprocessors, it may be better to increment the counter using
an atomic instruction such as compare-and-swap (CAS) type instruction. If a CAS type
instruction is used to increment the counter, it will indicate success only if the counter holds the
value the incrementing thread expected to see prior to incrementing it and the operation succeeds
in updating the counter value. Otherwise, the increment operation may be retried, perhaps after
some back-off period. This solution is simple, correct, and non-blocking, but it does not scale to
larger and increasingly NUMA systems. Using a single-threaded increment operation (e.g., using
separate load and store instructions to update the counter) to eliminate the overhead of a CAS
type instruction and reduce the latency (e.g., when knowing the precise value of the counter is
not required) does not avoid the dominant cost of resolving the remote cache misses that are
likely to occur when a variable is modified by many threads in a NUMA system. In addition, this
approach does not merely result in the occasional loss of updates when under contention, but has
been shown to result in the loss of the vast majority of updates when shared by a large number of
threads (e.g., 32 or more). Ironically, this problem becomes worse as contention increases, which
is often the scenario the counters are intended to detect.

[0028] One approach to making counters scalable is to split them into per-thread
components, with ecach thread incrementing its own component without synchronization.
However, this approach may have several disadvantages. For example, if the counter is used by
a dynamic set of threads, threads may need to be registered and deregistered, and there may need
to be a way to iterate over the threads’ components in order to read the counter. In addition, this

approach may increase space requirements by a factor of the number of threads that use the
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counter. In various embodiments, the techniques described herein may mitigate these

disadvantages to varying degrees.

[0029] In situations in which additional space overhead is undesirable or unacceptable, and
counters must be precise, a randomized back-off (RBO) technique may be used to at least avoid a
complete catastrophe under heavy contention. In some embodiments, NUMA lock algorithms or
cohort locks (which may significantly improve performance and scalability under contention by
handing off a lock multiple times within a given NUMA node before it is acquired on another
node) may improve contention management for counters that employ RBO. For example, when
a thread fails an attempt to increment the counter using a CAS type instruction (e.g., when
contention arises), it may retry its attempt to increment the counter only after acquiring a cohort
lock, thereby encouraging multiple updates on one NUMA node before an update on another
node. This technique has been shown to be effective in improving performance over RBO.
However, because of the space overhead of the cohort lock, this technique may provide little or
no advantage over other approaches described herein.

[0030] In some embodiments, an approach that is similar to the above-mentioned NUMA
locks, but that does not add significant space overhead, may use a few bits of the counter’s value
to identify which node of the nodes in a NUMA style memory architecture currently has priority.
In such embodiments, as the counter is incremented, the values of these bits may (as part of
normal operation) change from time to time, giving another node priority to update the counter.
In other words, after some number of increment operations (depending on the position of the bits
that indicate the priority node), the change in the value of these bits as a result of those increment
operations may cause another node to become the priority node. In such embodiments, threads
on other nodes may delay their updates, making it more likely that threads on the priority node
can perform consecutive updates. Note that, in general, the bits used to identify the priority node
may not include the lowest-order bits (i.c., those that change most frequently), but may be chosen
so that the priority changes often enough to avoid unreasonable delays. This approach is simple,
adds no space overhead, and has been shown to perform well when increment operations are
spread relatively evenly across all nodes. However, it may not be as well suited to less uniform
workloads.

[0031] One embodiment of a method for implementing a NUMA-aware shared counter (e.g.,
a NUMA-aware RBO type counter or another type of NUMA-aware counter) is illustrated by the
flow diagram in FIG. 1. As illustrated at 110, in this example, the method may include a thread
that is executing on a given node of a system that implements a NUMA style memory
architecture initiating an increment of a shared counter. The method may also include the thread

determining whether the threads executing on another node in the system currently have priority
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to update the counter or have requested priority to update the counter (as in 120). For example,

in some embodiments, a few bits of the counter may be used to identify the node on which the
thread that most recently updated the counter executed (thus, designating that node as a priority
node), or a few bits of the counter may identify a node currently designated as a priority node
based on other criteria. In some embodiments, another method may be used to designate whether
a thread currently has priority to update the counter (or has requested such priority), and this
method may include the use of an anti-starvation variable (as described in more detail herein).
[0032] As illustrated in this example, the method may include the thread attempting to
increment the shared counter or delaying its attempt to increment the counter, dependent, at least
in part, on the determination (i.c., dependent on whether the threads executing on another node in
the system currently have priority to update the counter or have requested priority to update the
counter), as in 130. For example, in some embodiments, if the thread determines (e.g., based on
the values of a few designated bits in the counter or another priority node indicator) that threads
executing on another node have (or have requested) priority to update the counter, the thread may
delay its attempt to increment the counter, and may subsequently retry its attempt to increment
the counter one or more times, e.g., until the attempt is successful or until a predetermined retry
limit has been reached (e.g., according to various contention management policies). If the thread
determines (e.g., based on the values of a few designated bits in the counter or another priority
node indicator) that no priority has been set (or requested), or that the node on which the thread is
executing currently has (or has requested) priority to update the counter, the thread may proceed
with one or more attempts to increment the counter (e.g., until one of the attempts is successful or
until a predetermined retry limit has been reached). Note that in some embodiments, a pre-
determined default or initial value of counter bits that have been designated as identifying a
priority node (or of a dedicated priority node indicator) may indicate that no priority has been
requested or set yet.

[0033] In many of the examples described herein, it may be assumed that the computer
system is organized into clusters of processor cores, cach of which has one or more caches that
are shared among the cores local to that cluster. In such embodiments, inter-cluster
communication may be significantly more expensive than intra-cluster communication. In at
least some of the examples described herein, the terms “cluster” and “node” may be used to refer
to a collection of processor cores, and this collection of cores may include cores on a single
multicore chip, or cores on a collection of multicore chips that have proximity to the same
memory or caching structure, depending on the size of the NUMA machine implemented in the
system. In these examples, it may also be assumed that each cluster has a unique cluster id

known to all threads on the cluster.
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[0034] FIG. 2 illustrates a portion of a computer system that implements a NUMA style

memory architecture. In this example, the computer system includes multiple CPU boards 200
(shown as 200a — 200n) that communicate with each other over interconnect 250. One of these
CPU boards (200a) is illustrated in more detail than the others. In some embodiments, each of
the CPU boards 200 may include the same or a similar architecture as that illustrated for CPU
board 200a. In other embodiments, each of the CPU boards may include a different number
and/or arrangement of processor chips, processor cores, caches, etc. For example, in some
embodiments, there may one or more memory chips closely coupled to each processor chip that
serve as “local memory” for its processor cores (not shown). As illustrated in FIG. 2, the
computer system may also include one or more system memories 260 and/or other components
270. In this example, CPU board 200a includes four processor chips (shown as processor chips
210a — 210d) that communicate with each other over interconnect 240, one of which is illustrated
in more detail. In this example, it is assumed that the processor chips 210b — 210d include a
memory architecture similar to that of processor chip 210a.

[0035] In the example illustrated in FIG. 2, processor chip 210a includes eight processor
cores (shown as 220a — 220h), and each processor core has a respective (dedicated) level 1 (L1)
cache (shown as 230a — 230h). Each processor core may be a multi-threaded core, in some
embodiments. For example, in one embodiment each processor core may be capable of
concurrently executing eight hardware threads. The threads executing on a given processor core
220 may share the level 1 cache 230 for that processor core 220, and accesses to this level 1
cache, which may be considered local to the processor core 220 and its hardware threads, may be
extremely fast. In addition, the eight processor cores 220 may share the level 2 (L2) cache 240
for processor chip 210a, and accesses to this level 2 cache may also be fast, although not as fast
as those to each processor core’s own level 1 cache. In this example, accesses to caches of a
different processor chip 210 on the same CPU board 200, to caches of a processor chip 210 on a
different CPU board 200, and to various system memories 260 (all of which may be considered
remote accesses with respect to a hardware thread executing a particular processor core 220 of
processor chip 210a) may exhibit increasingly higher latency, when compared to accesses to the
level 1 and level 2 caches and/or other memories that are local to that hardware thread.

[0036] As previously noted, in some embodiments, performance gains may be obtained on
NUMA architectures by employing shared counters that encourage threads with high mutual
memory locality (e.g., threads executing on processor cores on the same processor chip, or on
processor cores that are otherwise near each other) to increment the counters consecutively, thus
reducing the overall level of cache misses when multiple threads initiate attempts to increment

those counters. The systems and methods described herein for implementing NUMA-aware
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shared counters (e.g., counter data structures that may be resident in one or more system

memories 260, and portions of which may be brought into various caches when they are updated
and/or read by threads executing on corresponding processor cores in the system) may result in
such high memory locality, since these techniques encourage batches of requests to increment
such a counter from threads in a single cluster (e.g., threads that share a level 1 or level 2 cache)
to be executed sequentially.

[0037] One embodiment of a NUMA-aware RBO counter, as described above, may be
further illustrated by the example pseudo code below.

1 // Counter type : 3 bits saved for storing the node id
2 // (starting at 1), 29 bits for the actual counter.

3 //

4  struct Counter {

5 unsigned int val : 29;

6 unsigned int nid : 3;

7 %

8 // Global variable used to avoid starvation.

9 //If non-zero, it holds the id of the node that is

10 // asking threads on all other nodes to yield.

=
=

/]
unsigned int g_deferReq=0;

=
N

14 void Defer() {
15 for (int i=0; i<YieldAmount; i++) Pause();

16 }

18 void Inc(Counter* cP) {
19 unsigned int myNid = getNodeld();
20 if (g_deferReq && g_deferReq != myNid) Defer();

22 bool deferAsked = false ;
23 int patience = InitPatience ;
24 int backoffTime = InitBackoff ;

25 int penalty = InitPenalty ;
10
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Counter seen = *cP;

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

PCT/US2013/076509

while (true) {

Counter old = seen;

Counter newC = {old.val+1,myNid};

if (( seen = CAS(cP, old, newC()) == old) break;

if (seen. nid != myNid) {

if ( patience-- > 0) {

// longer back-off, as long as g_deferReq is not set
for (int i=0; i<backoffTime + penalty; i+4+) {

if (g_deferReq) break;

Pause ();
}
if (g_deferReq && (g_deferReq != myNid)) Defer ();
backoffTime *=2; penalty *= 2;

}else {

}

}else {

// requesting node ran out of patience; tries asking for Yield
if (! deferAsked)
deferAsked = (CAS(&g_deferReq, 0, myNid) == 0);
if (! deferAsked && g deferReq != myNid) {
// Another node beat the requestor to setting deferReq
Defer ();
patience = InitPatience ;

}
backoffTime = InitBackoff ;

if ( patience < InitPatience ) {

// now post transition to priority for requesting node, init backoff

patience = InitPatience ; backoffTime = InitBackoff ;

}

for (int i=0; i<backoffTime; i++) Pause ();

backoffTime *= 2;

}
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59 seen = *cP;

60 }

61 if (deferAsked) g_deferReq =0;
62 }

[0038] As illustrated in the example pseudo code above, in some embodiments, a counter
may be augmented with a few bits (or alternatively may steal a few bits from the counter, thereby
restricting its range) that are used to store an indication of a node whose threads currently have
priority to update the counter. This approach may require only enough additional bits to store an

identifier of a NUMA node (e.g., a node ID) plus one more bit. In the illustrated example, the

N-1)-] log, (# NODES) |

technique can accommodate a counter that holds values in a range from 0 to 2 -1
using N bits. For example, in one embodiment, the counter may include 32 bits, three of which
may be stolen to store a NUMA node ID, thus restricting the counter’s range to 2% - 1. In this
example, these three bits may be used to store the ID of the node on which the counter was last
incremented together with the counter, thereby allowing and/or requesting that threads on other
nodes hold off their attempts to increment the counter in order to encourage consecutive
increments on the identified node. In other embodiments, a different number of bits of the
counter data structure may be used to store an identifier of the node whose threads currently have
priority to update the counter.

