
US0075681.12B2

(12) United States Patent (10) Patent No.: US 7,568,112 B2
Yamaguchi et al. (45) Date of Patent: Jul. 28, 2009

(54) DATA ACCESS CONTROL METHOD FOR 6,993,130 B1* 1/2006 Fernandez et al. 380, 46
TAMPER RESISTANT MICROPROCESSOR 6,993,654 B2 * 1/2006 Seki et al. 713, 172
USING CACHE MEMORY

(75) Inventors: Kensaku Yamaguchi, Yokohama (JP);
Mikio Hashimoto, Yokohama (JP) (Continued)

(73) Assignee: Kabushiki Kaisha Toshiba, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 602 days.

(21) Appl. No.: 10/754,571

(22) Filed: Jan. 12, 2004

(65) Prior Publication Data

US 2004/O143748 A1 Jul. 22, 2004

(30) Foreign Application Priority Data
Jan. 21, 2003 (JP) 2003-O12558

(51) Int. Cl.
G06F II/30 (2006.01)
G06F 2/14 (2006.01)

(52) U.S. Cl. 713/190; 713/187; 713/188:
713/194; 711/125: 711/118

(58) Field of Classification Search 711/125,
711/118; 713/187, 188, 190, 194

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

4,558,176 A 12/1985 Arnold et al.
5,224,166 A 6, 1993 Hartman, Jr. T13, 190
5,666,411 A 9/1997 McCarty
5,825,878 A * 10/1998 Takahashi et al. T13, 190
5,943,421 A 8, 1999 Grabon 380/269
6,175,924 B1 1/2001 Arnold T13, 189
6,523,118 B1 2/2003 Buer T13, 189
6,895,506 B1* 5/2005 Abu-Husein T13, 193
6,965,977 B2 * 1 1/2005 Yi T11 169

21

CACHE INE22a

CACHE LINE 22b

CACHE LINE22c

CACHE LINE22d

------> --> -- a - - - - - - - ---

- - - - - - - - - - - - - - - - - ---FFF -

FOREIGN PATENT DOCUMENTS

JP 2002-232417 8, 2002

(Continued)
OTHER PUBLICATIONS

D. Lie, et al., Proceedings of ASPLOS2000, 10 pages, "Architectural
Support for Copy and Tamper Resistant Software', Nov. 2000.

(Continued)
Primary Examiner Taghi T. Arani
Assistant Examiner James Turchen
(74) Attorney, Agent, or Firm Oblon, Spivak, McClelland,
Maier & Neustadt, P.C.

(57) ABSTRACT

In a tamper resistant microprocessor having a cache memory,
the cache memory stores the decrypted execution code or data
into one of cache lines provided in the cache memory, each
cache line having a secret protection attribute holding section
for storing an actual encryption key used in decrypting the
execution code or data, and a cache memory control unit
processes a reading request for the execution code or data
Such that, if the execution code or data exists in the cache
memory and the execution code or data in the cache memory
is decrypted by an identical encryption key as the prescribed
encryption key, the execution code or data in the cache
memory is read out.

8 Claims, 9 Drawing Sheets

SECRET PROTECTION ATTRIBUTE: CONTROL INFORMATION
HOLDINGSECTION25a. HOLDINGSECTION 26a.
SECRET PROTECTION ATTRIBUTE: CONTROL INFORMATION
HOLDINGSECTION 25b HOLDINGSECTION 26.

SECRET PROTECTION AITRIBUTE: CONTROL INFORMATION
EHOLDINGSECTION 25d HOLDINGSECTION 26d

US 7,568,112 B2
Page 2

U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

7,036,017 B2 * 4/2006 Gammel et al. T13, 189 U.S. Appl. No. 09/748,017, filed Dec. 27, 2000, Takabatake et al.
2001/OO18736 A1* 8, 2001 Hashimoto et al. T13/1 U.S. Appl. No. 09/781,284, filed Feb. 13, 2001, Hashimoto et al.
2002fOO51536 A. 5/2002 Shirakawa et al. 380/45 U.S. Appl. No. 09/984,407, filed Oct. 30, 2001, Shirakawa et al.

E. R. E. E." OE U.S. Appl. No. 10028,794, filed Dec.28, 2001, Teramoto et al.
2003/O126458 A1* 7/2003 Teramoto et al. 7104 U.S. Appl. No. 10/059.217, filed Jan. 31, 2002, Hashimoto et al.
2003. O1961O2 A1* 10, 2003 McCarroll 713,194 U.S. Appl. No. 10/214,197, filed Aug. 8, 2002, Fujimoto et al.
2004/0093505 A1* 5/2004 Hatakeyama et al. T13, 189 U.S. Appl. No. 10/259,379, filed Sep. 30, 2002, Hashimoto et al.
2004/01 17639 A1* 6/2004 Mowery 713,187 U.S. Appl. No. 10/394, 175, filed Mar. 24, 2003, Jinmei et al.
2004/0123132 A1* 6/2004 Montgomery et al. 713/200 U.S. Appl. No. 10/608, 113, filed Jun. 30, 2003, Yamaguchi et al.
2005/0071651 A1* 3/2005 Aguilar et al. T13, 189 U.S. Appl. No. 1 1/060,704, filed Feb. 18, 2005, Haruki et al.

FOREIGN PATENT DOCUMENTS U.S. Appl. No. 10/913,537, filed Aug. 9, 2004, Hashimoto et al.

