

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200068144 B2
(10) Patent No. 783855

(54) Title
Compositions for the treatment of cardiovascular diseases containing pyridoxal compounds and cardiovascular compounds

(51) 6 International Patent Classification(s)
A61K 31/4415 A61K 31/675
(2006.01) 20060101ALI20
A61K 31/675 060101BHAU
(2006.01) A61P 9/08
A61P 9/08 20060101ALI20
(2006.01) 060101BHAU
A61P 9/10 A61P 9/10
(2006.01) 20060101ALI20
A61P 9/12 060101BHAU
(2006.01) A61P 9/12
A61K 31/4415 20060101ALI20
20060101AFI20 060101BHAU
060101BHAU

(21) Application No: 200068144 (22) Application Date: 2000.08.24

(87) WIPO No: WO01/13900

(30) Priority Data

(31) Number (32) Date (33) Country
60/150415 1999.08.24 US

(43) Publication Date: 2001.03.19
(43) Publication Journal Date: 2001.05.24
(44) Accepted Journal Date: 2005.12.15

(71) Applicant(s)
Medicure International Inc.

(72) Inventor(s)
Rajat Sethi; Wasimul Haque

(74) Agent/Attorney
Griffith Hack, GPO Box 1285K, MELBOURNE VIC 3001

(56) Related Art
US 5254572
WO 1998/019690
FR 2641189

AU 200068144

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 March 2001 (01.03.2001)

PCT

(10) International Publication Number
WO 01/13900 A3

(51) International Patent Classification?: A61K 45/06. A61P 9/00

(21) International Application Number: PCT/CA00/01020

(22) International Filing Date: 24 August 2000 (24.08.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/150,415 24 August 1999 (24.08.1999) US

(1) Applicant: MEDICURE INTERNATIONAL INC.
[CA/BB]: Second Street, Holteown, St. James (BB)

(72) Inventors: SETHI, Rajat; 68 Sauve Crescent, Winnipeg, Manitoba R2N 3K9 (CA). HAQUE, Wasimul; 24-62 Scurfield Road, Winnipeg, Manitoba R3T 5T1 (CA).

(74) Agents: DUBUC, Jean, H. et al.; Goudreau Gage Dubuc, Stock Exchange Tower, 800 Place Victoria, Suite 3400, P.O. Box 242, Montreal, Quebec H4Z 1E9 (CA).

(81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HK, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:
7 February 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/13900 A3

(54) Title: COMPOSITIONS FOR THE TREATMENT OF CARDIOVASCULAR DISEASES CONTAINING PYRIDOXAL COMPOUNDS AND CARDIOVASCULAR COMPOUNDS

(57) Abstract: Methods for treating cardiovascular and related diseases such as hypertrophy, hypertension, congestive heart failure, ischemia, ischemia reperfusion injuries in various organs, arrhythmia, and myocardial infarction are described. The methods are directed to concurrently administering a compound such as pyridoxal 5'-phosphate, pyridoxamine, pyridoxal, or a 3-acylated pyridoxal analogue with a therapeutic cardiovascular compound.

TREATMENT OF CARDIOVASCULAR AND RELATED PATHOLOGIES**FIELD OF THE INVENTION**

This invention relates to methods of treating cardiovascular and related diseases, such as hypertrophy, hypertension, congestive heart failure, ischemia, such as myocardial ischemia, ischemia reperfusion injuries in various organs, arrhythmia, and myocardial infarction.

BACKGROUND

10 Heart failure is a pathophysiological condition in which the heart is unable to pump blood at a rate commensurate with the requirement of the metabolizing tissues or can do so only from an elevated filling pressure (increased load). Thus, the heart has a diminished ability to keep up with its workload. Over time, this condition leads to excess fluid accumulation, such as peripheral edema, and is referred to as
15 congestive heart failure.

When an excessive pressure or volume load is imposed on a ventricle, myocardial hypertrophy (i.e., enlargement of the heart muscle) develops as a compensatory mechanism. Hypertrophy permits the ventricle to sustain an increased load because the heart muscle can contract with greater force. However, a ventricle
20 subjected to an abnormally elevated load for a prolonged period eventually fails to sustain an increased load despite the presence of ventricular hypertrophy, and pump failure may ultimately occur.

Heart failure can arise from any disease that affects the heart and interferes with circulation. For example, a disease that increases the heart muscle's workload,
25 such as hypertension, will eventually weaken the force of the heart's contraction.

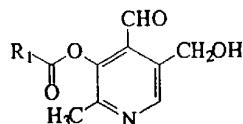
Hypertension is a condition in which there is an increase in resistance to blood flow through the vascular system. This resistance leads to increases in systolic and/or diastolic blood pressures. Hypertension places increased tension to the left ventricular myocardium, causing it to stiffen and hypertrophy, and accelerates the
30 development of atherosclerosis in the coronary arteries. The combination of increased demand and lessened supply increases the likelihood of myocardial ischemia leading to myocardial infarction, sudden death, arrhythmias, and congestive heart failure.

Ischemia is a condition in which an organ or a part of the body fails to receive a sufficient blood supply. When an organ is deprived of its blood supply, it is said to be hypoxic. An organ will become hypoxic even when the blood supply temporarily ceases, such as during a surgical procedure or during temporary artery blockage. Ischemia initially leads to a decrease in or loss of contractile activity. When the organ affected is the heart, this condition is known as myocardial ischemia, and myocardial ischemia initially leads to abnormal electrical activity. This may generate an arrhythmia. When myocardial ischemia is of sufficient severity and duration, cell injury may progress to cell death—i.e., myocardial infarction—and subsequently to heart failure, hypertrophy, or congestive heart failure.

When blood flow resumes to an organ after temporary cessation, this is known as ischemic reperfusion of the organ. For example, reperfusion of an ischemic myocardium may counter the effects of coronary occlusion, a condition that leads to myocardial ischemia. Ischemic reperfusion to the myocardium may lead to reperfusion arrhythmia or reperfusion injury. The severity of reperfusion injury is affected by numerous factors, such as, for example, duration of ischemia, severity of ischemia, and speed of reperfusion. Conditions observed with ischemia reperfusion injury include neutrophil infiltration, necrosis, and apoptosis.

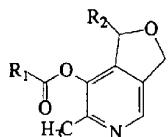
Drug therapies, using known active ingredients such as vasodilators, angiotensin II receptor antagonists, angiotensin converting enzyme inhibitors, diuretics, antithrombolytic agents, β -adrenergic receptor antagonists, α -adrenergic receptor antagonists, calcium channel blockers, and the like, are available for treating heart failure and associated diseases. Of course, any drug used for treatment may result in side effects. For example, vasodilators may result in hypotension, myocardial infarction, and adverse immune response. Angiotensin II receptor antagonists and angiotensin converting enzyme inhibitors are often associated with acute renal failure, fetopathic potential, proteinuria, hepatotoxicity, and glycosuria as side effects. Similarly, common side effects associated with calcium channel blockers include hypotension, peripheral edema, and pulmonary edema. β -Adrenergic receptor antagonists and diuretics have been associated with incompatibility with nonsteroidal anti-inflammatory drugs in addition to impotence, gout, and muscle cramps in the case of diuretics and in addition to a decrease in left

ventricular function and sudden withdrawal syndrome in the case of β -adrenergic receptor antagonists. Moreover, side effects associated with α -adrenergic receptor antagonists include thostatic hypotension, and side effects associated with antithrombolytic agents include excessive bleeding.


5 To address the side effects, the dosage of a drug may be reduced or the administration of the drug may be abated and replaced with another drug. It would be desirable to administer a drug therapy with decreased amounts of the active ingredient to reduce side effects but maintain effectiveness.

10 SUMMARY OF THE INVENTION

The present invention provides methods for treating cardiovascular and related diseases, such as, for example, hypertrophy, hypertension, congestive heart failure, myocardial ischemia, ischemia reperfusion injuries in an organ, arrhythmia, and myocardial infarction. One embodiment is directed to a method of treating 15 cardiovascular disease in a mammal by concurrently administering to the mammal a therapeutically effective amount of a combination of a compound suitable for use in methods of the invention and a therapeutic cardiovascular compound. Therapeutic cardiovascular compounds suitable for use in methods of the invention include an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a 20 calcium channel blocker, an antithrombolytic agent, a β -adrenergic receptor antagonist, a vasodilator, a diuretic, an α -adrenergic receptor antagonist, an antioxidant, and a mixture thereof. In some embodiments, the therapeutic cardiovascular compound is PPADS.


Compounds suitable for use in the methods of the invention include 25 pyridoxal-5'-phosphate, pyridoxamine, pyridoxal, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof.

In one embodiment, a 3-acylated pyridoxal analogue is a compound of the formula

30

In another embodiment, a 3-acylated pyridoxal analogue is a compound of the formula

5

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a graph showing the effect of P-5-P and aspirin, alone or in combination, on mortality in the rat model of coronary ligation. "S" designates a sham group; "U" designates an untreated group; "M" designates a P-5-P treated group; "A" designates an aspirin treated group; "M+A" designates a P-5-P and aspirin treated group.

Figure 2 is a graph showing the effect of P-5-P and captopril, alone or in combination, on mortality in the rat model of coronary ligation. "S" designates a sham group; "U" designates an untreated group; "M" designates a P-5-P treated group; "C" designates a captopril treated group; "M+C" designates a P-5-P and captopril treated group.

Figure 3 is a graph showing the effect of P-5-P and propranolol, alone or in combination, on mortality in the rat model of coronary ligation. "S" designates a sham group; "U" designates an untreated group; "M" designates a P-5-P treated group; "P" designates a propranolol treated group; "M+P" designates a P-5-P and propranolol treated group.

Figure 4 is a graph showing the effect of P-5-P and verapamil, alone or in combination, on mortality in the rat model of coronary ligation. "S" designates a sham group; "U" designates an untreated group; "M" designates a P-5-P treated group; "V" designates a verapamil treated group; "M+V" designates a P-5-P and verapamil treated group.

4

Figure 5 is a graph showing the effect of P-5-P and aspirin, alone or in combination, on scar weight in the rat model of coronary ligation. "U", "M", "A" and "M+A" are designated as in Figure 1.

5 Figure 6 is a graph showing the effect of P-5-P and captopril, alone or in combination, on scar weight in the rat model of coronary ligation. "U", "M", "C" and "M+C" are designated as in Figure 2.

Figure 7 is a graph showing the effect of P-5-P and propranolol, alone or in combination, on scar weight in the rat model of coronary ligation. "U", "M", "P" and "M+P" are designated as in Figure 3.

10 Figure 8 is a graph showing the effect of P-5-P and verapamil, alone or in combination, on scar weight in the rat model of coronary ligation. "U", "M", "V" and "M+V" are designated as in Figure 4.

15 Figure 9 is a graph showing the effect of P-5-P and aspirin, alone or in combination, on the rate of force of contraction (+dp/dt) in the rat model of coronary ligation. "S", "U", "M", "A" and "M+A" are designated as in Figure 1.

Figure 10 is a graph showing the effect of P-5-P and captopril, alone or in combination, on the rate of force of contraction (+dp/dt) in the rat model of coronary ligation. "S", "U", "M", "C" and "M+C" are designated as in Figure 2.

20 Figure 11 is a graph showing the effect of P-5-P and propranolol, alone or in combination, on the rate of force of contraction (+dp/dt) in the rat model of coronary ligation. "S", "U", "M", "P" and "M+P" are designated as in Figure 3.

Figure 12 is a graph showing the effect of P-5-P verapamil, alone or in combination, on the rate of force of contraction (+dp/dt) in the rat model of coronary ligation. "S", "U", "M", "V" and "M+V" are designated as in Figure 4.

25 Figure 13 is a graph showing the effect of P-5-P and aspirin, alone or in combination, on the rate of force of relaxation (-dp/dt) in the rat model of coronary ligation. "S", "U", "M", "A" and "M+A" are designated as in Figure 1.

Figure 14 is a graph showing the effect of P-5-P and captopril, alone or in combination, on the rate of force of relaxation (-dp/dt) in the rat model of coronary ligation. "S", "U", "M", "C" and "M+C" are designated as in Figure 2.

30 Figure 15 is a graph showing the effect of P-5-P and propranolol, alone or in combination, on the rate of force of relaxation (-dp/dt) in the rat model of coronary ligation. "S", "U", "M", "P" and "M+P" are designated as in Figure 3.

Figure 16 is a graph showing the effect of P-5-P and verapamil, alone or in combination, on the rate of force of relaxation (-dp/dt) in the rat model of coronary ligation. "S", "U", "M", "V" and "M+V" are designated as in Figure 4.

Figure 17 is a graph showing the effect of P-5-P and aspirin, alone or in combination, on left ventricular end diastolic pressure (LVEDP) in the rat model of coronary ligation. "S", "U", "M", "A" and "M+A" are designated as in Figure 1.

Figure 18 is a graph showing the effect of P-5-P and captopril, alone or in combination, on left ventricular end diastolic pressure (LVEDP) in the rat model of coronary ligation. "S", "U", "M", "C" and "M+C" are designated as in Figure 2.

Figure 19 is a graph showing the effect of P-5-P and propranolol, alone or in combination, on left ventricular end diastolic pressure (LVEDP) in the rat model of coronary ligation. "S", "U", "M", "P" and "M+P" are designated as in Figure 3.

Figure 20 is a graph showing the effect of P-5-P and verapamil, alone or in combination, on left ventricular end diastolic pressure (LVEDP) in the rat model of coronary ligation. "S", "U", "M", "V" and "M+V" are designated as in Figure 4.

Figure 21 is a graph showing the effect of P-5-P and aspirin, alone or in combination, on heart weight in the rat model of coronary ligation. "S", "U", "M", "A" and "M+A" are designated as in Figure 1.

Figure 22 is a graph showing the effect of P-5-P and captopril, alone or in combination, on heart weight in the rat model of coronary ligation. "S", "U", "M", "C" and "M+C" are designated as in Figure 2.