[0039] FIGs. 3A — 3F are block diagrams illustrating various embodiments of some of the
different counter data structures that are described herein. For example, FIG. 3A illustrates a
counter structure 300 in which a counter 305 has been augmented with additional bits 310 that
store a node ID. FIG. 3B illustrates a counter structure 315 in which a highest-order subset of the
bits of the stored count value 320 (shown as 325) have been “stolen” from the count value field
and used to indicate a node ID. In some embodiments, this subset of the bits may be reserved to
store a node ID, and various node ID values may be explicitly written into this portion of counter
structure 315 (e.g., when count value 320 is being updated). In other embodiments, the values of
these bits may simply reflect the corresponding bit values of the count value 320 that is stored in
counter structure 315. FIG. 3C illustrates a counter structure 330 in which a subset of the bits
that does not include the highest-order bits of the count value 335 (shown as 340) represents a
node ID. In this example, the values of these bits may simply reflect the corresponding bit values
of the count value 335 that is stored in counter structure 330. In general, any subset of the bits of
a stored count value may be designated as indicating a node ID, in different embodiments, and
the selection of the subset of bits may affect the number of consecutive increment operations by

threads executing on a single node.
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[0040] As described in more detail below, FIGs. 3D — 3E illustrate a counter structure that in

some embodiments may become inflated in response to certain conditions. For example, FIG.
3D illustrates a counter structure 345 in which a reserved bit 355 indicates whether the counter
portion 350 stores a count value or a pointer to another structure. In this example, since the value
of the reserved bit 355 is zero, the counter portion 350 stores a count value. Similarly, FIG. 3E
illustrates a counter structure 360 in which a reserved bit 370 of the counter value 350 indicates
whether the counter portion 365 stores a count value or a pointer to another structure. In this
example, since the value of the reserved bit 370 is one, the counter portion 365 stores a pointer
value and this pointer value points to an additional counter structure 375. In this example,
counter structure 375 stores multiple count values, shown as 380a — 380 n. FIG. 3F illustrates a
data structure that may be used to implement a probabilistic counter, in some embodiments. In
this example, FIG. 3F illustrates a counter structure 385 that includes a mantissa portion 390 and
an exponent portion 395.

[0041] Note that in some embodiments of the NUMA-aware counters described above,
including counters represented by the example psecudo code above, a thread that waits too long to
attempt to update the counter may become impatient, at which point it may store its node ID into
an anti-starvation variable. In such embodiments, each shared counter may be associated with
such an anti-starvation variable, but it may not be necessary to have a separate anti-starvation
variable per counter. For example, in some embodiments, a single anti-starvation variable may
be employed to ask threads on other nodes to wait before attempting to update one or more
shared counters associated with that anti-starvation variable, thus enabling threads on the node
with the impatient thread to bring the cache line containing the counter to that node and
increment the counter. Note, however, this approach may not prevent other threads (e.g., other
threads on the same node) from incrementing the counter before the impatient thread (thus
preserving the non-blocking property of the counter). The heuristic approach described above
has been shown to avoid starvation in practice, even under heavy contention. Note that in some
embodiments, including in the example illustrated in the pseudo code above, a single, global anti-
starvation variable may be employed to ask threads on other nodes to wait before attempting to
update any or all of the shared counters that are accessible to a multithreaded application.

[0042] In some embodiments that employ this NUMA-aware approach to incrementing a
shared counter, threads on the same node as a thread that has become impatient may abort their
delay (e.g., a slow back-off) in response to the impatient thread setting the anti-starvation
variable, and may attempt to increment the counter immediately. In such embodiments,
regardless of which thread on a node increments the counter, this may have the effect of bringing

the relevant cache line onto that node, which may give all threads on that node a better chance to
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increment the counter. In such embodiments, rather than attempting to ensure that the thread that

becomes impatient is the next to increment the counter, nearby threads whose increments will
help the impatient thread may be allowed to increment the counter before the impatient thread.
This approach has been found to result in better performance than a more restrictive approach.
[0043] One embodiment of a method for incrementing a NUMA-aware shared counter is
illustrated by the flow diagram in FIG. 4. As illustrated at 410, in this example, the method may
include a thread that is executing on a given node of a system that implements a NUMA style
memory architecture initiating an increment of a shared counter. The method may include
determining (e.g., as part of an attempt to increment the counter) whether a global variable
indicates that a thread on another node has requested priority for updating the counter on behalf
of the threads executing on the other node, as in 415. For example, in various embodiments, if an
anti-starvation variable is set, holds a particular pre-determined value, or holds an identifier of
another node, the anti-starvation variable may indicate that a thread on another node has
requested priority for updating the counter. If the global variable indicates that a thread on
another node has requested priority for the threads on the other node (shown as the positive exit
from 415), the method may include the thread delaying its attempt to increment the counter, as in
420. For example, in different embodiments, the thread may delay its attempt by a
predetermined or random amount, after which the thread may attempt to increment the shared
counter and (e.g., atomically, along with incrementing the count value stored in the counter
structure) to update a node ID portion of the counter structure to reflect the node on which the
thread is executing (as in 425). Note that in some embodiments, one or more parameters
controlling the amount of time by which an attempt is delayed may have different values when
the node ID field indicates that the last update was performed by a thread on the same node than
when the node ID field indicates that the last update was performed by a thread on a different
node.

[0044] In this example, if the global variable indicates that no thread on another node has
requested priority to update the counter (shown as the negative exit from 415), the method may
include the thread attempting to increment the shared counter and (e.g., atomically, along with
incrementing the count value stored in the counter structure) to update a node ID portion of the
counter structure to reflect the node on which the thread is executing (as in 425). In some
embodiments, attempts to increment the count value and update of the node ID portion of the
counter structure may be performed using a single CAS type operation or a similar
synchronization operation. As illustrated in this example, if the attempt to increment the counter
and node ID is successful (shown as the positive exit from 430), the increment operation may be

complete, as in 435. On the other hand, if the attempt to increment the counter and node ID is
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not successful (shown as the negative exit from 430), and if the node ID portion of the counter

structure does not indicate that a thread on another node was the most recent thread to update the
counter (shown as the negative exit from 440), the method may include the thread delaying its
attempt to increment the counter, as in 460. For example, in different embodiments, the thread
may delay its attempt by a predetermined or random amount, after which the thread may retry its
attempt to increment the shared counter and to update a node ID portion of the counter structure
to reflect the node on which the thread is executing (shown as the feedback from 460 to 425).
[0045] As illustrated in this example, if the attempt to increment the counter and node ID is
not successful (shown as the negative exit from 430), and if the node ID portion of the counter
structure indicates that a thread on another node was the most recent thread to update the counter
(shown as the positive exit from 440), the method may include determining whether a global
variable indicates that a thread on another node has requested node priority (as in 445). If so
(shown as the positive exit from 445), the method may include the thread delaying its attempt to
increment the counter, as in 460. For example, in different embodiments, the thread may delay
its attempt by a predetermined or random amount, after which after which the thread may retry
its attempt to increment the shared counter and to update a node ID portion of the counter
structure to reflect the node on which the thread is executing (shown as the feedback from 460 to
425). If the global variable does not indicate that a thread on another node has requested node
priority (shown as the negative exit from 445), but the thread’s patience has been exhausted
(shown as the negative exit from 450), the method may include the thread delaying its attempt to
increment the counter, as in 460. For example, in different embodiments, the thread may delay
its attempt by a predetermined or random amount, after which the thread may retry its attempt to
increment the shared counter and to update a node ID portion of the counter structure to reflect
the node on which the thread is executing (shown as the feedback from 460 to 425). Otherwise,
(shown as the negative exit from 445 and the negative exit from 450), the method may include
the thread updating the global variable to request priority for its node (as in 455) and then
delaying its attempt to increment the counter, as in 460.

[0046] Although the NUMA-aware approach to incrementing a shared counter described
above may in some embodiments yield an order of magnitude better throughput than a standard
RBO approach under heavy contention, it may impose significant overhead in low-contention
scenarios. For example, the approach described so far includes testing the anti-starvation flag
before each attempt to increment the counter. In other embodiments, an adaptive NUMA -aware
approach may be employed in which the incrementing operation is dependent on a current,
recent, or historical amount of contention experienced by the counter. For example, in some

embodiments, an adaptive NUMA-aware approach may initially respond to requests to increment
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the counter by incrementing a regular counter that does not record the node ID of the thread that

most recently incremented the counter. For example, the counter data structure may be
initialized (e.g., during an initialization phase of a multithreaded application) to an initial or
default value indicating that any thread may attempt to increment the counter without having to
also write to the node ID portion of the counter. In such embodiments, while there is no node ID
recorded, there may be no need to check the anti-starvation variable.

[0047] In this adaptive NUMA -aware approach, a thread that retries its attempt to increment
the counter more than a pre-determined number of times (e.g., more than three times in rapid
succession, followed by 16 times with a randomized back-off period) before successfully
incrementing the counter, may (once it finally succeeds) record its node ID in the counter.
Thereafter, the slower but more scalable NUMA-aware techniques described above may be
applied in response to subsequent requests to increment the counter. In some embodiments, the
counter may be reset (or returned) to an ordinary counter occasionally (e.g., periodically or
according to various policies, including a decrease in contention for the shared counter), so that
the effects of occasional contention do not persist forever. For example, the node ID portion of
the counter may occasionally be reset to an initial or default value indicating that no threads on
any of the nodes have (or have requested) priority to increment the counter, and threads
attempting to increment the counter when this initial or default value is stored in the node ID
portion of the counter may attempt to increment the counter without having to also write a value
to the node ID portion of the counter. This adaptive NUMA-aware approach has been shown to
be competitive with the best of the existing RBO approaches and with the non-adaptive NUMA-
aware approach described above at all contention levels.