JP 2002232417 A ck 8, 2002 * cited by examiner

US 7,568,112 B2 Sheet 2 of 9 Jul. 28, 2009 U.S. Patent

lz

U.S. Patent Jul. 28, 2009 Sheet 3 of 9 US 7,568,112 B2

FIG, 3

START

RECEIVE EXECUTION CODE OR DATA ACQUISITION REQUESTVYS101

S1 O2
S DOES IT

EXIST IN CACHE
MEMORY

NO YES

S1 O8

ACOUIRE ENCRYPTION KEY FROM
SECRET PROTECTION ATTRIBUTE
HOLDING SECTION

S1 O9

SE ENCRYPTION KEY FROM
KEY WALUE REGISTER

READ OUT EXECUTION CODE OR DATA
FROM EXTERNAL MEMORY

DECRYPTREAD OUT EXECUTION CODE
OR DATA BY USINGENCRYPTION KEY
OF KEY WALUE REGISTER

S11 O
STORE DECRYPTED EXECUTION CODE DO TWO
OR DATA INTO CACHE MEMORY ENCRYPTION KEYS

S1 O6 COINCIDE

YES
STORE ENCRYPTION KEY OF KEY WALUE S111
REGISTER INTO SECRET PROTECTION
ATTRIBUTE HOLDING SECTION

TRANSFER DECRYPTED EXECUTION CODE
OR DATATO PROCESSOR CORE

TRANSFER CONTENT OF CACHE
MEMORY TO PROCESSOR CORE

U.S. Patent Jul. 28, 2009 Sheet 4 of 9 US 7,568,112 B2

FIG, 4

WRITE DATA INTO CACHE MEMORY S2O1

STORE ENCRYPTION KEY OF KEY WALUE S2O2
REGISTER INTO SECRET PROTECTION
ATTRIBUTE HOLDING SECTION

ACQUIRE DATA FROM CACHE MEMORY S2O3

ACQUIRE ENCRYPTION KEY FROMSECRET S2O4
PROTECTION ATTRIBUTE HOLDING SECTION

ENCRYPT DATA BY USINGENCRYPTION KEY/S205

WRITE ENCRYPTED DATA INTO EXTERNAL S2O6
MEMORY

U.S. Patent Jul. 28, 2009 Sheet 5 of 9 US 7,568,112 B2

FIG.5

A x
B | x
C x
D Y
E Y
F Y

US 7,568,112 B2

PROGRAM #2

Sheet 6 of 9 Jul. 28, 2009

FIG, 6

PROGRAM #1

U.S. Patent

START

SET "KEY WALUE X"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "A"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA"B"

EXECUTE PROCESSING OF SET "KEY WALUE Y" EXECUTION CODE OR DATA "C"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "D"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA"E"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "F"

U.S. Patent Jul. 28, 2009 Sheet 7 of 9 US 7,568,112 B2

FIG.7

PROGRAM #1 PROGRAM #2

START

S4O1

SET "KEY WALUE X"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "A"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "B"

S 4 O 4.

SAVE "KEY WALUE X"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "D"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "E"

S408

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "F" SET "KEY WALUE X" AGAIN

S41 O

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "C"

US 7,568,112 B2 Sheet 8 of 9 Jul. 28, 2009 U.S. Patent

FIG. 8

PROGRAM #2 PROGRAM #1

START

SET "KEY WALUE X"

S502(S507)

S503(S508)

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "A"

EXECUTE PROCESSING OF SET "KEY WALUEY"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "D"

EXECUTE PROCESSING OF

EXECUTION CODE OR DATA "B"

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA "C"

EXECUTION CODE OR DATA"E" CNT CNT + 1

EXECUTE PROCESSING OF
EXECUTION CODE OR DATA"F"

US 7,568,112 B2 Sheet 9 of 9 Jul. 28, 2009 U.S. Patent

FIG, 9

PROGRAM #2 PROGRAM #1

US 7,568,112 B2
1.

DATA ACCESS CONTROL METHOD FOR
TAMPER RESISTANT MCROPROCESSOR

USING CACHE MEMORY

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to a data access control

method in a tamper resistant microprocessor and a cache
memory implemented processor having a function for Sup
porting the multi-task program execution environment, a
cache memory control unit and encryption/decryption func
tion so as to realize the protection of secrecy and the preven
tion of alteration for the execution codes of the programs and
the processing target data.

2. Description of the Related Art
In the computer systems of recent years, the open system

that can be constructed by combining hardware and Software
of various makers has been widespread, as in the case of PCs.
In the open system, the information on the operating system
(referred hereafter as OS) formed by hardware and system
program is publicly disclosed so that it is in principle possible
for a user to modify or alter the OS program according to the
disclosed information
The application program is operated under the manage

ment of this OS, so that when the OS itself is attacked and
altered by a third person Such as a hacker, there is no way of
escaping from this attack. Therefore it has been difficult for
the application program provider to protect the application
program completely from the analysis or the alteration by the
third person.

For this reason, there is a method to encrypt the application
program in advance, in order to prevent the analysis and the
alteration of the application program to be operated under the
OS of the open system. When the program is encrypted, not
only the analysis becomes difficult but also the prediction of
the operation in the case where the program is altered also
becomes difficult so that it is also effective for the prevention
of the alteration.

However, the encrypted application program cannot be
executed as it is by the existing computer, so that there is a
need for a microprocessor which can execute the program
while decrypting the program. This microprocessor has func
tions for protecting the secrecy of the program and providing
protection against the analysis and the alteration by encrypt
ing data handled by the program on the presumption that the
OS may carry out hostile operations against the application
program. In the following, such a microprocessor will be
referred to as a tamper resistant microprocessor.