Figure 23 is a graph showing the effect of P-5-P propranolol, alone or in combination, on heart weight in the rat model of coronary ligation. "S", "U", "M", "P" and "M+P" are designated as in Figure 3.

Figure 24 is a graph showing the effect of P-5-P and verapamil, alone or in combination, on heart weight in the rat model of coronary ligation. "S", "U", "M", "V" and "M+V" are designated as in Figure 4.

Figure 25 is a graph showing the effect of P-5-P and aspirin, alone or in combination, on right ventricular weight in the rat model of coronary ligation. "S", "U", "M", "A" and "M+A" are designated as in Figure 1.

Figure 26 is a graph showing the effect of P-5-P and captopril, alone or in combination, on right ventricular weight in the rat model of coronary ligation. "S", "U", "M", "C" and "M+C" are designated as in Figure 2.

Figure 27 is a graph showing the effect of P-5-P and propranolol, alone or in combination, on right ventricular weight in the rat model of coronary ligation. "S", "U", "M", "P" and "M+P" are designated as in Figure 3.

Figure 28 is a graph showing the effect of P-5-P and verapamil, alone or in combination, on right ventricular weight in the rat model of coronary ligation. "S", "U", "M", "V" and "M+V" are designated as in Figure 4.

Figure 29A is a graph showing systolic blood pressure in rats from all pretreatment experiment groups at "0" day. "C" designates a control group; "S" designates a sucrose diet induced diabetic group; "M" designates a group 10 administered P-5-P alone; "Ca" designates a group administered captopril alone; "V" designates a group administered verapamil alone; "M+Ca" designates a group administered P-5-P and captopril; "M+V" designates a group administered P-5-P and verapamil.

Figure 29B is a graph showing the effect of pretreatment with P-5-P, 15 captopril and verapamil on systolic blood pressure in rats when administered 1 week prior to sucrose diet induced diabetes. "C", "S", "M", "Ca", "V", "M+Ca", and "M+V" are designated as in Figure 29A.

Figure 30A is a graph showing systolic blood pressure in rats from all experiment groups involved in same day treatment as sucrose feeding at "0" day. 20 "C", "S", "M", "Ca", "V", "M+Ca", and "M+V" are designated as in Figure 29A.

Figure 30B is a graph showing the effect of administration of P-5-P, captopril and verapamil on systolic blood pressure in rats when administered the same day as sucrose feeding to induce diabetes. "C", "S", "M", "Ca", "V", "M+Ca", and "M+V" are designated as in Figure 29A.

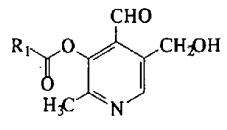
Figure 31A is a graph showing systolic blood pressure in rats from all experiment groups involved in treatment two weeks after sucrose feeding at "0" day. 25 "C", "S", "M", "Ca", "V", "M+Ca", and "M+V" are designated as in Figure 29A.

Figure 31B is a graph showing systolic blood pressure in rats from all experiment groups involved in treatment two weeks after sucrose feeding at "0" day. "C", "S", 30 "M", "Ca", "V", "M+Ca", and "M+V" are designated as in Figure 29A.

DESCRIPTION OF THE INVENTION

The present invention provides methods for treatment of cardiovascular and related diseases or conditions. Such cardiovascular and related diseases include hypertrophy, hypertension, congestive heart failure, ischemia, such as myocardial ischemia, ischemia reperfusion injury, arrhythmia, and myocardial infarction.

5 In accordance with the present invention, it has been found that pyridoxal-5'-phosphate and its derivatives can be used concurrently with therapeutic cardiovascular compounds in the treatment of the above-identified diseases and conditions. "Treatment" and "treating" as used herein include preventing, inhibiting, and alleviating cardiovascular diseases, related diseases, and related symptoms as well as healing the ischemia-related conditions or symptoms thereof affecting mammalian organs and tissues. Treatment may be carried out by concurrently administering a therapeutically effective amount of a combination of a compound suitable for use in methods of the invention and a therapeutic cardiovascular compound.


10 A "therapeutically effective amount" as used herein includes a prophylactic amount, for example, an amount effective for preventing or protecting against cardiovascular diseases, related diseases, and symptoms thereof, and amounts effective for alleviating or healing cardiovascular diseases, related diseases, and symptoms thereof. By administering a compound suitable for use in methods of the invention concurrently with a therapeutic cardiovascular compound, the therapeutic cardiovascular compound may be administered in a dosage amount that is less than the dosage amount required when the therapeutic cardiovascular compound is administered as a sole active ingredient. By administering lower dosage amounts of the active ingredient, the side effects associated therewith should accordingly be reduced.

15

20 Compounds suitable for use in the methods of the invention include pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof. 3-Acylated pyridoxal analogues provide for slower metabolism to pyridoxal *in vivo*.

25

30 For example, a suitable 3-acylated analogue of pyridoxal (2-methyl-3-hydroxy-4-formyl-5-hydroxymethylpyridine) is a compound of the formula I:

or a pharmaceutically acceptable acid addition salt thereof, wherein

5 R_1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

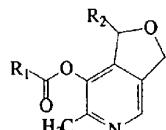
The term "alkyl" group includes a straight or branched saturated aliphatic hydrocarbon chain having from 1 to 8 carbon atoms, such as, for example, methyl, ethyl, propyl, isopropyl (1-methylethyl), butyl, *tert*-butyl (1,1-dimethylethyl), and the like.

10 The term "alkenyl" group includes an unsaturated aliphatic hydrocarbon chain having from 2 to 8 carbon atoms, such as, for example, ethenyl, 1-propenyl, 2-propenyl, 1-but enyl, 2-methyl-1-propenyl, and the like.

The above alkyl or alkenyl groups may optionally be interrupted in the chain by a heteroatom, such as, for example, a nitrogen or oxygen atom, forming an alkylaminoalkyl or alkoxyalkyl group, for example, methylaminoethyl or methoxymethyl, and the like.

15 The term "alkoxy" group includes an alkyl group as defined above joined to an oxygen atom having preferably from 1 to 4 carbon atoms in a straight or branched chain, such as, for example, methoxy, ethoxy, propoxy, isopropoxy (1-methylethoxy), butoxy, *tert*-butoxy (1,1-dimethylethoxy), and the like.

The term "dialkylamino" group includes two alkyl groups as defined above joined to a nitrogen atom, in which the alkyl group has preferably 1 to 4 carbon atoms, such as, for example, dimethylamino, diethylamino, methylethylamino, methylpropylamino, diethylamino, and the like.


20 The term "aryl" group includes an aromatic hydrocarbon group, including fused aromatic rings, such as, for example, phenyl and naphthyl. Such groups may be unsubstituted or substituted on the aromatic ring by, for example, an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, an amino group, a hydroxy group, or an acetoxy group.

25 Preferred R_1 groups for compounds of formula I are toluyl or naphthyl. Such

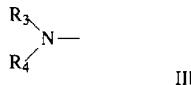
R_1 groups when joined with a carbonyl group form an acyl group $R_1C=O$ which is preferred for compounds of formula I include toluoyl or β -naphthoyl. Of the toluoyl group, the *p*-isomer is more preferred.

Examples of 3-acylated analogues of pyridoxal include, but are not limited to, 2-methyl-3-toluoyloxy-4-formyl-5-hydroxymethylpyridine and 2-methyl- β -naphthoyloxy-4-formyl-5-hydroxymethylpyridine.

Another suitable analogue is a 3-acylated analogue of pyridoxal-4,5-aminal (1-secondary amino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-*c*)pyridine) of the formula II:

10

II


or a pharmaceutically acceptable acid addition salt thereof, wherein

R_1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; 15 an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and

R_2 is a secondary amino group.

The terms "alkyl," "alkenyl," "alkoxy," "dialkylamino," and "aryl" are as defined above.

20 The term "secondary amino" group includes a group of the formula III:

25 derived from a secondary amine R_3R_4NH , in which R_3 and R_4 are each independently alkyl, alkenyl, cycloalkyl, aryl, or, when R_3 and R_4 are taken together, may form a ring with the nitrogen atom and which may optionally be interrupted by a heteroatom, such as, for example, a nitrogen or oxygen atom. The terms "alkyl,"

10

"alkenyl," and "aryl" are used as defined above in forming secondary amino groups such as, for example, dimethylamino, methylethylamino, diethylamino, dialkylamino, phenylmethylamino, diphenylamino, and the like.

The term "cycloalkyl" refers to a saturated hydrocarbon having from 3 to 8 carbon atoms, preferably 3 to 6 carbon atoms, such as, for example, cyclopropyl, cyclopentyl, cyclohexyl, and the like.

When R₃ and R₄ are taken together with the nitrogen atom, they may form a cyclic secondary amino group, such as, for example, piperidino, and, when interrupted with a heteroatom, includes, for example, piperazino and morpholino.

Preferred R₁ groups for compounds of formula II include toluyl, e.g., *p*-toluyl, naphthyl, *tert*-butyl, dimethylamino, acetylphenyl, hydroxyphenyl, or alkoxy, e.g., methoxy. Such R₁ groups when joined with a carbonyl group form an acyl

group $\text{R}_1\text{C}^{\text{O}}-$ which preferred for compounds of formula II include toluoyl, β -naphthoyl, pivaloyl, dimethylcarbamoyl, acetylsalicyloyl, salicyloyl, or alkoxycarbonyl. A preferred secondary amino group may be morpholino.

Examples of 3-acylated analogues of pyridoxal-4,5-aminal include, but are not limited to, 1-morpholino-1,3-dihydro-7-(*p*-toluoyloxy)-6-methylfuro(3,4-*c*)pyridine; 1-morpholino-1,3-dihydro-7-(β -naphthoyloxy)-6-methylfuro(3,4-*c*)pyridine; 1-morpholino-1,3-dihydro-7-pivaloyloxy-6-methylfuro(3,4-*c*)pyridine; 1-morpholino-1,3-dihydro-7-carbamoyloxy-6-methylfuro(3,4-*c*)pyridine; and 1-morpholino-1,3-dihydro-7-acetylsalicyloxy-6-methylfuro(3,4-*c*)pyridine.

The compounds of formula I may be prepared by reacting pyridoxal hydrochloride with an acyl halide in an aprotic solvent. A suitable acyl group

is $\text{R}_1\text{C}^{\text{O}}-$, wherein R₁ is as defined above. A particularly suitable acyl halide includes *p*-toluoyl chloride or β -naphthoyl chloride. A suitable aprotic solvent includes acetone, methylethylketone, and the like.

The compounds of formula II may be prepared by reacting 1-secondary amino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-*c*)pyridine with an acyl halide in an

aprotic solvent. An acyl group is $\text{R}_1\text{C}^{\text{O}}-$, wherein R₁ is as defined above. A

particularly suitable acyl halide includes *p*-toluoyl chloride, β -naphthoyl chloride, trimethylacetyl chloride, dimethylcarbamoyl chloride, and acetylsalicyloyl chloride. A particularly suitable secondary amino group includes morpholino.

The compound 1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-

5 *c*)pyridine may be prepared by methods known in the art, for example, by reacting morpholine and pyridoxal hydrochloride at a temperature of about 100°C in a solvent. A suitable solvent includes, for example, toluene. Similarly, other secondary amines as defined for R₂ may be used as reactants to prepare the appropriate 1-secondary amino compounds.

10 The compounds of formula I may alternatively be prepared from the compounds of formula II by reacting a compound of formula II with an aqueous acid, such as, for example, aqueous acetic acid.

One skilled in the art would recognize variations in the sequence and would recognize variations in the appropriate reaction conditions from the analogous

15 reactions shown or otherwise known that may be appropriately used in the above-described processes to make the compounds of formulas I and II herein.

The products of the reactions described herein are isolated by conventional means such as extraction, distillation, chromatography, and the like.

Pharmaceutically acceptable acid addition salts of compounds suitable for 20 use in methods of the invention include salts derived from nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydriodic, hydrofluoric, phosphorous, and the like, as well as the salts derived from nontoxic organic acids, such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids, aromatic acids, aliphatic 25 and aromatic sulfonic acids, etc. Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, trifluoroacetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, benzoate, 30 chlorobenzoate, methylbenzoate, dinitrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, maleate, tartrate, methanesulfonate, and the like. Also contemplated are salts of amino acids such as arginate and the

like and gluconate, galacturonate, n-methyl glutamine, etc. (see, e.g., Berge et al., *J. Pharmaceutical Science*, 66: 1-19 (1977).

The acid addition salts of the basic compounds are prepared by contacting the free base form with a sufficient amount of the desired acid to produce the salt in the conventional manner. The free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner. The free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free base for purposes of the present invention.

10 Methods of the invention include concurrently administering pyridoxal-5'-phosphate, pyridoxamine, pyridoxal, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof with a therapeutic cardiovascular compound to treat hypertrophy, hypertension, congestive heart failure, ischemia, such as myocardial ischemia, ischemia reperfusion injury, 15 arrhythmia, or myocardial infarction. Preferably, the cardiovascular disease treated is hypertrophy or congestive heart failure. Still preferably, the cardiovascular disease treated is arrhythmia. Also preferably, the cardiovascular disease treated is ischemia reperfusion injury.

Therapeutic cardiovascular compounds that may be concurrently 20 administered with a compound suitable for use in methods of the invention include an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, an antithrombolytic agent, a β -adrenergic receptor antagonist, a vasodilator, a diuretic, an α -adrenergic receptor antagonist, an antioxidant, and a mixture thereof. A compound suitable for use in methods of the 25 invention also may be concurrently administered with PPADS (pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid), also a therapeutic cardiovascular compound, or with PPADS and another known therapeutic cardiovascular compound as already described. In a preferred embodiment, pyridoxal-5'-phosphate is concurrently administered with PPADS or with PPADS and another known therapeutic 30 cardiovascular compound, preferably an angiotensin converting enzyme inhibitor or an angiotensin II receptor antagonist.

