US007568112B2

a2 United States Patent

Yamaguchi et al.

US 7,568,112 B2
Jul. 28, 2009

(10) Patent No.:
(45) Date of Patent:

(54) DATA ACCESS CONTROL METHOD FOR
TAMPER RESISTANT MICROPROCESSOR

6,993,130 B1*
6,993,654 B2*

1/2006 Fernandez et al. 380/46
1/2006 Sekietal.cccunnnee 713/172

USING CACHE MEMORY
(75) Inventors: Kensaku Yamaguchi, Yokohama (JP);
Mikio Hashimoto, Yokohama (JP) (Continued)
(73) Assignee: Kabushiki Kaisha Toshiba, Tokyo (JP) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this Jp 2002-232417 8/2002
patent is extended or adjusted under 35
U.S.C. 154(b) by 602 days.
(21) Appl. No.: 10/754,571 (Continued)
(22) Filed: Jan. 12, 2004 OTHER PUBLICATIONS
(65) Prior Publication Data D. Lie, etal., Proceedings of ASPLOS 2000, 10 pages, “Architectural
US 2004/0143748 Al Tul. 22. 2004 Support for Copy and Tamper Resistant Software”, Nov. 2000.
Continued
(30) Foreign Application Priority Data (Continued)
Jan. 21. 2003 (P 2003-012558 Primary Examiner—Taghi T. Arani
221,2003 (IP) e Assistant Examiner—James Turchen
(51) Int.CL (74) Attorney, Agent, or Firm—Oblon, Spivak, McClelland,
GO6F 11/30 (2006.01) Maier & Neustadt, P.C.
GO6F 12/14 (2006.01)
(52) US.CL oo 713/190; 713/187; 713/188; ©O7) ABSTRACT
713/194;711/125;711/118
(58) Field of Classification Search 711/125, . . .
711/11 8, 713/187, 188, 190, 194 Ina tamper resistant micCroprocessor haVlng acache memory,
See application file for complete search history. the cache memory stores the decrypted execution code or data
) into one of cache lines provided in the cache memory, each
(56) References Cited cache line having a secret protection attribute holding section
U.S. PATENT DOCUMENTS for storing an actual encryption key used in decrypting the
execution code or data, and a cache memory control unit
4,558,176 A 12/1985 Armold et al. processes a reading request for the execution code or data
5,224,166 A * 6/1993 Hartman, Jr.ocovveve. 713/190 such that, if the execution code or data exists in the cache
5,666,411 A . 9/1997 McCarty] memory and the execution code or data in the cache memory
5,825,878 A . 10/1998 Takahashi et al. 713/190 iS decrypted by an identical encryption key as the prescribed
2’?32’;‘2 gl N ?gii? iiab;);l """""""""""" g?gﬁgg encryption key, the execution code or data in the cache
o [OME v memory is read out.
6,523,118 B1* 2/2003 Buercccccceveeeeeennn. 713/189
6,895,506 B1* 5/2005 Abu-Husein 713/193
6,965,977 B2* 11/2005 Yi weeevveveviiiiiiiiieneeenn. 711/169 8 Claims, 9 Drawing Sheets
21
. SECRET PROTECTION ATTRIBUTE: CONTROL INFORMATION
CACHE LINE 222 ——= TAG REGION 23a {DATA REGION 242 ijoi NG SECTION 250 {HOLDING SECTION 26a
SECRET PROTECTION ATTRIBUTE: CONTROL INFORMATION
CACHE LINE22b ——={TAG REGION 23b :DATA REGION 24b HOLDING SECTION 25b HOLDING SECTION 26b |
SECRET PROTECTION ATTRIBUTE; CONTROL INFORMATION
SECRET PROTECTION ATTRIBUTE; CONTROL INFORMATION
CACHE LINE 224 ——>) TAG REGION 23d {DATA REGION 24d o piNG SECTION 25 HOLDING SECTION 264

US 7,568,112 B2

Page 2
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

7,036,017 B2* 4/2006 Gammel et al. 713/189 U.S. Appl. No. 09/748,017, filed Dec. 27, 2000, Takabatake et al.
2001/0018736 Al* 8/2001 Ha.shimoto etal. .o...oooeeel. 713/1 US. Appl No. 09/781,284, filed Feb. 13’ 2001’ Hashimoto et al.
2002/0051536 Al: 5/2002 Shirakawa et al. 380/45 U.S. Appl. No. 09/984,407, filed Oct. 30, 2001, Shirakawa et al.
20020191793 A1+ 122002 Anand tal. wrrrorrrns 350285 U-S-Appl- No- 10028794, fld Dec. 28, 001, Teramoto et .
2003/0126458 Al* 7/2003 Teramoto etal. 713194 U-S-Appl. No. 10/059,217, filed Jan. 31, 2002, Hashimoto et al.
2003/0196102 Al* 10/2003 MecCarroll w. 7137194 U.S. Appl. No. 10/214,197, filed Aug. 8, 2002, Fujimoto et al.
2004/0093505 A1* 5/2004 Hatakeyamaetal. 713/189 U.S. Appl. No. 10/259,379, filed Sep. 30, 2002, Hashimoto et al.
2004/0117639 Al* 6/2004 MoOWerycccccceeeeuue 713/187 U.S. Appl. No. 10/394,175, filed Mar. 24, 2003, Jinmei et al.
2004/0123132 Al* 6/2004 Montgomery etal. 713/200 U.S. Appl. No. 10/608,113,f iled Jun. 30, 2003, Yamaguchi et al.
2005/0071651 Al* 3/2005 Aguilaretal. 713/189 U.S. Appl. No. 11/060,704, filed Feb. 18, 2005, Haruki et al.

FOREIGN PATENT DOCUMENTS USs. Appl No. 10/913,537, filed Aug. 9, 2004, Hashimoto et al.