Also, this tamper resistant microprocessor provides the
multi-task program execution environment for executing a
plurality of protected programs simultaneously in a pseudo
parallel manner (see commonly assigned co-pending U.S.
patent application Ser. Nos. 09/781,158 and 09/781,284, and
David Lie, et al., “Architectural Support for Copy and Tamper
Resistant Software, ASPLOS-IX Proceedings of the 9th
International Conference on Architectural Support for Pro
gramming Languages and Operating Systems, Cambridge,
Mass., USA, Nov. 12-15, 2000, pp. 168-177).

In the case where the cache memory is implemented on the
tamper resistant processor, the encryption processing unit for
carrying out encryption and decryption can be arranged
between the processor core and the cache memory or between
the cache memory and the memory device Such as the main
memory. When the encryption processing unit is arranged
between the cache memory and the main memory, the plain
text contents after the decryption or before the encryption will

10

15

25

30

35

40

45

50

55

60

65

2
be stored in the cache memory. For this reason, the latter
arrangement is more efficient than the former arrangement
because the less number of encryption/decryption processing
is required by the latter arrangement.
When the encryption processing unit carries out the

encryption or the decryption, if it is under the multi-task
program execution environment, a plurality of programs and
their data are stored in the cache memory. At this point, there
are cases where the eavesdropping or the alteration of the
secret information of the other program among the programs
in the cache memory can occur due to the alternation of the
OS by the third person. In order to prevent such a case, there
is a need to limit accesses with respect to the cache memory.

In the conventionally proposed tamper resistant micropro
cessor, one task ID is given to each one of the programs that
are operated simultaneously, and this task ID is utilized in
limiting accesses with respect to the cache memory. Each
cache line of the cache memory is provided with a secret
protection field for storing the task ID. When the processor
core stores the plaintext execution code or data into the cache
memory, the task ID of the currently executed program is
stored into the corresponding secret protection field. When
the processor core reads out the content of the cache memory,
the task ID is obtained from the secret protection field of the
cache line to be read. This task ID is compared with the task
ID of the currently executed program, and the reading is
permitted only when they coincide.

There is a need to carry out the encryption when data stored
in the cache memory is to be written into the memory device
Such as the main memory, but the encryption key to be used in
the encryption is not necessarily the encryption key main
tained by the currently executed program. In the convention
ally proposed tamper resistant microprocessor, the encryp
tion key is obtained by using the task ID stored in the secret
protection field in the cache line. For this reason, a key value
table for storing correspondences between the task IDs and
the encryption keys is provided inside the processor.

Also, when a plurality of programs carry out cooperative
operations simultaneously, there is a function for sharing data
among these programs such that data cannot be read out from
the other programs. In order to realize this function, one
encryption key value is shared by these programs. Each pro
gram uses this one encryption key in reading or writing data,
Such that the contents of the shared memory region can be
shared by these programs while the other programs that do not
know this one encryption key cannot read or write the con
tents of that memory region by carrying out the encryption/
decryption correctly (see Japanese Patent Application Laid
Open No. 2002-202720).

However, the above described method for limiting accesses
with respect to the cache memory by using the task ID is
associated with the following problems.
The first problem is that the tamper resistant microproces

sor that uses this method needs to maintain the key value table
storing correspondences between the task IDs and the encryp
tion keys, and the number of programs that can be activated
simultaneously is limited by the size of this key value table.
The second problem is that, when the program with one

task ID is finished and this task ID is assigned to another
program to be newly activated, if the data of the previously
executed program still remain in the cache memory, the next
program to which the same task ID is assigned would become
possible to read that data without knowing the encryption key.
In order to avoid this, there is a need to scan the entire region
of the cache memory and invalidate the cache lines corre
sponding to the task ID of the finishing program at a time of
finishing the program, but this operation requires a longtime.

US 7,568,112 B2
3

This is particularly noticeable in the microprocessor imple
mented with the large cache memory.
The third problem is that, in the case where the memory

contents are shared when a plurality of programs carry out the
cooperative operations simultaneously, in order for another
program to read the data written by one program, there is a
need to encrypt the data written by that one program and write
it into the memory device such as the main memory once, and
then decrypt it and read it into the cache memory. In order
words, even though it is the same data of the same content,
there is a need to encrypt it once and then decrypt it by using
the same key again, so that the execution speed is lowered.

The fourth problem is that the method for limiting accesses
with respect to the cache memory by using the task ID
requires the implementation of many functions by hardware,
Such as a function for looking up the key value table, a
function for Scanning the cache region and invalidating rel
evant cache lines at a time of finishing the program, etc., so
that the structure of the microprocessor becomes compli
cated.

BRIEF SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a data access control method by a tamper resistant micropro
cessor and a cache memory implemented processor, for lim
iting accesses with respect to the cache memory, in which
there is no limit to the number of programs that can be acti
vated simultaneously, the contents of the cache memory used
by one finishing program can be made impossible to read
from the other program without scanning the entire region of
the cache memory, the contents written into the cache
memory by one program can be read by the other program
without encrypting it and writing it into the main memory
when a plurality of programs read and write the shared
memory region by sharing one encryption key, and the com
plicated hardware functions are unnecessary.

According to one aspect of the present invention there is
provided a tamper resistant microprocessor, comprising: a
decryption unit configured to read out an execution code or
data of an encrypted program and decrypt the execution code
or data by using a prescribed encryption key, according to a
decryption request from the cache memory control unit; a
cache memory configured to store the execution code or data
decrypted by the decryption unit into one of cache lines
provided in the cache memory, each cacheline having a secret
protection attribute holding section for storing an actual
encryption key used in decrypting the execution code or data;
and a cache memory control unit configured to process a
reading request for the execution code or data Such that, if the
execution code or data exists in the cache memory and the
execution code or data in the cache memory is decrypted by
an identical encryption key as the prescribed encryption key,
the execution code or data in the cache memory is read out.