Preferably, a therapeutic cardiovascular compound, which is concurrently administered with pyridoxal-5'-phosphate, pyridoxamine, pyridoxal, a 3-acylated

pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, or a mixture thereof, is an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, or a diuretic. Still preferably, the therapeutic cardiovascular compound is an α -adrenergic receptor antagonist. Also preferably, the therapeutic cardiovascular compound is a calcium channel blocker.

5 These therapeutic cardiovascular compounds are generally used to treat cardiovascular and related diseases as well as symptoms thereof. A skilled physician or veterinarian readily determines a subject who is exhibiting symptoms of any one or more of the diseases described above and makes the determination about which 10 compound is generally suitable for treating specific cardiovascular conditions and symptoms.

For example, myocardial ischemia may be treated by the administration of, for example, angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, an antithrombolytic agent, a β -adrenergic 15 receptor antagonist, a diuretic, an α -adrenergic receptor antagonist, or a mixture thereof. In some instances, congestive heart failure may be treated by the administration of, for example, angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, a vasodilator, a diuretic, or a mixture thereof.

20 Myocardial infarction may be treated by the administration of, for example, angiotensin converting enzyme inhibitor, a calcium channel blocker, an antithrombolytic agent, a β -adrenergic receptor antagonist, a diuretic, an α -adrenergic receptor antagonist, or a mixture thereof.

25 Hypertension may be treated by the administration of, for example, angiotensin converting enzyme inhibitor, a calcium channel blocker, a β -adrenergic receptor antagonist, a vasodilator, a diuretic, an α -adrenergic receptor antagonist, or a mixture thereof.

Moreover, arrhythmia may be treated by the administration of, for example, a calcium channel blocker, a β -adrenergic receptor antagonist, or a mixture thereof.

30 Antithrombolytic agents are used for reducing or removing blood clots from arteries.

Hypertropy may be treated by the administration of, for example, an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, or a mixture thereof.

Ischemia reperfusion injury may be treated by the administration of, for example, an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, or a mixture thereof.

Known angiotensin converting enzyme inhibitors include, for example, captopril, enalapril, lisinopril, benazapril, fosinopril, quinapril, ramipril, spirapril, imidapril, and moexipril.

10 Examples of known angiotensin II receptor antagonists include both angiotensin I receptor subtype antagonists and angiotensin II receptor subtype antagonists. Suitable angiotensin II receptor antagonists include losartan and valsartan.

15 Suitable calcium channel blockers include, for example, verapamil, diltiazem, nifedipine, nifedipine, amlodipine, felodipine, nimodipine, and bepridil.

Antithrombolytic agents known in the art include antiplatelet agents, aspirin, and heparin.

Examples of known β -adrenergic receptor antagonists include atenolol, propranolol, timolol, and metoprolol.

20 Suitable vasodilators include, for example, hydralazine, nitroglycerin, and isosorbide dinitrate.

Suitable diuretics include, for example, furosemide, diuril, amiloride, and hydrodiuril.

25 Suitable α -adrenergic receptor antagonists include, for example, prazosin, doxazocin, and labetalol.

Suitable antioxidants include vitamin E, vitamin C, and isoflavones.

A compound suitable for use in methods of the invention and a therapeutic cardiovascular compound are administered concurrently. "Concurrent administration" and "concurrently administering" as used herein includes 30 administering a compound suitable for use in methods of the invention and a therapeutic cardiovascular compound in admixture, such as, for example, in a pharmaceutical composition or in solution, or as separate compounds, such as, for example, separate pharmaceutical compositions or solutions administered

consecutively, simultaneously, or at different times but not so distant in time such that the compound suitable for use in methods of the invention and the therapeutic cardiovascular compound cannot interact and a lower dosage amount of the active ingredient cannot be administered.

5 A physician or veterinarian of ordinary skill readily determines a subject who is exhibiting symptoms of any one or more of the diseases described above. Regardless of the route of administration selected, the compound suitable for use in methods of the invention and the therapeutic cardiovascular compound are formulated into pharmaceutically acceptable unit dosage forms by conventional

10 methods known to the pharmaceutical art. An effective but nontoxic quantity of the compound suitable for use in methods of the invention and the therapeutic cardiovascular compound are employed in the treatment.

The compound suitable for use in methods of the invention and the therapeutic cardiovascular compound may be concurrently administered enterally

15 and/or parenterally in admixture or separately. Parenteral administration includes subcutaneous, intramuscular, intradermal, intramammary, intravenous, and other administrative methods known in the art. Enteral administration includes tablets, sustained release tablets, enteric coated tablets, capsules, sustained release capsules, enteric coated capsules, pills, powders, granules, solutions, and the like.

20 A pharmaceutical composition suitable for administration comprises a pharmaceutically acceptable carrier and a compound suitable for use in methods of the invention and/or a therapeutic cardiovascular compound. The pharmaceutical composition comprises a pharmaceutically acceptable carrier and a compound suitable for use in methods of the invention, such as, for example, pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, and a mixture thereof. A pharmaceutically acceptable carrier includes, but is not limited to, physiological saline, ringers, phosphate buffered saline, and other carriers known in the art. Pharmaceutical compositions may also include stabilizers, antioxidants, colorants,

25 and diluents. Pharmaceutically acceptable carriers and additives are chosen such that side effects from the pharmaceutical compound are reduced or minimized and the performance of the compound is not canceled or inhibited to such an extent that treatment is ineffective.

30

Methods of preparing pharmaceutical compositions containing a pharmaceutically acceptable carrier and a compound suitable for use in methods of the invention and/or a therapeutic cardiovascular compound are known to those of skill in the art. All methods may include the step of bringing the compound suitable for use in methods of the invention and/or the therapeutic cardiovascular compound in association with the carrier or additives. In general, the formulations are prepared by uniformly and intimately bringing the compound into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired unit dosage form.

10 The ordinarily skilled physician or veterinarian will readily determine and prescribe the therapeutically effective amount of the compound to treat the disease for which treatment is administered. In so proceeding, the physician or veterinarian could employ relatively low dosages at first, subsequently increasing the dose until a maximum response is obtained. Typically, the particular disease, the severity of the

15 disease, the compound to be administered, the route of administration, and the characteristics of the mammal to be treated, for example, age, sex, and weight, are considered in determining the effective amount to administer. Administering a therapeutically effective amount of a compound suitable for use in methods of the invention to treat cardiovascular and related diseases as well as symptoms thereof is

20 typically in a range of about 0.1-100 mg/kg of a patient's body weight, more preferably in the range of about 0.5-50 mg/kg of a patient's body weight per daily dose when administered alone. The compound suitable for use in methods of the invention may be administered for periods of short and long duration.

Therapeutically effective amounts of respective therapeutic cardiovascular compounds when administered as sole active ingredients are known in the art and may be found in, for example, Physicians' Desk Reference (53rd ed., 1999).

When concurrently administering a compound suitable for use in methods of the invention and a therapeutic cardiovascular compound, the compound suitable for use in methods of the invention is typically administered in a range of about 0.1-100 mg/kg of a patient's body weight, preferably 0.5-50 mg/kg of a patient's body weight, per daily dose, and the therapeutic cardiovascular compound is administered in an amount less than the amount known in the art, which is administered when the therapeutic cardiovascular compound is administered as the sole active ingredient.

Typically, the therapeutic cardiovascular compound is administered in an amount at least 5% less than the amount known in the art, which is administered when the therapeutic cardiovascular compound is administered as the sole active ingredient.

A therapeutically effective amount of a compound suitable for use in

- 5 methods of the invention and a therapeutic cardiovascular compound for treating cardiovascular and related diseases and symptoms thereof can be administered prior to, concurrently with, or after the onset of the disease or symptom. For example, a therapeutically effective amount of a compound suitable for use in methods of the invention and a therapeutic cardiovascular compound for treating ischemia
- 10 reperfusion injury or myocardial infarction can be administered before, during, or following ischemia (including during or following reperfusion), as well as continually for some period spanning from pre- to post-ischemia. For example, the compound suitable for use in methods of the invention and a therapeutic cardiovascular compound may be concurrently administered prior to heart
- 15 procedures, including bypass surgery, thrombolysis, and angioplasty, and prior to any other procedures that require blood flow be interrupted and then resumed. Additionally, a compound suitable for use in methods of the invention and a therapeutic cardiovascular compound may be taken on a regular basis to protect against cellular dysfunction arising from arrhythmia and heart failure.

20 The invention is further elaborated by the representative examples as follows.

Such examples are not meant to be limiting.

EXAMPLES

Example 1: Synthesis of morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine)

25 A mixture of morpholine (20g) and toluene (100mL) was stirred and heated using an oil bath set to 100°C for 15 minutes. Pyridoxal hydrochloride (10g) was then added and the reaction mixture was stirred at 100°C for two hours. The reaction mixture was then concentrated by distillation of the toluene and morpholine.

30 The concentrated reaction mixture was washed three times by adding toluene (100mL) and removing the toluene by distillation. After washing, the residue was dissolved in toluene and filtered, and then hexane was added until precipitation

began, at which time the reaction mixture was left overnight at room temperature. Crystals were collected and washed thoroughly with hexane.

Nuclear magnetic resonance spectroscopy (NMR) and mass spectroscopy confirmed the identity of the synthesized compound. The purity of the compound 5 was analyzed by high performance liquid chromatography (HPLC) using a C-18 reverse phase column and water/acetonitrile as solvent (1-100% acetonitrile over 25 minutes).

Example 2: Synthesis of the 3-toluate of the morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-(*p*-toluoyloxy)-6-methylfuro(3,4-c)pyridine)

Anhydrous powdered potassium carbonate (5g), acetone (100mL), and morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) (1.11 g, 5 mmoles) were mixed in a nitrogen-cooled, dry 15 flask. The reaction mixture was cooled to between 0 and 5°C and then *p*-toluoyl chloride (1.06g, 6 mmoles) in acetone (20mL) was added. This mixture was stirred for two hours, followed by filtering out the solid and evaporating the solution to dryness under vacuum. The residue was chromatographed on silica gel using a mixture of ethyl acetate and hexane as solvent.

20 The purified solid was analyzed by thin layer chromatography (TLC), NMR, and mass spectroscopy. The purity of the synthesized compound was confirmed by HPLC as described in Example 1.

Example 3: Synthesis of the 3-toluate of pyridoxal (2-methyl-3-toluoyloxy-4-formyl-5-hydroxymethylpyridine)

Anhydrous potassium carbonate (10g), acetone (100mL), and pyridoxal hydrochloride (2.03g, 10 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5°C and then *p*-toluoyl chloride (2.12g, 12 mmoles) in acetone (20mL) was added. The reaction mixture was stirred for two 30 hours followed by filtering out the solid and evaporating the solution to dryness under vacuum. The residue was chromatographed on silica gel as described in Example 2.

The purified solid was analyzed by TLC, NMR, and mass spectroscopy. The purity of the compound was confirmed by HPLC as described in Example 1.

Alternative to the above-described method, the 3-toluate of pyridoxal is synthesized by reacting the compound of Example 2 with 80% aqueous acetic acid at 5 60°C for 30 minutes, and then diluting with water and extracting by ethyl acetate. The ethyl acetate layer is washed with 5% aqueous sodium bicarbonate, dried with magnesium sulfate, and evaporated to dryness. The compound is also analyzed as described *supra*.

10 Example 4: Synthesis of 3-β-naphthoate of the morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-(β-naphthoyloxy)-6-methylfuro(3,4-c)pyridine)

Anhydrous powdered potassium carbonate (5g), acetone (100mL), and morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) (1.11g, 5 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5°C and then β-naphthoyl chloride (1.06g, 6 mmoles) in acetone (20mL) was added. The reaction mixture was stirred for two hours, and then the solid was filtered out and the solution was evaporated to dryness under vacuum. The residue was chromatographed according to Example 2.

15 20 The purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.

Example 5: Synthesis of the 3-β-naphthoate of pyridoxal (2-methyl-3-9-naphthoyloxy-4-formyl-5-hydroxymethylpyridine)

Anhydrous potassium carbonate (10g), acetone (100mL), and pyridoxal hydrochloride (2.03g, 10 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5°C and then β-naphthoyl chloride (2.12g, 12 mmoles) in acetone (20mL) was added and the mixture was stirred for two hours. The solid was filtered out and the solution was evaporated to dryness under vacuum.

25 30 The residue was chromatographed according to Example 2. The purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.

Alternative to the above-described synthesis, the 3- β -naphthoate of pyridoxal is prepared by reacting the compound of Example 4 with 80% aqueous acetic acid at 60°C for 30 minutes, followed by diluting with water and extracting by ethyl acetate. The ethyl acetate layer is then washed with 5% aqueous sodium bicarbonate, dried with magnesium sulfate, and evaporated to dryness. The compound is also analyzed as described *supra*.

Example 6: Synthesis of 3-pivaloyl of the morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-pivaloyloxy)-6-methylfuro(3,4-c)pyridine)

10 Anhydrous powdered potassium carbonate (5g), acetone (100mL), and morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) (1.11g, 5 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5°C and then pivaloyl chloride (trimethylacetyl chloride) (720mg, 6 mmoles) in acetone (20mL) was added. The 15 reaction mixture was stirred for two hours. The solid was then filtered out and the solution was evaporated to dryness under vacuum. The residue was chromatographed according to Example 2.

The purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.

20 Example 7: Synthesis of 3-dimethylcarbamoyl of the morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-(dimethylcarbamoyloxy)-6-methylfuro(3,4-c)pyridine)

25 Anhydrous powdered potassium carbonate (5g), acetone (100mL), and morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) (1.11g, 5 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5°C and then dimethylcarbamoyl chloride (642mg, 6 mmoles) in acetone (20mL) was added. The reaction mixture was stirred for two hours. The solid was then filtered out and the solution was 30 evaporated to dryness under vacuum. The residue was chromatographed according to Example 2.

The purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.

