USOORE46712E

as United States

a2 Reissued Patent
Van Eijndhoven et al.

(10) Patent Number:
45) Date of Reissued Patent:

US RE46,712 E
Feb. 13,2018

(54) DATA PROCESSING DEVICE AND METHOD

OF COMPUTING THE COSINE
TRANSFORM OF A MATRIX

(71)
(72)

Applicant: KONINKLIJKE PHILIPS N.V.

Inventors: Josephus Theodorus Johannes Van
Eijndhoven, Waalre (NL); Fransiscus
Wilhelmus Sijstermans, Los Altos, CA
(US)

(73)

Assignee: Koninklijke Philips N.V., Eindhoven

(NL)

@
(22)

Appl. No.: 14/263,659

Filed: Apr. 28, 2014

Related U.S. Patent Documents
Reissue of:
(64) Patent No.:
Issued:
Appl. No.:
Filed:

6,397,235
May 28, 2002
09/270,438

Mar. 16, 1999

(30) Foreign Application Priority Data

Mar. 18, 1998 (EP) woooooooeeeeeeeeoeeeeeeees 98200867
(51) Int. CL
GOGF 17/14
GOGF 9/30
U.S. CL

CPC

(2006.01)
(2006.01)
(52)
GOGF 17/147 (2013.01); GOGF 9/30014
(2013.01); GOGF 9/30036 (2013.01); GOGF
9/30145 (2013.01)

Field of Classification Search
CPC GOGF 9/00; GOGF 9/3001; GOGF 9/30032;
GOG6F 9/30036; GOGF 9/30145; GOGF
9/30054; GOG6F 17/147; GOGF 15/8015;
GOGF 9/30014; GOGF 9/30016; HOAN
19/577
See application file for complete search history.

(58)

10

(56) References Cited
U.S. PATENT DOCUMENTS
4,689,762 A 8/1987 Thibodeau
5,128,760 A 7/1992 Chauvel et al.
5,230,057 A 7/1993 Shido et al.
5,361,367 A 11/1994 Fijany et al.
5,404,550 A * 4/1995 Horstccccoevene. GOGF 15/8015
(Continued)
FOREIGN PATENT DOCUMENTS
EP 755015 Al 1/1982
EP 0424618 A2 5/1991
(Continued)

OTHER PUBLICATIONS

“The Architecture of Computer Hardware and Software Systems”,
by Irv Englander, published by John Wiley & Sons, Copyright
2000.*

(Continued)
Primary Examiner — Sam Rimell

(57) ABSTRACT

A data processing device provides for registers which can be
formatted as segments containing numbers to which opera-
tions can be applied in SIMD fashion. In addition it is
possible to perform operations which combine different
segments of one register or segments at different positions in
the different registers. By providing specially selected it is
thus made possible to perform multidimensional separable
transformations (like the 2-dimensional IDCT) without
transposing the numbers in the registers.

1 Claim, 4 Drawing Sheets

INSTRUCTION ISSUE UNIT

INSTRUGTICN
DECODER FUNCTIONAL UNIT
HPUT 7 2 122al 2 (&
REG\ST\EE \E_Ll]] INPUT REGISTER 4-—12% 112
-l S0 -124b
e %- Te] FUNCTIONAL 000 FUNCTIONAL
& il e Nt T
53 / NNy S
T T 12
13 T
1
UTPUTREGISTER IR TI7
ARTHMETIC/
LOGIC UNIT A