JP 2002232417 A

*

8/2002

* cited by examiner

US 7,568,112 B2

Sheet 1 of 9

Jul. 28, 2009

U.S. Patent

DIAA

AMONIN —

TETGE AN NOILIAUING
OV~ spwAdy < I
m ;
m AONIN 3HDYD
ATX NOLLAAHINA ---—----=] VIV LXdINIVd
0z o T0HINO) YIVO 3000
| AHONIN THDVD V0 300
m OSSO0
i VIV 300)
| VIVO DGINIYI| | DAINIVId
IVILIIN e ONISST0Hd
ond JyNy3L3 | VIVA G3LdAYDNG \umﬁ»“wﬁ I~ 0€
YIva 300)
0§ HOSSID0NAOWIN INVISISIH §3dWVL Ol
001

E

US 7,568,112 B2

Sheet 2 of 9

Jul. 28, 2009

U.S. Patent

NOILYINHO4NI TO4INOD {JINGIYLLY NOIDIL0Hd 134D3S!

P9z NOID3S ONIGTOH: " DSZ NOIID3S ONIQT0H]
| NOLLYWHOINI TOHINOD {3LNAIMLLY NOLD3ION LMdast """ 777 777 o T T
397 NOIYIS INITTOH! 36z NOID3S ONIdT0H:
| NOLLVIVHOINI TOHINGD | INAIBLIY NOID3I0d L3uas: 77 <= TT7 = PP 7
G9z NOIDS ONIQTOH! 4Gz NOID)3S INId10H:
| NOLLYAHOINI TOHINOD: 3INGIYLIY NOILD3LOHd LIWD3S:
ez NOILD3S ONIGTOH | 66z NOI)3S SNId 0K}

ey¢ NOI9TY <—<= umN NOI93Y wﬁ

¢ 9l

Lé

PZCINIT IHIY)D
ICCINIT IHIYD
4z ANIT 3HIVD
BZCANIT 3HIVD

U.S. Patent Jul. 28, 2009 Sheet 3 of 9 US 7,568,112 B2

FIG. 3
(s)

RECEIVE EXECUTION CODE OR DATA ACQUISITION REQUEST |~ S101

S102

DOES IT
EXIST IN CACHE
MEMORY?

S103 S108
b, b,
READ OUT EXECUTION CODE OR DATA ACQUIRE ENCRYPTION KEY FROM
FROM EXTERNAL MEMORY SECRET PROTECTION ATTRIBUTE
S104 HOLDING SECTION
3 31609
DECRYPT READ OUT EXECUTION CODE | ACQUIRE ENCRYPTION KEY FROM
OR DATA BY USING ENCRYPTION KEY KEY VALUE REGISTER
OF KEY VALUE REGISTER
S105
. S110
STORE DECRYPTED EXECUTION CODE 00 TWO
OR DATAINTO CACHE MEMORY ENCRYPTION KEYS

S106 COINCIDE?
5 YES
STORE ENCRYPTION KEY OF KEY VALUE S111
REGISTER INTO SECRET PROTECTION 3

ATTRIBUTE_HOLDING SECTION
5107 TRANSFER CONTENT OF CACHE
5 MEMORY TO PROCESSOR CORE

TRANSFER DECRYPTED EXECUTION CODE
OR DATATO PROCESSOR CORE

END

U.S. Patent Jul. 28, 2009 Sheet 4 of 9 US 7,568,112 B2

FIG. 4

(START)

WRITE DATA INTO CACHE MEMORY 5201

STORE ENCRYPTION KEY OF KEY VALUE | ~S202
REGISTER INTO SECRET PROTECTION
ATTRIBUTE HOLDING SECTION

ACQUIRE DATA FROM CACHE MEMORY |~ S203

ACQUIRE ENCRYPTION KEY FROM SECRET |~ S204
PROTECTION ATTRIBUTE HOLDING SECTION

ENCRYPT DATA BY USING ENCRYPTION KEY b S205

WRITE ENCRYPTED DATA INTO EXTERNAL | ~S206
MEMORY

END

U.S. Patent Jul. 28, 2009 Sheet 5 of 9 US 7,568,112 B2

FIG. S

PROGRAM | EXECUTION CODE OR DATA| KEY
1 A

N
(M| O | MO
< | < | < | > | > | <

U.S. Patent Jul. 28, 2009 Sheet 6 of 9 US 7,568,112 B2

PROGRAM #1 PROGRAM #2

e e e e ——————— =

S301
g)

SET "KEY VALUE X"

S S302
EXECUTE PROCESSING OF]
LF.XECUTI[)N CODE OR DATA "A"J
S S303

(EXECUTE PROCESSING OF
|EXECUTION CODE OR DATA "B"

¢ 5304

< S305

(EXECUTE PROCESSING OF |
|EXECUTION CODE OR DATA *C" |

[SET "KEY VALUE Y"]

< S306

[EXECUTE PROCESSING OF
| EXECUTION CODE OR DATA "D"

S S307

[EXECUTE PROCESSING OF |
| EXECUTION CODE OR DATA "E"

S S308

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "F"

__

U.S. Patent Jul. 28, 2009 Sheet 7 of 9 US 7,568,112 B2

FIG. 7

PROGRAM #1 PROGRAM #2

S S401

SET "KEY VALUE X"

< S402

(EXECUTE PROCESSING OF
| EXECUTION CODE OR DATA "A"

S S403

(EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "B" |

S404 |
Sﬁi

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA “C"

¢ S406

¢ S405
SAVE "KEY VALUE X" 1 SET "KEY VALUE Y"
4§ y I y,
" (EXECUTE PROCESSING OF
| |EXECUTION CODE OR DATA D" |
| ¢ S407
| (EXECUTE PROCESSING OF |
| EXECUTION CODE OR DATA "E"
¢ $409 | ¢ S408
| ’)
. . ' [EXECUTE PROCESSING OF
[5“ “YWWEXA“m}s‘*ﬁ“jaummNwmonmm"PJ
¢ S$410 |

U.S. Patent Jul. 28, 2009 Sheet 8 of 9 US 7,568,112 B2

__

SS501

SET "KEY VALUE X"

~

EXECUTE PROCESSING OF
| EXECUTION CODE OR DATA "a" |~ S502(S507)