[0048] One embodiment of a method for incrementing a NUMA-aware shared counter that is
dependent on contention for the shared counter is illustrated by the flow diagram in FIG. 5. As
illustrated at 510, in this example, the method may include a thread executing on a given node
initiating an increment of a shared counter. If a node ID portion of the shared counter identifies a
node that has (or has requested) priority (shown as the positive exit from 515), the method may
include continuing its attempt to increment the shared counter as in the method illustrated in FIG.
4, beginning with element 415. If the node ID portion of the shared counter does not identify a
node that has (or has requested) priority (shown as the negative exit from 515), the method may
include the thread attempting to increment the shared counter, as in 520. In some embodiments,
attempts to increment the shared counter may be performed using a CAS type operation or a
similar synchronization operation.

[0049] As illustrated in this example, if the attempt to increment the shared counter is

successful (shown as the positive exit from 530), the increment operation may be complete (as in
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535). On the other hand, if the attempt to increment the shared counter is not successful (shown

as the negative exit from 530) but a retry limit has not yet been reached (shown as the negative
exit from 540), the method may include the thread retrying its attempt to increment the shared
counter one or more times, with or without delay, as in 545. For example, the thread may repeat
its attempt to increment the shared counter using a single CAS type operation or a similar
synchronization operation with or without an intervening back-off period. This is illustrated in
FIG. 5 by the feedback from 545 to 530. If an attempt to increment the shared counter is not
successful (shown as the negative exit from 530) and the retry limit has been reached (shown as
the positive exit from 540), the method may include the thread attempting to increment the
shared counter and to update a node ID portion of the counter structure to reflect the node on
which the thread is executing, with or without delay, as in 550. As illustrated in this example, if
this attempt is not successful (shown as the positive exit from 555), the method may include
repeating the attempt to increment the shared counter and to update the node ID portion of the
counter structure one or more times until it is successful (or until aborted due to various
applicable retry or contention management policies). This is illustrated in FIG. 5 by the feedback
from 555 to 550. Once the attempt to increment the shared counter and to update the node ID
portion of the counter structure is successful (shown as the positive exit from 555), the increment
operation may be complete, as in 560.

[0050] In various embodiments, the counters described so far may achieve good single-
threaded performance and scalability under heavy contention. However, their advantage over a
simple RBO type counter may be reduced under moderate load, because there may be less
opportunity to perform consecutive increments on the same node. In addition, these counters
may be sensitive to system-specific tuning, which may make them less stable than some other
approaches. In other embodiments, counters that use a little more space, some of which are
described below, may reduce or eliminate these effects.

[0051] In some embodiments, an approach referred to as a “multiline” approach may be used
to avoid expensive cross-node communication without introducing the disadvantages of per-
thread counter components described above. For example, in some embodiments, a multiline
approach may employ a separate counter component per NUMA node. In such embodiments,
synchronization on per-node components may be implemented using CAS type instructions to
increment each of the counter components, with or without a randomized back-off period
between attempts to increment the counter. Note that when using a CAS type instruction for
synchronization in this case, there is no cross-node contention to worry about. When employing
a multiline approach, reading the counter may involve reading each component in turn, with no

synchronization, and returning the sum of the values read. Note that the correctness of this
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approach may depend on the assumption that increment operations only add one to the count.

However, in embodiments in which this assumption does not apply, other techniques may be
employed to the same effect.

[0052] Although the increase in space when employing a multiline approach is limited by the
number of nodes, it may be preferable to avoid an increase in space entirely for counters that are
incremented only rarely. In some embodiments, an adaptive approach, referred to herein as a
“multiline-adapt” approach may be employed in which the incrementing operation is dependent
on the current, recent, or historical amount of contention for the counter. For example, in some
embodiments, a multiline-adapt approach may initially employ and increment a standard counter,
and may “inflate” it to use the above-described multiline technique only if more than a pre-
determined number of attempts (e.g., four in one embodiment) to increment the standard counter
fail. Other policies may be applied in other embodiments, e.g., inflating the counter if it
frequently causes remote cache misses. In some embodiments, inflating the counter may include
allocating an additional structure that includes one counter per node and replacing the standard
counter with a pointer to that structure. In some such embodiments, one bit of the initial
(regular) counter structure may be reserved to distinguish whether the initial structure stores a
pointer to the additional structure or counter values. One example of such a counter is illustrated
in FIGs. 3D-3E and described above.

[0053] In some embodiments, the space overhead for low-contention counters that employ a
multiline-adapt approach may be just the reserved bit (which in practice would reduce the range
of the counter by half), and the higher space overhead may only apply to counters experiencing
higher contention (according to various pre-determined contention management policies). In
some embodiments, a multiline-adapt approach introduces an extra level of indirection for
contended counters, which may slow down the increment operation for the counter. However, in
practice this may not result in a significant performance issue when the counter is contended,
since it may reduce the rate of CAS type increment attempts on the initial counter structure
(hence reducing the overall contention experienced by a multithreaded application).

[0054] One embodiment of a method for inflating a shared counter in response to contention
is illustrated by the flow diagram in FIG. 6. As illustrated at 610, in this example, the method
may include a thread executing on a given node initiating an increment of a shared counter. In
some embodiments, the thread may attempt to increment the shared counter (as in 620), e.g.,
using a CAS type operation with or without an intervening back-off period. If the attempt to
increment the shared counter is successful (shown as the positive exit from 630), the increment
operation may be complete (as in 635). If the attempt to increment the shared counter is not

successful (shown as the negative exit from 630), but an applicable retry limit condition has not
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been met (shown as the negative exit from 640), the method may include the thread repeating its

attempt to increment the counter one or more times until it is successful or until the retry limit
condition has been met. This is illustrated in FIG. 6 by the feedback from 640 to 620. In various
embodiments, the retry limit condition may be based on the number of unsuccessful attempts, the
number of cache misses or on another applicable retry or contention management policy.

[0055] As illustrated in this example, if the attempt to increment the shared counter is not
successful (shown as the negative exit from 630), and the applicable retry limit condition has
been met (shown as the positive exit from 640), the method may include replacing the shared
counter (or a count portion thereof) with a pointer to a structure that includes one counter per
node (i.e., one or more node-local counters), as in 650. For example, in some embodiments, one
bit of the counter may be used to indicate whether the value of the counter portion currently
represents a count value or represents a pointer to a multiple counter structure. The method may
also include the thread attempting to increment its node-local counter one or more times until it is
successful, as in 660. For example, the thread may attempt to increment its node-local counter
using a CAS type operation or a similar synchronization operation with or without an intervening
back-off period. As illustrated in this example, in some embodiments, a subsequent operation of
a thread on one of the nodes to read the value of the shared counter may do so by reading all of
the node-local counters and returning the sum of their counter values.

[0056] In some embodiments, the multiline-adapt approach described herein may provide a
counter that is competitive in both space overhead and throughput with the basic RBO counter
described above at low levels of contention, that scales well with increasing contention, and that
yields a much higher throughput than a basic RBO counter under high contention (e.g., more than
700x throughput, in some experiments). Note that in some embodiments, counters employing
multiline and multiline-adapt approaches may suffer under high contention levels because of
contention between threads on the same node using a single component. In some such
embodiments, this type of contention may be alleviated by using more components per node. For
example, while per-node components must be in separate cache lines to avoid false sharing
between nodes, if more than one component is employed per node, it may not be unreasonable to
locate multiple components for a single node in the same cache line. While false sharing may
still impose some overhead in this case, it may be only within one NUMA node. In addition,
there may still be benefit from using multiple components, as fewer CAS failures should occur in
this case. Thus, it may be possible to improve performance without increasing space usage using
this approach, in some embodiments.

[0057] Note that in some embodiments, the additional space overhead incurred by a multiline

approach may be unacceptable in systems with large numbers of statistics counters, most of
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which are not heavily contended. While the multiline-adapt approach described above may incur

this space overhead only for contended counters, if different counters are contended at different
times, this may result in excessive overhead over time. Furthermore, in some embodiments,
these approaches increase latency for operations that read the counter and/or they may be
unacceptable due to their use of dynamically allocated memory, in some contexts. As described
in more detail below, in some embodiments, some or all of these issues may be avoided if and
when counters are not required to be precise.
[0058] As previously noted, simple unsynchronized counters typically lose significant
fractions of counter updates, even at moderate levels of contention. Because counters are often
used to detect excessive rates of various system events, these naive implementations are
(ironically) least effective exactly when the data they should provide is most important.
Nonetheless, in some contexts and for some applications, precise counts may not be required. As
described in more detail below, in some embodiments, counters may exploit this flexibility while
still aiming to maintain a prescribed level of accuracy that is not achieved by naive counter
implementations.
[0059] One existing probabilistic counter (sometimes referred to as a “Morris counter”) can
represent a larger range of values than the number of bits it contains (e.g., eight bits) usually
does. The Morris counter does this by storing a probabilistic approximation of a count value,
which is referred to herein as v(n), where n is the precise count (i.e., how many times a
corresponding increment operation has been invoked), according to the following:
v(n)=log(1+n/a)/log(1+1/a).
[0060] In this example, a represents a parameter whose value controls the accuracy of the
counter, as explained below. In this example, adding one to n/a (as in the denominator) ensures
that the function is well defined and equals zero when #» = 0. In addition, dividing by log(1 + 1/a)
ensures that the function is one when » = 1. In other words, this approximation ensures that the
counter contains accurate values at least for values zero and one. It follows from this definition

that, when the value stored in the counter is v, the precise count it represents is:

n(v) =a((l+l/a)v —1).
[0061] In various descriptions herein, the value v that is physically stored in a probabilistic
counter may be referred to as the “stored value”, and the value n(v) that it represents may be
referred to the “projected value” or the “estimated value” of the number of events that occurred
of the type “counted” by the probabilistic counter. In other words, the Morris counter stores a

probabilistic approximation v(n), where # is the precise count. In this example, the stored value

must be an integer, as this example assumes the use of only eight bits. As a result, the precise

20



10

15

20

25

30

35

WO 2014/100395 PCT/US2013/076509
count cannot be determined from the stored value. Therefore, there is no deterministic way to

know when to increment the value stored in the counter to reflect that enough increments have
occurred such that the counter’s value should now be represented by a higher stored value. To
address these issues, the Morris counter algorithm increments the stored value with probability,

p(v), when the counter contains the value v, as follows:

p(v) =1/(n(v+l)—n(v))

[0062] Intuitively, this means that on average, the value stored in the Morris counter will be
incremented once out of the n(v + 1) - n(v) increment operations after a given value v is stored.
This ensures that the value projected by the stored value is a random variable whose expected
value is equal to the precise count. To avoid computing probabilities on each increment, an
existing algorithm for implementing this probabilistic counter pre-computes all 256 probabilities
for a given value of a, and stores them in a lookup table. In this example, the lookup table does
not need to be replicated for each counter, but only for each accuracy class (i.e., each choice of
a).