REGISTER

US RE46,712 E

Page 2
(56) References Cited Jp 9305424 A 11/1997
Jp 03149348 B2 3/2001
U.S. PATENT DOCUMENTS TP 3199205 B2 8/2001
Jp 2008053652 A 6/2008
5410,727 A 4/1995 Jaffe et al. KR 100190738 Bl 6/1999
5450,603 A 9/1995 Davies WO 1997008608 Al 3/1997
5487,133 A * 1/1996 Park et al. GO6K 9/6215 WO 9731308 8/1997 oo GOGF 3/14
5,488,570 A 1/1996 Agarwal WO 9731308 Al 8/1997
5493,513 A 2/1996 Keith et al. wo 9733236 Al 9/1997
5,493,514 A 2/1996 Keith et al. WO W09733236 9/1997 .o GOG6F 17/14
5508942 A 4/1996 Agarwal WO 9948025 A3 9/1999
5,509,129 A 4/1996 Guttag et al. WO 1999066393 Al 12/1999
5,511,003 A 4/1996 Agarwal
5,515,296 A 5/1996 Agarwal
5,524,265 A 6/1996 Bz%lmer et al. OTHER PUBLICATIONS
g:g%g:;ig ﬁ g;}ggg Izlgc;(r:f]ftt al. Jamieson, L.H. et al. “FFT Algorithms for SIMD Parallel Processing
5,535,138 A 7/1996 Keith Systems”. Journal of Parallel and Distributed Computing 3, 48-71
5,535,410 A 7/1996 Watanabe et al. (1986).
5,537,338 A 7/1996 Coelho Choudhury, M.R. et al. “A 300MHz CMOS Microprocessor with
g’ggg’gg% ﬁ ;;iggg igﬁi{];ﬁn Multi-MediaTechnology”. ISSCC97/Session 10/High-Performance
5:559:722 A 0/1996 Nickerson Microprocessors/Paper FA 10.4. 1997 IEEE International Solid-
5,588,152 A 12/1996 Barker et al. State Circuits Conference, pp. 170-174.
5,594,679 A 1/1997 Iwata Dahle, D.M. et al. “Kestrel: Design of an 8-bit SIMD parallel
5,630,083 A * 5/1997 Carbine et al. GOGF 9/30145 processor”. (1997). In Proc. 17th Conference. on Advanced
5,636,351 A 6/1997 Lee Research in VLSI. pp. 145-162.
5,638,068 A 6/1997 Nickerson GOGF 17/147 Erickson, Grant. “RISC for Graphics: A Survey and Analysis of
5,649,135 A 7/1997 Pechanek et al. L . . T
5.703.966 A * 12/1997 Astle oo HO4N 19/577 M}lltlmedla Extended Instruction Set Architectures”. University of
5,708,836 A 1/1998 Dieffenderfer et al. Minnesota, (1996).
5,710,935 A 1/1998 Barker et al. Lee, Ruby B. “Multimedia extensions for general-purpose proces-
5,713,037 A 1/1998 Dieffenderfer et al. sors”. Signal Processing Systems, 1997. SIPS 97—Design and
5,717,944 A 2/1998 Dieflenderfer et al. Implementation., 1997 IEEE Workshop on Nov. 3-5, 1997, pp. 9-23,
5,729,758 A 3/1998 In_oue et al. Leicester, UK.
g’;gj’gz ﬁ g;iggg g;rll)sslefta?l' Witbrock, M. et al. “An Implementation of Back-Propagation
5:736:948 A 4/1998 Kobayashi'et al. Learning on GF11, a Large SIMD Parallel Computer”. School of
5,752,067 A 5/1998 Dieffenderfer et al. Computer Science, Carnegie Mellon University, Pittsburgh, PA,
5,754,457 A 5/1998 Eitan et al. 364/725.03 USA Parallel Computing Apr. 1990.
5,754,871 A 5/1998 Dieffenderfer et al. Malek, Homayoun. “Algorithms for Arithmetic Operation (SASP)
5,764,787 A 6/1998 N@ckerson in a Systolic ARR.AY of Single-Bit Processor”. Wafer Scale Inte-
5,822,608 A 10/1998 Dieffenderfer et al. gration, 1995. Proceedings., Seventh Annual IEEE International
g’gg’g}‘? ﬁ %;iggg Bi:g:ﬁg:gg Z: g%' Conference on Jan. 18-20, 1995, pp. 359-370 in San Francisco, CA.
5’881’259 A 3/1999 Glass et al. ' D_raper, D. et al. “An)_(86 Micr(_)processor with Mul_timedia Exten-
5:893:145 A * 4/1999 Thayer et al. ..oooocooc.. 708/401 sions”. ISSCC97/Session 10/High-Performance Microprocessors/
5,909,572 A 6/1999 Thayer et al. Paper FA 10.5. Solid-State Circuits Conference in San Francisco.
5,933,650 A 8/1999 Van Hook et al. CA. Digest of Technical Papers. 43rd ISSCC., 1997 IEEE Interna-
5,953,241 A 9/1999 Hansen et al. tional. Feb. 8, 1997, pp. 172-173.
5,966,528 A 10/1999 Dieffenderfer et al. Shirakawa, S. et al. “Bitslice-Datapath Architecture for Multimedia
5,991,787 A 11/1999 Abel et al. Processing and Power-Consumption Reduction”. Department of
6,044,448 A 3/2000 Agrawal et al. Computer Science and Communication Engineering, PPRAM-TR-
6,047,366 A 4/2000 Ohara et al. 19, Kyushu University, May 1997 pp. 1-18.
2’825’2‘?2 ﬁ 2;3888 gilz:? Holmann, E. et al. “Single chip dual-issue RISC processor for
oot real-time MPEG2 software decoding”. Journal of VLSI Signal
g’ggi’g%g ﬁ * ;;3888]S)?léiai‘"gfégrferetal """" 708/401 Processing Systems for Signal, Image, and Video Technology,
6:116:768 A 9/2000 Guttag et al. Springer, vol. 18, No. 2 Feb. 1998, pp. 155-164.
6,119,140 A * 9/2000 Murata et al. 708/401 Loeffler, C. et al. “Practical Fast 1-D DCT Algorithms with 11
6,175,892 Bl 1/2001 Sazzad et al. Multiplications”. Acoustics, Speech and Signal Processing, 1989,
6,381,690 Bl 4/2002 TLee ICASSP-89, vol. 2, 1989 Conference in Glasgow on May 23-26,
6,735,690 B1* 5/2004 Barry et al. ... GOG6F 9/30054 1989, pp. 988-991.
7,509,366 B2 3/2009 Hansen MMX Arithmetic Instructions. http:/www.tommesani.com/
MMX Arithmetic.html, 2008.
FOREIGN PATENT DOCUMENTS MMX Conversion Instructions. http://www.tommesani.com/
MMZXConversion.html, 2008.
EP 0444368 Al 9/1991 AMD Extensions to the 3DNow! and MMX Instruction Sets
EP 0656584 Al 6/1995 Manual, 2000.
Eg Ogggg ég ﬁ% 1 % iggg Using Streaming SIMD Extensions 3 in Algorithms With Complex
Arithmetic, Jan. 2004.
g 8;5‘;(5);? g} . égg?g SSSE Primer, Intel Streaming SIMD Extensions (SSE). 2008.
P 63118842 A 5/19%8 Kalapathy, P. “Hardware/Software Interaction on the Mpact Media
P 04242827 A 8/1992 Processor”, (Chromatic Research), presented on Aug. 20, 1996 at
TP 7141304 A 6/1995 the 8th Hot Chips conference (HCO08, http://www.hotchips.org/
JP 8249203 A 9/1996 archives/1990s/hc08/).
JP 2008249293 A 9/1996 Kloker, K.L. et al., “Efficient FFT implementation on an IEEE
JP 9305423 A 11/1997 floating-point digital signal processor”. Acoustics, Speech, and

US RE46,712 E
Page 3

(56) References Cited
OTHER PUBLICATIONS

Signal Processing, 1989, ICASSP-89, International Conference,
May 23-26, 1989, pp. 1302-1305, vol. 2, Glasgow.

Ramaswamy, S. et al., “Efficient implementation of the two dimen-
sional discrete cosine transform for image coding applications on
the DSP96002 processor”. Circuits and Systems, 1993, Proceedings
of the 36th Midwest Symposium on Aug. 16-18, 1993. pp. 96-99,
vol. 1, Detroit, MI.

Kalapathy, P., “Hardware-software interactions on Mpact”. IEEE
Micro (vol. 17, Issue 2, pp. 20-26. 1997.