N0 $504
(EXECUTE PROCESSING OF | [e .
| EXECUTION CODE OR DATA "8" | | SEUKEVVALUEY" |
¢ S505 ¢ S510
(EXECUTE PROCESSING OF EXECUTE PROCESSING OF |
| EXECUTION CODE OR DATA "C" | | EXECUTION CODE OR DATA "D
¢ S506 ¢ 8511

N

[EXECUTE PROCESSING OF
| EXECUTION CODE OR DATA "F" |

g5512

N

[(NT=CNT +1]

[EXECUTE PROCESSING OF
| EXECUTION CODE OR DATA "

<S509 |

U.S. Patent Jul. 28, 2009 Sheet 9 of 9 US 7,568,112 B2

RE - SETTING

FIG.9
PROGRAM #1 PROGRAM #2
i ([s) !
| ¢ S601 | |
[SET "KEY VALUE X"]
i ¢ S602 o |
. (execore pRocessiNG oF | | |
| EXECUTION CODE OR DATA "A"| | ! :
| ¢ S603 o |
' [oecure processive oF | |
| EXECUTION CODE OR DATA "8" | | ! :
i gsso:1 B : (8605
| (Execute procEssING o | . . :
| EXEUTION CODE OR DATA "C” [1 | SETKEVVALLEY] ;
| I (5005
N "1 [EXECUTE PROCESSING OF :
N | | EXECUTION CODE OR DATA "D"| |
| L S0
S {_t____.| EXECUTE PROCESSING OF |
; 77| EXECUTION CODE OR DATA "E"| |
s [
| B ABNORMAL FINISH/ |

US 7,568,112 B2

1

DATA ACCESS CONTROL METHOD FOR
TAMPER RESISTANT MICROPROCESSOR
USING CACHE MEMORY

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a data access control
method in a tamper resistant microprocessor and a cache
memory implemented processor having a function for sup-
porting the multi-task program execution environment, a
cache memory control unit and encryption/decryption func-
tion so as to realize the protection of secrecy and the preven-
tion of alteration for the execution codes of the programs and
the processing target data.

2. Description of the Related Art

In the computer systems of recent years, the open system
that can be constructed by combining hardware and software
of'various makers has been widespread, as in the case of PCs.
In the open system, the information on the operating system
(referred hereafter as OS) formed by hardware and system
program is publicly disclosed so that it is in principle possible
for a user to modify or alter the OS program according to the
disclosed information

The application program is operated under the manage-
ment of this OS, so that when the OS itself is attacked and
altered by a third person such as a hacker, there is no way of
escaping from this attack. Therefore it has been difficult for
the application program provider to protect the application
program completely from the analysis or the alteration by the
third person.

For this reason, there is a method to encrypt the application
program in advance, in order to prevent the analysis and the
alteration of the application program to be operated under the
OS of the open system. When the program is encrypted, not
only the analysis becomes difficult but also the prediction of
the operation in the case where the program is altered also
becomes difficult so that it is also effective for the prevention
of the alteration.

However, the encrypted application program cannot be
executed as it is by the existing computer, so that there is a
need for a microprocessor which can execute the program
while decrypting the program. This microprocessor has func-
tions for protecting the secrecy of the program and providing
protection against the analysis and the alteration by encrypt-
ing data handled by the program on the presumption that the
OS may carry out hostile operations against the application
program. In the following, such a microprocessor will be
referred to as a tamper resistant microprocessor.

Also, this tamper resistant microprocessor provides the
multi-task program execution environment for executing a
plurality of protected programs simultaneously in a pseudo-
parallel manner (see commonly assigned co-pending U.S.
patent application Ser. Nos. 09/781,158 and 09/781,284, and
David Lie, etal., “Architectural Support for Copy and Tamper
Resistant Software”, ASPLOS-IX Proceedings of the 9th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Cambridge,
Mass., USA, Nov. 12-15, 2000, pp. 168-177).

In the case where the cache memory is implemented on the
tamper resistant processor, the encryption processing unit for
carrying out encryption and decryption can be arranged
between the processor core and the cache memory or between
the cache memory and the memory device such as the main
memory. When the encryption processing unit is arranged
between the cache memory and the main memory, the plain-
text contents after the decryption or before the encryption will

20

25

30

35

40

45

50

55

60

65

2

be stored in the cache memory. For this reason, the latter
arrangement is more efficient than the former arrangement
because the less number of encryption/decryption processing
is required by the latter arrangement.

When the encryption processing unit carries out the
encryption or the decryption, if it is under the multi-task
program execution environment, a plurality of programs and
their data are stored in the cache memory. At this point, there
are cases where the eavesdropping or the alteration of the
secret information of the other program among the programs
in the cache memory can occur due to the alternation of the
OS by the third person. In order to prevent such a case, there
is a need to limit accesses with respect to the cache memory.

In the conventionally proposed tamper resistant micropro-
cessor, one task ID is given to each one of the programs that
are operated simultaneously, and this task ID is utilized in
limiting accesses with respect to the cache memory. Each
cache line of the cache memory is provided with a secret
protection field for storing the task ID. When the processor
core stores the plaintext execution code or data into the cache
memory, the task ID of the currently executed program is
stored into the corresponding secret protection field. When
the processor core reads out the content of the cache memory,
the task ID is obtained from the secret protection field of the
cache line to be read. This task ID is compared with the task
ID of the currently executed program, and the reading is
permitted only when they coincide.

There is aneed to carry out the encryption when data stored
in the cache memory is to be written into the memory device
such as the main memory, but the encryption key to be used in
the encryption is not necessarily the encryption key main-
tained by the currently executed program. In the convention-
ally proposed tamper resistant microprocessor, the encryp-
tion key is obtained by using the task ID stored in the secret
protection field in the cache line. For this reason, a key value
table for storing correspondences between the task IDs and
the encryption keys is provided inside the processor.

Also, when a plurality of programs carry out cooperative
operations simultaneously, there is a function for sharing data
among these programs such that data cannot be read out from
the other programs. In order to realize this function, one
encryption key value is shared by these programs. Each pro-
gram uses this one encryption key in reading or writing data,
such that the contents of the shared memory region can be
shared by these programs while the other programs that do not
know this one encryption key cannot read or write the con-
tents of that memory region by carrying out the encryption/
decryption correctly (see Japanese Patent Application Laid
Open No. 2002-202720).