[0063] In this example, the parameter a may determine both the range that the Morris counter
can represent and the expected error between the projected and actual counts, measured as the
ratio between the standard deviation (STDV) of the projected value and the actual count
(sometimes referred to as the relative STDV, or RSTDV). The variance of the projected value

when the precise count is # is given by ¢” = n(n-1)/2a, from which it follows that the RSTDV is
roughly 1/ v2a as n grows large. In one example, choosing an accuracy parameter value of @ =

30 yields an RSTDV of about 1/8. In this example, this choice of @ allows the counter to
represent 7(255), which is about 130,000. While this may be impressive for a counter structure
that uses only eight bits, this may not satisfactory (in terms of range and/or accuracy) for many of
the types of statistics counters used in modern computer systems. As described in more detail
below, this approach may be modified in order to implement scalable counters with much larger
ranges and higher accuracy, in some embodiments.

[0064] Note that because n(v) is exponential in v, updates on a Morris counter become less
frequent as the precise count grows. In some embodiments, a probabilistic counter may exploit
this property in order to reduce contention on frequently updated shared counters, while
bounding expected error. In some embodiments, probabilistic counters may be implemented that
provide a larger range and higher accuracy than is possible using the Morris counter approach
described above. Note that simply extending the approach described above to Morris counters
that use more bits may not be acceptable in some contexts, as it may become significantly less
desirable to pre-compute update probabilities for all possible stored values as more counter bits

are used. In some embodiments, the probabilistic counters and corresponding increment
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operations described below may extend the techniques described above in a manner that avoids

this requirement. For example, it has been observed that the probability to increment the stored

count from v to v + 1 is a geometric series in v with a factor of a/(a + 1), as shown below:
n(v+1)=n(v)=a((1+1/a)™ -(1+1/a)’)
=a((1+1/a)’ (1+1/a-1))

=(1+1/a)’

= p(v)=Y/(1+Va) = (a/(a+1))

[0065] Therefore, in some embodiments, for a given value p(v), the value of p(v + 1) may be
computed simply by multiplying the value p(v) by a/(a + 1). In some embodiments, this constant
may be pre-computed to avoid repeatedly performing this floating point division operation. It
has also been observed (e.g., given the above) that n(v) = a(1/p(v) - 1). Therefore, in some
embodiments, the projected value n(v) of the stored counter value v of a probabilistic counter
may be computed directly from p(v), without knowing v. In fact, in some embodiments doing so
may be on the order of five times faster than computing n(v) directly from v. Therefore, in some
embodiments, rather than storing v in the probabilistic counter, as in the Morris counter example
above, a counter structure for a probabilistic counter may instead store the floating point value
p(v). In one example, such a counter structure may store a 32-bit floating point representation of
p(v), but in other embodiments, the range and/or accuracy may be extended further by storing
values of p(v) using 64-bit double words. In some embodiments, using this approach, for each
invoked increment operation that targets the counter, the value p stored in the counter may be
read, and with probability p it may be replaced with a value equal to p * a/fa + 1). This approach
may provide a faster evaluation of the projected counter value, and may avoid the need to pre-
compute and store values for all 2° bits when using b bits to represent a counter, when compared
to the Morris counter approach described above. Instead, only the value of a that yields the
desired RSTDV and the corresponding value of a/(a + 1) may need to be pre-computed.

[0066] In various embodiments of such a probabilistic counter, during each increment
operation that targets the counter, the stored value may be updated with probability p, which may
be equal to (or may be determined dependent on) the stored probability value itself (i.e., the most
recently stored value). For example, in one embodiment, the increment operation may employ a
thread-local XOR-shift pseudorandom number generator with parameters (6, 21, 7), which may
return an integer / having a value between 1 and a maximum integer value, MaxInt (which, in
this example, would be equal to 2°? - 1). In this example, the stored value may be updated if
i/MaxInt < p. In some embodiments, the probabilistic counter structure may store (MaxInt * p)

(e.g., as a floating point number), so that the increment operation only needs to compare i to the
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stored value to determine whether to update the stored value. This stored value may be referred

to herein as a “threshold”. In this example, the initial threshold 7, = MaxInt, and when the
stored value is updated, the current value 7; is replaced with a value 7;y1=T; * a/(a + 1)) if and
only if the number returned by the pseudorandom number generator is at most 7;. Example
pseudo code that may be used to implement this technique is presented below, according to one
embodiment.

1 //Accuracy is given as number of percents for RSTDV

/!

template <int Accuracy>

2

3

4  class ProbCounter {
5 private:

6

float threshold ;

8 // Static ( global per accuracy class ) info

9 /]

10 static floats_a;

11 static float s_ probFactor ; // a/(a+1)
13 public:

15 static Staticlnit () {

16 // a=1/(2%err "2)

17 //

18 float tmp = (( float )Accuracy/100.0);
19 s_a=1/(2*tmp*tmp);

20 s_probFactor=s_a /(s_a +1.0);
21}

23 ProbCounter() {
24 threshold = (double)MaxInt;
25 )

27 unsigned int GetVal() {
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28 float pr = threshold /MaxInt;

29 float val = (1.0/ pr- 1.0)*s_a;
30 return lroundf ( val );
31}

33 void Inc () {

34 unsigned int r = rand ();

35 float seenT = threshold ;

37 while(true) {

38 if ( r > (unsigned int)seenT) return;
40 bool overflow = (seenT <s_a + 1.0);
41 float newT = seenT * s_probFactor ;
42 if (overflow) newT = ( float )MaxInt;
44 float expected = seenT;

45 seenT = CAS(&threshold, seenT, newT));
46 if (seenT == expected) return;

47 }

48 }

49 }

[0067] One embodiment of a method for incrementing a probabilistic counter that stores a
floating point value is illustrated by the flow diagram in FIG. 7. As illustrated at 710, in this
example, the method may include a thread executing on a given node initiating an increment of a
shared probabilistic counter that stores a floating point update probability value (such as those
described herein). The method may also include the thread determining whether the shared
counter should be incremented, dependent on the stored probability value and the value of an
integer random number, as in 720. For example, in some embodiments, the determination may
be dependent on the value of an integer random variable whose value is between 0 and a
predetermined maximum value (e.g.,, maxint). Note that in some embodiments, the
determination may involve the use of a floating point operation to compare the floating point

representation of the update probability to this integer random number. If the thread determines
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that it should not increment the shared counter (shown as the negative exit from 730), the

increment operation may be complete (i.e., without incrementing the shared counter), as in 755.
[0068] As illustrated in this example, if the thread determines that it should increment the
shared counter (shown as the positive exit from 730), the method may include the thread
attempting to increment the counter by attempting to store a new value in the shared counter that
is equal to the stored update probability multiplied by a probability factor that is dependent on a
desired accuracy percentage, as in 740. For example, in some embodiments, the thread may
attempt to store the new value in the shared counter using a single CAS type operation (or a
similar synchronization operation) with or without an intervening back-off period. If the attempt
to increment the shared counter is not successful (shown as the negative exit from 750), the
method may include the thread repeating its attempt to increment the shared counter one or more
times until it is successful (or until the attempt is aborted due to various applicable retry or
contention management policies — not shown). This is illustrated in FIG. 7 by the feedback from
750 to 720. Note that in this case, the method may include repeating the determination of
whether (or not) to update the stored value (based on the update probability) because if the
attempt to increment the shared counter failed due to a conflict, this may indicate that another
operation (e.g., an increment operation of another thread) has modified the update probability
since the previous determination was made. Once an attempt to increment the shared counter is
successful (shown as the positive exit from 750), the increment operation may be complete, as in
755. As illustrated in this example, in some embodiments, a subsequent operation of a thread to
read the shared counter may do so by reading the stored update probability and computing the
projected value of the shared counter dependent on the stored update probability and the desired
accuracy percentage, as in 760.

[0069] In some embodiments of the probabilistic counter described above, care may be
needed to avoid updating 7; when it becomes too small, as this may cause the properties of the
counter to be lost. In particular, it may be noted that, because this approach uses an integer
pseudorandom number generator, if an update does not reduce the integer part of the stored
threshold, this may not actually affect the probability of an update.

[0070] In some embodiments, it has been observed that 7; - T;.; > 1 at least while 7, >a + 1.
Therefore, in some embodiments, the probabilistic counter may be reset when this is no longer
true. In other embodiments, an error may be raised in this case, if this is preferable in a given
context and/or for a given multithreaded application. In an example in which the choice of a =
5000 (e.g., in order to achieve a 1% RSTDV), and using a 32-bit counter, this threshold may be

crossed when the projected value is about 0.02% below the MaxInt value. Thus, the probabilistic
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counter may achieve low relative error and much better scalability, without significantly reducing

the range of the implemented counter, when compared to naive 32-bit counters.

[0071] In some embodiments, the probabilistic counter approach described thus far may
perform very well when the counter becomes contended and reaches higher values, but it may be
significantly slower than a standard CAS-based counter when contention is low and the projected
counter value is low. In some embodiments, a hybrid version of this probabilistic counter
(referred to herein as a “prob-adapt” counter) may be employed in which the incrementing
operation is dependent on the current, recent, or historical amount of contention for the counter.
For example, in some embodiments, this adaptive probabilistic counter may initially respond to
requests to increment the counter by incrementing a standard concurrent counter (e.g., using a
CAS type instruction), but if the CAS operation fails multiple times (e.g., according to a pre-
determined retry limit or other contention management policy) it may switch to the probabilistic
counting scheme described above. For example, in one embodiment the probabilistic counter
structure may store a standard counter in one half of a 64-bit word, and a probabilistic counter in
the other half. When contention is encountered, the increment operation may switch from
updating the standard counter portion of the structure to updating the probabilistic counter
portion. In this example, reading the counter may include adding the value projected by the
probabilistic counter portion of the counter structure to the value stored by the standard counter
portion of the structure. This adaptive approach may be especially well suited for use in
multithreaded applications that access thousands of counters, only a few of which are often (or
ever) contended.