Example 8: Synthesis of 3-acetylsalicyloyl of the morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-acetylsalicyloxy)-6-methylfuro(3,4-c)pyridine)

5 Anhydrous powdered potassium carbonate (5g), acetone (100mL), and morpholine pyridoxal-4,5-aminal (1-morpholino-1,3-dihydro-7-hydroxy-6-methylfuro(3,4-c)pyridine) (1.11g, 5 mmoles) were mixed in a nitrogen-cooled, dry flask. The mixture was cooled to between 0 and 5°C and then acetylsalicyloyl chloride (1.09g, 6 mmoles) in acetone (20mL) was added. The reaction mixture was
10 stirred for two hours. The solid was then filtered out and the solution was evaporated to dryness under vacuum. The residue was chromatographed according to Example 2.

The purified solid was analyzed according to Example 2, and the purity was confirmed according to Example 1.

15

Example 9: In Vitro - Ischemia Reperfusion in Isolated Rat Hearts and Measurement of Left Ventricular Developed Pressure (LVEDP)

Male Sprague-Dawley rats weighing 250-300g are anaesthetized with a mixture of ketamine (60 mg/kg) and xylazine (10 mg/kg). The hearts are rapidly
20 excised, cannulated to a Langendorff apparatus and perfused with Krebs-Henseleit-solution, gassed with a mixture of 95% O₂ and 5% CO₂, pH 7.4. The perfusate contained (in mM): 120 NaCl, 25 NaHCO₃, 11 glucose, 4.7 KCl, 1.2 KH₂PO₄, 1.2 MgSO₄ and 1.25 CaCl₂.
The hearts are electrically stimulated at a rate of 300 beats/min (Phipps and Bird
25 Inc., Richmond, VA) and a water-filled latex balloon is inserted in the left ventricle and connected to a pressure transducer (Model 1050BP; BIOPAC SYSTEM INC., Goleta, California) for the left ventricular systolic measurements. The left ventricular end diastolic pressure (LVEDP) is adjusted at 10 mmHg at the beginning of the experiment. In some experiments the left ventricular pressures are
30 differentiated to estimate the rate of ventricular contraction (+dP/dt) and rate of ventricular relaxation (-dP/dt) using the Acknowledge 3.03 software for Windows (BIOPAC SYSTEM INC., Goleta, California). All hearts are stabilized for a period

of 30 min and then randomly distributed into nine different experimental groups (n= 5-8 per group). The experimental groups are defined as follows:

- 1) Control group (control hearts are further perfused for 90 minutes for a total of 130 min of continuous perfusion);
- 5 2) Ischemia reperfusion group (Ischemia reperfusion hearts are made globally ischemic by stopping the coronary flow completely for 30 min and then the hearts are reperfused for 60 min);
- 3) P-5-P (15 μ M) treated group;
- 10 4) captopril (100 μ M) treated group;
- 5) verapamil (0.01 μ M) treated group;
- 6) propranolol (3mM) treated group;
- 7) PPADS (10 μ M) treated group;
- 8) P-5-P + captopril treated group;
- 9) P-5-P + verapamil treated group;
- 15 10) P-5-P + propranolol treated group;
- 11) P-5-P + PPADS treated group.

Drug treatment is started 10 min before global ischemia followed by 30 min global ischemia and 60 min reperfusion. At the end of some experiments, the hearts are quickly freeze-clamped with a liquid nitrogen precooled Wollenberger tong.

20 Rats are housed in clear cages in a temperature and humidity controlled room on a 12 hr light-dark cycle. Food and water are supplied *ad libitum*.

Hearts subject to 30 min of ischemia followed by 60 min of reperfusion showed slight recovery in the contractile function as represented by 29.5% recovery in LVDP (left ventricular developed pressure). As compared to the untreated group, 25 treatment with P-5-P, captopril, or P-5-P and captopril showed better recoveries in LVDP by 78.2%, 61.4%, and 132% respectively (Table I).

Table I

Effect of Pyridoxal-5-phosphate (P-5-P, 15 μ M) and Captopril(100 μ M) on % recovery of left ventricular systolic pressure (LVDP).

Drugs	LVDP (B)	LVDP (A)	LVEDP mmHg	LVSP mmHg	% recovery (LVDP)
Untreated	87+7	25+2.9	62+5.6	87+6.9	29.5+3.7
PSP	80+3.8	63+5	35+4.8	98+8.2	78.2 + 3.3*

Captopril	78+10.9	47+8.6	54+6.7	101+14.6	61.4 + 5.2 [*]
PSP + Captopril	89+6.9	69+7.4	28+7.3	117+8.4	132 + 7.5 [#]

(A) =After ischemia, (B) =Before ischemia.

Hearts subject to 30 min of ischemia followed by 60 min of reperfusion showed slight recovery in the contractile function as represented by 29.5% recovery in LVDP. As compared to the untreated group, treatment with P-5-P, verapamil, or P-5-P and verapamil showed better recoveries in LVDP by 78.2%, 43%, and 109% respectively (Table II).

Table II

Effect of Pyridoxal-5-phosphate (P-5-P, 15 μ M) and Verapamil (0.01 μ M) on % recovery of left ventricular systolic pressure (LVDP).

Drugs	LVDP		LVEDP mmHg	LVSP mmHg	% recovery (LVDP)
	(B)	(A)			
Untreated	87 \pm 7	25 \pm 2.9	62 \pm 5.6	87 \pm 6.9	29.5 \pm 3.7
P5P	80 \pm 3.8	63 \pm 5	35 \pm 4.8	98 \pm 8.2	78.2 \pm 3.3*
Verapamil	54 \pm 9.1	23 \pm 4.5	55 \pm 5.1	78 \pm 7.7	43 \pm 6.6
P5P + Verapamil	78 \pm 10.5	85 \pm 11.7	34 \pm 7.3	119 \pm 8	109 \pm 4.6#

5 (A) =After ischemia, (B) =Before ischemia.

Hearts subject to 30 min of ischemia followed by 60 min of reperfusion showed slight recovery in the contractile function as represented by 29.5% recovery in LVDP. As compared to the untreated group, treatment with P-5-P, PPADS, or P-10 5-P and PPADS showed better recoveries in LVDP by 78.2%, 61%, and 128% respectively (Table III).

Table III

Effect of Pyridoxal-5-phosphate (P-5-P, 15 μ M) and Pyridoxal phosphate 6-azophenyl-2'-4' disulfonic acid (PPADS 100 μ M) on % recovery of left ventricular systolic pressure (LVDP).

Drugs	LVDP		LVEDP mmHg	LVSP mmHg	% recovery (LVDP)
	(B)	(A)			
Untreated	87 \pm 7	25 \pm 2.9	62 \pm 5.6	87 \pm 6.9	29.5 \pm 3.7
P5P	80 \pm 3.8	63 \pm 5	35 \pm 4.8	98 \pm 8.2	78.2 \pm 3.3*
PPADS	92 \pm 15.2	58 \pm 13.6	57 \pm 6.3	115 \pm 11.5	61 \pm 4.8*
P5P + PPADS	82 \pm 15.8	105 \pm 22.8	34 \pm 3.1	139 \pm 21.6	128 \pm 13.8#

(A) =After ischemia, (B) =Before ischemia.

20 Hearts subject to 30 min of ischemia followed by 60 min of reperfusion showed slight recovery in the contractile function as represented by 29.5% recovery in LVDP. As compared to the untreated group, treatment with P-5-P, propranolol, or P-5-P and propranolol showed better recoveries in LVDP by 78.2%, 74%, and 120% respectively (Table IV).

Table IV
Effect of Pyridoxal-5-phosphate (P-5-P, 15 μ M) and Propranolol (3 μ M) on % recovery of left ventricular systolic pressure (LVSP).

Drugs	LVDP		LVEDP mmHg	LVSP mmHg	% recovery (LVDP)
	(B)	(A)			
Untreated	87 \pm 7	25 \pm 2.9	62 \pm 5.6	87 \pm 6.9	29.5 \pm 3.7
PSP	80 \pm 3.8	63 \pm 5	35 \pm 4.8	98 \pm 8.2	78.2 \pm 3.3*
Propranolol	61 \pm 10.8	45 \pm 9.7	27 \pm 6.6	72 \pm 15.1	74 \pm 4.9*
PSP + Propranolol	67 \pm 12.6	75 \pm 10.4	40 \pm 4.2	115 \pm 8.3	120 \pm 15.5#

5 (A) =After ischemia, (B) =Before ischemia

Tables I-IV demonstrate that P-5-P in addition to providing significant benefit in ischemia reperfusion injury when given alone also improves or adds to the benefits associated with other commonly used drugs when given in combination with these 10 drugs.

In addition to captopril, other angiotensin converting enzyme inhibitors, such as, for example, enalapril or imidapril, can similarly be administered in place of captopril. In addition to verapamil, other known calcium channel blockers, such as, for example, nifedipine or diltiazem, can similarly be administered in place of 15 verapamil. In addition to propranolol, other β -adrenergic receptor antagonists such as, for example, atenolol, timolol, and metoprolol can similarly be administered in place of propranolol. Additionally, angiotensin II receptor antagonists such as, for example, losartan and valsartan can be used in the above example.

20 **Example 10: In Vivo - Coronary Artery Ligation**

Myocardial infarction is produced in male Sprague-Dawley rats (200-250 g) by occlusion of the left coronary artery as described in Sethi et al., J. Cardiac Failure, 1(5) (1995) and Sethi et al., Am. J. Physiol., 272 (1997).

Rats are anesthetized with 1-5% isoflurane in 100% O₂ (2L flow rate). The 25 skin is incised along the left sterna border and the 4th rib is cut proximal to the sternum and a retractor inserted. The pericardial sac is opened and the heart externalized. The left anterior descending coronary artery is ligated approximately 2 mm from its origin on the aorta using a 6-0 silk suture. The heart is then repositioned in the chest and the incision closed via purse-string sutures.

Sham operated rats undergo identical treatment except that the artery is not ligated. Mortality due to surgery is less than 1%. Unless indicated in the text, the experimental animals showing infarct size >30% of the left ventricle are used in this study. All animals are allowed to recover, allowed to receive food and water ad libitum, and are maintained for a period of 21 days for Electrocardiogram (ECG), hemodynamic, and histological assessment.

Occlusion of the coronary artery in rats has been shown to produce myocardial cell damage which results in scar formation in the left ventricle and heart dysfunction. While the complete healing of the scar occurs within 3 weeks of the coronary occlusion, mild, moderate and severe stages of congestive heart failure have been reported to occur at 4, 8 and 16 weeks after ligation. Accordingly, the contractile dysfunction seen at 3 weeks after the coronary occlusion in rats is due to acute ischemic changes.

The rats are housed in clear cages in a temperature and humidity controlled room, on a 12 hour light-dark cycle. Food and water are supplied ad libitum. After surgery, rats are randomly assigned to treatment or non-treatment in both sham and experimental groups. Randomization of animals was performed and treatment begins 1 hour after coronary occlusion and continues for 21 days. The total duration of experiments in each case is 21 days. The groups are as follows:

- 20 1) sham operated;
- 2) coronary artery ligated (treatment with equal volumes of saline);
- 3) coronary artery ligated (treated with 10 mg/kg P-5-P);
- 4) coronary artery ligated (treated with 100 mg/kg captopril);
- 5) coronary artery ligated (treated with 50 mg/kg propranolol);
- 25 6) coronary artery ligated (treated with 100 mg/kg aspirin);
- 7) coronary artery ligated (treated with 25 mg/kg verapamil) ;
- 8) coronary artery ligated (treated with 10 mg/kg P-5-P + 100 mg/kg captopril);
- 9) coronary artery ligated (treated with 10 mg/kg P-5-P + 50 mg/kg propranolol);
- 10) coronary artery ligated (treated with 10 mg/kg P-5-P + 100 mg/kg aspirin);
- 30 11) coronary artery ligated (treated with 10 mg/kg P-5-P + 25 mg/kg verapamil).

P-5-P (10 mg/kg), captopril (100 mg/kg), propranolol (50 mg/kg), verapamil (25 mg/kg) and aspirin (100 mg/kg) were administered once daily by gastric tube.

Acute myocardial infarction resulted in a total mortality of 35% in the untreated group of rats in 21 days. The highest mortality occurred within the first 2 days following occlusion. As compared to the untreated group, treatment with P-5-P, aspirin, or P-5-P and aspirin showed lower mortality rates of 15%, 25%, 15%, 5 respectively (Figure 1).

Acute myocardial infarction resulted in a total mortality of 35% in the untreated group of rats in 21 days. The highest mortality occurred within the first 2 days following occlusion. As compared to the untreated group, treatment with P-5-P, captopril, or P-5-P and captopril showed lower mortality rates of 10%, 15%, 20%, 10 respectively (Figure 2).

Acute myocardial infarction resulted in a total mortality of 35% in the untreated group of rats in 21 days. The highest mortality occurred within the first 2 days following occlusion. As compared to the untreated group, treatment with P-5-P, propranolol, or P-5-P and propranolol showed lower mortality rates of 15%, 20%, 20%, 15 respectively (Figure 3).

Acute myocardial infarction resulted in a total mortality of 35% in the untreated group of rats in 21 days. The highest mortality occurred within the first 2 days following occlusion. As compared to the untreated group, treatment with P-5-P, verapamil, or P-5-P and verapamil showed lower mortality rates of 15%, 25%, 10%, 20 respectively (Figure 4).

In addition to captopril, other angiotensin converting enzyme inhibitors, such as, for example, enalapril or imidapril, can similarly be administered in place of captopril. In addition to verapamil, other known calcium channel blockers, such as, for example, nifedipine or diltiazem, can similarly be administered in place of verapamil.

25 In addition to propranolol, other β -adrenergic receptor antagonists such as, for example, atenolol, timolol, and metoprolol can similarly be administered in place of propranolol. In addition to aspirin, other antithrombolytic agents such as, for example, antiplatelet agents and heparin can similarly be administered in place of aspirin. Additionally, angiotensin II receptor antagonists such as, for example, losartan and valsartan can be 30 used in the above example.

