

B. S. MCCUTCHEN

PUBLIC ADDRESS SYSTEM
Filed Dec. 12, 1925

INVENTOR
B. S. McCutchen
BY
GRAF
ATTORNEY

UNITED STATES PATENT OFFICE.

BRUNSON S. McCUTCHEN, OF NORTH PLAINFIELD, NEW JERSEY, ASSIGNOR TO AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A CORPORATION OF NEW YORK.

PUBLIC-ADDRESS SYSTEM.

Application filed December 12, 1925. Serial No. 75,116.

In systems of this type it may take an appreciable length of time for the voice of the speaker to travel from the platform to the various parts of the auditorium or grounds located at a considerable distance from the platform this acoustic delay in the air path of the speech might cause a bad blurring or 15 echo effect to a listener near the loud speaker. Accordingly it is one of the primary objects of this invention to introduce an electrical delay in the circuit of the loud speaker to compensate for the acoustic delay to the speech existing in the air path. With such an arrangement the listener will not receive 25 speech from the horn in the same phase to other loud speakers, such as 10, located at 80 with and at the same time as the direct other positions on the grounds. A delay speech from the speaker. The arrangements network, such as 9, might be found desirable of the invention also provide distinct advaning the circuit 8 if the loud speaker 10 were of the invention also provide distinct advan- in the circuit 8 if the loud speaker 10 were tages from the standpoint of flexibility of located at a sufficient distance from the location of the loud speakers for with the ar- speaker and microphone 1. In Fig. 2 is 85 rangements of the invention the loud speak- shown a suitable type of delay network to ers may be located at much greater distances be utilized in the loud speaker circuits, such than heretofore from the speaker. The as 5 and 8. The delay networks consist of greater distance at which the loud speaker a number of sections comprising inductance greater distance at which the loud speaker 35 may be located tends to reduce the existence of singing in the apparatus and hence the loud speakers may be operated at higher volume levels. Accordingly, the arrangements of the invention tend to reduce singing, allow 40 increased volume in the operation of the loud speakers, and also afford greater flexibility in their location. Other objects and fea-tures of the invention will appear more fully from the detailed description thereof hereinafter given.

The invention may be more fully understood from the following description, gether with the accompanying drawing, in the Figures 1 and 2 of which the invention is illustrated. In Fig. 1 is a circuit diagram of one form of the arrangements of the inmitter circuit, a plurality of circuits associated therewith including loud speaking remains and in Fig. 2 are shown details of ciated therewith including loud speaking remains and in Fig. 2 are shown details of ciated therewith including loud speaking remains and in Fig. 2 are shown details of ciated therewith including loud speaking remains and in Fig. 2 are shown details of ciated therewith including loud speaking remains a contract of the contract of t stood from the following description, tovention and in Fig. 2 are shown details of the electrical retarding devices.

In Fig. 1 is shown a microphone, or transmitter, I which might be located at a plat- tain of said circuits.

This invention relates to communication form or any desirable spot of an auditorium, systems, and more particularly to improve- or grounds, on which an address or other ments in so-called public address system in message or musical composition is to be de-which one or more loud speakers may be livered. The microphone may be connected utilized. to an amplifier 2. The output circuit of the 60 amplifier is shown as circuit 3. Connected to circuit 3 is the circuit 5 leading to the loud speaker 7 which would be located at some distance away from the microphone on which the address is being delivered. In and speaker. If the distance from the 65 instances wherein a loud speaker might be microphone at which the loud speaker 7 is located is found to be great enough so that an acoustic delay in the air path will cause the direct speech to arrive at this position sufficiently later than the speech from the 70 loud speaker 7 to cause a blurring or echo effect, the delay network 6 will be inserted in circuit 5 to compensate for this delay. In the case of a loud speaker, such as 4, located in close proximity to the microphone no 75 such delay circuit would be provided. The the speech from the horn in advance of the loud speaker 4 might even be omitted if dedirect speech from the speaker with the atsired. Associated with circuit 3 might be tendant bad effect, but will receive the other circuits, such as the circuit 8, leading and capacity in series. The individual sec- 90 tions are shown between the dotted lines a, The delay networks, such as 6 and 9, will comprise a variable number of these sections depending upon the amount of acoustic delay in the air path which they are desired to 95 compensate.

While the arrangements of the invention have been illustrated in certain specific forms which are deemed desirable, it is understood that they are capable of embodiment in many 100 other widely varied forms without departing from the spirit of the invention as defined by the appended claims.

ceivers located at various distances from said transmitter, and delay networks in cer-

11Ó

2. In a public address system a circuit including a transmitter, a loud speaking receiver in said circuit located in close proximity to said transmitter, a second circuit associated with said first circuit and including a loud speaking receiver located at a relatively greater distance from said transmitter than said first loud speaking receiver, and electrical retarding means in said second circuit.

3. A circuit including a transmitter, an amplifier and a loud speaking receiver, said loud speaking receiver being located in relatively close proximity to said transmitter, a second circuit associated with said first circuit and including a loud speaking receiver located at a relatively greater distance from said transmitter than said first receiver, and means in said second circuit to so retard the

currents transmitted thereover that both of 20 said loud speaking receivers will operate in the same phase.

4. A circuit including a transmitter and a loud speaking receiver, said loud speaking receiver being located at a distance from said transmitter so great that an appreciable difference will exist between the acoustic delay in the air path between said transmitter and said loud speaking receiver and the electrical delay in said circuit interconnecting said transmitter and said loud speaking receiver, and means for introducing electrical delay in said circuit to compensate for the acoustic delay in the air path.

In testimony whereof, I have signed my 35 name to this specification this 10th day of

December, 1925.

BRUNSON S. McCUTCHEN.