However, the above described method for limiting accesses
with respect to the cache memory by using the task ID is
associated with the following problems.

The first problem is that the tamper resistant microproces-
sor that uses this method needs to maintain the key valuetable
storing correspondences between the task IDs and the encryp-
tion keys, and the number of programs that can be activated
simultaneously is limited by the size of this key value table.

The second problem is that, when the program with one
task ID is finished and this task ID is assigned to another
program to be newly activated, if the data of the previously
executed program still remain in the cache memory, the next
program to which the same task ID is assigned would become
possible to read that data without knowing the encryption key.
In order to avoid this, there is a need to scan the entire region
of the cache memory and invalidate the cache lines corre-
sponding to the task ID of the finishing program at a time of
finishing the program, but this operation requires a long time.

US 7,568,112 B2

3

This is particularly noticeable in the microprocessor imple-
mented with the large cache memory.

The third problem is that, in the case where the memory
contents are shared when a plurality of programs carry out the
cooperative operations simultaneously, in order for another
program to read the data written by one program, there is a
need to encrypt the data written by that one program and write
it into the memory device such as the main memory once, and
then decrypt it and read it into the cache memory. In order
words, even though it is the same data of the same content,
there is a need to encrypt it once and then decrypt it by using
the same key again, so that the execution speed is lowered.

The fourth problem is that the method for limiting accesses
with respect to the cache memory by using the task ID
requires the implementation of many functions by hardware,
such as a function for looking up the key value table, a
function for scanning the cache region and invalidating rel-
evant cache lines at a time of finishing the program, etc., so
that the structure of the microprocessor becomes compli-
cated.

BRIEF SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a data access control method by a tamper resistant micropro-
cessor and a cache memory implemented processor, for lim-
iting accesses with respect to the cache memory, in which
there is no limit to the number of programs that can be acti-
vated simultaneously, the contents of the cache memory used
by one finishing program can be made impossible to read
from the other program without scanning the entire region of
the cache memory, the contents written into the cache
memory by one program can be read by the other program
without encrypting it and writing it into the main memory
when a plurality of programs read and write the shared
memory region by sharing one encryption key, and the com-
plicated hardware functions are unnecessary.

According to one aspect of the present invention there is
provided a tamper resistant microprocessor, comprising: a
decryption unit configured to read out an execution code or
data of an encrypted program and decrypt the execution code
or data by using a prescribed encryption key, according to a
decryption request from the cache memory control unit; a
cache memory configured to store the execution code or data
decrypted by the decryption unit into one of cache lines
provided in the cache memory, each cache line having a secret
protection attribute holding section for storing an actual
encryption key used in decrypting the execution code or data;
and a cache memory control unit configured to process a
reading request for the execution code or data such that, if the
execution code or data exists in the cache memory and the
execution code or data in the cache memory is decrypted by
an identical encryption key as the prescribed encryption key,
the execution code or data in the cache memory is read out.

According to another aspect of the present invention there
is provided a data access control method by a cache memory
implemented processor, comprising: reading out an execu-
tion code or data or an encrypted program and decrypting the
execution code or data by using a prescribed encryption key,
according to a decryption request; storing the execution code
or data decrypted by the reading and decrypting step, into one
of cache lines provided in a cache memory, each cache line
having a secret protection attribute holding section for storing
an actual encryption key used in decrypting the execution
code or data; and processing a reading request for the execu-
tion code or data such that, if the execution code or data exists
in the cache memory and the execution code or data in the

20

25

30

35

40

45

50

55

60

65

4

cache memory is decrypted by an identical encryption key as
the prescribed encryption key, the execution code or data in
the cache memory is read out.

Other features and advantages of the present invention will
become apparent from the following description taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing a configuration of a
tamper resistant microprocessor according to one embodi-
ment of the present invention.

FIG. 2 is a diagram showing a data structure in a cache
memory used in the tamper resistant microprocessor of FI1G.
1.

FIG. 3 is a flow chart showing a procedure for reading the
execution code and data by the tamper resistant microproces-
sor of FIG. 1.

FIG. 4 is a flow chart showing a procedure for writing the
data by the tamper resistant microprocessor of FIG. 1.

FIG. 5 is a diagram schematically showing an exemplary
structure of execution codes and data to be processed by the
tamper resistant microprocessor of FIG. 1.

FIG. 6 is a flow chart showing the case #1 of reading out the
execution code by the tamper resistant microprocessor of
FIG. 1.

FIG. 7 is a flow chart showing the case #2 of reading out the
execution code by the tamper resistant microprocessor of
FIG. 1.

FIG. 8 is a flow chart showing the case #3 of reading out the
execution code by the tamper resistant microprocessor of
FIG. 1.

FIG. 9 is a flow chart showing the case #4 of reading out the
execution code by the tamper resistant microprocessor of
FIG. 1.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1 to FIG. 9, one embodiment of the
data access control method by the tamper resistant micropro-
cessor having a cache memory control unit and an encryption/
decryption function for protecting secrecy and preventing
alteration of the program execution code and processing tar-
get data according to the present invention will be described
in detail.

<Tamper Resistant Microprocessor>

As shown in FIG. 1, the tamper resistant microprocessor
100 of this embodiment has a processor core 10, a cache
memory control unit 20, a code data encryption/decryption
processing unit 30, a key value register 40 and an external bus
interface 50. The tamper resistant microprocessor 100 is con-
nected to a memory device 60 through a bus 70 connected to
the external bus interface 50.

The processor core 10 carries out the processing of the
plaintext code and the plaintext data given from the cache
memory control unit 20.

The code data encryption/decryption processing unit 30 is
amodule arranged between the cache memory control unit 20
and the external bus interface 50, for carrying out the decryp-
tion of the encrypted execution code or data transmitted from
the bus 70 side. The code data encryption/decryption process-
ing unit 30 also encrypts data received from the cache
memory control unit 20 and outputs it to the bus 70 side.