* cited by examiner

US RE46,712 E

Sheet 1 of 4

Feb. 13, 2018

U.S. Patent

%L

- LING 1901
JOLLTNHE MY

Ik !
)
{
4315193y
i i st T T “\
ezl _/_ -]
€S ‘H»U.T = A
28—t [2
N 1NN ¥ 1|/
TYNOLLONN 000 | YNOILONN IS] IS
qvz1-{ 08 08 N@a
- 7 \ o | e omw A IndNI
4l §300030
1IN 3NSSI NOLLONYLSNI
i
{
o

US RE46,712 E

Sheet 2 of 4

Feb. 13, 2018

U.S. Patent

Uct e
Bze e
(&)
9¢e °
pee e

e A\

——— / N 4og
| g

\/

¢ Ol

12 2% VA 00 m
K 10e

- 9) pog

owm\@

N -

O,

/

N\ < B

mmm\@

US RE46,712 E

Sheet 3 of 4

Feb. 13, 2018

U.S. Patent

¢ Ol

use 168 96¢ ¢d0

cmm\@

1....x........|t|.....lm.l||_.l|.lxl.i.lll\l||||_ Kl. y |
m

mwm\@

O,

mmm\@

nwm\@

¢t

a-(

et \@

U.S. Patent Feb. 13,2018 Sheet 4 of 4 US RE46,712 E

FUNCTIONAL UNIT |
20—} INSTRUCTION ¥ o0 OUTRUT
DECODER —— - fSECTION
T 24a 1~
2 s0—1— et [sof
252 [_
82 , ;———%;3\\ 82
25b
% \\\\\)
U NV
v FIG 4a ARITHMETIC
. UNITS
FUNCTIONAL UNIT ~
40— \ Y 148
INPUT INSTRUCTION DECODER T
4~ 44b 148
S0 *7 ‘_T S0
S t/k-’ ' ! ?40 S
2 // —» e S2
, IR |
49
S0 | St | 82| 8 [
SECTION
\ /7
ARITHMETIC

U
creors — FIG. 4b

US RE46,712 E

1
DATA PROCESSING DEVICE AND METHOD
OF COMPUTING THE COSINE
TRANSFORM OF A MATRIX

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

This application claims the benefit or priority of and
describes the relationships between the following applica-
tions: wherein this application is a reissue of U.S. Pat. No.
6,397,235, issued May 28, 2002, from U.S. patent applica-
tion Ser. No. 09/270,438, filed Mar. 16, 1999, which claims
priority of foreign application EP 98200867 filed Mar. 18,
1998, all of which are incorporated herein in whole by
reference.

The invention relates to a data processing device.

Such a data processing device is known from PCT patent
application No. 97/31308. This data processing device
allows for parallel processing under control of parallel
instructions like SIMD instructions (Single Instruction Mul-
tiple Data). A SIMD instruction applies the same operation
a number of times in parallel. The SIMD instruction typi-
cally defines two operands, normally in terms of register
addresses. The content of each of these operands is treated
as a plurality of segments of packed data. For example, the
content of a 64-bit register may be treated as four 16 bits
numbers, located at bit positions 0-15, 16-31, 32-47, 48-63
in the register respectively. When the data processing device
encounters the SIMD instruction, the same operation is
applied to several different pairs of numbers from the
operands in parallel. For example, the content of bit posi-
tions 0-15 in a first operand register is added to the content
of'bit positions 0-15 in a second operand register, the content
of bit positions 16-31 in a first operand register is added to
the content of bit positions 16-31 in a second operand
register and so on.

The SIMD instructions can be used to reduce the number
of instructions that needs to be executed to perform a given
function. For example, consider the function of performing
a discrete cosine transform (IDCT) of individual columns of
a block of pixel values. The pixel values of different rows of
the blocks are stored in different operands. In each operand,
the pixel value is stored in a segment at a position deter-
mined by its column. Thus, a first register might contain a
pixel value from a first row, first column at bit positions
0-15, and a pixel value from the first row, second column at
bit positions 16-32 and so on. A second register might
contain pixel values from a second row, pixel values from
different rows being stored in the same way according their
column. As a result execution of a series of instructions that
code for the operations for applying the IDCT to one column
automatically performs the IDCT for a number of columns
in parallel if the arithmetic operations are all performed
using SIMD instructions. This reduces the number of
instructions that needs to be executed.

In case of a separable two-dimensional IDCT the one
dimensional IDCT needs to be applied to individual columns
and to individual rows of the block. In this case a similar
reduction in the number of instructions can be obtained
when the roles of rows and columns are interchanged
between the transformation of the columns and the trans-

10

15

20

25

30

35

40

45

50

55

60

65

2

formation of the rows. The roles of rows and columns can be
interchanged by means of transposition of the block. Trans-
position brings different pixel values of a column into the
same register instead of different pixel values from the same
row. Transposition involves moving the content of corre-
sponding positions (corresponding to the same column)
from different registers to different positions in another
register. Unfortunately, transposition itself requires execu-
tion of a considerable number of additional instructions. As
a result the two dimensional transform requires more than
twice the number of instructions needed for the one dimen-
sional transform.

This limitation on the advantage of SIMD occurs more
generally if functions have to be programmed that require
the combination of data from noncorresponding positions in
the packed data. In this case one cannot use SIMD paral-
lelism to treat content of operands as a packed format
containing independent numbers, or at least additional
operations are needed to reshuffle the data before SIMD
operations can be used.

It is an object of the invention to provide for a processing
device as set forth in the preamble which makes it possible
to reduce the number of instructions that needed to be
executed even further.

Thus it is possible to program parallel operations that
make mutually different combinations of segments of the
operands, combining segments at positions in the operands
that are not equal to each other or using mutually different
operations. This in contrast to the prior art SIMD instruc-
tions which apply the same operation to each time to a pair
of segments located at identical positions. For example, an
instruction according to the invention might cause the num-
ber stored at bit positions 0-15 of an operand register to
added to the number stored at bit positions stored at bit
positions 16-31 in parallel with adding of the numbers stored
at bit positions 32-47 and the number stored at bit positions
48-63.

One may provide instructions both for operations that
combine segments located in the same operand register and
for operations that combine segments located in different
operand registers. Any one or more segments may be used
in more than one operation. The operations executed in
parallel may all be the same type of operation, say all
additions, or they may be mutually different operations, say
additions and subtractions.