These animals are used in Examples 11 and 12 below. For EKG studies, these animals are used as their controls before surgery, so that before surgery is done on these animals EKG traces are taken which are then used as controls for the same animals after surgery.

35

Example 11: In Vivo – Hemodynamic Changes

The animals are prepared and grouped as described in Example 10 and were anesthetized with a solution of ketamine/xylazine which was injected. To maintain adequate ventilation, the trachea was intubated; the right carotid artery was exposed for introducing a microtip pressure transducer (model SPR-249, Millar, Houston, TX) into the left ventricle. The catheter was secured with a silk ligature around the artery, and various hemodynamic parameters such as left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), rate of contraction (+dP/dt), rate of relaxation (-dP/dt) were recorded and calculated on a computer system using a Acknowledge 3.1 software.

Once the hemodynamic parameters were measured the animals were sacrificed and hearts removed for measurement of heart weight, right ventricular weight, left ventricular weight and scar weight. Because complete healing of the scar in rats after coronary occlusion requires approximately 3 weeks, scar weight were measured only at 21 days.

Figures 5-8 demonstrate that the occlusion of coronary artery in rats for 21 days produces a significant scar evident by scar weight. Furthermore, Figures 5-8 demonstrate that P-5-P has a significant beneficial effect on scar weight in groups where P-5-P treatment is either given alone or in combination with verapamil, aspirin, captopril, or propranolol, respectively.

Figures 9-12 demonstrate that P-5-P has a significant beneficial effect on rate of contraction (+dP/dt) in groups where P-5-P treatment is either given alone or in combination with verapamil, aspirin, captopril, or propranolol, respectively.

Figures 13-16 demonstrate that P-5-P has a significant beneficial effect on rate of relaxation (-dP/dt) in groups where P-5-P treatment is either given alone or in combination with verapamil, aspirin, captopril, or propranolol, respectively.

Figures 17-20 demonstrate that P-5-P has a significant beneficial effect on rate of left ventricular end diastolic pressure (LVEDP) in groups where P-5-P treatment is either given alone or in combination with verapamil, aspirin, captopril, or propranolol, respectively.

5 Figures 21-24 demonstrate that P-5-P has a significant beneficial effect on whole heart weight in groups where P-5-P treatment is either given alone or in combination with verapamil, aspirin, captopril, or propranolol, respectively.

Figures 25-28 demonstrate that P-5-P has a significant beneficial effect on right ventricular weight in groups where P-5-P treatment is either given alone or in 10 combination with verapamil, aspirin, captopril, or propranolol, respectively.

In addition to captopril, other angiotensin converting enzyme inhibitors, such as, for example, enalapril or imidapril, can similarly be administered in place of captopril. In addition to verapamil, other known calcium channel blockers, such as, for example, nifedipine or diltiazem, can similarly be administered in place of 15 verapamil. In addition to propranolol, other β -adrenergic receptor antagonists such as, for example, atenolol, timolol, and metoprolol can similarly be administered in place of propranolol. In addition to aspirin, other antithrombotic agents such as, for example, antiplatelet agents and heparin can similarly be administered in place of aspirin. Additionally, angiotensin II receptor antagonists such as, for example, 20 losartan and valsartan can be used in the above example.

Example 12: In Vivo - Hypertension

It has been well demonstrated by various investigators that feeding 8-10% sucrose in water induces hypertension in rats. Zein et al., Am. Coll. Nutr., 17(1), 25 36-37, 1998; Hulman et al., Pediatr. Res., 36:95-101; Reaven et al., Am. J. Hypertens; 1991:610-614. In applying this model, the concurrent administration of pyridoxal-5'-phosphate and captopril or verapamil significantly decreases the sucrose-induced increase in systolic blood pressure (SBP).

The blood pressure is monitored using the tail cuff method. The SBP is 30 detected on an amplifier and the AcknowledgeTM computer software program is used to determine the calculations.

The effect of concurrent administration of pyridoxal-5'-phosphate and captopril or verapamil on systolic blood pressure (marker of hypertension) in 10% sucrose induced hypertension in rats is determined.

Figure 29B viewed in light of Figure 29A demonstrates that P-5-P has a 5 significant beneficial effect on systolic blood pressure in groups where P-5-P treatment is either given alone or in combination with verapamil or captopril 1 week prior to inducing hypertension in rats with a sucrose diet.

Figure 29B considered in light of Figure 29A demonstrates that P-5-P has a 10 significant beneficial effect on systolic blood pressure in groups where P-5-P treatment is either given alone or in combination with verapamil or captopril 1 week prior to inducing hypertension in rats with a sucrose diet.

Figure 30B considered in light of Figure 30A demonstrates that P-5-P has a 15 significant beneficial effect on systolic blood pressure in groups where P-5-P treatment is either given alone or in combination with verapamil or captopril the same day as inducing hypertension in rats with a sucrose diet.

Figure 31B considered in light of Figure 31A demonstrates that P-5-P has a 20 significant beneficial effect on systolic blood pressure in groups where P-5-P treatment is either given alone or in combination with verapamil or captopril two weeks after inducing hypertension in rats with a sucrose diet.

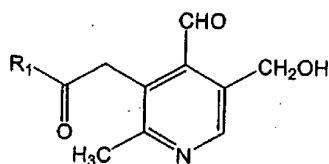
25 In addition to captopril, other angiotensin converting enzyme inhibitors, such as, for example, enalapril or imidapril, can similarly be administered in place of captopril. In addition to verapamil, other known calcium channel blockers, such as, for example, nifedipine or diltiazem, can similarly be administered in place of verapamil. In addition to propranolol, other β -adrenergic receptor antagonists such as, for example, atenolol, timolol, and metoprolol can similarly be administered in place of propranolol. Additionally, angiotensin II receptor antagonists such as, for example, losartan and valsartan can be used in the above example.

30 It should be noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing "a compound" includes a mixture of two or more compounds.

Although embodiments of the invention have been described above, it is not limited thereto, and it will be apparent to persons skilled in the art that numerous modifications and variations form part of the present invention insofar as they do not depart from the spirit, nature, and scope of the claimed and described invention.

5 All references, applications, and patents cited herein are incorporated by reference.

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or

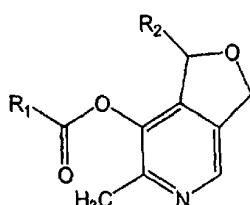

10 "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
998
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of treating ischemia in a mammal, comprising; concurrently administering to the mammal a therapeutically effective amount of a combination of a compound selected from the group consisting of pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable addition salt thereof, and a mixture thereof, and a therapeutic cardiovascular compound selected from the group consisting of an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, an antithrombotic agent, a diuretic, an α -adrenergic receptor antagonist, an antioxidant, and a mixture thereof.

2. A method according to claim 1, wherein the 3-acylated pyridoxal analogue is a compound of the formula:



wherein

R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group maybe interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

20

3. A method according to claim 1, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

25

wherein

R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and

5 R₂ is a secondary amino group.

4. A method according to claim 1, wherein the angiotensin converting enzyme inhibitor is captopril, enalapril, lisinopril, benazapril, fosinopril, quinapril, ramipril, spirapril, imidapril, or moexipril.

10

5. A method according to claim 1, wherein the angiotensin II receptor antagonist is losartan or valsartan.

15

6. A method according to claim 1, wherein the calcium channel blocker is verapamil, diltiazem, nicardipine, nifedipine, amlodipine, felodipine, nimodipine, or depridil.

20

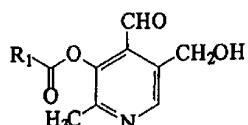
7. A method according to claim 1, wherein the antithrombotic agent is an antiplatelet agent, aspirin, or heparin.

25

8. A method according to claim 1, wherein the diuretic is furosemide, diuril, amiloride, or hydrodiuril.

9. A method according to any one of the preceding claims, wherein the compound is administered enterally or parenterally and the therapeutic cardiovascular compound is administered enterally or parentally.

30

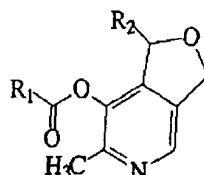

10. A method according to any one of the preceding claims, wherein the compound and the therapeutic cardiovascular compound are administered in a single dosage form.

11. A method of treating congestive heart failure in a mammal comprising; concurrently administering to the mammal a therapeutically effective amount of a combination of a compound selected from the group consisting of pyridoxal-5'-

phosphate, pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, and a mixture thereof, and a therapeutic cardiovascular compound selected from the group consisting of an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, a vasodilator, a diuretic, an antioxidant, and a mixture thereof.

12. A method according to claim 11, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

10



wherein

15 R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

20

13. A method according to claim 11, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

25

wherein

R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and

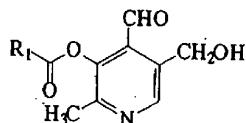
R₂ is a secondary amino group.

14. A method according to claim 11, wherein the angiotensin converting enzyme inhibitor is captopril, enalapril, lisinopril, benazapril, fosinopril, quinapril, ramipril, spirapril, imidapril, or moexipril.

5 15. A method according to claim 11, wherein the angiotensin II receptor antagonist is losartan or valsartan.

10 16. A method according to claim 11, wherein the calcium channel blocker is verapamil, diltiazem, nicardipine, nifedipine, amlodipine, felodipine, nimodipine, or bepridil.

17. A method according to claim 11, wherein the vasodilator is hydralazine, nitroglycerin or isosorbide dinitrate.

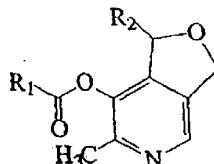

15 18. A method according to claim 11, wherein the diuretic is furosemide, diuril, amiloride, or hydrodiuril.

20 19. A method according to any one of claims 11 to 18, wherein the compound is administered enterally or parenterally and the therapeutic cardiovascular compound is administered enterally or parenterally.

25 20. A method according to any one of claims 11 to 19, wherein the compound and the therapeutic cardiovascular compound are administered in a single dosage form.

30 21. A method of treating myocardial infarction in a mammal comprising; concurrently administering to the mammal a therapeutically effective amount of a combination of a compound selected from the group consisting of pyridoxal-5'-phosphate, pyridoxine, pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, and a mixture thereof, and a therapeutic cardiovascular compound selected from the group consisting of an angiotensin converting enzyme inhibitor, a calcium channel blocker, an antithrombolytic agent, a diuretic, α -adrenergic receptor antagonist, an antioxidant, and a mixture thereof.

22. A method according to claim 21, wherein the 3-acylated pyridoxal analogues is a compound of the formula:



5 wherein

R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

23. A method according to claim 21, wherein the 3-acylated pyridozal analogue is a compound of the formula

wherein

R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and

R₂ is a secondary amino group.

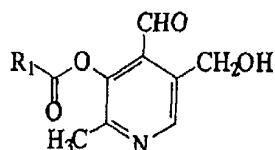
20 24. A method according to claim 21, wherein the angiotensin converting enzyme inhibitor is captopril, enalapril, lisinopril, benazapril, fosinopril, quinapril, ramipril, spirapril, imidapril, or moexipril.

25 25. A method according to claim 21, wherein the calcium channel blocker is verapamil, diltiazem, nicardipine, nifedipine, amlodipine, felodipine, nimodipine, or bepridil.

26. A method according to claim 21, wherein the antithrombotic agent is an antiplatelet agent, aspirin, or heparin.

5 27. A method according to claim 21, wherein the diuretic is furosemide, diuril, amiloride, or hydrodiuril.

28. A method according to any one of claims 21 to 27, wherein the compound is administered enterally or parenterally and the therapeutic cardiovascular compound is administered enterally or parenterally.

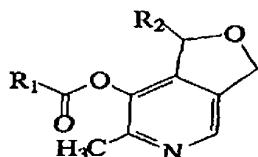

10

29. A method according to any one of claims 21 to 28, wherein the compound and the therapeutic cardiovascular compound are administered in a single dosage form.

3 15
3 20
3 25
3 30

30. A method of treating arrhythmia in a mammal comprising; concurrently administering to the mammal a therapeutically effective amount of a combination of a compound selected from the group consisting of pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, and a mixture thereof, and a therapeutic cardiovascular compound selected from the group consisting of a calcium channel blocker, a β -adrenergic receptor antagonist, an antioxidant, and a mixture thereof.

31. A method according to claim 30, wherein the 3-acylated pyridoxal analogue is a compound of the formula:



wherein

R_1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen

atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

32. A method according to claim 30, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

wherein

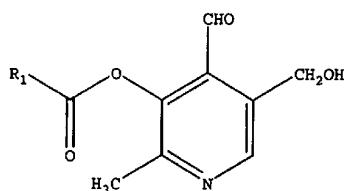
R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and

R₂ is a secondary amino group.

10
11
12
13
14
15
16
17
18
19
20

33. A method according to claim 30, wherein the calcium channel blocker is verapamil, diltiazem, nicardipine, nifedipine, amlodipine, felodipine, nimodipine, or bepridil.

25

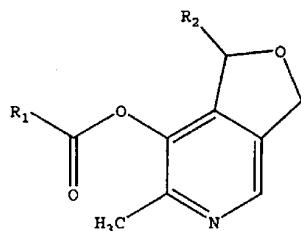

34. A method according to any one of claims 30 to 33, wherein the compound is administered enterally or parenterally and the therapeutic cardiovascular compound is administered enterally or parenterally.

35. A method according to any one of claims 30 to 34, wherein the compound and the therapeutic cardiovascular compound are administered in a single dosage form.

36. A method of reducing blood clots in a mammal comprising: concurrently administering to the mammal a therapeutically effective amount of a combination of a compound selected from the group consisting of pyridoxal-5'-phosphate, pyridoxal,

pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, an antioxidant, an antithrombolytic agent, and a mixture thereof.

37. A method according to claim 36, wherein the 3-acylated pyridoxal analogue is a compound of the formula:



wherein

R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

14
15
16
17
18
19
20

38. A method according to claim 36, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

wherein

R₁ is straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and

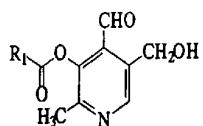
R₂ is a secondary amino group.