[0072] One embodiment of a method for incrementing a hybrid counter dependent on
contention for the counter is illustrated by the flow diagram in FIG. 8. As illustrated at 810, in
this example, the method may include a thread of a multithreaded application initiating an
increment of a hybrid shared counter (e.g., one that includes a standard counter portion and a
probabilistic counter portion). Note that in this and other examples, a thread that initiates an
increment of a shared counter may be one of multiple threads that collectively represent multiple
concurrently executing atomic transactions, and the shared counter may be accessed from within
one or more of these transactions. The method may also include the thread attempting to
increment the standard counter portion of the shared counter, as in 820 (e.g., using a CAS type
operation or a similar synchronization operation). If the attempt is successful (shown as the
positive exit from 830), the increment operation may be complete, as in 870. If the attempt to
increment the standard counter portion of the hybrid shared counter is not successful (shown as
the negative exit from 830), but a retry limit condition has not yet been reached (shown as the

negative exit from 840), the method may include the thread retrying its attempt to increment the
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standard counter portion of the shared counter one or more times, with or without delay, as in

845, and determining whether these attempts are successful (shown as the feedback from 845 to
830). Note that in various embodiments, the retry limit condition may be that one or more
previous CAS type operations have failed to increment the standard portion of the counter and/or
one or more other factors that indicate contention on the shared counter.

[0073] If an attempt to increment the standard counter portion of the hybrid shared counter is
not successful (shown as the negative exit from 830), and the retry limit condition has been
reached (shown as the positive exit from 840), the method may include the thread attempting to
increment the hybrid shared counter by attempting to increment the probabilistic counter portion
of the shared counter (as in 850). If this attempt is not successful (shown as the negative exit
from 860), the method may include the thread repeating its attempt to increment the probabilistic
counter portion of the hybrid shared counter until it is successful (or until the attempt is aborted
due to various applicable retry or contention management policies — not shown). This is
illustrated in FIG. 8 by the feedback from 860 to 850. If an attempt to increment the probabilistic
counter portion of the hybrid shared counter is successful (shown as the positive exit from 860),
the increment operation may be complete, as in 870. As illustrated in this example, in some
embodiments, a subsequent operation of a thread to read the hybrid shared counter may do so by
reading the value of the standard counter portion and the value of the probabilistic counter
portion and returning the sum, as in 880.

[0074] The probabilistic counters described above may be suitable for use in many contexts
and for many types of multithreaded applications in terms of their accuracy, performance under
low contention, scalability under higher contention, and space usage. However, in other
contexts, probabilistic counters that provide similar properties without using floating point
operations may be more suitable. Therefore, in some embodiments, the update probabilities may
be constrained to always be non-positive powers of two. This may make it relatively easy to
decide (with the appropriate probability) whether to update the counter, and if so, to compute the
next update probability, without using any floating point operations. Two such counters are
described below (along with corresponding increment and read operations).

[0075] In embodiments in which only non-positive powers of two are used for update
probabilities, in response to a request to increment the counter, the increment operation may
decide whether to update the counter with probability 1/2* by determining whether the low-order
k bits of an integer random number are all zero (without the need to perform any floating point
computations). Note that this approach employs coarser-grained update probabilities than the
approach described above, since each update can only halve the update probability, in contrast to

reducing it by a factor of a/(a + 1). Reducing the update probability is important for
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performance and scalability (at least up to a point). However, if the update probability is halved

after every update, it may become small too quickly, which may reduce the accuracy of the
counter. Therefore, in some embodiments, the same update probability may be used repeatedly
before eventually reducing it, according to various policies for managing this tradeoff, examples
of which are described herein.

[0076] In the examples described below, counter values may be represented using binary
floating point (BFP). For example, the counters may store a pair (m, e), which represents a
projected value m * 2° (i.e., m is the mantissa, and e is the exponent). Different bit fields in the
counter variable are used to store m and e. For example, if four bits are used to store a value for e
and 28 bits are used to store a value for m, the counter structure can represent a counter value of
up to (2°* - 1) * 2", or about 2K times MaxInt.

[0077] In the examples described below, when the exponent is e, the counter may be updated
with probability 2. As in the previous examples, in order to keep the expected projected value
of the counter equal to the total number of increments performed to date, 2° may be added to the
projected value when incrementing the counter with probability
2. Note that in various embodiments, 2° may be added to the projected value of a counter
represented by (m, e) in at least two different ways. For example, one way is to update the stored
value to (m + 1, e). Another way, which may be applied only when m is odd and the exponent
field is not saturated, is to update the counter to ((m + 1)/2, e + 1). In both cases, the amount
added to the projected value is easily seen to be 2°. The embodiments described below based on
this general approach may differ in one or more policies that control which method to use when
updating the counter.

[0078] One embodiment of a method for incrementing a probabilistic counter that stores a
binary floating point value is illustrated by the flow diagram in FIG. 9. As illustrated at 910, in
this example, the method may include a thread executing on a given node initiating an increment
of a shared probabilistic counter that stores a probabilistic counter value as a binary floating point
number, where the update probability is computable from the exponent portion of the
probabilistic counter value and is constrained to be a non-positive power of two. For example, in
some embodiments, the counter structure may include a mantissa portion and an exponent
portion, which together are used to represent a projected (or expected) value of m*2°. The
method may also include the thread determining whether the shared probabilistic counter should
be incremented (as in 920). For example, the shared probabilistic counter may be updated with
probability 1/2°, in some embodiments.

[0079] In this example, if the thread determines that it should not increment the shared

probabilistic counter (shown as the negative exit from 930), the increment operation may be
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complete (i.e., without incrementing the shared probabilistic counter), as in 955. On the other

hand, if the thread determines that it should increment the shared probabilistic counter (shown as
the positive exit from 930), the method may include the thread attempting to increment the
counter by attempting to store a new value in the shared probabilistic counter such that its new
projected value is equal to the sum of its previous projected value and 2°, as in 940. For example,
attempts to increment the counter may be performed using a CAS type operation with or without
back-off. Note that incrementing the counter in this way (e.g., by replacing (m,e) with ((m +
1)/2, e + 1)) reduces the probability of updating the counter by half. If the attempt to increment
the shared probabilistic counter is successful (shown as the positive exit from 950), the increment
operation may be complete (as in 955). If the attempt to increment the shared probabilistic
counter is not successful (shown as the negative exit from 950), the method may include
repeating the attempt to increment the shared probabilistic counter one or more times until it is
successful (or until the attempt is aborted due to various applicable retry or contention
management policies — not shown). Note that, in this example, repeating the attempt to
increment the stored probabilistic counter may include repeating the determination of whether (or
not) to perform the increment. This is illustrated in FIG. 9 by the feedback from 950 to 920). As
illustrated in this example, in some embodiments, a subsequent operation of a thread to read the
shared probabilistic counter may do so by reading the stored probabilistic counter value and
computing the projected value (i.e., returning the mantissa value left shifted by the exponent
value, in this example), as in 960. Note that, in this example, this is equivalent to computing
m*2°,

[0080] In some embodiments, a probabilistic counter that stores a probabilistic counter value
as a binary floating point number, where an update probability is computable from the exponent
portion of the probabilistic counter value, may employ a deterministic update policy. One
example of such a counter (referred to herein as a BFP-DUP counter) may exhibit properties
similar to those of the probabilistic counters described above, e.g., that a desired bound on the
RSTDV may be specified, and that the corresponding update operations may reduce update
probabilities as quickly as possible in order to improve scalability while ensuring the desired
RSTDV bound. In some embodiments, ensuring the specified bound may involve ensuring that
the update probability is not reduced too quickly. In some embodiments, the update policy may
cause updates to the counter to increment the mantissa by default. However, if incrementing the
mantissa would cause it to reach a predetermined limit (referred to herein as the “mantissa-
threshold”), which may be required to be an even number, the increment operation may instead
halve the mantissa (after incrementing it) and increment the exponent. Using this approach, the

first mantissa-threshold number of increments may update the counter with probability 2° = 1,
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Thereafter, the exponent may incremented (and the mantissa halved) every mantissa-threshold/2
times that the counter is updated. In some embodiments, the choice of the mantissa-threshold
value may determine how quickly the exponent grows (and thus how quickly the update

probability is reduced).

described herein.

[0081]

One embodiment of a BFP-DUP counter, as described above, may be illustrated by

the example pseudo code presented below.

1
2
3
A
5
6
7
8
9

10
11
12
13

15
17
18
19
21
23

24
25

// Accuracy is given as number of percents for RSTDV
//
template <int Accuracy>
class BFPCounter {
private :
// BFP Counter type: 4 bits for the exponent,
// 28 bits for the mantissa .
//
struct Counter {
int mantissa : 28;
int exp: 4;
enum {MaxExp = (1<<4) - 1, MaxMantissa = (1<<28) — 1};

Counter bfpData;

enum {

MantissaThreshold = 2*((30000/(Accuracy_Accuracy) + 3)/8)

public:

BFPCounter() {
bfpData = {0,0};

30
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thus ensuring that the counter reaches the mantissa-threshold value without introducing any error.

Various methods for choosing the mantissa-threshold value are
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27
28
29
30
31
32
33

35
36
37
38
39
40
41
42

44
45
46

48
49
50
51
52
53
54
55
56
57
58
59

// Note: represented value could be larger than MaxInt,
// so use 64bit return value
//
unsigned long long GetVal() {
Counter data = bfpData;

return (unsigned long long)( data . mantissa << data.exp);

void Inc () {
intr=rand ();
int numFailures = 0;
while (true) {
ExpBackoff(numFailures);
Counter oldData = bfpData;
int e = oldData.exp;

int m = oldData. mantissa ;

// Choose to update the counter with probability 1/2"e

/]
if ((r & ((1<<e)-1)) 1= 0) return;

// The assumption is that the mantissa field is large enough to hold
// MantissaThreshold-1, so do not check for mantissa overflow
// unless the exponent is saturated.
//
bool overflow = (e == Counter::MaxExp &&
m == Counter::MaxMantissa);
Counter newData = {0,0};
if (! overflow) {
if ((m == MantissaThreshold - 1) &&
(e < Counter::MaxExp)) {
newData = {e+1, (m+1)>>1};

}else {
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60 newData = {e, m+1};

61 }

62 }

63 if (CAS(&bfpData, oldData, newData) == oldDdata) return;
64 numFailures++;

65 }

66 }

[0082] One embodiment of a method for incrementing a probabilistic counter that includes
multiple update options is illustrated by the flow diagram in FIG. 10. As illustrated at 1010, in
this example, the method may include a thread executing on a given node initiating an increment
of a shared probabilistic counter that stores a probabilistic counter value as a binary floating point
number, where an update probability computable from the exponent portion of the probabilistic
counter value is constrained to be a non-positive power of two. For example, in some
embodiments, the counter structure may include a mantissa portion and an exponent portion that
together represent a projected (expected) value of m*2°. The method may also include the thread
determining whether the shared probabilistic counter should be incremented, dependent on the
stored probabilistic counter value and the value of an integer random number (as in 1020). For
example, in one embodiment, to update the counter with probability 1/2°, the method may
include determining whether the low-order e bits of an integer random number are all zero (with
no floating point math necessary). If so, updating the counter in the manner described here may
reduce the probability of updating the counter by half. In some embodiments, the method used to
perform the updating of the counter may be dependent on whether the mantissa portion of the
counter would overflow if it is incremented and/or whether the exponent portion of the counter is
saturated.