Usually, only a very limited set of application specific
instructions for combining segments will be provided in
addition to SIMD instructions. For example, when an
instruction is available which provides for an operation like
addition between certain segments at different positions, it is
not necessary to provide a set of instructions which program
for that operation between all possible pairs of segments.
Similarly, if an instruction is available which combines
certain pairs of segments each with its own operation (at
least one of the operations being different from the others)
then is not necessary to provide an instruction set for all
possible combinations of operation applied to those seg-
ments. For any given application one needs to provide only
a small fraction of all possible operations or combinations of
operations and/or a small fraction of all possible combined
segments.

For a separable two-dimensional transformation on a
block the invention makes it possible to reduce the number
of required instructions without transposing the block. Each
register may still contain different pixel values from one
row, with different register storing pixel values from the
same column in the same segment. Then the transformation

US RE46,712 E

3

of the columns will still be performed using SIMD instruc-
tions, but the transformation of the rows is performed by
means of parallel operations that combine pixel values from
the same row, located in different segments.

For example, one might provide an IDCT instruction
which computes the IDCT of an entire row from pixel values
of that row stored in the different segments of the operand
registers referred to in the IDCT instruction. Also one might
provide operations which compute the sum and difference of
the contents of pairs of different segments in a register. This
is a type of operation that is typically required in an IDCT
transforms and similar transforms.

These and other advantageous aspects of the invention
will be described in a non-limitative way using the following
figures.

FIG. 1 shows a data processing device.

FIG. 2 shows an example of a data-flow diagram for an
implementation of an 8 point one dimensional IDCT.

FIG. 3 shows a data flow diagram of instructions accord-
ing to the invention.

FIGS. 4a,b show a functional units for executing an
instruction according to the invention.

FIG. 1 shows a VLIW type (Very Long Instruction Word)
data processing device. Although the invention is illustrated
using a VLIW type device, it is not limited to such a device.
The device contains an instruction issue unit 10, a number
of functional units 12a-c and a register file 14. The instruc-
tion issue unit 10 has an instruction output coupled to the
functional units 12a-c and the register file 14. The register
file 14 has read/write ports coupled to operand inputs/
outputs of the functional units 12a-c.

One functional unit 12a is shown in more detail. This
functional unit 12a contains an instruction decoder 120, a
number of ALU’s (Arithmetic/Logic units) 122a-d, a first
and second input register 124a,b and an output register 126.
The instruction decoder is connected to the ALU’s 122a-d.
The input registers 124a,b are divided into a number of
segments. The segments of the first and second input reg-
isters 124a,b are connected to the ALU’s 122a-d.

In operation, the instruction issue unit 10 accesses the
successive instructions of a program and issues these
instructions to the functional units 12a-c. An instruction
issued to a functional unit 12a-c typically contains an
opcode, two source register addresses and a result register
address (these elements of the instruction are not necessarily
issued simultaneously). The opcode defines the operation or
operations that the functional unit 12a-c must perform. The
source register addresses refer to registers in the register file
14 where the operands are stored upon which this operation
or operations must be performed. The instruction issue unit
10 applies these addresses to the register file 14. The result
register address refers to the register in the register file 14
where the result of the operation or operations must be
stored. The instruction issue unit 10 applies the result
register address to the register file 14.

Most functional units 12a-c treat the content of each
register as one number. E.g. if the register is made up of 64
bits, its content is treated as a 64 bit number that can be
added to other 64 bit numbers, arithmetically or logically
shifted etc. However, at least some of the functional units
12a-c are capable (or also capable) of treating the content of
the registers as a set of numbers, stored in respective
segments of the register. Special operations can be per-
formed in parallel on these numbers, independently of one
another: in such special operations carry-bits don’t carry

10

15

20

25

30

35

40

45

50

55

60

65

4

from one segment to the other and shifts don’t shift bits from
one segment to the other, any clipping is performed for each
segment independently etc.

Functional unit 12a is a functional unit that treats the
content of each register as a plurality of segments, each
segment containing a separate number. For this purpose, all
registers are notionally divided into segments in the same
way. When an instruction is executed, the content of respec-
tive segments of the particular source registers referred to in
the instruction are applied to respective ones of the ALU’s
122a-d.

In case of'a SIMD instruction the position of the segments
at the same position in the two source operand are supplied
to the same ALU 122a-d. For example, if the operand has 64
bits bit positions 0-15, 16-31, 32-47, 48-63 may constitute
four segments S0, S1, S2, S3 respectively. The content of bit
positions 0-15 of both operands is supplied to a first one of
the ALU’s 122a, the content of bit positions 16-31 of both
operands is supplied to a second one of the ALLU’s 122b and
so on. Again in case of the SIMD instruction, the instruction
decoder 120 applies the same control code to all of the
ALU’s 122a-d. The ALU’s 122a-d therefore all perform the
same type of operation (e.g. addition), but on different
segments.

SIMD instructions may be applied for example to com-
pute a one dimensional transform of a number of columns of
a block B of numbers B, ; (i=0.n, j=0.m), e.g. an 8x8 block
(=7, m=7). To do so, numbers from the same rows of the
block are loaded into different segments of a register. For
example, numbers B, o, B, |, By, By, are loaded into
segments S0, S1, S2, S3 of a first register R1 respectively,
Bo .4, Bo s: Bos» Bo,7 are loaded into segments S0, S1, S2, S3
of a second register R2 respectively, B, o, B, |, B, 5, B, 3,
are loaded into segments S0, S1, S2, S3 of a third register R3
respectively, B, ,, B, 5, B, 4, B, ; are loaded into segments
S0, S1, S2, S3 of a fourth register R4 respectively and so on.

Now assume that a program is available to perform the
transformation on one column, the program being expressed
in instructions which include arithmetic instructions like
add, subtract, multiply etc. applied to registers which con-
tain the numbers for one column B, ; i=0.n. If SIMD instruc-
tions are used for all these arithmetic instructions then this
program will automatically compute the transform in par-
allel for a number of columns j=0.3. Thus, in case of a block
with N-columns and P numbers in respective segments of
each register, the program would need to be executed only
N/P times to transform the N columns.