The key value register 40 stores the encryption key to be
used by the code data encryption/decryption processing unit
30 at a time of executing the encryption or the decryption. As
shown in FIG. 5, one program comprises a plurality of execu-

US 7,568,112 B2

5

tion codes and data, and these plurality of execution codes and
data are encrypted or decrypted by one encryption key stored
in the key value register 40.

Note that, in this embodiment, it is assumed that the execu-
tion codes and the data of the same program are encrypted by
using the same encryption key, but it is also possible to make
the key value register 40 to store two encryption keys for the
execution codes and the data such that the execution codes
and the data are encrypted by using different keys. The key
value register 40 and secret protection attribute holding sec-
tions 25a to 254 shown in FIG. 2 store the same key value, so
that it is preferable for the key value register 40 to have the
same size as the secret protection attribute holding section.
The region of the key value register 40 will be updated by
overwriting the key value of a new program at a time of
executing a new program.

The memory device 60 is a memory device such as a main
memory for storing the execution codes and the data after the
program compilation. The memory device 60 may also
exchange the data with an external supplementary memory
device or external bus (not shown) by using a communication
control device (not shown) through the bus 70. Note that the
execution codes and the data stored in the memory device 60
are assumed to be already encrypted by an external encryp-
tion processing device or the like, before being received and
stored into the memory device 60.

The cache memory control unit 20 carries out control of a
comparison processing, a calculation processing, etc., of
address information or information such as the secret protec-
tion attribute which are associated with the execution codes
and the data. The cache memory control unit 20 internally has
a cache memory 21 for storing the execution codes and the
data as the plaintext codes and the plaintext data.

FIG. 2 shows a data structure inside the cache memory 21.
The cache memory 21 comprises a plurality of cache lines
22a,22b, 22¢, 22d and so on (referred hereafter as cache lines
22a 10 22d). The cache lines 22a to 22d have tag regions 234,
23b, 23c¢, 23d and so on (referred hereafter as tag regions 23a
to 23d), data regions 24a, 245, 24c¢, 24d and so on (referred
hereafter as data regions 24a to 24d), secret protection
attribute holding sections 25a, 255, 25¢, 25d and so on (re-
ferred hereafter as secret protection attribute holding sections
25a to 25d), and control information holding sections 26aq,
26b, 26¢, 26d and so on (referred hereafter as control infor-
mation holding sections 26a to 264).

The tag regions 23a to 234 are regions for storing informa-
tion regarding addresses from which the execution codes and
the data are read out. The data regions 24a to 244 are regions
for storing the read out execution codes and data. The secret
protection attribute holding sections 254 to 254 are regions
for storing the encryption keys used in decrypting the execu-
tion codes and the data, which is also the encryption key to be
used in encrypting the data. The control information holding
sections 26a to 26d are regions for storing control information
of the execution codes and the data stored in the cache lines
22q to 22d.

Next, the operations of the tamper resistant microprocessor
of'this embodiment at a time of the initial setting of the value
in the key value register, the reading of the execution code, the
reading of the data and the writing of the data will be
described.

<Initial Setting of the Value in the Key Value Register>

The program loaded into the memory device 60 sets the
encryption key into the key value register 40 of the tamper
resistant microprocessor 100 as an initial setting of the pro-
gram execution. More specifically, the data obtained by
encoding the encryption key is given to the processor core 10

20

25

30

35

40

45

50

55

60

65

6

as a parameter, and the processor core 10 sets the given
encryption key into the key value register 40. For example, as
shown in FIG. 5, the key value “X” is set to the key value
register 40 before executing the execution code or data “A”,
“B” and “C” by the program #1, and the key value “Y” is set
to the key value register 40 before executing the execution
code or data “D”, “E” and “F” by the program #2. Else the
non-encrypted execution code with the key value “0” may be
inserted before “A” in FIG. 5 such that the key value is set to
the key value register 40 as an operation content at a time of
executing this execution code.

Note that in the case where the control is shifted to the other
program as the execution is interrupted by the interruption or
the like during the execution of the encrypted program, the
value ofthe key value register is saved as a part of the ordinary
context saving operation. Also, at a time of resuming the
execution of the interrupted program, the value of the key
value register is recovered as a part of the ordinary context
recovery operation. Here, the context may be encrypted. By
saving the value of the key value register as the context, it is
possible to realize the multi-task program execution environ-
ment in which a plurality of programs encrypted by using
different encryption keys are executed simultaneously in a
pseudo-parallel manner.

As acontrol at a time of turning on the power of the tamper
resistant processor 100 or immediately after the reset and
immediately after the context saving (except for the case
where another context recovery is carried out immediately
after the context saving), the tamper resistant microprocessor
100 sets a special value to the key value register 40. This can
be realized by using an encryption key with a value “0”, or
using one bit of the key value register as a flag. When such a
special value is set to the key value register 40, the tamper
resistant microprocessor 100 executes the execution code
read out from the memory device 60 without carrying out the
decryption. In this way, it becomes possible for the program-
mer to freely decide whether a program should be encrypted
or not, or specify which parts of a program should be
encrypted and at which timing the encryption/decryption
should be carried out.

After the encryption key is set to the key value register 40
by the processor core 10, the cache memory control unit 20
carries out the reading of the execution codes and the data by
the following procedure.

<Reading of the Execution Codes and the Data>

The operation of the tamper resistant microprocessor 100
of'this embodiment for reading out the execution codes or the
data of the encrypted program from the memory device 60 or
the cache memory 21 will be described with reference to FI1G.
3.

(a) First, the cache memory control unit 20 receives an
execution code or data acquisition request from the pro-
cessor core 10 at the step S101, and judges whether this
execution code or data exists on the cache memory 21 or
not, as the first confirmation, at the step S102.

(b) In the case where it is judged that the execution code or
data of the address to be executed does not exist on the
cache memory 21, the execution code or data of that
address is read out from the memory device 60 through
the bus 70 and the external bus interface 50, at the step
S103.

(c) At the step S104, the code data encryption/decryption
processing unit 30 decrypts the execution code or data
read out from the memory device 60, by using the
encryption key in the key value register 40 that is set by
the initial setting.