[0083] As illustrated in this example, if the thread determines that it should not increment the
shared probabilistic counter (shown as the negative exit from 1030), the increment operation may
be complete (i.e., without incrementing the shared probabilistic counter), as in 1080. On the
other hand, if the thread determines that it should increment the shared probabilistic counter
(shown as the positive exit from 1030), and if incrementing the mantissa would not make it equal
to its accuracy-dependent threshold (shown as the negative exit from 1040), the method may
include the thread attempting to increment the counter by attempting to increment the mantissa
portion of the shared counter (as in 1070), at which point the increment operation may be
complete (as in 1080). In some embodiments, attempting to increment the mantissa portion of

the shared counter may be performing using a CAS type operation (or a similar synchronization
32



10

15

20

25

30

35

WO 2014/100395 PCT/US2013/076509
operation) one or more times until it is successful (or until aborted due to various applicable retry

or contention management policies), with or without an intervening back-off period (not shown).
As in other examples, if the attempt to increment the mantissa portion of the shared counter fails,
the method may include repeating at least some of the operations shown in FIG. 10 beginning
with element 1020 (not shown).

[0084] As illustrated in this example, if the thread determines that it should increment the
shared probabilistic counter (shown as the positive exit from 1030), but incrementing the
mantissa would make it equal to its accuracy-dependent threshold (shown as the positive exit
from 1040), and the exponent portion of the shared probabilistic counter is already at its
maximum value (shown as the positive exit from 1050), the method may include the thread
resetting the counter to zero (as in 1055), at which point the increment operation may be
complete (as in 1080). In other words, the method may include resetting the (mantissa,
exponent) pair to a value of (0,0). If incrementing the mantissa would make it equal to its
accuracy-dependent threshold (shown as the positive exit from 1040), but the exponent portion of
the shared probabilistic counter is not already at its maximum value (shown as the negative exit
from 1050), the method may include the thread attempting to increment the counter by
attempting to increment the mantissa, halve the incremented mantissa, and increment the
exponent (as in 1060), after which the increment operation may be complete (as in 1080). In
some embodiments, attempts to update the shared counter may be performed using a single CAS
type operation or a similar synchronization operation, which may be repeated (if necessary) until
it is successful (or until the attempt is aborted due to various applicable retry or contention
management policies — not shown). As in other examples, if the attempt to update the shared
counter fails, the method may include repeating at least some of the operations shown in FIG. 10
beginning with element 1020 (not shown).

[0085] As illustrated in the example pseudo code above, the BFPCounter class may in some
embodiments accept (as a template argument) the desired bound on RSTDV as a percentage
(e.g., an accuracy parameter value of 1 may correspond to a desired bound on RSTDV of 1%).
In some embodiments, the value of the mantissa-threshold parameter may be determined based
on the desired accuracy, as explained below. In this example, the increment operation (shown as
Inc) may decide with probability 1 — 1/2° not to update the counter, where e is the exponent value
currently stored in the counter (as in lines 3646 of the psecudo code above). In this example, if
the decision is made to update the counter, the increment operation may first check to see
whether the counter has already reached its maximum value (as in line 52), in which case it may
attempt to update the counter to zero. Note that in other embodiments, the increment operation

may instead signal an error in this case, e.g., if that is preferable in a given context or for a given
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application. Otherwise, a new pair may be determined based on the current pair (as shown in

lines 5661 above). Finally, the increment operation may attempt to store the new pair to the
counter, ¢.g., using a CAS type instruction to confirm that the counter has not already changed
(as in line 63). In this example, if the CAS operation fails, the operation may be retried,
beginning with a determination of whether (or not) to update the counter. In other embodiments,
other contention management policies may be applied.

[0086] In some embodiments, various optimizations of the increment operations described
herein may improve overall performance. For example, in some embodiments, the code
implementing the increment operation may “inline” the common update case (i.c., the case in
which the CAS type operation to update the counter succeeds), and may use the return value of a
failed CAS type operation to avoid the need to re-read the counter data (e.g., bfpData, in the
example code above) before retrying the increment operation. In some embodiments, when a
CAS type operation fails due to a conflict with a concurrent update (e.g., an update being
attempted by another thread of the same multithreaded application), the test to determine whether
an update should be applied based on the new value may be performed before backing off, as this
will almost never be the case. In some embodiments, all of the calculations described above for
this counter may be performed using bit shifting and masking operations (i.e., without floating
point operations).

[0087] Note that an existing sequential approximate counting algorithm that is similar to that
described above does not support concurrent updates, and is less flexible than the approach
described above. In this existing algorithm, rather than explicitly updating the mantissa and
exponent whenever the counter is updated, an update is performed simply by incrementing the
stored value. In this existing algorithm, when the mantissa part of the counter is incremented
past its maximum value, the overflow may naturally increment the exponent field (which may be
placed appropriately to ensure this). As a result of this choice, the update function used the
existing algorithm may be somewhat simpler than the one described above. However, this may
have little performance impact because the counter is updated less and less frequently over time.
Another implication of the existing algorithm is that the frequency with which an update
increments the exponent (and thus reduces the update probability for subsequent operations) is
required to be a power of two. Furthermore, the existing algorithm must implement a different
way of computing the projected value from the data stored in the counter, because the mantissa
part of the stored data becomes zero when the exponent is incremented.

[0088] In some embodiments, the BFP-DUP counter described herein may perform twice as
many increments to the mantissa before incrementing the exponent for the first time as it does

between subsequent increments of the exponent, whereas the existing algorithm performs the
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same number of increments to the mantissa before each increment of the exponent. As a result,

the Markov chain used to model the BFP-DUP counter includes a deterministic chain of length
mantissa-threshold/2 before a chain that is otherwise similar to the one used by the existing
algorithm. Note, however, that this may not change the result in the limit, because these
deterministic increments of the mantissa occur with probability 1, and therefore do not increase
the inaccuracy of the counter.

[0089] In contrast to the operations associated with the prob-adapt counter described above,
the bound on RSTDV, in this BFP-DUP counter, may not be independent of the number of
increment operations performed. Rather, these techniques may provide a bound on expected
RSTDV in the limit as the number of increments » approaches infinity. More precisely, this may

be described as follows:

limsup 4, < 3
n—o0 8M - 3

[0090] In this example, 4, represents the expected RSTDV after » increment operations, and
M represents the number of increments of the mantissa between increments of the exponent
(which, in this example, is equal to mantissa-threshold/2). In some embodiments, this formula
may be used to determine a choice of M in order to achieve a desired bound. For example,
because the BFPCounter class in the pseudo code above accepts its accuracy argument as a

percentage (as described above)), the equation above may imply the following:
M <((30,000/ dccuracy®)+3) /8

[0091] In this example, the corresponding formula for the mantissa-threshold value is found
at line 18 of the pseudo code above (and the mantissa-threshold = 2M). Note that in some
embodiments, because the BFP-DUP counter does not constrain the number of increments to the
mantissa between increments of the exponent to be a power of two, the use of this approach may
provide the flexibility to choose the mantissa-threshold value based on this calculation, resulting
in finer-grained control over the accuracy-performance tradeoff. In some embodiments,
(including those modeled in various experiments described herein), the accuracy parameter value
was set to reflect a 1% bound on RSTDV, resulting in the mantissa-threshold being set to 7500.

[0092] One embodiment of a method for incrementing a probabilistic counter dependent on a
configurable accuracy parameter is illustrated by the flow diagram in FIG. 11. As illustrated at
1110, in this example, the method may include a thread of a multithreaded application initiating
an increment of a shared counter that stores a multi-valued representation of a probabilistic
counter, where the projected count can be computed from the stored probabilistic counter value.
If the thread determines that it should update the stored probabilistic counter value (shown as the

positive exit from 1120), the method may include the thread attempting to update the stored
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probabilistic counter value, where the attempt to update the stored probabilistic counter value is

dependent on the value of a configurable accuracy parameter (as in 1130). Note that in some
embodiments, the attempt to update the stored probabilistic counter (and/or the determination to
do so) may also be based on the stored probabilistic counter value itself (i.e. the current stored
value).

[0093] As illustrated in this example, if the attempt to update the stored probabilistic counter
value is successful (shown as the positive exit from 1140), the increment operation may be
complete (as in 1150). On the other hand, if the attempt to update the stored probabilistic counter
value is not successful (shown as the negative exit from 1140), the method may include repeating
the attempt to update the stored probabilistic counter value until it is successful, or until the
attempt is aborted due to various applicable retry or contention management policies). Note that,
in this example, repeating the attempt to update the stored probabilistic counter may include
repeating the determination of whether (or not) to perform the update. This is illustrated in FIG.
11 as the feedback from 1140 to 1120). As illustrated in this example, in some embodiments, a
subsequent operation of a thread to read the shared counter may do so by reading the stored
probabilistic counter, and computing the projected count value dependent on the stored
probabilistic counter value, as in 1160.

[0094] In various embodiments, the deterministic update policy used by the BFP-DUP
counter may be attractive for use in a variety of contexts and in a variety of multithreaded
applications. However, while it is important for scalability and performance to reduce the update
probability as the counter grows, at some point for a given system and workload, contention on
the counter variable may be reduced to virtually zero, and the overhead of updating the counter
occasionally will become unnoticeable. Past this point, reducing the update probability further
may serve only to increase the inaccuracy of the counter. Therefore, some embodiments employ
adaptive and/or contention-sensitive update policies, such as a contention-sensitive update policy.
For example, in some embodiments, the increment operation may choose to update the exponent
(thereby reducing the update probability) only when there is (or has been) contention for the
counter. In other words, an adaptive BFP counter may employ an increment operation that is
dependent on the current, recent, or historical amount of contention for the counter. For
example, in some embodiments the increment operation may first attempt to increment the
mantissa (e.g., unconditionally, or unless it would overflow) once (or another pre-determined
number of times) using a CAS type instruction, and only if that fails, may decide whether to
update the exponent and halve the mantissa using a policy similar to that used in the BFP-DUP
counter described above. A BFP counter that employs such a contention-sensitive update policy

may be referred to herein as a BFP-CSUP counter. In various experiments, it has been shown
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that a BFP-CSUP counter may yield performance that is similar to that of the BFP-DUP counters

described above, while achieving higher accuracy in practice.