In case of a separable two-dimensional transformation, all
of the columns may be transformed in this way. Subse-
quently the rows of the resulting transformed block must all
be transformed. An example of such a two dimensional
transformation is the two dimensional IDCT. In this case the
transformed block A, ; is expressed by

Aij=2/NX, % C,C, B

@itvaN)
where Cu=1/sqrt(2) if u=0 and C,=1 otherwise and the sums
run over the integers from 0 to N-1. This two-dimensional
transformation can be computed by first obtaining an inter-
mediate block INT, , by a one-dimensional transformation
according to

cos ((2i+1)u w/2N) cos

INT, =%, C, B,,, cos ((2i+1)us/2N)

and subsequently applying a one-dimensional transform to
the intermediate block

A, 2IN'E, C, INT,,, cos ((2j+1)va/2N)

US RE46,712 E

5

Thus, the two-dimensional transformation is computed as a
composition of two one dimensional transformations, one
transforming B into INT and the other transforming INT into
A (“composition” of two transformations means that one
transformation is applied to the result of applying the other
transformation). In the example of the IDCT it does not
matter which one-dimensional transformation is applied
first: in the example one sums first along the first index u of
the block B, , and subsequently along the second index v,
but that order may be inverted without affecting the end
result.

Such a two stage two-dimensional transformation can be
speeded up using SIMD instructions. When the numbers
B, of the intermediate block B are stored as described in
the preceding. i.e. with several numbers B, , v=0, 1, 2, 3 of
a row in respective segments of a register, the computation
of the intermediate block INT, , can be performed by trans-
forming a number of columns (all numbers having v=0 in the
first column, v=1 in the second column and so on) in
parallel.

Similar parallel processing using SIMD instructions is
possible if the numbers from the intermediate block INT are
stored in the registers so that several number of a column are
stored in one register, e.g. if the segments of a first register
store INT,, i=0.3, v=0, respectively, the segments of a
second register store INT, ,i=4.7, v=0, the register of a third
register INT, ,i=0.3, v=1 and so on. In this case a number of
rows of the intermediate block INT can be transformed in
parallel using SIMD instructions.

However, after the computation of the intermediate block
INT from the block B, the numbers will not be stored in the
register in this way, with several numbers INT, ,, i=0.3, v=0
from one column in a register, but instead several numbers
INT, ,, i=0, v=0.3 from each row will be stored in each
register. This is because the computation of the intermediate
block requires separate one dimensional transformation of
respective columns, whereas the computation of the final
block A requires separate one dimensional transformations
of respective rows.

In order to be able to use SIMD instructions for both types
of transformations the intermediate block needs to be trans-
posed: the numbers have to be regrouped over the registers.
This is a complicated operation: in the example of an 8x8
block with 4-segment registers one needs 16 registers and 32
operations with two-inputs for the transposition.

The invention aims at avoiding the transposition. For the
transformation of the rows the arrangement of the numbers
of the intermediate block wherein registers contain different
numbers from the same row is retained, and special instruc-
tions are used that combine these numbers from these
registers in order to perform the one dimensional transfor-
mation in the row that is stored in these registers.

These instructions make it possible to perform a two-
dimensional separable transformation without transposition.
Without farther measures, the combination of such special
instructions for one dimension and the SIMD type of opera-
tions for two or more further dimensions can be used to
perform higher than 2 dimensional transformations as well.

In the most straightforward implementation at least one
functional unit is provided that is capable of performing the
entire IDCT of a row. In case of an 8-point IDCT using
registers that each contain four respective numbers from a
column, such an instruction would need two operand reg-
isters and two result registers.

FIG. 2 shows an example of a data-flow diagram for an
implementation of an 8 point one dimensional IDCT. The
data-flow diagram is based on expressions described in an

20

25

40

45

6

article published by C.Loeffler, A.Ligtenberg and G.
Moschytz, titled “Practical Fast 1-D DCT Algorithms with
11 multiplications”, published in Proceedings International
Conference on Acoustics, Speech and Signal Processing
1989 (IC-IASSP *89) pages 988-991. At the left, nodes
30a-h symbolize the numbers by means of the value of the
index v at positions v=0.7 in the row that has to be
transformed. At the right nodes 32a-h symbolize the trans-
formed numbers by means of the value of the index j at
positions j =0.7 in the transformed row. The lines from the
nodes 32a-h symbolize data flow of the numbers to different
operations and of data flow of the results from these opera-
tion to other operations or to the transformed numbers. The
operations are symbolized as follows. A dot with two solid
incoming lines symbolizes summation. A dot with one
incoming solid line and one incoming dashed line symbol-
izes subtraction, the number flowing along the dashed line
being subtracted from the number flowing along the solid
line. A box with two inputs and two outputs symbolizes
rotation and factorization, that is, the computation of (X,
Y,) from (X,,Y,) according to

X =a(X, cosgp-Ysin @)

Y =a(X, cosgp+Yocos ¢)

The value of the factor a and an identification of the angle
¢ are noted on the box; these are predetermined values: the
blocks can be implemented using four multiplication’s, an
addition and a subtraction (alternatively three multiplica-
tion’s and three additions can be used).

In one implementation at least one functional unit is
provided which is capable of executing a row-IDCT instruc-
tion that causes that functional unit to IDCT-transform the
contents of the segments of its operands. In the example of
an 8-point IDCT with four segments in each a register, this
would require two operands to transform a row. Such an
instruction requires two result registers in which the num-
bers that represent the transformation are written in respec-
tive segments according to their frequency position in the
transformation.

Execution of the IDCT by such a functional unit is much
faster than execution by means of individual instructions at
least because the combination of numbers stored in seg-
ments at different positions in the operands can be realized
by wiring in the functional unit. This wiring is specific to the
IDCT. In addition, the data-flow diagram of FIG. 3 shows
that a considerable amount of parallelism is possible in such
a functional unit, so the speed of execution can be increased
further by parallel execution of a number of operations.

Thus, the 2-dimensional IDCT transformation can be
performed for the columns using arithmetic SIMD instruc-
tions to apply a one-dimensional IDCT-transformation to a
number of columns in parallel and for the rows using a
different, dedicated IDCT instruction to apply a functionally
identical IDCT-transformation to a row.