39. A method according to claim 36, wherein the antithrombolytic agent is an antiplatelet agent, aspirin, or heparin.

5

40. A method according to any one of claims 36 to 39, wherein the compound is administered enterally or parenterally and the antithrombolytic agent is administered enterally or parenterally.

10

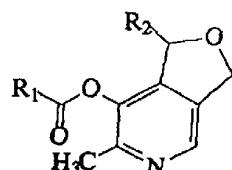

41. A method according to any one of claims 36 to 40, wherein the compound and the antithrombolytic agent are administered in a single dosage form.

15
16
17
18
19
20

42. A method of treating hypertension in a mammal comprising; concurrently administering to the mammal a therapeutically effective amount of a combination of a compound selected from the group consisting of pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, and a mixture thereof, and a therapeutic cardiovascular compound selected from the group consisting of an angiotensin converting enzyme inhibitor, a calcium channel blocker, a β -adrenergic receptor antagonist, a vasodilator, a diuretic, an α -adrenergic receptor antagonist, an antioxidant, and a mixture thereof.

25
26
27
28
29

43. A method according to claim 42, wherein the 3-acylated pyridoxal analogue is a compound of the formula:


25

wherein

30

R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

44. A method according to claim 42, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

5

wherein

R_1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and

10

R_2 is a secondary amino group.

15

45. A method according to claim 42, wherein the angiotensin converting enzyme inhibitor is captopril, enalapril, lisinopril, benazapril, fosinopril, quinapril, ramipril, spirapril, imidapril, or moexipril.

10
20
30
40
50

46. A method according to claim 42, wherein the calcium channel blocker is verapamil, diltiazem, nicardipine, nifedipine, amlodipine, felodipine, nimodipine, or bepridil.

47. A method according to claim 42, wherein the β -adrenergic receptor antagonist is atenolol, propranolol, timolol, or metoprolol.

25

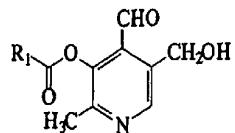
48. A method according to claim 42, wherein the vasodilator is hydralazine, nitroglycerin or isosorbide dinitrate.

49. A method according to claim 42, wherein the diuretic is furosemide, diuril, amiloride or hydrodiuril

50. A method according to claim 42, wherein the α -adrenergic receptor antagonist is prazosin, doxazocin, or labetalol.

51. A method according to claim 42, wherein the therapeutic cardiovascular compound administered is a mixture of an angiotensin converting enzyme inhibitor and a diuretic.

52. A method according to claim 42, wherein the therapeutic cardiovascular compound administered is a mixture of a vasodilator and a diuretic.


10 53. A method according to claim 42, wherein the therapeutic cardiovascular compound administered is a mixture of an angiotensin converting enzyme inhibitor, a vasodilator, and a diuretic.

15 54. A method according to any one of claims 42 to 53, wherein the compound is administered enterally or parenterally and the therapeutic cardiovascular compound is administered enterally or parenterally.

20 55. A method according to any one of claims 42 to 54, wherein the compound and the therapeutic cardiovascular compound are administered in a single dosage form.

25 56. A method of treating hypertrophy in a mammal comprising; concurrently administering to the mammal a therapeutically effective amount of a combination of a compound selected from the group consisting of pyridoxal-5'-phosphate pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, and a mixture thereof, and a therapeutic cardiovascular compound selected from the group consisting of an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, an antioxidant, and a mixture thereof.

30 57. A method according to claim 56, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

wherein

R_1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or 5 oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

58. A method according to claim 56, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

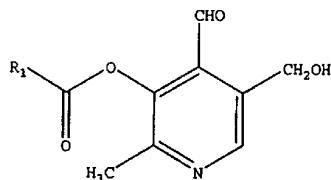
wherein

R_1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and

R₂ is a secondary amino group.

59. A method according to claim 56, wherein the angiotensin converting
enzyme inhibitor is captoril, enalapril, lisinopril, benzapril, fosinopril, quinapril,
20 ramipril, spirapril, imidapril, or moexipril.

60. A method according to claim 56, wherein the angiotensin II receptor antagonist is losartan or valsartan.

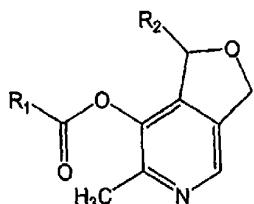

61. A method according to claim 56, wherein the calcium channel blocker is verapamil, diltiazem, nicardipine, nifedipine, amlodipine, felodipine, nimodipine, or bepridil.

5 62. A method according to any one of claims 56 to 61, wherein the compound is administered enterally or parenterally and the therapeutic cardiovascular compound is administered enterally or parenterally.

10 63. A method according to any one of claims 56 to 61, wherein the compound and the therapeutic cardiovascular compound are administered in a single dosage form.

15 64. A method of treating ischemia reperfusion injury in a mammal comprising; concurrently administering to the mammal a therapeutically effective amount of a combination of a compound selected from the group consisting of pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, and a mixture thereof, and a therapeutic cardiovascular compound selected from the group consisting of an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, an antioxidant, and a mixture thereof.

20 65. A method according to claim 64, wherein the 3-acylated pyridoxal analogue is a compound of the formula:


25

wherein

R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or

oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

66. A method according to claim 64, wherein the 3-acylated pyridoxal analogue
5 is a compound of the formula:

wherein

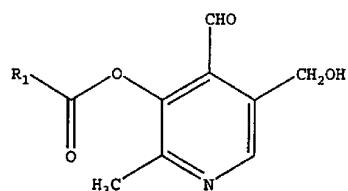
10 R_1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and

15 R_2 is a secondary amino group.

67. A method according to claim 64, wherein the angiotensin converting enzyme inhibitor is captopril, enalapril, lisinopril, benzazpril, fosinopril, quinapril, ramipril, spirapril, imidapril, or moexipril.

68. A method according to claim 64, wherein the angiotensin II receptor antagonist is losartan or valsartan.

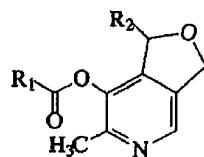
69. A method according to claim 64, wherein the calcium channel blocker is verapamil, diltiazem, nicardipine, nifedipine, amlodipine, felodipine, nimodipine, or bepridil.


25 70. A method according to any one of claims 64 to 69, wherein the compound is administered enterally or parenterally and the therapeutic cardiovascular compound is administered enterally or parenterally.

71. A method according to any one of claims 64 to 69, wherein the compound and the therapeutic cardiovascular compound are administered in a single dosage form.

5 72. A method of treating myocardial ischemia in a mammal comprising; concurrently administering to the mammal a therapeutically effective amount of a combination of a compound selected from the group consisting of pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereof, and a mixture thereof, and a
10 therapeutic cardiovascular compound selected from the group consisting of an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, an antithrombolytic agent, a diuretic, an α -adrenergic receptor antagonist, an antioxidant, and a mixture thereof.

75
33
19
20
25


73. A method according to claim 72, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

wherein

20 R_1 is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

25 74. A method according to claim 75, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

wherein

5 R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and

R₂ is a secondary amino group.

10 75. A method according to claim 72, wherein the angiotensin converting enzyme inhibitor is captopril, enalapril, lisinopril, benazapril, fosinopril, quinapril, ramipril, spirapril, imidapril, or moexipril.

76. A method according to claim 72, wherein the angiotensin II receptor antagonist is losartan or valsartan.

77. A method according to claim 72, wherein the calcium channel blocker is verapamil, diltiazem, nicardipine, nifedipine, amlodipine, felodipine, nimodipine, or bepridil.

78. A method according to claim 72, wherein the antithrombotic agent is an antiplatelet agent, aspirin, or heparin.

25

79. A method according to claim 72, wherein the diuretic is furosemide, diuril, amiloride, or hydrodiuril.

80. A method according to any one of claims 72 to 79, wherein the compound is administered enterally or parenterally and the therapeutic cardiovascular compound is administered enterally or parenterally.

81. A method according to any one of claims 72 to 80, wherein the compound and the therapeutic cardiovascular compound are administered in a single dosage form.

5 82. Use of a compound selected from; pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, in the preparation of a medicament for the treatment of ischemia in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from; an angiotensin II receptor antagonist, a calcium channel blocker, an antithrombolytic agent, a diuretic, an α -adrenergic receptor antagonist, an antioxidant, and mixtures thereof.

10 83. Use of a compound selected from; pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, in the preparation of a medicament for the treatment of congestive heart failure in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from; angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium channel blockers, vasodilators, diuretics, an antioxidant, and mixtures thereof.

15 84. Use of a compound selected from; pyridoxal-5'-phosphate, pyridoxine, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, in the preparation of a medicament for the treatment of myocardial infarction in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from; angiotensin converting enzyme inhibitors, calcium channel blockers, antithrombolytic agents, diuretics, α -adrenergic receptor antagonists, an antioxidant, and mixtures thereof.

20 85. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, in the preparation of a medicament for the treatment of arrhythmia in a mammal being concurrently treated with a therapeutic

25

cardiovascular compound selected from: calcium channel blockers, β -adrenergic receptor antagonists, an antioxidant, and mixtures thereof.

5 86. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, in the preparation of a medicament for reducing blood clots in a mammal being concurrently treated with an antithrombolytic agent.

10 87. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, in the preparation of a medicament for the treatment of hypertension in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: angiotensin converting enzyme inhibitors, calcium channel blockers, β -adrenergic receptor antagonists, vasodilators, diuretics, α -adrenergic receptor antagonists, an antioxidant, and mixtures thereof.

15 88. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, in the preparation of a medicament for the treatment of hypertrophy in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium channel blockers, an antioxidant, and mixtures thereof.

20 89. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, in the preparation of a medicament for the treatment of ischemia reperfusion injury in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium channel blockers, an antioxidant, and mixtures thereof.

25

90. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, in the preparation of a medicament for the treatment of myocardial ischemia in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium channel blockers, antithrombolytic agents, diuretics, α -adrenergic receptor antagonists, an antioxidant, and mixtures thereof.

10 91. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, in the preparation of a medicament for the treatment of a cardiovascular disease or condition in a mammal being concurrently treated with a therapeutic cardiovascular compound in a dosage amount that is less than the dosage amount required when the therapeutic cardiovascular compound is administered as the sole active ingredient, which therapeutic cardiovascular compound is selected from: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium channel blockers, antithrombolytic agents, β -adrenergic receptor antagonists, diuretics, α -adrenergic receptor antagonists, an antioxidant, and mixtures thereof.

15 92. Use according to claim 91, wherein the therapeutic cardiovascular compound is for administration in an amount that is at least 5% less than that required when it is administered as the sole active ingredient.

20 93. Use according to any one of claims 82 to 92, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

25

97. Use according to any one of claims 82, 84, 86 and 90 to 92, wherein the antithrombotic agent is an antiplatelet agent, aspirin or heparin.

98. Use according to any one of claims 82, 83, 84, 87 and 90 to 92, wherein the 5 diuretic is furosemide, diuril, amiloride or hydrodiuril.

99. Use according to any one of claims 83, 84 and 87 to 92, wherein the angiotensin converting enzyme inhibitor is captopril, enalapril, lisinopril, benazapril, fosinopril, quinapril, ramipril, spirapril, imidapril or moexipril.

10

100. Use according to any one of claims 83 and 87, wherein the vasodilator is hydralazine, nitroglycerin or isosorbide dinitrate.

15

101. Use according to claim 87, wherein the β -adrenergic receptor antagonist is prazosin, doxazocin or labetalol.

20

102. Use according to claim 87, wherein the therapeutic cardiovascular compound administered is a mixture of an angiotensin converting enzyme inhibitor and a diuretic.

25

103. Use according to claim 87, wherein the therapeutic cardiovascular compound administered is a mixture of a vasodilator and a diuretic.

30

104. Use according to claim 87, wherein the therapeutic cardiovascular compound administered is a mixture of an angiotensin converting enzyme inhibitor, a vasodilator and a diuretic.

35

105. Use according to claim 87, wherein the compound is administered enterally or parenterally and the therapeutic cardiovascular compound is administered enterally or parenterally.

106. Use according to claim 87, wherein the compound and the therapeutic cardiovascular compound are administered in a single dosage form.

107. Use according to any one of claims 82 to 106, wherein the medicament is
5 suitable for administration of the active ingredients in admixture.

108. Use according to any one of claims 82 to 106, wherein the medicament is suitable for separate administration of the active ingredients.

10 109. Use according to any one of claims 82 to 106 and 108, wherein the medicament is suitable for separate administration of the active ingredients consecutively, simultaneously or at different times provided that they can interact.

15 110. A method according to claim 1, wherein the α -adrenergic receptor antagonist is prazosin, doxazocin or labetalol.

111. A method according to claim 21, wherein the α -adrenergic receptor antagonist is prazosin, doxazocin or labetalol.

20 112. A method according to claim 72, wherein the α -adrenergic receptor antagonist is prazosin, doxazocin or labetalol.

25 113. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, for the treatment of ischemia in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: an angiotensin II receptor antagonist, a calcium channel blocker, an antithrombotic agent, a diuretic, an α -adrenergic receptor antagonist, an antioxidant, and mixtures thereof.

114. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, for the treatment of congestive heart failure in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium channel blockers, vasodilators, diuretics, an antioxidant, and mixtures thereof.

115. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxine, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, for the treatment of myocardial infarction in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: angiotensin converting enzyme inhibitors, calcium channel blockers, antithrombolytic agents, diuretics, α -adrenergic receptor antagonists, an antioxidant, and mixtures thereof.

116. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, for the treatment of arrhythmia in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: calcium channel blockers, β -adrenergic receptor antagonists, an antioxidant, and mixtures thereof.

117. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, for reducing blood clots in a mammal being concurrently treated with an antithrombolytic agent.

118. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, for the treatment of hypertension in a

mammal being concurrently treated with a therapeutic cardiovascular compound selected from: angiotensin converting enzyme inhibitors, calcium channel blockers, β -adrenergic receptor antagonists, vasodilators, diuretics, α -adrenergic receptor antagonists, an antioxidant, and mixtures thereof.

5

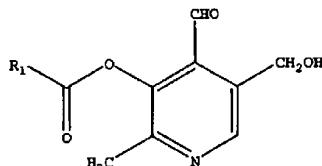
119. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, for the treatment of hypertrophy in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium channel blockers, an antioxidant, and mixtures thereof.

10
15
120. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, for the treatment of ischemia reperfusion injury in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium channel blockers, an antioxidant, and mixtures thereof.

20

121. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, for the treatment of myocardial ischemia in a mammal being concurrently treated with a therapeutic cardiovascular compound selected from: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium channel blockers, antithrombotic agents, diuretics, α -adrenergic receptor antagonists, an antioxidant, and mixtures thereof.

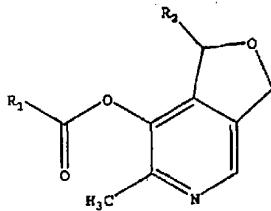
25


122. Use of a compound selected from: pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid

30

addition salts thereof, and mixtures thereof, for the treatment of a cardiovascular disease or condition in a mammal being concurrently treated with a therapeutic cardiovascular compound in a dosage amount that is less than the dosage amount required when the therapeutic cardiovascular compound is administered as the sole active ingredient, which therapeutic cardiovascular compound is selected from: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium channel blockers, antithrombolytic agents, β -adrenergic receptor antagonists, diuretics, α -adrenergic receptor antagonists, an antioxidant, and mixtures thereof.

10 123. Use according to claim 122, wherein the therapeutic cardiovascular compound is for administration in an amount that is at least 5% less than that required when it is administered as the sole active ingredient.


124. Use according to any one of claims 113 to 123, wherein the 3-acylated
15 pyridoxal analogue is a compound of the formula:

wherein

20 R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, which alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

125. Use according to any one of claims 82 to 92, wherein the 3-acylated pyridoxal analogue is a compound of the formula:

wherein

R₁ is a straight or branched alkyl group, a straight or branched alkenyl group,
 5 which alkyl or alkenyl group may be interrupted by a nitrogen or oxygen atom; an
 alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group; and
 R₂ is a secondary amino group.

126. Use according to any one of claims 113, 114 and 119 to 123, wherein the

10 angiotensin II receptor antagonist is losartan or valsartan.

127. Use according to any one of claims 113 to 116 and 118 to 123, wherein the
 calcium channel blocker is verapamil, diltiazem, nicardipine, nifedipine, amlodipine,
 felodipine, nimodipine or depridil.

15 128. Use according to any one of claims 113, 115, 117 and 121 to 123, wherein the
 antithrombotic agent is an antiplatelet agent, aspirin or heparin.

129. Use according to any one of claims 113, 116, 118, 122 and 123, wherein the
 20 β-adrenergic receptor antagonist is atenolol, propanolol, timolol or metaprolol.

130. Use according to any one of claims 113, 114, 115, 118, and 121 to 123,
 wherein the diuretic is furosemide, diuril, amiloride or hydrodiuril.

131. Use according to any one of claims 83, 84 and 87 to 92, wherein the angiotensin converting enzyme inhibitor is captopril, enalapril, lisinopril, benazapril, fosinopril, quinapril, ramipril, spirapril, imidapril or moexipril.

5 132. Use according to any one of claims 114 and 118, wherein the vasodilator is hydralazine, nitroglycerin or isosorbide dinitrate.

133. Use according to claim 118, wherein the β -adrenergic receptor antagonist is prazosin, doxazocin or labetalol.

10

134. Use according to claim 118, wherein the therapeutic cardiovascular compound administered is a mixture of an angiotensin converting enzyme inhibitor and a diuretic.

15

135. Use according to claim 118, wherein the therapeutic cardiovascular compound administered is a mixture of a vasodilator and a diuretic.

20

136. Use according to claim 118, wherein the therapeutic cardiovascular compound administered is a mixture of an angiotensin converting enzyme inhibitor, a vasodilator and a diuretic.

137. Use according to claim 119, wherein the compound is administered enterally or parenterally and the therapeutic cardiovascular compound is administered enterally or parenterally.

25

138. Use according to claim 119, wherein the compound and the therapeutic cardiovascular compound are administered in a single dosage form.

30

139. Use according to any one of claims 113 to 138, wherein the medicament is suitable for administration of the active ingredients in admixture.

140. Use according to any one of claims 117 to 138, wherein the medicament is suitable for separate administration of the active ingredients.

141. Use according to any one of claims 113 to 138 and 140, wherein the
5 medicament is suitable for separate administration of the active ingredients consecutively, simultaneously or at different times provided that they can interact.

142. A method of treating conditions by administering a compound selected
10 from the group consisting of pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, a 3-acylated pyridoxal analogue, a pharmaceutically acceptable acid addition salt thereto, and a mixture thereof, and a therapeutic cardiovascular compound selected from the group consisting of an angiotensin converting enzyme inhibitor, an angiotensin II receptor antagonist, a calcium channel blocker, an antithrombolytic
15 agent, a β -adrenergic receptor antagonist, a diuretic, an α -adrenergic receptor antagonist, a vasodilator, an antioxidant, and a mixture thereof substantially as herein described with reference to any one of the Examples.

143. Use of a compound selected from the group consisting of pyridoxal-5'-
20 phosphate, pyridoxal, pyridoxamine, 3-acylated pyridoxal analogues, pharmaceutically acceptable acid addition salts thereof, and mixtures thereof, with a therapeutic cardiovascular compound selected from the group consisting of an angiotensin II receptor antagonist, a calcium channel blocker, an antithrombolytic agent, a diuretic, an α -adrenergic receptor antagonist, a vasodilator, an antioxidant, 25 and mixtures thereof in the preparation of a medicament substantially as herein described with reference to any one of the Examples.

144. A pharmaceutical composition comprising:
a therapeutically effective amount of a compound selected from the group consisting of:
30 pyridoxal-5'-phosphate, pyridoxal, pyridoxamine, a pharmaceutically acceptable acid addition salt thereof, and mixtures thereof;

a therapeutically effective amount of a therapeutic cardiovascular compound selected from the group consisting of: a calcium channel blocker, a diuretic, an α -adrenergic receptor antagonist, a 3'-acylated pyridoxal analogue, an angiotensin II receptor antagonist, an angiotensin converting enzyme inhibitor, an antithrombolytic agent, an

5 antioxidant, and mixtures thereof; and

a pharmaceutically acceptable carrier or diluent,

wherein the amounts are therapeutically effective for treating hypertension in a mammal.

10 145. A composition according to claim 144 comprising:

a therapeutically effective amount of pyridoxal-5'-phosphate;

a therapeutically effective amount of a therapeutic cardiovascular compound selected from the group consisting of a calcium channel blocker, a diuretic, an alpha-adrenergic receptor antagonist, an angiotensin II receptor antagonist, an antithrombolytic agent, an

15 angiotensin converting enzyme inhibitor, an antioxidant, and a mixture thereof; and

a pharmaceutically acceptable carrier or diluent,

wherein the amounts are therapeutically effective for treating hypertension in a mammal.

20 146. A composition according to claim 145, where the angiotensin II receptor antagonist is chosen from the group consisting of: valsartan and losartan.

147. A composition according to claim 144, where the angiotensin II receptor antagonist is chosen from the group consisting of: valsartan and losartan.

25

148. A pharmaceutical composition comprising:

a therapeutically effective amount of a compound selected from the group consisting of: pyridoxal-5-phosphate, pyridoxal, pyridoxamine, a pharmaceutically acceptable acid addition salt thereof, and mixtures thereof;

a therapeutically effective amount a therapeutic cardiovascular compound selected from the group consisting of a calcium channel blocker, a diuretic, an alpha-adrenergic receptor antagonist, a 3'-acylated pyridoxal analogue, an angiotensin II receptor antagonist, an antithrombolytic agent, an angiotensin converting enzyme inhibitor, an antioxidant, and a mixture thereof; and

5 a pharmaceutically acceptable carrier or diluent.

149. A composition according to claim 148, wherein the 3'-acylated pyridoxal analogue is a compound of the formula:

10

wherein

R₁ is a straight or branched alkyl group, a straight or branched alkenyl group, in which an alky or alkenyl group may be interrupted by a nitrogen or oxygen atom; an
15 alkoxy group; a dialkylamino group; or an unsubstituted or substituted aryl group.

150. A composition according to claim 148 said first compound is pyridoxal-5'-phosphate.

20

151. A composition according to claim 148, where the angiotensin II receptor antagonist is selected from the group consisting of: valsartan and losartan.

25

152. A composition according to claim 148, where the calcium channel blocker is selected from the group consisting of: verapamil, diltiazem, nicardipine, nifedipine, amlodipine, felodipine, nimodipine, and bepridil.

153. A composition according to claim 148, where the antithrombolytic agent is

62

IPAUSTRALIA\Specifications\68144-00.1.doc 3/11/05

selected from the group consisting of: antiplatelet agents, aspirin, and heparin.

154. A composition according to claim 148, where the vasodilator is selected from the group consisting of: hydralazine, nitroglycerin, and isosorbide dinitrate.

5

155. A composition according to claim 148, where the diuretic is selected from the group consisting of: furosemide, diuril, amiloride, and hydrodiuril.

10 156. A composition according to claim 148, where the alpha-adrenergic receptor antagonist is selected from the group consisting of: prazosin, doxazocin, and labetalol.

157. A composition according to claim 148, where the antioxidant is selected from the group consisting of: vitamin E, vitamin C, and isoflavones.

15 158. A composition according to claim 148, where the angiotensin converting enzyme inhibitor is selected from the group consisting of: captopril, enalapril, lisinopril, benazapril, fosinopril, guinapril, ramipril, spirapril, inidapril, and moexipril.

20 20 Dated this 3rd day of November 2005

MEDICURE INTERNATIONAL INC.

By their Patent Attorneys

GRIFFITH HACK

Fellows Institute of Patent and

25 Trade Mark Attorneys of Australia

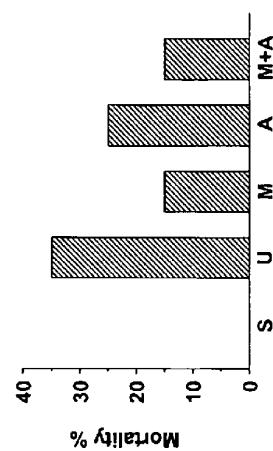


FIG. 1

SUBSTITUTE SHEET (RULE 26)

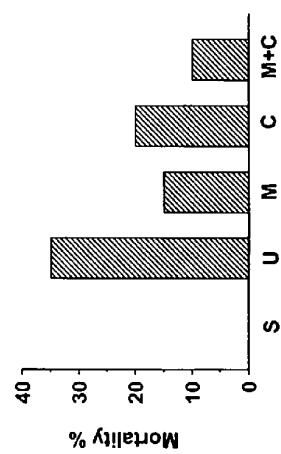


FIG. 2

SUBSTITUTE SHEET (RULE 26)

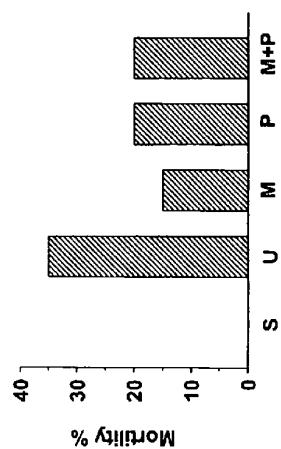


FIG. 3

SUBSTITUTE SHEET (RULE 26)

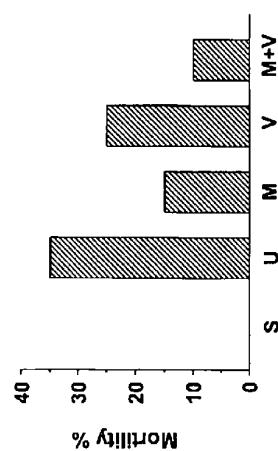


FIG. 4

SUBSTITUTE SHEET (RULE 26)

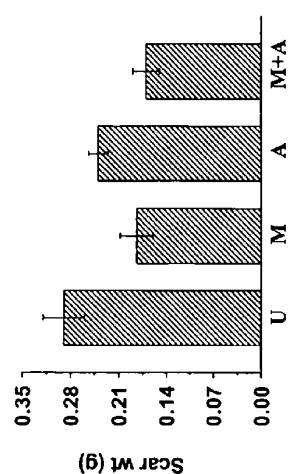


FIG. 5

SUBSTITUTE SHEET (RULE 26)

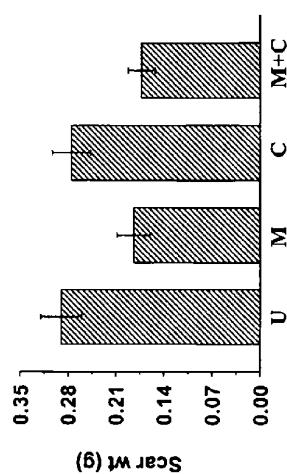


FIG. 6

SUBSTITUTE SHEET (RULE 26)

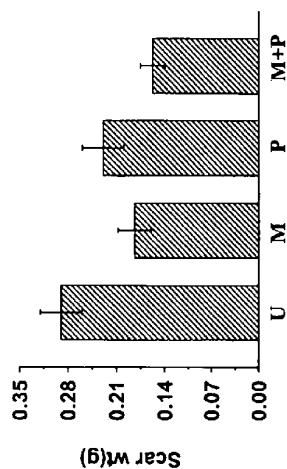


FIG. 7

SUBSTITUTE SHEET (RULE 26)