According to another aspect of the present invention there
is provided a data access control method by a cache memory
implemented processor, comprising: reading out an execu
tion code or data or an encrypted program and decrypting the
execution code or data by using a prescribed encryption key,
according to a decryption request; storing the execution code
or data decrypted by the reading and decrypting step, into one
of cache lines provided in a cache memory, each cache line
having a secret protection attribute holding section for storing
an actual encryption key used in decrypting the execution
code or data; and processing a reading request for the execu
tion code or data Such that, if the execution code or data exists
in the cache memory and the execution code or data in the

10

15

25

30

35

40

45

50

55

60

65

4
cache memory is decrypted by an identical encryption key as
the prescribed encryption key, the execution code or data in
the cache memory is read out.

Other features and advantages of the present invention will
become apparent from the following description taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing a configuration of a
tamper resistant microprocessor according to one embodi
ment of the present invention.

FIG. 2 is a diagram showing a data structure in a cache
memory used in the tamper resistant microprocessor of FIG.
1.

FIG. 3 is a flow chart showing a procedure for reading the
execution code and data by the tamper resistant microproces
sor of FIG. 1.

FIG. 4 is a flow chart showing a procedure for writing the
data by the tamper resistant microprocessor of FIG. 1.

FIG. 5 is a diagram Schematically showing an exemplary
structure of execution codes and data to be processed by the
tamper resistant microprocessor of FIG. 1.

FIG. 6 is a flow chart showing the case #1 of reading out the
execution code by the tamper resistant microprocessor of
FIG 1.

FIG. 7 is a flow chart showing the case #2 of reading out the
execution code by the tamper resistant microprocessor of
FIG 1.

FIG. 8 is a flow chart showing the case #3 of reading out the
execution code by the tamper resistant microprocessor of
FIG.1.
FIG.9 is a flow chart showing the case #4 of reading out the

execution code by the tamper resistant microprocessor of
FIG 1.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1 to FIG.9, one embodiment of the
data access control method by the tamper resistant micropro
cessor having a cache memory control unit and an encryption/
decryption function for protecting secrecy and preventing
alteration of the program execution code and processing tar
get data according to the present invention will be described
in detail.
<Tamper Resistant Microprocessor>
As shown in FIG. 1, the tamper resistant microprocessor

100 of this embodiment has a processor core 10, a cache
memory control unit 20, a code data encryption/decryption
processing unit 30, a key value register 40 and an external bus
interface 50. The tamper resistant microprocessor 100 is con
nected to a memory device 60 through a bus 70 connected to
the external bus interface 50.
The processor core 10 carries out the processing of the

plaintext code and the plaintext data given from the cache
memory control unit 20.
The code data encryption/decryption processing unit 30 is

a module arranged between the cache memory control unit 20
and the external bus interface 50, for carrying out the decryp
tion of the encrypted execution code or data transmitted from
the bus 70 side. The code data encryption/decryption process
ing unit 30 also encrypts data received from the cache
memory control unit 20 and outputs it to the bus 70 side.
The key value register 40 stores the encryption key to be

used by the code data encryption/decryption processing unit
30 at a time of executing the encryption or the decryption. As
shown in FIG. 5, one program comprises a plurality of execu

US 7,568,112 B2
5

tion codes and data, and these plurality of execution codes and
data are encrypted or decrypted by one encryption key stored
in the key value register 40.

Note that, in this embodiment, it is assumed that the execu
tion codes and the data of the same program are encrypted by
using the same encryption key, but it is also possible to make
the key value register 40 to store two encryption keys for the
execution codes and the data Such that the execution codes
and the data are encrypted by using different keys. The key
value register 40 and secret protection attribute holding sec
tions 25a to 25d shown in FIG. 2 store the same key value, so
that it is preferable for the key value register 40 to have the
same size as the secret protection attribute holding section.
The region of the key value register 40 will be updated by
overwriting the key value of a new program at a time of
executing a new program.
The memory device 60 is a memory device Such as a main

memory for storing the execution codes and the data after the
program compilation. The memory device 60 may also
exchange the data with an external Supplementary memory
device or external bus (not shown) by using a communication
control device (not shown) through the bus 70. Note that the
execution codes and the data stored in the memory device 60
are assumed to be already encrypted by an external encryp
tion processing device or the like, before being received and
stored into the memory device 60.
The cache memory control unit 20 carries out control of a

comparison processing, a calculation processing, etc., of
address information or information Such as the secret protec
tion attribute which are associated with the execution codes
and the data. The cache memory control unit 20 internally has
a cache memory 21 for storing the execution codes and the
data as the plaintext codes and the plaintext data.

FIG. 2 shows a data structure inside the cache memory 21.
The cache memory 21 comprises a plurality of cache lines
22a, 22b, 22c, 22d and so on (referred hereafter as cache lines
22a to 22d). The cache lines 22a to 22d have tag regions 23a,
23b, 23c, 23d and so on (referred hereafter as tag regions 23a
to 23d), data regions 24a, 24b, 24c, 24d and so on (referred
hereafter as data regions 24a to 24d), secret protection
attribute holding sections 25a, 25b, 25c, 25d and so on (re
ferred hereafter as secret protection attribute holding sections
25a to 25d), and control information holding sections 26a,
26b, 26c, 26d and so on (referred hereafter as control infor
mation holding sections 26a to 26d).
The tag regions 23a to 23d are regions for storing informa

tion regarding addresses from which the execution codes and
the data are read out. The data regions 24a to 24d are regions
for storing the read out execution codes and data. The secret
protection attribute holding sections 25a to 25d are regions
for storing the encryption keys used in decrypting the execu
tion codes and the data, which is also the encryption key to be
used in encrypting the data. The control information holding
sections 26a to 26d are regions for storing control information
of the execution codes and the data stored in the cache lines
22a to 22d.

