

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2811971 A1 2014/01/11

(21) **2 811 971**

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

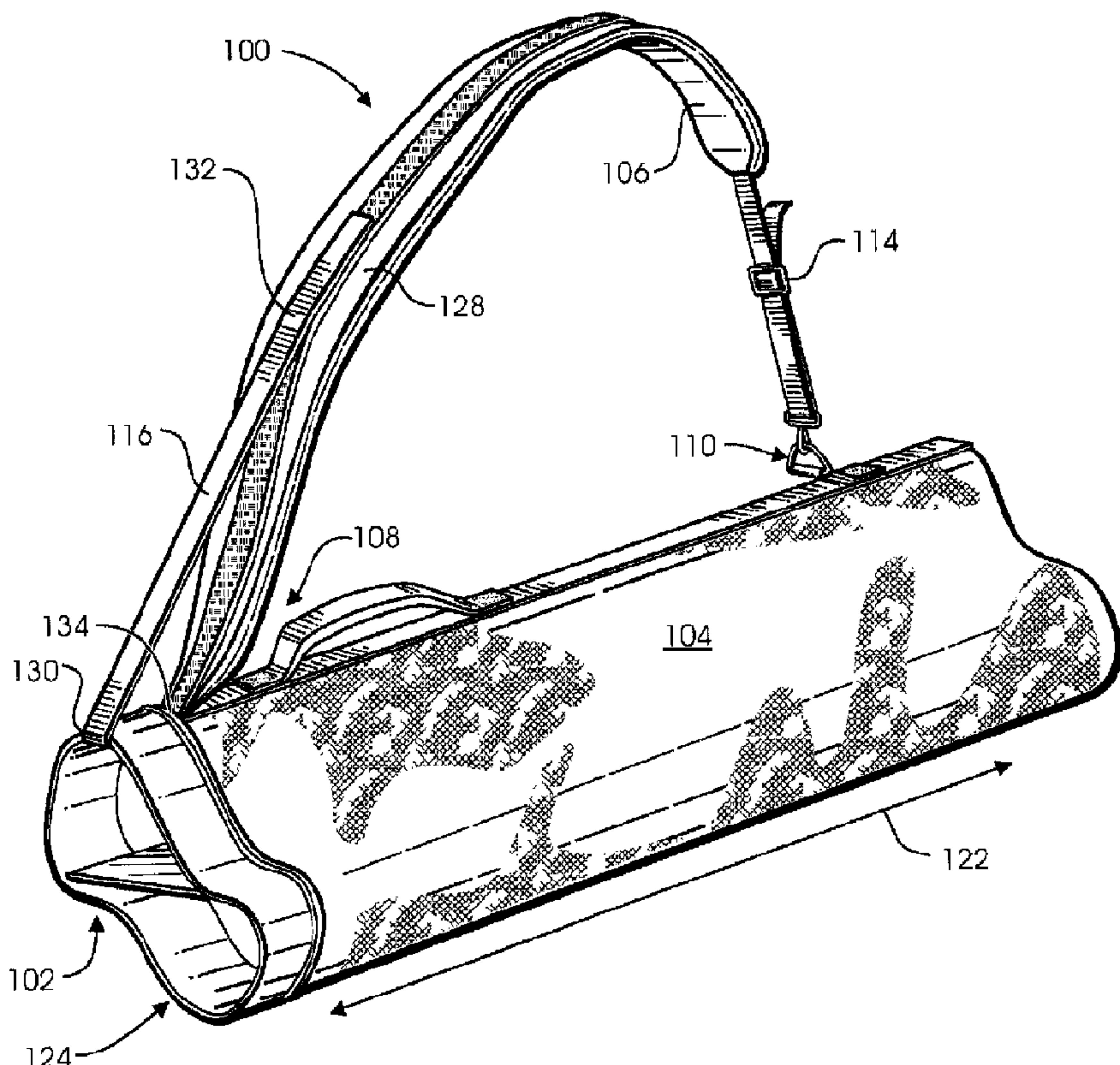
(13) **A1**

(22) Date de dépôt/Filing Date: 2013/04/09

(41) Mise à la disp. pub./Open to Public Insp.: 2014/01/11

(30) Priorités/Priorities: 2012/07/11 (US61/670,403);
2012/08/14 (US13/585,345)

(51) Cl.Int./Int.Cl. *A63B 55/00* (2006.01),
A45F 3/02 (2006.01), *B65D 33/02* (2006.01)


(71) Demandeur/Applicant:
KARSTEN MANUFACTURING CORPORATION, US

(72) Inventeurs/Inventors:
MC GUIRE, BRAIN J., US;
LOUDENSLAGER, JOHN H., US

(74) Agent: SMART & BIGGAR

(54) Titre : SANGLE POUR SACS ET METHODES DE FABRICATION DE SACS POURVUS D'UNE SANGLE

(54) Title: A STRAP ASSEMBLY FOR BAGS AND METHODS TO MANUFACTURE BAGS HAVING A STRAP ASSEMBLY

(57) Abrégé/Abstract:

Embodiments of a strap assembly for a bag and methods to manufacture such a bag are generally described herein. The strap assembly for the bag generally includes a strap defining a first end and a second end, both ends flexibly coupled to the bag, at least the first end including a reinforcement element. A support member is coupled to the reinforcement element. The support member is configured to raise the strap at an angle relative to the bag, and the angle is adjustable.