Some processor architectures require that functional units
use a standard instruction format, typically containing an
opcode, two source register references and a result register
reference. In this case each functional unit may have two
ports connected to read ports of the register file and one port
connected to a write port of a register file. In case of an IDCT
instruction which transforms numbers stored in more than
one register, more than one result register will be needed to
write the transformed numbers. In architectures that allow
only one result register this may be realized in various ways,
for example by writing the results time-sequentially in
logically adjacent result registers. Alternatively, one may use

US RE46,712 E

7

a combination of two instructions issued in parallel to the
functional units. Such two instructions would normally be
used for two different functional units in parallel. Instead,
one uses the combination of the two instructions to program
one functional unit that performs IDCT. By using this
combination of two instructions, two separate result regis-
ters can be specified. In a processor that provides a write port
to the register file for each of the instructions that is issued
in parallel it is moreover ensured in this way that a write port
to the register file is available for both results.

Alternatively, one might define two different types of
instruction for the functional units, one for generating half
the numbers in a register and another one for generating the
other half of the numbers.

More generally, one may provide several dedicated
instructions for respective parts of the computation of the
IDCT, none of the instructions requiring more than a maxi-
mum number (e.g. one) of result registers. In order to select
such instructions, one may split the IDCT data-flow diagram
into sub-diagrams and assign a dedicated instruction to each
sub-diagram. By selecting only sub-diagrams with a limited
number of outputs it can be ensured that no more than one
result register is required for any of the dedicated instruc-
tions.

FIG. 3 shows an example of a split-up into sub-diagrams
indicated by dashed boxes 39a-g. Each of these boxes
defines the data-flow of a number of a dedicated instructions
which provide combinations of operations that are executed
in parallel to help speed up the computation of transforma-
tion. The required number of segments in the results of each
instruction is limited to four. These instructions are espe-
cially defined so that the locations of numbers in respective
segments correspond to the location required for the SIMD
transformation, that is, with the numbers indicated by v=0.3
at the left of FIG. 3 in respective segments of a first register
R1 and the numbers indicated by u=4.7 in respective seg-
ments of a second register R2.

A first example of a first instruction INS1 R1,R2,R3
corresponding to a first dashed box 39a refers to the two
registers R1, R2 as operands. This instruction causes a
functional unit to perform the following operations in par-
allel:

Sum the number (v=0) in a first segment of the first
register R1 to the number (v=4) in the first segment of
the second register R2. The result is placed in a first
segment of a result register R3.

Subtract the same numbers from one another and place
the result in a second segment of the result register R3.

Use the numbers in a third segment (v=2) of the first
register R1 and the third segment of the second register
R2 as X, and Y|, in a rotation with a factor sqrt(2) and
a predetermined sine and cosine value. Place the result-
ing X,, Y, are in the third and fourth segment of the
result register.

FIG. 4b shows an example of a functional unit 40 for
executing the INS1 instruction. The functional unit 40
contains two input sections 42, 46 for receiving the content
of the first register R1 and the second register R2 respec-
tively, an instruction decoder 48 for setting the functional
unit into action, and arithmetic circuits 44a-c for computing
the sum of the first segment S0 of R1 and R2, the difference
of'the first segment of R1 and R2 and the rotation of the third
segment S2 of R1 and R2. The results of these computations
is combined into the segments S0-S3 of an output section 49
for writing into the result register R3.

A second example of a second instruction INS2 R3,R4
corresponding to a second dashed box 39b refers to one

15

20

25

30

35

40

45

50

55

60

65

8

register R3 as operand. This instruction causes a functional
unit to perform the following operations in parallel:

Sum the numbers stored in the first and fourth segment of
the operand register R3 and place the result in a first
segment of a result register R4

Sum the numbers stored in the second and third segment
of the operand register R3 and place the result in a
second segment of a result register R4

Subtract the number in the third segment of the operand
register R3 from the number in the second segment of
the operand register R3 and place the result in the third
segment of the result register R4.

Subtract the number in the fourth segment of the operand
register R3 from the number in the first segment of the
operand register R3 and place the result in the fourth
segment of the result register R4

FIG. 4a shows an example of a functional unit 20 for
executing the INS2 instruction. The functional unit 20
contains an input section, for receiving the content of the
operand register R3, arithmetic units 24a-b, 25a-b for com-
puting the sums and subtractions; an instruction decoder 28
for setting the functional unit 20 into action and an output
section 26. The results of the sums and subtractions is
combined into the segments S0-S3 of the output section 26
for writing into the result register R4.

A third example of a third instruction INS3 R4.R5.R6
corresponding to a third dashed box 39c refers to two
registers R4, R5 as operands. This instruction causes a
functional unit to perform the following operations in par-
allel:

Sum the numbers stored in the first segment of the first
operand register R4 and the fourth segment of the
operand register R5 and place the result in the first
segment of the result register R6

Sum the numbers stored in the second segment of the first
operand register R4 and the third segment of the second
operand register RS and place the result in the second
segment of the result register R6

Sum the numbers stored in the third segment of the first
operand register R4 and the second segment of the
second operand register RS and place the result in the
third segment of the result register R6

Sum the numbers stored in the fourth segment of the first
operand register R4 and the first segment of the second
operand register R5 and place the result in the fourth
segment of the result register R6

A fourth example of a fourth instruction INS4 R4,.R5,.R6
corresponding to a dashed box 39h refers to two registers
R4, R5 as operands. This instruction causes a functional unit
to perform the following operations in parallel:

Subtract from the number stored in the first segment of the
first operand register R4 the number stored in the fourth
segment of the operand register R5 and place the result
in the fourth segment of the result register R6

Subtract from the number stored in the second segment of
the first operand register R4 the number stored in the
third segment of the second operand register RS and
place the result in the third segment of the result
register R6

Subtract from the number stored in the third segment of
the first operand register R4 the number stored in the
second segment of the second operand register RS and
place the result in the second segment of the result
register R6

Subtract from the number stored in the fourth segment of
the first operand register R4 the number stored in the

US RE46,712 E

9

first segment of the second operand register RS and
place the result in the fourth segment of the result
register R6
A fifth example of a fifth instruction INS5 R1,R2,R7 cor-
responding to a fourth dashed box 39d refers to two registers
R1, R2 as operands. This instruction causes a functional unit
to perform the following operations in parallel:

Place the numbers from the fourth segment of the first
source register R1 and the second segment of the
second source register R2 into the second and third
segment of the result register R7 respectively.