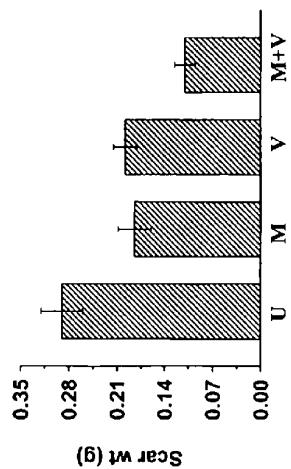


FIG. 8

SUBSTITUTE SHEET (RULE 26)

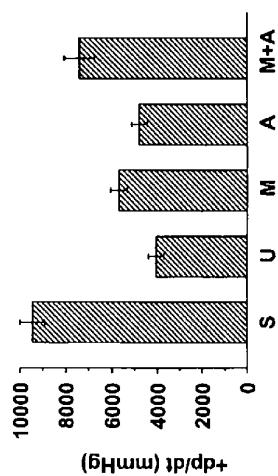


FIG. 9

SUBSTITUTE SHEET (RULE 26)

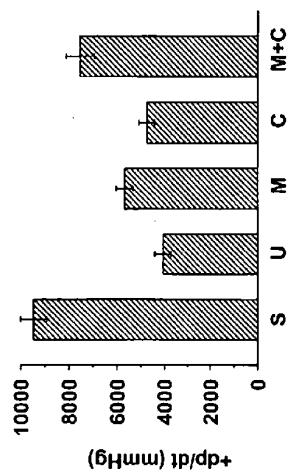


FIG. 10

SUBSTITUTE SHEET (RULE 26)

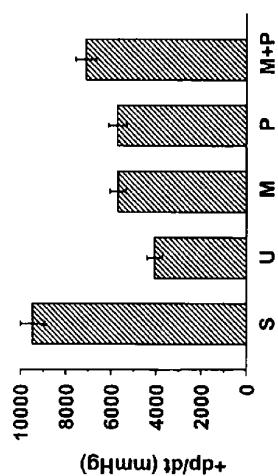


FIG. 11

SUBSTITUTE SHEET (RULE 26)

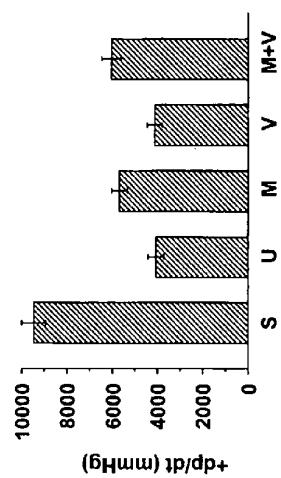


FIG. 12.

SUBSTITUTE SHEET (RULE 26)

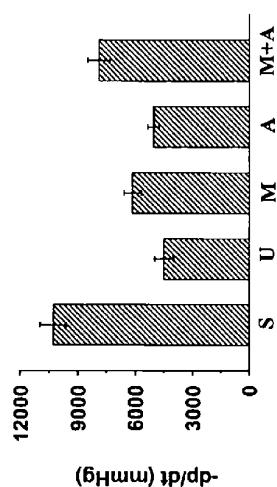


FIG. 13

SUBSTITUTE SHEET (RULE 26)

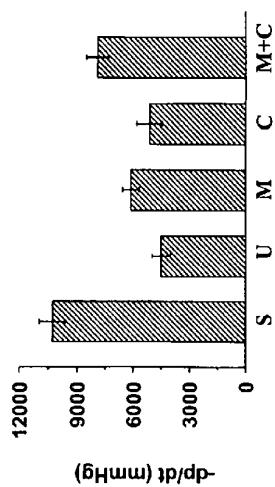


FIG. 14

SUBSTITUTE SHEET (RULE 26)

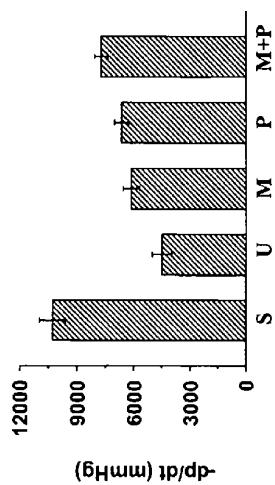


FIG. 15

SUBSTITUTE SHEET (RULE 26)

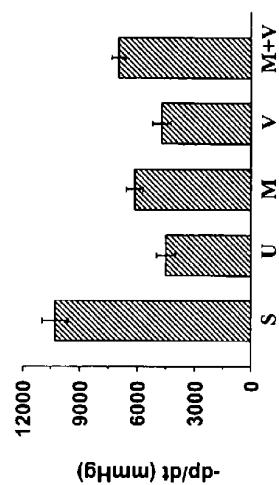


FIG. 16

SUBSTITUTE SHEET (RULE 26)

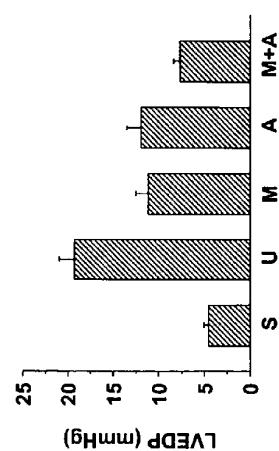


FIG. 17

SUBSTITUTE SHEET (RULE 26)

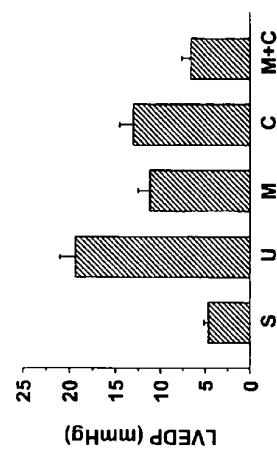


FIG. 18

SUBSTITUTE SHEET (RULE 26)

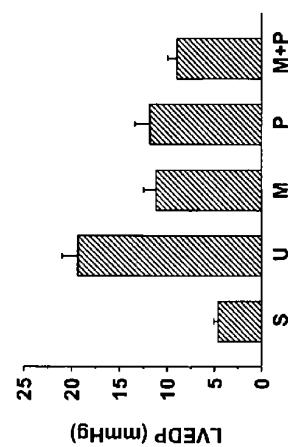


FIG. 19

SUBSTITUTE SHEET (RULE 26)

FIG. 20

SUBSTITUTE SHEET (RULE 26)

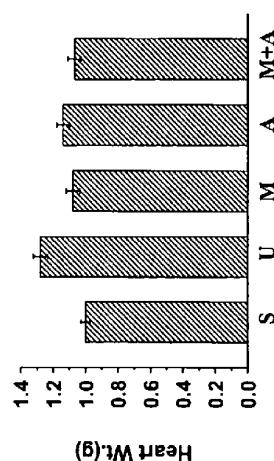


FIG. 21

SUBSTITUTE SHEET (RULE 26)

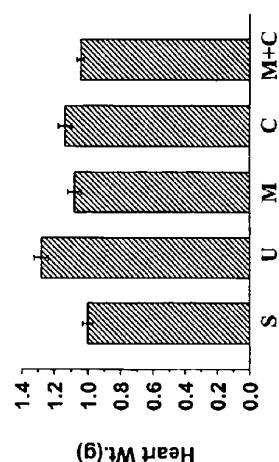


FIG. 22

SUBSTITUTE SHEET (RULE 26)

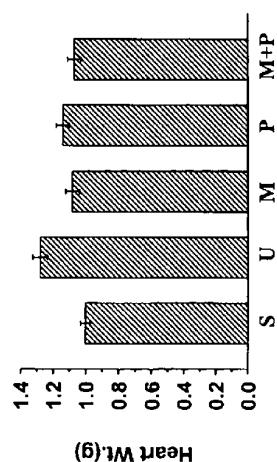


FIG. 23

SUBSTITUTE SHEET (RULE 26)

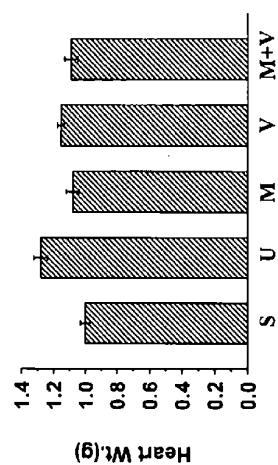


FIG. 24

SUBSTITUTE SHEET (RULE 26)

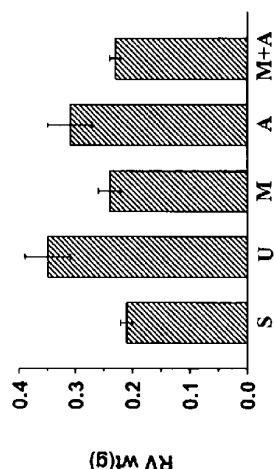


FIG. 25

SUBSTITUTE SHEET (RULE 26)

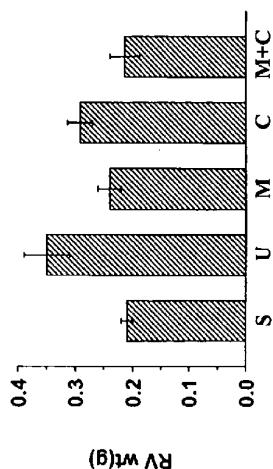


FIG. 26

SUBSTITUTE SHEET (RULE 26)

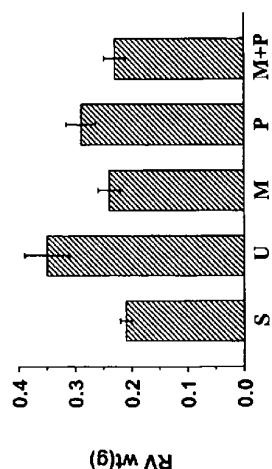


FIG. 27

SUBSTITUTE SHEET (RULE 26)

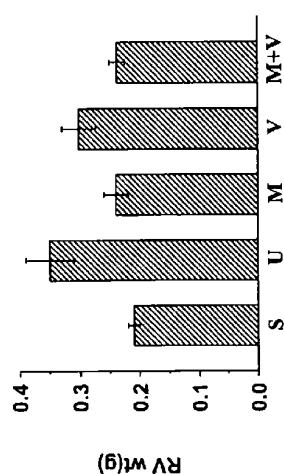


FIG. 28

SUBSTITUTE SHEET (RULE 26)

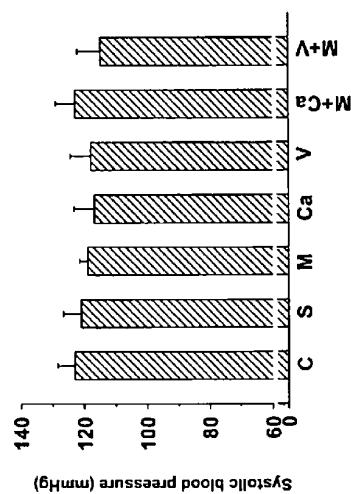


FIG. 29A

SUBSTITUTE SHEET (RULE 26)

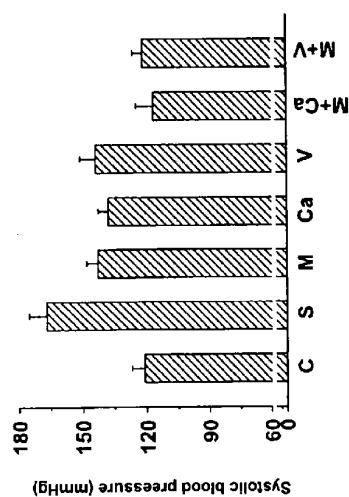


FIG. 29B

SUBSTITUTE SHEET (RULE 26)

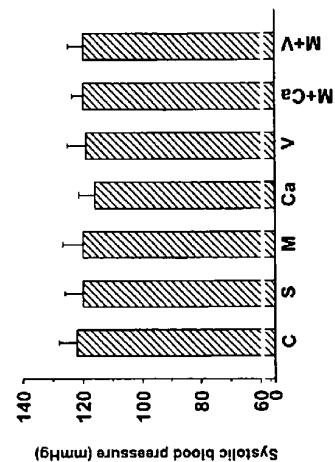


FIG. 30A

SUBSTITUTE SHEET (RULE 26)

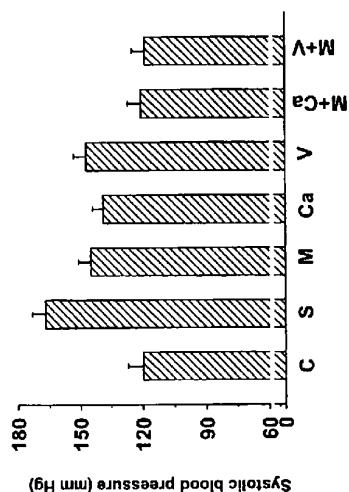


FIG. 30B

SUBSTITUTE SHEET (RULE 26)

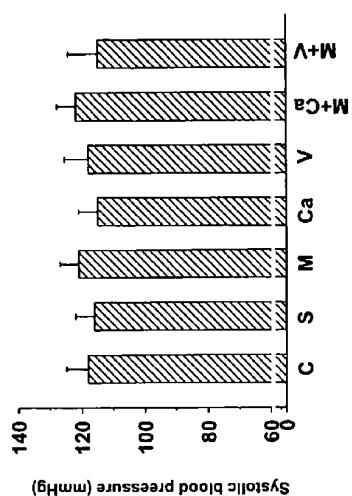


FIG. 31A

SUBSTITUTE SHEET (RULE 26)

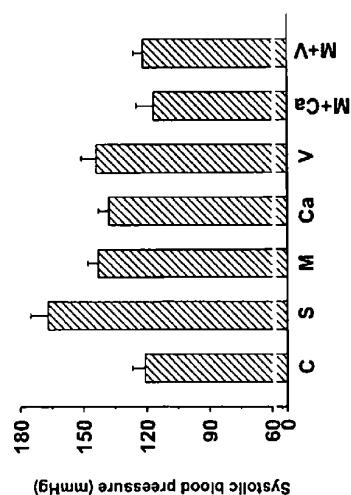


FIG. 31B

SUBSTITUTE SHEET (RULE 26)