Next, the operations of the tamper resistant microprocessor
of this embodiment at a time of the initial setting of the value
in the key value register, the reading of the execution code, the
reading of the data and the writing of the data will be
described.

<Initial Setting of the Value in the Key Value Register->
The program loaded into the memory device 60 sets the

encryption key into the key value register 40 of the tamper
resistant microprocessor 100 as an initial setting of the pro
gram execution. More specifically, the data obtained by
encoding the encryption key is given to the processor core 10

10

15

25

30

35

40

45

50

55

60

65

6
as a parameter, and the processor core 10 sets the given
encryption key into the key value register 40. For example, as
shown in FIG. 5, the key value “X” is set to the key value
register 40 before executing the execution code or data 'A'.
“B” and “C” by the program #1, and the key value “Y” is set
to the key value register 40 before executing the execution
code or data “D”, “E” and “F” by the program #2. Else the
non-encrypted execution code with the key value “0” may be
inserted before 'A' in FIG. 5 such that the key value is set to
the key value register 40 as an operation content at a time of
executing this execution code.

Note that in the case where the control is shifted to the other
program as the execution is interrupted by the interruption or
the like during the execution of the encrypted program, the
value of the key value register is saved as apart of the ordinary
context saving operation. Also, at a time of resuming the
execution of the interrupted program, the value of the key
value register is recovered as a part of the ordinary context
recovery operation. Here, the context may be encrypted. By
saving the value of the key value register as the context, it is
possible to realize the multi-task program execution environ
ment in which a plurality of programs encrypted by using
different encryption keys are executed simultaneously in a
pseudo-parallel manner.
As a control at a time of turning on the power of the tamper

resistant processor 100 or immediately after the reset and
immediately after the context saving (except for the case
where another context recovery is carried out immediately
after the context saving), the tamper resistant microprocessor
100 sets a special value to the key value register 40. This can
be realized by using an encryption key with a value “0”, or
using one bit of the key value register as a flag. When such a
special value is set to the key value register 40, the tamper
resistant microprocessor 100 executes the execution code
read out from the memory device 60 without carrying out the
decryption. In this way, it becomes possible for the program
mer to freely decide whether a program should be encrypted
or not, or specify which parts of a program should be
encrypted and at which timing the encryption/decryption
should be carried out.

After the encryption key is set to the key value register 40
by the processor core 10, the cache memory control unit 20
carries out the reading of the execution codes and the data by
the following procedure.

<Reading of the Execution Codes and the Data>
The operation of the tamper resistant microprocessor 100

of this embodiment for reading out the execution codes or the
data of the encrypted program from the memory device 60 or
the cache memory 21 will be described with reference to FIG.
3.

(a) First, the cache memory control unit 20 receives an
execution code or data acquisition request from the pro
cessor core 10 at the step S101, and judges whether this
execution code or data exists on the cache memory 21 or
not, as the first confirmation, at the step S102.

(b) In the case where it is judged that the execution code or
data of the address to be executed does not exist on the
cache memory 21, the execution code or data of that
address is read out from the memory device 60 through
the bus 70 and the external bus interface 50, at the step
S103.

(c) At the step S104, the code data encryption/decryption
processing unit 30 decrypts the execution code or data
read out from the memory device 60, by using the
encryption key in the key value register 40 that is set by
the initial setting.

US 7,568,112 B2
7

(d) At the step S105, this execution code or data is trans
ferred to the cache memory 21, and stored into one of the
data regions 24a to 24d on the cache lines 22a to 22d of
FIG. 2. At this point, at the step S106, the information
regarding the address from which the execution code or
data is read out is stored into one of the tag regions 23a
to 23d, and the content in one of the control information
holding sections 26a to 26d is updated. Also, the encryp
tion key in the key value register 40 that is used in
decrypting the execution code or data is stored in one of
the secret protection attribute holding sections 25a to
25d. The decrypted execution code or data is also trans
ferred to the processor core 10 for execution, at the step
S107.

(e) On the other hand, when it is judged that the execution
code or data at an address to be executed exists on the
cache memory 21 by the first confirmation at the step
S102, the cache memory control unit 20 carries out the
second confirmation as follows. Namely, the encryption
key is acquired from the secret protection attribute hold
ing section 25 in the cache line 22 of the execution code
or data at an address to be executed, among the Secret
protection attribute holding sections 25a to 25d in the
cache lines 22a to 22d at the step S108, and the encryp
tion key is acquired from the key value register 40 which
stores the encryption key unique to the program for
which the processing is currently executed, at the step
S109. Then, at the step S110, these encryption keys are
compared. When these two encryption keys coincide,
the use of the content of the execution code or data that
already exists in the cache memory 21 as the execution
code or data at an address to be executed is permitted.
Then, at the step S111, the execution code or data exist
ing in the data region 24 of the cache line 22 is trans
ferred to the processor core 10.