US 7,568,112 B2

7

(d) At the step S105, this execution code or data is trans-
ferred to the cache memory 21, and stored into one of the
data regions 24a to 24d on the cache lines 22a to 22d of
FIG. 2. At this point, at the step S106, the information
regarding the address from which the execution code or
data is read out is stored into one of the tag regions 23a
to 23d, and the content in one of the control information
holding sections 26a to 26d is updated. Also, the encryp-
tion key in the key value register 40 that is used in
decrypting the execution code or data is stored in one of
the secret protection attribute holding sections 25a to
25d. The decrypted execution code or data is also trans-
ferred to the processor core 10 for execution, at the step
S107.

(e) On the other hand, when it is judged that the execution
code or data at an address to be executed exists on the
cache memory 21 by the first confirmation at the step
S102, the cache memory control unit 20 carries out the
second confirmation as follows. Namely, the encryption
key is acquired from the secret protection attribute hold-
ing section 25 in the cache line 22 of the execution code
or data at an address to be executed, among the secret
protection attribute holding sections 25« to 254 in the
cache lines 22a to 224 at the step S108, and the encryp-
tion key is acquired from the key value register 40 which
stores the encryption key unique to the program for
which the processing is currently executed, at the step
S109. Then, at the step S110, these encryption keys are
compared. When these two encryption keys coincide,
the use of the content of the execution code or data that
already exists in the cache memory 21 as the execution
code or data at an address to be executed is permitted.
Then, at the step S111, the execution code or data exist-
ing in the data region 24 of the cache line 22 is trans-
ferred to the processor core 10.

When the two encryption keys do not coincide at the step
S110, the use of the content in the cache memory 21 is not
permitted to the currently executed program, and the opera-
tion of the steps S103 to S107 are carried out similarly as in
the case where the execution code or data at an address to be
executed does not exist in the cache memory 21. It is also
possible to interrupt the execution of the program and gener-
ate an exception indicating the abnormal finish.

As a concrete example of the operation of the tamper
resistant microprocessor 100 described above, the operation
by the tamper resistant microprocessor 100 for executing the
program #1 and the program #2 of F1IG. 5 will be described. At
atime of executing the program #1 and the program #2, there
are four possible cases including the case where the program
#2 is executed after the program #1 is finished (Case #1), the
case where the program #2 is executed by interruption during
the execution of the program #1 (Case #2), the case where the
execution codes or data are executed within the same program
(Case #3), and the case where the execution codes or data are
executed between different programs (Case #4). In the fol-
lowing, each one of these cases will be described in detail.

(Case #1)

First, as the ordinary processing, the case where the pro-
gram #2 is executed after the program #1 is finished will be
described with reference to FIG. 6.

(a) First, the tamper resistant microprocessor 100 sets the
“key value X to the key value register 40 as the initial
setting of the program #1 at the step S301. Then, the
execution code or data “A” of the program #1 is called up
from the memory device 60, decrypted by using the “key
value X and stored into the cache line 22a of FIG. 2, at
the step S302. At this point, the “key value X” is stored

20

25

30

35

40

45

50

55

60

65

8

in the secret protection attribute holding section 25a.
Also, the execution code or data “A” is processed at the
processor core 10. The processor core 10 also carries out
the similar processing with respect to the execution code
or data “B” and “C” by advancing a program counter
(not shown) one by one, at the steps S303 and S304.

(b) When the program #1 is completed, the processing of
the program #2 that has been waiting is carried out. At
the step S305, the “key value Y” is set to the key value
register 40 as the initial setting of the program #2. Then,
the execution code or data “D” of the program #2 is
called up from the memory device 60, decrypted by
using the “key value Y” and stored into the cache line
22d of FIG. 2, at the step S306. At this point, the “key
value Y™ is stored in the secret protection attribute hold-
ing section 25d. Also, the execution code or data “D” is
processed at the processor core 10. The processor core
10 also carries out the similar processing with respect to
the execution code or data “E” and “F” by advancing a
program counter (not shown) one by one, at the steps
S307 and S308.

In this case #1, the encrypted programs #1 and #2 are
converted into the plaintext by using the encryption keys such
that the eavesdropping and the alternation by the malicious
third person can be prevented and the programs can be
executed safely.

(Case #2)

Next, the case where the program #2 is executed by inter-
ruption during the execution of the program #1 will be
described with reference to FIG. 7.

(a) First, the tamper resistant microprocessor 100 sets the
“key value X” to the key value register 40 as the initial
setting of the program #1 at the step S401. Then, the
execution code or data “A” ofthe program #1 is called up
from the memory device 60, decrypted by using the “key
value X” and stored into the cache line 22a of FIG. 2, at
the step S402. At this point, the “key value X” is stored
in the secret protection attribute holding section 25a.
Also, the execution code or data “A” is processed at the
processor core 10. The processor core 10 also carries out
the similar processing with respect to the execution code
or data “B” by advancing a program counter (not shown)
one by one, at the step S403.

(b) The interruption by the program #2 occurs during or
after the processing of the execution code or data “B”. At
the step S404, the cache memory control unit 20 saves
the “key value X as the ordinary context saving.

(b) Atthe step S405, the “key value Y™ is set to the key value
register 40 as the initial setting of the interrupting pro-
gram #2. Then, the execution code or data “D” of the
program #2 is called up from the memory device 60,
decrypted by using the “key value Y” and stored into the
cache line 22d of FIG. 2, at the step S406. At this point,
the “key value Y is stored in the secret protection
attribute holding section 25d. Also, the execution code
or data “D” is processed at the processor core 10. The
processor core 10 also carries out the similar processing
with respect to the execution code or data “E” and “F” by
advancing a program counter (not shown) one by one, at
the steps S407 and S408.

(d) When the program #2 is finished, the interrupted pro-
gram #1 resumes its processing. The saved “key value
X is set to the key value register 40 again at the step
S409, and the processing of the execution code or data
“C” of the interrupted program #1 is resumed at the step
S410.

US 7,568,112 B2

9

In this case #2, the encryption keys for decrypting the
encrypted programs #1 and #2 are saved as the context, so that
it is possible to realize the multi-task program execution
environment in which a plurality of programs are executed
simultaneously in a pseudo-parallel manner.