Use the numbers in a third segment (v=2) of the second
register R2 and the second segment of the first register
R1 as X, and Y, in a rotation with a factor 2 and a
predetermined sine and cosine value (corresponding to
45 degrees). Place the resulting X, Y, are in the third
and fourth segment of the result register. (This rotation
can be implemented using fewer multiplication’s
because the sine and cosine of 45 degrees are equal to
each other).

A sixth example of a sixth instruction INS6 R7.R8 corre-
sponding to a sixth dashed box 39e refers to one register R7
as operand. This instruction causes a functional unit to
perform the following operations in parallel:

Sum the numbers stored in the first and third segment of
the operand register R7 and place the result in a first
segment of a result register R8

Sum the numbers stored in the second and fourth segment
of the operand register R7 and place the result in a
fourth segment of a result register R8

Subtract the number in the third segment of the operand
register R7 from the number in the first segment of the
operand register R7 and place the result in the third
segment of the result register R8

Subtract the number in the second segment of the operand
register R7 from the number in the fourth segment of
the operand register R7 and place the result in the
second segment of the result register R8

A seventh example of a seventh instruction INS7 R8,R9
corresponding to a seventh dashed box 39f refers to one
register R8 as operand. This instruction causes a functional
unit to perform the following operations in parallel:

Use the numbers in a first and fourth segment of the
source register R8 and as

X, and Y, in a rotation with a factor sqrt(2) and a

predetermined sine and cosine value. Place the resulting X,
Y, are in the first and fourth segment of the result register
R9.

Use the numbers in a second and third segment of the
source register R8 and as X, and Y, in a rotation with
a factor sqrt(2) and a predetermined sine and cosine
value. Place the resulting X, Y, are in the second and
third segment of the result register R9.

In these instructions numbers may be represented in the
registers as fixed point numbers, all with the same number
of'bits, so that on multiplication a number of least significant
bits are discarded. Almost all fixed point numbers may be
defined to be in a range from +1 to -1. An exception are the
results of the rotation/scalings, which are preferably fixed
point numbers in a range from -2 to 2. It has been found that
only insignificant accuracy is lost through rounding when
one uses this representation of the numbers and when the
data flow graph is split into instructions as described above.
Preferably, the additions and/or multiplications in these
instructions provide for clipping of results of these instruc-
tions if the magnitude of the result exceeds the range of
values that can be held in the registers. However, it has been

20

30

40

45

55

10

found that if the data flow graph is split into instructions in
the way shown above, clipping is not normally necessary.

When the data processing device provides for all of these
instructions the 8-point IDCT of a row contained in the
segments of two registers R1, R2 can be programmed with
the following program:

INS1 R1,R2,R3

INS2 R3,R4

INS5 R1,R2,R7

INS6 R7,R8

INS7 R8,R9

INS3 R4,R9,R5

INS4 R4,R9,R6
As a result the numbers making up a row of the IDCT
transform will be contained in the segments of register
R5.R6. To transform a complete block these instructions
must be repeated for the other rows, with other registers as
far as necessary. Needless to say that in a VLIW processor,
with more than one functional unit, although all these
instructions INS1-INS7 may be instructions for the same
single functional unit, it is also possible that these instruc-
tions may be executed by different functional units. For
example, specialized functional units might be provided for
the instructions which involve multiplication on one hand
and instructions which involve only additions and subtrac-
tions on the other hand.

Different grouping of operations into instructions is also
possible. For example, one may combine for example the
operations of INS1 and INS2 into one instruction INSA so
that execution of INSA R1,R2,R4 is functionally equivalent
to successive execution of INS1 R1,R2.X; INS2 X R4;
similarly INS5, INS6, INS7 may be combined into an
instruction, so that execution of INSB R1,R2,R9 is equiva-
lent to successive execution of INS5 R1,R2,X; INS6 X.Y;
INS7 Y,R9. The instructions INS3 and INS4 can be replaced
by SIMD additions and subtraction respectively, when the
instruction INS7 is modified so that it puts its results into the
segments of the result register in reverse order. However, in
this case an additional “reverse order” instruction, which
exchanges the contents of segments 0-3 with each other and
the contents of segments 1-2 with each other is required.
This instruction must applied to the result of the SIMD
version of INS4 to get the transformed number in the proper
order.

The number of instructions that needs to be executed to
transform the block can be reduced by providing one or
more functional units which accept the instructions INS1-
INS7 and execute the operations in parallel combining
different segments of the one or more operands referenced in
the instruction. This reduces the time (number of instruction
cycles) needed for the transform. Execution of the IDCT by
such a functional unit is much faster than execution by
means of individual instructions at least because the com-
bination of numbers stored in segments at different positions
in the operands can be realized by wiring in the functional
unit. This wiring is specific to the IDCT. Of course, a
reduction in the required time is already achieved if the
functional units provide for only one of the additional
instructions INS1-INS7 or any combination of these instruc-
tions. If one or more of these instructions are not provided
for, their function can be implemented using conventional
instructions.

Furthermore, the memory space needed for storing pro-
grams is reduced, in particular for programs which involve
transformations. This benefit would of course be realized
even if the operations in an instruction were not executed in
parallel. The reduced program space would result from

US RE46,712 E

11

instructions that involve arbitrary combinations of opera-
tions. The particular combinations INS1-INS7, however, are
not arbitrary: they have the special property that they
provide operations that combine segments as required for
computing the IDCT, so as to speed up processing and that
furthermore they combine operations that can be executed in
parallel to increase the speed of computing the IDCT even
further.

The examples given above use registers with four seg-
ments to implement an 8-point two-dimensional IDCT, e.g.
64-bit registers with four 16 bit segments. Of course, the
invention is not limited to these numbers. One may use
segments of a different size, e.g. 8,12 or 32 bit segments (the
segment need not fill the entire register) and/or registers with
a different number of bits, e.g. 128-bits. In the latter case a
register with 16-bit segments can store 8 numbers, for
example an entire row of an 8-bit block and the 8-point
IDCT can be executed as an instruction that requires only
one operand register and one result register.

More generally, any kind of program can be speeded up
by providing functional units which are capable of executing
dedicated instructions involving (preferably parallel) execu-
tion of operations which combine operands stored in seg-
ments at different positions in the registers. The separable
transforms discussed in the preceding are but an example of
this. For a given program, suitable dedicated instructions can
be found by analyzing the data-flow of the program and
isolating often occurring combinations of operations that
combine different segments of the same one or two oper-
ands. When a suitable instruction is found the instruction
decoder 120 and the switch circuit 125 are designed so that
the functional unit is capable of handling that instruction.