When the two encryption keys do not coincide at the step
S110, the use of the content in the cache memory 21 is not
permitted to the currently executed program, and the opera
tion of the steps S103 to S107 are carried out similarly as in
the case where the execution code or data at an address to be
executed does not exist in the cache memory 21. It is also
possible to interrupt the execution of the program and gener
ate an exception indicating the abnormal finish.
As a concrete example of the operation of the tamper

resistant microprocessor 100 described above, the operation
by the tamper resistant microprocessor 100 for executing the
program #1 and the program #2 of FIG.5 will be described. At
a time of executing the program #1 and the program #2, there
are four possible cases including the case where the program
#2 is executed after the program #1 is finished (Case #1), the
case where the program #2 is executed by interruption during
the execution of the program #1 (Case #2), the case where the
execution codes or data are executed within the same program
(Case #3), and the case where the execution codes or data are
executed between different programs (Case #4). In the fol
lowing, each one of these cases will be described in detail.

(Case #1)
First, as the ordinary processing, the case where the pro

gram #2 is executed after the program #1 is finished will be
described with reference to FIG. 6.

(a) First, the tamper resistant microprocessor 100 sets the
“key value X” to the key value register 40 as the initial
setting of the program #1 at the step S301. Then, the
execution code or data 'A' of the program #1 is called up
from the memory device 60, decrypted by using the “key
value X’ and stored into the cache line 22a of FIG. 2, at
the step S302. At this point, the “key value X is stored

10

15

25

30

35

40

45

50

55

60

65

8
in the secret protection attribute holding section 25a.
Also, the execution code or data 'A' is processed at the
processor core 10. The processor core 10 also carries out
the similar processing with respect to the execution code
or data “B” and “C” by advancing a program counter
(not shown) one by one, at the steps S303 and S304.

(b) When the program #1 is completed, the processing of
the program #2 that has been waiting is carried out. At
the step S305, the “key value Y” is set to the key value
register 40 as the initial setting of the program #2. Then,
the execution code or data “D' of the program #2 is
called up from the memory device 60, decrypted by
using the “key value Y” and stored into the cache line
22d of FIG. 2, at the step S306. At this point, the “key
value Y” is stored in the secret protection attribute hold
ing section 25d. Also, the execution code or data “D” is
processed at the processor core 10. The processor core
10 also carries out the similar processing with respect to
the execution code or data “E” and “F” by advancing a
program counter (not shown) one by one, at the steps
S307 and S3O8.

In this case #1, the encrypted programs #1 and #2 are
converted into the plaintext by using the encryption keys Such
that the eavesdropping and the alternation by the malicious
third person can be prevented and the programs can be
executed safely.

(Case #2)
Next, the case where the program #2 is executed by inter

ruption during the execution of the program #1 will be
described with reference to FIG. 7.

(a) First, the tamper resistant microprocessor 100 sets the
“key value X' to the key value register 40 as the initial
setting of the program #1 at the step S401. Then, the
execution code or data 'A' of the program #1 is called up
from the memory device 60, decrypted by using the “key
value X’ and stored into the cache line 22a of FIG. 2, at
the step S402. At this point, the “key value X is stored
in the secret protection attribute holding section 25a.
Also, the execution code or data 'A' is processed at the
processor core 10. The processor core 10 also carries out
the similar processing with respect to the execution code
or data “B” by advancing a program counter (not shown)
one by one, at the step S403.

(b) The interruption by the program #2 occurs during or
after the processing of the execution code or data “B”. At
the step S404, the cache memory control unit 20 saves
the “key value X’ as the ordinary context saving.

(b) At the step S405, the “key valueY” is set to the key value
register 40 as the initial setting of the interrupting pro
gram #2. Then, the execution code or data “D' of the
program #2 is called up from the memory device 60,
decrypted by using the “key value Y” and stored into the
cache line 22d of FIG. 2, at the step S406. At this point,
the “key value Y” is stored in the secret protection
attribute holding section 25d. Also, the execution code
or data “D is processed at the processor core 10. The
processor core 10 also carries out the similar processing
with respect to the execution code or data “E” and “F” by
advancing a program counter (not shown) one by one, at
the steps S407 and S408.

(d) When the program #2 is finished, the interrupted pro
gram #1 resumes its processing. The saved “key value
X is set to the key value register 40 again at the step
S409, and the processing of the execution code or data
“C” of the interrupted program #1 is resumed at the step
S410.

US 7,568,112 B2

In this case #2, the encryption keys for decrypting the
encrypted programs #1 and #2 are saved as the context, so that
it is possible to realize the multi-task program execution
environment in which a plurality of programs are executed
simultaneously in a pseudo-parallel manner.

(Case #3)
Next, the case where the execution codes or data 'A', 'B',

“C” and “A” are executed within the program #1 of FIG.5 will
be described with reference to FIG.8. Here, an initial value of
a variable CNT is assumed to be “1”.

(a) First, the tamper resistant microprocessor 100 sets the
“key value X” to the key value register 40 as the initial
setting of the program #1 at the step S501. Then, the
execution code or data 'A' of the program #1 is called up
from the memory device 60, decrypted by using the “key
value X’ and stored into the cache line 22a of FIG. 2, at
the step S502. At this point, the “key value X is stored
in the secret protection attribute holding section 25a.
Also, the execution code or data 'A' is processed at the
processor core 10. The processor core 10 also carries out
the similar processing with respect to the execution code
or data “B” by advancing a program counter (not shown)
one by one, at the steps S504 and S505.

(b) At the step S506, the variable CNT is incremented by
one, and the processing of the step S502 is carried out
again as the step S507. At this point, the key value
register 40 stores the “key value X’ and the value of the
secret protection attribute holding section 25a for the
execution code or data 'A' is also the “key value X', so
that the cache memory control unit 20 permits the use of
the execution code or data 'A' existing in the cache
memory 21, and the execution code or data 'A' existing
in the cache memory 21 is transmitted to the processor
core 10 again.