[0095] One embodiment of a method for incrementing a probabilistic counter that stores a
binary floating point value that represents a counter's value dependent on contention for the
shared counter is illustrated by the flow diagram in FIG. 12. As illustrated at 1210, in this
example, the method may include a thread executing on a given node initiating an increment of a
shared probabilistic counter that stores a probabilistic counter value as a binary floating point
number, where an update probability computable from the exponent portion of the probabilistic
counter value is constrained to be a non-positive power of two. For example, in some
embodiments, the counter structure may include a mantissa portion and an exponent portion,
which together represent a projected (expected) value of m*2°. If incrementing the mantissa
portion of the counter would make its value equal to its accuracy-dependent threshold (shown as
the positive exit from 1220), the method may include continuing the attempt to increment the
shared probabilistic counter as in the method illustrated in FIG. 10, beginning with element 1040.
[0096] As illustrated in this example, if incrementing the mantissa portion of the counter
would not make its value equal to its accuracy-dependent threshold (shown as the negative exit
from 1220), the method may include the thread attempting to increment the shared probabilistic
counter by performing one or more attempts to increment the mantissa (as in 1230). In various
embodiments, the number of times the thread may retry its attempt may be dependent on one or
more applicable retry or contention management policies, and multiple retry attempts may be
performed with or without an intervening back-off period. If the thread succeeds in incrementing
the shared probabilistic counter (shown as the positive exit from 1240), the increment operation
may be complete (as in 1250). If the thread does not succeed in incrementing the shared
probabilistic counter (shown as the negative exit from 1240), the method may include continuing
the attempt to increment the shared probabilistic counter as in the method illustrated in FIG. 10,
beginning with element 1040.

[0097] In different embodiments, a variety of contention-sensitive methods may be applied
for determining whether, when, and/or how to update statistics counters based on current, recent,
or historic contention. One embodiment of a method for determining whether (and/or when) to
increment a shared counter and for incrementing the shared counter dependent on contention for
the shared counter is illustrated by the flow diagram in FIG. 13. As illustrated at 1310, in this
example, the method may include one of multiple concurrently executing threads of a
multithreaded application initiating an increment of a shared counter. In some embodiments, the
thread may be one of multiple threads that collectively implement multiple concurrently

executing atomic transactions. The method may include the thread determining whether or when
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to update the shared counter, where the method for determining whether or when to update the

shared counter is dependent on an amount of contention on the shared counter between the
concurrently executing threads (as in 1320). For example, the method may be dependent, at least
in part, on current, recent, or historic contention for the shared counter.

[0098] If the thread determines that it should not update the shared counter (shown as the
negative exit from 1330), the increment operation may be complete (i.c., without updating the
shared counter), as in 1360. On the other hand, if the thread determines that it should update the
shared counter (shown as the positive exit from 1330), the method may include the thread
attempting to update the shared counter, where the method for attempting to update the shared
counter is dependent on an amount of contention on the shared counter between concurrently
executing threads (as in 1340). Again, the method may be dependent, at least in part, on current,
recent, or historic contention for the shared counter. As illustrated in this example, if the attempt
to update the shared counter is successful (shown as the positive exit from 1350), the increment
operation may be complete (as in 1360). On the other hand, if the attempt to update the shared
counter is not successful (shown as the negative exit from 1350), the method may include the
thread retrying its attempt to update the shared counter one or more times until it is successful (or
until the attempt is aborted due to various applicable retry or contention management policies —
not shown). Note that, in this example, repeating the attempt to update the shared counter may
include repeating the determination of whether (or not) or when to update the counter. This is
illustrated in FIG. 13 by the feedback from 1350 to 1320. Note that in some embodiments, the
performance of a retry attempt (and/or the number of times that an attempt may be retried) may
also be dependent on the amount of contention on the counter (including contention that may
have caused this most recent failure). Note also that, while in the example illustrated in FIG. 13,
both the operation illustrated in 1320 and the operation illustrated in 1340 are described as being
dependent on an amount of contention on the counter, in other embodiments, only one of these
operations may be dependent on a current, recent, or historic amount of contention on the
counter.

[0099] The examples described herein have been largely focused on techniques for
implementing statistics counters for use in contexts in which there may be many counters, some
of which may be incremented frequently. Therefore, the examples have included techniques that
exhibit low space overhead, low overhead in the absence of contention, and good scalability
under heavy contention. Although these techniques have not necessarily been optimized for read
performance (e.g., for read operations that target the counters), in some embodiments the costs
associated with these read operations may be reasonably low for most of the techniques described

herein.
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[0100] Note that, in general, there may be two primary components of the cost of retrieving

the value of a counter. One component is the cost associated with the cost of reading the
necessary data, and the other component is the cost associated with computing a return value
from the data that is read. In many of the scenarios described herein, the first of these costs is
likely to dominate the cost of retrieving the count value associated with a given counter, because
the data underlying the counter is likely not to be in cache for the thread executing the read
operation. Therefore, the data may need to be fetched from memory, or from another cache,
which may be on a different NUMA node in the system.

[0101] Note that reading the value of existing naive counters may simply involve reading the
data stored in the counter itself and returning the value that was read. Hence, their read costs are
(at most) the cost of a single cache miss. In some embodiments, the NUMA-aware RBO type
counters or adaptive NUMA-aware RBO type counters described herein, or the counters that
employ the approaches referred to herein as BFP-DUP and BFP-CSUP, may also incur the cost
of a single cache miss, but these counters may also incur the costs of various masking and/or
shifting operations to determine the counter’s projected value. Reading the multiline counter
described herein may require that each of the cache lines underlying the counter be read.
However, these may be independent reads, so the cache misses may be resolved largely in
parallel on most modern architectures. Read operations on counters that employ the multiline-
adapt approach described herein may be similar to those of existing simple counters unless the
counter experiences sufficient update contention to be inflated, in which case the read operation
must read not only the multiple cache lines allocated for the counter, but also the pointer that
determines where they are. The read operations of the allocated cache lines depend on the value
of the pointer, and therefore the latency of the read operation may be likely to include the cost of
at least two cache misses in series, even if all of the allocated lines are read in parallel. Read
operations targeting the Morris and “prob-adapt” counters may both include multiple floating
point operations that are likely to add noticeable overhead if executed frequently. The BFP-
based counters may therefore be preferable in such scenarios. Alternatively, optimizations that
record the projected value calculated from a stored value may be worthwhile, given that
(eventually) the stored value of a counter may change only infrequently (e.g., after the update
probability has been sufficiently reduced).

[0102] In some embodiments, the scalable statistics counters described herein may be
especially valuable when used in systems that include transactional memory support, whether
that transactional memory support is implemented in hardware, in software, or using a
combination of both hardware and software. For example, statistics counters may be used for a

variety of purposes in such systems, such as recording the number of entries in a hash table, or
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maintaining statistics about how often a certain piece of code is executed. A common experience

has been that the use of counters within atomic transactions causes all pairs of transactions to
conflict because they all update the counter. As described herein, counters may in some
embodiments be made more scalable by reducing contention on them, either by splitting them up
so that multiple updates can occur in parallel (as in the multiline approach described above) or by
reducing the frequency of updates (as in the probabilistic counters described herein). In some
embodiments, these techniques may have the side effect of significantly reducing how often
atomic transactions using these counters would conflict with each other, as compared to
transactions that employ naive non-scalable counters, which typically scale poorly and/or yield
highly inaccurate counts.

[0103] In various embodiments, a variety of counter techniques (some of which provide a
precise count, and others of which aim for reasonable relative error, such that they are still useful
for the purpose of detecting count values that are incremented many times) may yield better
results in terms of scalability and/or accuracy than naive concurrent counters. Several of the
counters described herein may dramatically outperform commonly used statistics counters in
terms of both throughput and accuracy, especially in NUMA systems, while keeping space
overhead low.

[0104] Many of the counter techniques described herein are easily seen to be lock-free.
Furthermore, when employing the probabilistic counter techniques described herein, the need to
retry attempts to increment a counter may become less likely over time because the update
probability for the counter becomes smaller over time (particularly when there is contention for a
counter that employs the BFP-CSUP techniques described above). In some embodiments, the
counters described herein may be modified such that they are wait-free, which in some cases may
add overhead and/or complexity. Modifying the counters to be wait-free may also introduce
additional constraints (such as a need to know the maximum number of threads in advance), or
may result in a need for more overhead and complexity to avoid such constraints. However, in
practice, lock-freedom may in some embodiments be a strong enough property to ensure progress
for concurrent threads of a multithreaded application, provided that some type of back-off
scheme can be applied when there is contention for the counter.

[0105] FIG. 14 illustrates a computing system configured to implement the methods
described herein, according to various embodiments. The computer system 1400 may be any of
various types of devices, including, but not limited to, a personal computer system, desktop
computer, laptop or notebook computer, mainframe computer system, handheld computer,
workstation, network computer, a consumer device, application server, storage device, a

peripheral device such as a switch, modem, router, etc, or in general any type of computing
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device. In some embodiments, computer system 1400 may be one of a plurality of nodes in a

system that employs a NUMA style memory architecture and/or NUCA properties, or in general
any type of computing node that includes at least one processor core that is coupled to some type
of memory (e.g., cache, local memory, remote memory, etc.).

[0106] The mechanisms for implementing any or all of the scalable statistics counters
described herein, may be provided as a computer program product, or software, that may include
a non-transitory, computer-readable storage medium having stored thereon instructions, which
may be used to program a computer system (or other electronic devices) to perform a process
according to various embodiments. A computer-readable storage medium may include any
mechanism for storing information in a form (e.g., software, processing application) readable by
a machine (e.g., a computer). The machine-readable storage medium may include, but is not
limited to, magnetic storage medium (e.g., floppy diskette); optical storage medium (e.g., CD-
ROM); magneto-optical storage medium; read only memory (ROM); random access memory
(RAM); erasable programmable memory (ec.g., EPROM and EEPROM); flash memory;
electrical, or other types of medium suitable for storing program instructions. In addition,
program instructions may be communicated using optical, acoustical or other form of propagated
signal (e.g., carrier waves, infrared signals, digital signals, etc.)

[0107] In various embodiments, computer system 1400 may include one or more processors
1470; each may include multiple cores, any of which may be single or multi-threaded. For
example, as illustrated in FIG. 2, multiple processor cores may included in a single processor
chip (e.g., a single processor 1470), and multiple processor chips may be included on a CPU
board, two or more of which may be included in computer system 1400. Each of the processors
1470 may include a hierarchy of caches, in various embodiments. For example, as illustrated in
FIG. 2, each processor chip 1470 may include multiple L1 caches (e.g., one per processor core)
and a single L2 cache (which may be shared by the processor cores on the processor chip). The
computer system 1400 may also include one or more persistent storage devices 1450 (e.g. optical
storage, magnetic storage, hard drive, tape drive, solid state memory, etc) and one or more
system memories 1410 (e.g., one or more of cache, SRAM, DRAM, RDRAM, EDO RAM, DDR
10 RAM, SDRAM, Rambus RAM, EEPROM, etc.). Various embodiments may include fewer or
additional components not illustrated in FIG. 14 (e.g., video cards, audio cards, additional
network interfaces, peripheral devices, a network interface such as an ATM interface, an Ethernet
interface, a Frame Relay interface, etc.)