Preferably these dedicated instructions are combined with
a set of SIMD instructions. In this case, one or more
functional unit either together or individually provide a
complete set of arithmetic instructions is provided with
SIMD data flow (combining pairs of segments at corre-
sponding positions in the operands). In addition at least one
functional unit is capable of executing a few selected
instructions that combine segments at different positions in
one or more operands of the instruction, different, that is,
than in the SIMD instruction.

This is particularly useful for any kind of separable
transformations, not only for the IDCT. Use can be made of
this in for example, 2-dimensional fourier transforms or
Hadamard transforms, convolutions with 2-dimensional
separable kernels (such as a Gaussian kernel) H(x,y) which
can be written as H1(x)H2(y) etc and higher than two
dimensional transformations or convolutions. In general, a
separable transform uses a one dimensional transformation
which takes a series of numbers as input and defines a new
series of numbers as output. A separable transformation
comprises the composition of two such one-dimensional
transformations. A first one-dimensional transformation is
computed for each of a set of series, producing a set of new
series. A second transformation is computed for a transversal
series obtainable by taking numbers from corresponding
positions in series from the set of new series.

In each of these cases, the numbers that have to be
transformed may be stored in segments of operands, the
position of the segment in which a number is stored being
determined in the same way for each row by the column in
which the number is located, the numbers in each operand
belonging to the same row. The transformation can then be
executed in the row direction using the dedicated instruc-
tions and a number of times in parallel in a direction
transverse to the rows by means of SIMD instructions.

10

15

20

25

30

35

40

45

50

55

60

65

12

What is claimed is:

[1. A data processing device comprising

an operand storage circuit for storing operands, each

subdivided into a plurality of segments at respective
positions in the operand;

an instruction execution unit for executing an instruction

containing one or more operand references, each refer-
ring commonly to the segments of a respective source
operand in the operand storage circuit, said instruction
causing the instruction execution unit to execute a
plurality of operations in parallel and independently of
one another, each operation combining predetermined
segments from one or more of the respective source
operands, characterized in that at least one of the
operations combines segments that have mutually dif-
ferent positions in the one or more respective source
operands and/or that at least one of the operations
differs from the other operations.]

[2. A data processing device according to claim 1, wherein
said instruction is referred to as a cross instruction, the
instruction execution unit also being arranged for executing
a parallel instruction containing two or more further operand
references each referring commonly to the segments of a
respective source operand in the operand storage circuit, said
parallel instruction causing the instruction execution unit to
execute a plurality of operations in parallel and indepen-
dently of one another, each operation combining predeter-
mined segments from the source operands having mutually
corresponding positions in the two or more referenced
further source operands.]

[3. A data processing device according to claim 2, pro-
grammed with a program for computing a composition of a
column transformation and a row transformation of a matrix
having at least rows and columns,

the column transformation transforming columns each

according to a one dimensional column transformation,
to the column transformation being executed using the
parallel instruction, the two or more operands each
storing information items for different columns in
respective segments according to the column;

the row transformation transforming rows each according

to a one dimensional row transformation, the row
transformation being executed using the cross instruc-
tion, information items for the same row being stored
in respective segments of the at least one operand.]

[4. A data processing device according to claim 3, where
the row and column transformation correspond to the same
one-dimensional transformation.]

[5. A data processing device according to claim 1, wherein
the operations caused by the instruction comprise computing
a sum and a difference of two segments in one of the one or
more source operands.]

[6. A data processing device according to claim 1, wherein
the operations caused by the instruction result in the com-
putation of a plurality of component coefficients of a vector
transformation, such as an IDCT or DCT, of the numbers
stored in the respective segments of the one or more source
operands, the data processing device storing the component
coeflicients in segments at respective positions of a result
operand commonly referred to by the instruction.]

[7. A data processing device according to claim 6, wherein
the numbers stored in the segments of two or more of the
source operands make up an input vector, which is trans-
formed, the component coefficients of the transformation of
the input vector being stored in the segments of two or more
result operands.]

US RE46,712 E
13 14

[8. Amethod of transforming a matrix having at least rows respective positions in the operand wherein each oper-
and columns using a processor having segmented operand and is subdivided into the same plurality of segments at
storage circuits, the method comprising: the same vespective positions; and

computing a composition of a column transformation and an instruction execution unit including an instruction

a row transformation, 5 decoder and arithmetic circuits wired to execute an
the column transformation transforming columns each instruction containing an opcode and one or more

operand references, each operand reference of the
instruction referring commonly to the segments of a
respective source operand in the operand storage cir-
10 cuit, said instruction causing the instruction decoder to
decode the instruction and set the instruction execution
unit to execute a plurality of operations consisting only
of addition and subtraction operations in parallel and
independently of one another to generate a result that
15 is written to a result register subdivided into the same
plurality of segments at the same respective positions
as the operands, each operation of the plurality of
operations combining, by specific wiring of the arith-
metic circuits of the instruction execution unit, prede-
20 termined segments from one or more of the respective
source operands and writing a result of the combining
to a segment of the result register, wherein each of the
operations of the plurality of operations caused to
execute by the instruction combines segments that have
25 mutually different positions in the one or more respec-
tive source operands and at least one of the operations
caused to execute by the instruction differs from the
other operations caused to execute by the instruction.

according to a one dimensional column transforma-
tion, the column transformation being executed
using at least one SIMD instruction which causes the
processor to process different columns in parallel,
using information items for the different columns
stored in respective segments of an operand storage
circuit referred to in the SIMD instruction;
the row transformation transforming rows each accord-

ing to a one dimensional row transformation, the row
transformation being executed using at least one
cross instruction which causes the processor to per-
form several operations upon information items for
the same row in parallel, the information items for
the same row being stored in respective segments of
an operand storage circuit referred to in the cross
instruction, wherein the row and column transfor-
mation correspond to the same one-dimensional
transformation.]

[9. A computer readable medium storing a computer

program for executing the method according to claim 8.]
10. A data processing device comprising:
an operand storage circuit for storing operands, each
operand subdivided into a plurality of segments at L