(c) When the program #1 is completed, a branching com
mand is issued and the processing of the program #2 that
has been waiting is started, at the step S508. The pro
cessing of the program #2 at the steps S509 to S512 is the
same as the steps S305 to S308 described above.

In this case #3, the execution code or data already existing
in the cache memory 21 can be used within the program
having the same encryption key, i.e., the identical program, so
that the processing efficiency can be improved.

(Case #4)
Finally, the case where the execution codes or data are

executed between the program #1 and the program #2 of FIG.
5 will be described with reference to FIG. 9.

(a) First, the tamper resistant microprocessor 100 carries
out the initial setting of the program #1 and the process
ingregarding the execution codes or data “A”, “B” and
“C” at the steps S601 to S604. These processings are the
same as those of the steps S301 to S304 described above.

(b) When the program #1 is completed, the processing of
the program #2 that has been waiting is carried out. At
the step S605, the “key value Y” is set to the key value
register 40 as the initial setting of the program #2. Then,
the execution code or data “D' of the program #2 is
called up from the memory device 60, decrypted by
using the “key value Y” and stored into the cache line
22d of FIG. 2, at the step S606. At this point, the “key
value Y” is stored in the secret protection attribute hold
ing section 25d. Also, the execution code or data “D” is
processed at the processor core 10. The processor core
10 carries out the processing by advancing a program
counter (not shown) one by one.

(c) At the step S607, the execution code or data “E” to be
processed next is assumed to be related to the execution

10

15

25

30

35

40

45

50

55

60

65

10
code or data “C” by a JUMP command or a GOTO
command. In this case, the cache memory control unit
20 judges whether the execution code or data “C” exists
in the cache memory 21 or not. Here, it is assumed that
the execution code or data “C” exists in the cache line
22c of the cache memory 21, for example, as the pro
gram #2 is executed immediately after the program #1.
Next, the cache memory control unit 20 compares the
current “key value Y” of the key value register 40 and the
“key value X stored in the secret protection attribute
holding section 25c. In this case, the key values do not
coincide, so that the cache memory control unit 20 does
not permit the use of the cache line 22c in the cache
memory 21, and then the execution code or data “C” is
acquired by the procedure of the steps S103 to S107 or
the execution of the program #2 is interrupted and the
abnormal finish is indicated, at the step S608.

In this case 4, the use of the execution code or data in the
cache memory is not permitted between programs having
different encryption keys, i.e., a plurality of different pro
grams. In this way, there is no need for Scanning the entire
region of the cache memory at a time of finishing one pro
gram, so that the processing efficiency can be improved.

<Data writing>
The operation by the tamper resistant microprocessor 100

of this embodiment for writing the data into the cache
memory 21 and the memory device 60 in response to a request
of the program will be described with reference to FIG. 4.

(a) First, at the step S201, the cache memory control unit 20
acquires the data to be written in plaintext form into the
cache memory 21 from the processor core 10, and stores
it into the corresponding one of the data regions 24a to
24d of the cache lines 22a to 22d of FIG. 2.

(b) At the step S202, the information regarding an address
into which the data is to be written is stored in the
corresponding one of the tag regions 23a to 23d, and the
content of the corresponding one of the control informa
tion holding sections 26a to 26d is updated. Also, the
encryption key to be used in writing this data into the
memory device 60 is read out from the key value register
40 and stored into the corresponding one of the secret
protection attribute holding sections 25a to 25d.

(c) Next, the data is written from the cache memory 21 into
the memory device 60. This operation becomes neces
sary in the case of storing another data into the corre
sponding one of the cache lines 22a to 22d. More spe
cifically, the cache memory control unit 20 acquires the
plaintext data from the corresponding one of the data
regions 24a to 24d in the cache lines 22a to 22d at the
step S203, and acquires the encryption key from the
corresponding one of the secret protection attribute
holding sections 25a to 25d at the step S204. These
plaintext data and encryption key are transferred to the
code data encryption/decryption processing unit 30.

(d) At the step S205, the code data encryption/decryption
processing unit 30 encrypts the plaintext data by using
the encryption key. At the step S206, the encrypted data
is written into the memory device 60 through the exter
nal bus interface 50 and the bus 70.

According to the above described processing, the data pro
cessed and changed by the tamper resistant microprocessor
100 are encrypted by using the encryption key in the secret
protection attribute holding section. For this reason, the
eavesdropping or the alteration by the malicious third party
can be prevented, and data given to the memory device in a
safe state can be transmitted to a desired device or network.

US 7,568,112 B2
11

According to the tamper resistant microprocessor of this
embodiment, the key value table is unnecessary at a time of
making an access to the cache memory, so that the first prob
lem noted above regarding a limitation on the number of
programs that can be simultaneously activated can be
avoided.
When one program is finished, the cache memory used by

that program cannot be read out without knowing the value of
the encryption key possessed by that program. For this rea
son, even if another program is activated while the contents of
the cache memory are unchanged, there is no possibility for
that another program to read out the contents. So that there is
no need to scan the entire region of the cache memory for the
purpose of invalidating the contents. As a result, the second
problem noted above regarding the entire region scan time
can be eliminated, so that the program execution speed can be
improved.

In the case where a plurality of programs share one encryp
tion key, any of these programs can look up the contents of the
cache memory by using the shared encryption key, and when
the content written by one program is to be read out by
another program, there is no need to encrypt that content once
and write it into the memory device such as the main memory.
For this reason, the third problem noted above regarding the
lowering of the program execution speed by the extra encryp
tion and decryption processing can be avoided.