(Case #3)

Next, the case where the execution codes or data “A”, “B”,
“C”and “A” are executed within the program #1 of FIG. 5 will
be described with reference to FIG. 8. Here, an initial value of
a variable CNT is assumed to be “1”".

(a) First, the tamper resistant microprocessor 100 sets the
“key value X to the key value register 40 as the initial
setting of the program #1 at the step S501. Then, the
execution code or data “A” of the program #1 is called up
from the memory device 60, decrypted by using the “key
value X and stored into the cache line 22a of FIG. 2, at
the step S502. At this point, the “key value X is stored
in the secret protection attribute holding section 25a.
Also, the execution code or data “A” is processed at the
processor core 10. The processor core 10 also carries out
the similar processing with respect to the execution code
ordata “B” by advancing a program counter (not shown)
one by one, at the steps S504 and S505.

(b) At the step S506, the variable CNT is incremented by
one, and the processing of the step S502 is carried out
again as the step S507. At this point, the key value
register 40 stores the “key value X and the value of the
secret protection attribute holding section 25a for the
execution code or data “A” is also the “key value X”, so
that the cache memory control unit 20 permits the use of
the execution code or data “A” existing in the cache
memory 21, and the execution code or data “A” existing
in the cache memory 21 is transmitted to the processor
core 10 again.

(c) When the program #1 is completed, a branching com-
mand is issued and the processing of the program #2 that
has been waiting is started, at the step S508. The pro-
cessing of the program #2 at the steps S509 to S512 is the
same as the steps S305 to S308 described above.

In this case #3, the execution code or data already existing
in the cache memory 21 can be used within the program
having the same encryptionkey, i.e., the identical program, so
that the processing efficiency can be improved.

(Case #4)

Finally, the case where the execution codes or data are
executed between the program #1 and the program #2 of FIG.
5 will be described with reference to FIG. 9.

(a) First, the tamper resistant microprocessor 100 carries
out the initial setting of the program #1 and the process-
ing regarding the execution codes or data “A”, “B” and
“C” at the steps S601 to S604. These processings are the
same as those of the steps S301 to S304 described above.

(b) When the program #1 is completed, the processing of
the program #2 that has been waiting is carried out. At
the step S605, the “key value Y” is set to the key value
register 40 as the initial setting of the program #2. Then,
the execution code or data “D” of the program #2 is
called up from the memory device 60, decrypted by
using the “key value Y and stored into the cache line
22d of FIG. 2, at the step S606. At this point, the “key
value Y™ is stored in the secret protection attribute hold-
ing section 25d. Also, the execution code or data “D” is
processed at the processor core 10. The processor core
10 carries out the processing by advancing a program
counter (not shown) one by one.

(c) At the step S607, the execution code or data “E” to be
processed next is assumed to be related to the execution

20

25

30

35

40

45

50

55

60

65

10

code or data “C” by a JUMP command or a GOTO
command. In this case, the cache memory control unit
20 judges whether the execution code or data “C” exists
in the cache memory 21 or not. Here, it is assumed that
the execution code or data “C” exists in the cache line
22¢ of the cache memory 21, for example, as the pro-
gram #2 is executed immediately after the program #1.
Next, the cache memory control unit 20 compares the
current “key value Y” of the key value register 40 and the
“key value X” stored in the secret protection attribute
holding section 25¢. In this case, the key values do not
coincide, so that the cache memory control unit 20 does
not permit the use of the cache line 22¢ in the cache
memory 21, and then the execution code or data “C” is
acquired by the procedure of the steps S103 to S107 or
the execution of the program #2 is interrupted and the
abnormal finish is indicated, at the step S608.

In this case 4, the use of the execution code or data in the
cache memory is not permitted between programs having
different encryption keys, i.e., a plurality of different pro-
grams. In this way, there is no need for scanning the entire
region of the cache memory at a time of finishing one pro-
gram, so that the processing efficiency can be improved.

<Data writing>

The operation by the tamper resistant microprocessor 100
of this embodiment for writing the data into the cache
memory 21 and the memory device 60 inresponse to a request
of the program will be described with reference to FIG. 4.

(a) First, at the step S201, the cache memory control unit 20

acquires the data to be written in plaintext form into the
cache memory 21 from the processor core 10, and stores
it into the corresponding one of the data regions 24a to
244 of the cache lines 22a to 22d of FIG. 2.

(b) At the step S202, the information regarding an address
into which the data is to be written is stored in the
corresponding one of the tag regions 23a to 234, and the
content of the corresponding one of the control informa-
tion holding sections 26a to 26d is updated. Also, the
encryption key to be used in writing this data into the
memory device 60 is read out from the key value register
40 and stored into the corresponding one of the secret
protection attribute holding sections 25a to 254.

(c) Next, the data is written from the cache memory 21 into
the memory device 60. This operation becomes neces-
sary in the case of storing another data into the corre-
sponding one of the cache lines 22a to 22d. More spe-
cifically, the cache memory control unit 20 acquires the
plaintext data from the corresponding one of the data
regions 24a to 24d in the cache lines 22a to 22d at the
step S203, and acquires the encryption key from the
corresponding one of the secret protection attribute
holding sections 25a to 25d at the step S204. These
plaintext data and encryption key are transferred to the
code data encryption/decryption processing unit 30.

(d) At the step S205, the code data encryption/decryption
processing unit 30 encrypts the plaintext data by using
the encryption key. At the step S206, the encrypted data
is written into the memory device 60 through the exter-
nal bus interface 50 and the bus 70.

According to the above described processing, the data pro-
cessed and changed by the tamper resistant microprocessor
100 are encrypted by using the encryption key in the secret
protection attribute holding section. For this reason, the
eavesdropping or the alteration by the malicious third party
can be prevented, and data given to the memory device in a
safe state can be transmitted to a desired device or network.

US 7,568,112 B2

11

According to the tamper resistant microprocessor of this
embodiment, the key value table is unnecessary at a time of
making an access to the cache memory, so that the first prob-
lem noted above regarding a limitation on the number of
programs that can be simultaneously activated can be
avoided.