[0108] The one or more processors 1470, the storage device(s) 1450, and the system memory
1410 may be coupled to the system interconnect 1440. One or more of the system memories

1410 may contain program instructions 1420. Program instructions 1420 may be executable to
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implement one or more applications 1422 (which may include one or more accesses to a shared

statistics counter, as described herein), shared libraries 1424, or operating systems 1426. In some
embodiment, program instructions 1420 may be executable to implement a contention manager
(not shown). Program instructions 1420 may be encoded in platform native binary, any
interpreted language such as Java™ byte-code, or in any other language such as C/C++, Java™,
etc or in any combination thercof. The program instructions 1420 may include functions,
operations and/or other processes for implementing scalable statistics counters and associated
functions (e.g., increment operations and/or read operations that target the scalable statistics
counters), as described herein. Such support and functions may exist in one or more of the
shared libraries 1424, operating systems 1426, or applications 1422, in various embodiments.
The system memory 1410 may further comprise private memory locations 1430 and/or shared
memory locations 1435 where data may be stored. For example, shared memory locations 1435
may store data accessible to concurrently executing threads, processes, or atomic transactions,
which may include data stored in one or more structures that implement a shared statistics
counter (e.g., one of the precise counters or probabilistic counters described herein), in various
embodiments.

[0109] Although the embodiments above have been described in considerable detail,
numerous variations and modifications will become apparent to those skilled in the art once the
above disclosure is fully appreciated. It is intended that the following claims be interpreted to

embrace all such variations and modifications.
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WHAT IS CLAIMED:

1. A method, comprising:
performing by a plurality of computing nodes, ecach of which comprises at least one
processor core and a memory:
beginning execution of a multithreaded application that comprises one or more
operations to increment a shared counter, wherein the shared counter is
implemented as a data structure that is accessible by a plurality of threads
of the multithreaded application that are executing on the plurality of
computing nodes, wherein the data structure comprises a count value
portion and a node identifier portion;
initiating, by a given thread of the application, an increment operation targeting
the shared counter; and
determining whether to attempt to perform the increment operation or delay
performance of the increment operation, wherein said determining is
dependent, at least in part, on a value stored in the node identifier portion
of the data structure;
wherein the value stored in the node identifier portion of the data structure
indicates whether one or more threads on a particular one of the plurality
of computing nodes have priority to increment the shared counter or have

requested priority to increment the shared counter.

2. The method of claim 1,

wherein the value stored in the node identifier portion of the data structure identifies the
particular one of the plurality of computing nodes on which a thread that most
recently incremented the shared counter was executing;

wherein increment operations of threads executing on the identified computing node have
higher priority than increment operations of threads executing on other ones of the
plurality of computing nodes; and

wherein said determining comprises determining whether the value stored in the node
identifier portion of the data structure identifies a computing node other than the

one on which the given thread is executing.

3. The method of claim 1,
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wherein the value stored in the node identifier portion of the data structure identifies the

particular one of the plurality of computing nodes on which a thread that has
requested priority to increment the shared counter was executing; and

wherein said determining comprises determining whether the value stored in the node
identifier portion of the data structure identifies a computing node other than the

one on which the given thread is executing.

4. The method of claim 1, wherein attempting to perform the increment operation
comprises attempting to increment a value stored in the count value portion of the data structure
and to store an identifier of the computing node on which the given thread is executing in the

node identifier portion of the data structure using a single atomic operation.

5. The method of claim 4,

wherein said determining comprises determining that the value of the node identifier
portion of the data structure indicates that no threads on any of the plurality of
computing nodes have priority to increment the shared counter or have requested
priority to increment the shared counter; and

wherein said attempting to increment a value stored in the count value portion of the data
structure and to store an identifier of the computing node on which the given
thread is executing in the node identifier portion of the data structure is performed
in response to one or more failed attempts to increment the count value portion of
the data structure without writing a value to the node identifier portion of the data

structure.

6. The method of claim 1, further comprising:

in response to determining that one or more threads on a particular one of the plurality of
computing nodes other than the computing node on which the given thread is
executing have priority to increment the shared counter or have requested priority
to increment the shared counter:
delaying performance of the increment operation; and

attempting to perform the increment operation subsequent to said delaying.

7. The method of claim 1, further comprising:
attempting to perform the increment operation without a delay in response to determining

that threads on the one of the plurality of computing nodes on which the given
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thread is executing have priority to increment the shared counter or have requested
priority to increment the shared counter or that no threads on any of the plurality
of computing nodes have priority to increment the shared counter or have

requested priority to increment the shared counter.

8. The method of claim 1, further comprising:

in response to determining that the value stored in the node identifier portion of the data
structure identifies a computing node other than the one on which the given thread
is executing, the given thread storing an identifier of the computing node on which
the given thread is executing in an anti-starvation variable to indicate a request for

priority to increment the shared counter.

9. The method of claim 8, further comprising:
subsequent to said storing, a thread executing on the computing node on which the given

thread is executing attempting to perform an increment operation without delay.

10.  The method of claim 1, further comprising:

storing an initial or default value in the node identifier portion of the data structure to
indicate that no threads on any of the plurality of computing nodes have priority to
increment the shared counter or have requested priority to increment the shared
counter;

wherein said storing is performed during an initialization phase of the multithreaded
application, periodically, or in response to a decrease in contention for the shared

counter.

11. A system comprising:

a plurality of computing nodes, wherein each computing node comprises one or more
processor cores that collectively support multithreading and a memory storing
program instructions that when executed on the one or more computing nodes
cause the one or more computing nodes to perform:
beginning execution of a multithreaded application that comprises one or more

operations to increment a shared counter, wherein the shared counter is
implemented as a data structure that is accessible by a plurality of threads

of the multithreaded application that are executing on the plurality of
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computing nodes, wherein the data structure comprises a count value

portion and a node identifier portion;

initiating, by a given thread of the application, an increment operation targeting
the shared counter; and

determining whether to attempt to perform the increment operation or delay
performance of the increment operation, wherein said determining is
dependent, at least in part, on a value stored in the node identifier portion
of the data structure;

wherein the value stored in the node identifier portion of the data structure
indicates whether one or more threads on a particular one of the plurality
of computing nodes have priority to increment the shared counter or have

requested priority to increment the shared counter.

12.  The system of claim 11,

wherein the value stored in the node identifier portion of the data structure identifies the
particular one of the plurality of computing nodes on which a thread that most
recently incremented the shared counter was executing or identifies the particular
one of the plurality of computing nodes on which a thread that has requested
priority to increment the shared counter was executing;

wherein increment operations of threads executing on the identified computing node have
higher priority than increment operations of threads executing on other ones of the
plurality of computing nodes; and

wherein said determining comprises determining whether the value stored in the node
identifier portion of the data structure identifies a computing node other than the

one on which the given thread is executing.

13.  The system of claim 11, wherein when executed on the one or more computing
nodes, the program instructions further cause the one or more computing nodes to perform:
in response to determining that one or more threads on a particular one of the plurality of
computing nodes other than the computing node on which the given thread is
executing have priority to increment the shared counter or have requested priority
to increment the shared counter:
delaying performance of the increment operation; and

attempting to perform the increment operation subsequent to said delaying.
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14.  The system of claim 11, wherein when executed on the one or more computing

nodes, the program instructions further cause the one or more computing nodes to perform:
attempting to perform the increment operation without a delay in response to determining
that threads on the one of the plurality of computing nodes on which the given
thread is executing have priority to increment the shared counter or have requested
priority to increment the shared counter or that no threads on any of the plurality
of computing nodes have priority to increment the shared counter or have

requested priority to increment the shared counter.

15.  The system of claim 11, wherein when executed on the one or more computing
nodes, the program instructions further cause the one or more computing nodes to perform:

in response to determining that the value stored in the node identifier portion of the data
structure identifies a computing node other than the one on which the given thread
is executing, the given thread storing an identifier of the computing node on which
the given thread is executing in an anti-starvation variable to indicate a request for
priority to increment the shared counter; and

subsequent to said storing, a thread executing on the computing node on which the given

thread is executing attempting to perform an increment operation without delay.

16. A non-transitory, computer readable storage medium storing program instructions
that when executed on one or more computers cause the one or more computers to perform:

beginning execution of a multithreaded application that comprises one or more operations
to increment a shared counter, wherein the shared counter is implemented as a
data structure that is accessible by a plurality of threads of the multithreaded
application that are executing on a plurality of computing nodes, wherein the data
structure comprises a count value portion and a node identifier portion;

initiating, by a given thread of the application, an increment operation targeting the
shared counter; and

determining whether to attempt to perform the increment operation or delay performance
of the increment operation, wherein said determining is dependent, at least in part,
on a value stored in the node identifier portion of the data structure;

wherein the value stored in the node identifier portion of the data structure indicates
whether one or more threads on a particular one of the plurality of computing
nodes have priority to increment the shared counter or have requested priority to

increment the shared counter.
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17.

The non-transitory, computer readable storage medium of claim 16,

wherein the value stored in the node identifier portion of the data structure identifies the

particular one of the plurality of computing nodes on which a thread that most
recently incremented the shared counter was executing or identifies the particular
one of the plurality of computing nodes on which a thread that has requested

priority to increment the shared counter was executing;

wherein increment operations of threads executing on the identified computing node have

higher priority than increment operations of threads executing on other ones of the

plurality of computing nodes; and

wherein said determining comprises determining whether the value stored in the node

18.

identifier portion of the data structure identifies a computing node other than the

one on which the given thread is executing.

The non-transitory, computer readable storage medium of claim 16, wherein when

executed on the one or more computers, the program instructions further cause the one or more

computers to perform:

in response to determining that one or more threads on a particular one of the plurality of

19.

computing nodes other than the computing node on which the given thread is
executing have priority to increment the shared counter or have requested priority
to increment the shared counter:

delaying performance of the increment operation; and

attempting to perform the increment operation subsequent to said delaying.

The non-transitory, computer readable storage medium of claim 16, wherein when

executed on the one or more computers, the program instructions further cause the one or more

computers to perform:

attempting to perform the increment operation without a delay in response to determining

that threads on the one of the plurality of computing nodes on which the given
thread is executing have priority to increment the shared counter or have requested
priority to increment the shared counter or that no threads on any of the plurality
of computing nodes have priority to increment the shared counter or have

requested priority to increment the shared counter.
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20.  The non-transitory, computer readable storage medium of claim 16, wherein when

executed on the one or more computers, the program instructions further cause the one or more
computers to perform:
in response to determining that the value stored in the node identifier portion of the data
5 structure identifies a computing node other than the one on which the given thread
is executing, the given thread storing an identifier of the computing node on which
the given thread is executing in an anti-starvation variable to indicate a request for
priority to increment the shared counter; and
subsequent to said storing, a thread executing on the computing node on which the given

10 thread is executing attempting to perform an increment operation without delay.
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