According to the data access control method using this
tamper resistant microprocessor, there is no need for func
tions such as a function for looking up the key value table and
a function for Scanning the cache region and invalidating it at
a time of finishing the program, unlike the method using the
key value table, so that the fourth problem noted above
regarding the complication of the hardware can be avoided,
and thereby the manufacturing cost can be lowered.

According to the present invention, it is possible to provide
a data access control method by a tamper resistant micropro
cessor and a cache memory implemented processor, for lim
iting accesses with respect to the cache memory, in which
there is no limit to the number of programs that can be acti
vated simultaneously, the contents of the cache memory used
by one finishing program can be made impossible to read
from the other program without scanning the entire region of
the cache memory, the contents written into the cache
memory by one program can be read by the other program
without encrypting it and writing it into the main memory
when a plurality of programs read and write the shared
memory region by sharing one encryption key, and the com
plicated hardware functions are unnecessary.

It is also to be noted that, besides those already mentioned
above, many modifications and variations of the above
embodiments may be made without departing from the novel
and advantageous features of the present invention. Accord
ingly, all Such modifications and variations are intended to be
included within the scope of the appended claims.
What is claimed is:
1. A tamper resistant microprocessor that executes a plu

rality of programs in parallel under a multi-task programming
environment, comprising:

a decryption unit configured to read out an execution code
or data of one of a plurality of encrypted programs and
decrypt the execution code or data by using a prescribed
encryption key corresponding to the read-out encrypted
program, according to a decryption request from a cache
memory control unit;

a cache memory configured to store the execution code or
data decrypted by the decryption unit and an actual
encryption key used in decrypting the execution code or

5

10

15

25

30

35

40

45

50

55

60

65

12
data for at least one cache line, the actual encryption key
being stored in a secret protection attribute holding sec
tion of at least one cache line, the execution code or data
stored in the cache memory remaining even after each
program terminates; and

the cache memory control unit configured to process a
reading request for the execution code or data to be
acquired from the decryption unit or the cache memory
Such that, if the execution code or data exists in the cache
memory and the actual encryption key stored in the
Secret protection attribute holding section of a cache line
that stores the existent execution code or data is identical
with the prescribed key corresponding to a program that
issues the reading request, the execution code or data in
the cache memory is read out, and if the execution code
or data does not exist in the cache memory or the actual
encryption key is not identical with the prescribed key,
the execution code or data is read out from an external
memory device.

2. The tamper resistant microprocessor of claim 1, further
comprising:

a key value register configured to store the prescribed
encryption key, which is updated at an occasion of
executing each encrypted program;

wherein the cache memory control unitjudges whether the
contents of the actual encryption key stored in the Secret
protection attribute holding section of a cache line that
stores the existent execution code or data is identical
with the contents of the prescribed key stored in the key
value register.

3. The tamper resistant microprocessor of claim 2, wherein
the cache memory stores data decrypted by the decryption
unit, and the cache memory control unit writes a processing
result of the data into the cache memory, while storing the
prescribed encryption key stored in the key value register into
the secret protection attribute holding section of a cache line
for the data.

4. The tamper resistant microprocessor of claim 1, wherein
the cache memory stores data decrypted by the decryption
unit, and the cache memory control unit encrypts a processing
result of the data by using the actual encryption key stored in
the secret protection attribute holding section of a cache line
for the data, and writes encrypted data into the external
memory device.

5. A data access control method by a cache memory imple
mented processor that executes a plurality of programs in
parallel under a multi-task programming environment, com
prising:

reading out an execution code or data one of a plurality of
encrypted programs and decrypting the execution code
or data by using a prescribed encryption key correspond
ing to the read-out encrypted program, according to a
decryption request;

storing the execution code or data decrypted by the reading
and decrypting step and an actual encryption key used in
decrypting the execution code or data for at least one
cache line, the actual encryption key being stored in a
Secret protection attribute holding section of at least one
cache line, the execution code or data stored in the cache
memory remaining even after each program terminates;
and

processing a reading request for the execution code or data
to be acquired from a decryption unit or the cache
memory Such that, if the execution code or data exists in
the cache memory and the actual encryption key stored
in the secret protection attribute holding section of a
cache line that stores the existent execution code or data

US 7,568,112 B2
13

is identical with the prescribed key corresponding to a
program that issues the reading request, the execution
code or data in the cache memory is read out, and if the
execution code or data does not exist in the cache
memory or the actual encryption key is not identical with
the prescribed key, the execution code or data is read out
from an external memory device.

6. The data access control method of claim 5, further com
prising:

storing the prescribed encryption key, which is updated at
an occasion of executing each encrypted program, into a
key value register;

wherein whether the contents of the actual encryption key
stored in the Secret protection attribute holding section
of a cache line that stores the existent execution code or
data is identical with the contents of the prescribed key
stored in the key value register is judged.

10

15

14
7. The data access control method of claim 6, wherein the

cache memory stores data decrypted by the reading and
decrypting step, and the data access control method further
comprises writing a processing result of the data into the
cache memory, while storing the prescribed encryption key
stored in the key value register into the Secret protection
attribute holding section of a cache line for the data.

8. The data access control method of claim 5, wherein the
cache memory stores data decrypted by the reading and
decrypting step, and the data access control method further
comprises encrypting a processing result of the data by using
the actual encryption key stored in the Secret protection
attribute holding section of a cache line for the data, and
writing encrypted data into the external memory device.