When one program is finished, the cache memory used by
that program cannot be read out without knowing the value of
the encryption key possessed by that program. For this rea-
son, even if another program is activated while the contents of
the cache memory are unchanged, there is no possibility for
that another program to read out the contents. so that there is
no need to scan the entire region of the cache memory for the
purpose of invalidating the contents. As a result, the second
problem noted above regarding the entire region scan time
can be eliminated, so that the program execution speed can be
improved.

In the case where a plurality of programs share one encryp-
tionkey, any of these programs can look up the contents of the
cache memory by using the shared encryption key, and when
the content written by one program is to be read out by
another program, there is no need to encrypt that content once
and write it into the memory device such as the main memory.
For this reason, the third problem noted above regarding the
lowering of the program execution speed by the extra encryp-
tion and decryption processing can be avoided.

According to the data access control method using this
tamper resistant microprocessor, there is no need for func-
tions such as a function for looking up the key value table and
a function for scanning the cache region and invalidating it at
a time of finishing the program, unlike the method using the
key value table, so that the fourth problem noted above
regarding the complication of the hardware can be avoided,
and thereby the manufacturing cost can be lowered.

According to the present invention, it is possible to provide
a data access control method by a tamper resistant micropro-
cessor and a cache memory implemented processor, for lim-
iting accesses with respect to the cache memory, in which
there is no limit to the number of programs that can be acti-
vated simultaneously, the contents of the cache memory used
by one finishing program can be made impossible to read
from the other program without scanning the entire region of
the cache memory, the contents written into the cache
memory by one program can be read by the other program
without encrypting it and writing it into the main memory
when a plurality of programs read and write the shared
memory region by sharing one encryption key, and the com-
plicated hardware functions are unnecessary.

It is also to be noted that, besides those already mentioned
above, many modifications and variations of the above
embodiments may be made without departing from the novel
and advantageous features of the present invention. Accord-
ingly, all such modifications and variations are intended to be
included within the scope of the appended claims.

What is claimed is:

1. A tamper resistant microprocessor that executes a plu-
rality of programs in parallel under a multi-task programming
environment, comprising:

a decryption unit configured to read out an execution code
or data of one of a plurality of encrypted programs and
decrypt the execution code or data by using a prescribed
encryption key corresponding to the read-out encrypted
program, according to a decryption request from a cache
memory control unit;

a cache memory configured to store the execution code or
data decrypted by the decryption unit and an actual
encryption key used in decrypting the execution code or

20

25

30

35

40

45

50

55

60

65

12

data for at least one cache line, the actual encryption key
being stored in a secret protection attribute holding sec-
tion of at least one cache line, the execution code or data
stored in the cache memory remaining even after each
program terminates; and

the cache memory control unit configured to process a
reading request for the execution code or data to be
acquired from the decryption unit or the cache memory
such that, if the execution code or data exists in the cache
memory and the actual encryption key stored in the
secret protection attribute holding section of a cache line
that stores the existent execution code or data is identical
with the prescribed key corresponding to a program that
issues the reading request, the execution code or data in
the cache memory is read out, and if the execution code
or data does not exist in the cache memory or the actual
encryption key is not identical with the prescribed key,
the execution code or data is read out from an external
memory device.

2. The tamper resistant microprocessor of claim 1, further

comprising:

a key value register configured to store the prescribed
encryption key, which is updated at an occasion of
executing each encrypted program;

wherein the cache memory control unit judges whether the
contents of the actual encryption key stored in the secret
protection attribute holding section of a cache line that
stores the existent execution code or data is identical
with the contents of the prescribed key stored in the key
value register.

3. The tamper resistant microprocessor of claim 2, wherein
the cache memory stores data decrypted by the decryption
unit, and the cache memory control unit writes a processing
result of the data into the cache memory, while storing the
prescribed encryption key stored in the key value register into
the secret protection attribute holding section of a cache line
for the data.

4. The tamper resistant microprocessor of claim 1, wherein
the cache memory stores data decrypted by the decryption
unit, and the cache memory control unit encrypts a processing
result of the data by using the actual encryption key stored in
the secret protection attribute holding section of a cache line
for the data, and writes encrypted data into the external
memory device.

5. A data access control method by a cache memory imple-
mented processor that executes a plurality of programs in
parallel under a multi-task programming environment, com-
prising:

reading out an execution code or data one of a plurality of
encrypted programs and decrypting the execution code
or data by using a prescribed encryption key correspond-
ing to the read-out encrypted program, according to a
decryption request;

storing the execution code or data decrypted by the reading
and decrypting step and an actual encryption key used in
decrypting the execution code or data for at least one
cache line, the actual encryption key being stored in a
secret protection attribute holding section of at least one
cache line, the execution code or data stored in the cache
memory remaining even after each program terminates;
and

processing a reading request for the execution code or data
to be acquired from a decryption unit or the cache
memory such that, if the execution code or data exists in
the cache memory and the actual encryption key stored
in the secret protection attribute holding section of a
cache line that stores the existent execution code or data

US 7,568,112 B2

13

is identical with the prescribed key corresponding to a
program that issues the reading request, the execution
code or data in the cache memory is read out, and if the
execution code or data does not exist in the cache
memory or the actual encryption key is not identical with
the prescribed key, the execution code or data is read out
from an external memory device.

6. The data access control method of claim 5, further com-

prising:

storing the prescribed encryption key, which is updated at
an occasion of executing each encrypted program, into a
key value register;

wherein whether the contents of the actual encryption key
stored in the secret protection attribute holding section
of a cache line that stores the existent execution code or
data is identical with the contents of the prescribed key
stored in the key value register is judged.

15

14

7. The data access control method of claim 6, wherein the
cache memory stores data decrypted by the reading and
decrypting step, and the data access control method further
comprises writing a processing result of the data into the
cache memory, while storing the prescribed encryption key
stored in the key value register into the secret protection
attribute holding section of a cache line for the data.

8. The data access control method of claim 5, wherein the
cache memory stores data decrypted by the reading and
decrypting step, and the data access control method further
comprises encrypting a processing result of the data by using
the actual encryption key stored in the secret protection
attribute holding section of a cache line for the data, and
writing encrypted data into the external memory device.