ABSTRACT

Embodiments of a strap assembly for a bag and methods to manufacture such a bag are generally described herein. The strap assembly for the bag generally includes a strap defining a first end and a second end, both ends flexibly coupled to the bag, at least the first end including a reinforcement element. A support member is coupled to the reinforcement element. The support member is configured to raise the strap at an angle relative to the bag, and the angle is adjustable.

030277-9015\11711419.1

030277-9015\11711419.1

A STRAP ASSEMBLY FOR BAGS AND METHODS TO MANUFACTURE BAGS HAVING A STRAP ASSEMBLY

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 61/670,403, filed July 11, 2012, the content of which is incorporated herein by reference in its entirety.

FIELD

[0002] The present disclosure relates to a strap assembly for bags, and in particular for golf bags.

BACKGROUND

[0003] Most golf bags may be in the form of a tubular fabric or leather container having a generally cylindrical configuration with a closed bottom end and an open top end through which golf clubs are inserted into and removed from the golf bag. Although golf bags are manufactured in a variety of sizes and materials so as to better suit various intended uses, golf bags are conventionally grouped into two basic classes. The first class of golf bags are generally larger and heavier golf bags designed to be carried by a pull cart or transported by a golf cart, while the second class of golf club bags are generally smaller and lighter golf bags designed to be carried by the individual during play. In particular, the second class of golf bags are usually referred to as "carry bags" which are carried by the individual using a carrying strap arrangement that may be used to lift and carry the golf bag. Many carrying bags have a carrying strap arrangement consisting of either one or two carrying straps for lifting and carrying the golf bag on the individual's shoulders.

[0004] During early morning rounds or on rainy days when the grass is wet, the shoulder strap may become wet by contacting the wet grass on the ground. In addition, the strap or the bag may become sandy as it is placed near a sand bunker where sand is prevalent in the grass. Thus, there has developed a need for a strap assembly that extends away from the golf bag in a standing position when the golf bag is placed on the ground. A standing strap assembly may also allow an individual to more easily grasp the shoulder strap and pick up the golf bag, because the shoulder strap conveniently extends in the ready-to-lift position.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a perspective view of a strap assembly for a bag according to one embodiment of the apparatus, methods, and articles of manufacture described herein, the strap assembly including a support member coupled to a strap;

[0006] FIG. 2 is a perspective view similar to FIG. 1, but illustrating the support member as detached from the strap;

[0007] FIG. 3 is an enlarged partial perspective view of the bag of FIG. 1;

[0008] FIG. 4 is a sectional view of the bag taken along line 4-4 of FIG. 3;

[0009] FIG. 5 is a sectional view of the bag taken along line 5-5 of FIG. 3, illustrating a reinforcement element in the strap;

[0010] FIG. 6 is an exploded view of the strap of FIG. 3, illustrating the reinforcement element in the strap;

[0011] FIG. 7 is an enlarged side view of the strap assembly of FIG. 1, illustrating the support member raising the strap at an angle relative to the bag;

[0012] FIG. 8 is an enlarged side view similar to FIG. 7, but illustrating the support member raising the strap at a higher angle;

[0013] FIG. 9 is a schematic diagram illustrating how the support member of FIG. 7 is used to raise the strap;

[0014] FIG. 10 is a schematic diagram similar to FIG. 9, but illustrating how the support member of FIG. 8 is used to raise the strap; and

[0015] FIG. 11 is a flow chart illustrating a method for manufacturing the bag.

[0016] Corresponding reference characters indicate corresponding elements among the various views of the drawings. The headings used in the figures should not be interpreted to limit the scope of the claims.

DESCRIPTION

[0017] As described herein, a strap assembly for a bag is configured and arranged to allow the strap to extend away from the bag in a standing position so as to facilitate pick-up of the bag or to avoid contacting the ground. When the grass is wet (e.g., from rain, sprinkler system, morning dew, etc.), the shoulder strap for a golf bag may become wet by contacting the wet grass on the ground. In addition, the shoulder strap may become sandy as it is placed near a sand bunker where sand may be prevalent in the grass. By propping up the bag strap, the strap assembly can avoid contacting the ground. When not in use, the strap can be folded down for compact storage. The standing strap assembly also allows an individual to more easily grasp the shoulder strap and pick up the golf bag, because the shoulder strap conveniently extends in the ready-to-lift position. As such, an individual may not need to bend too much to grasp the shoulder strap. This alleviates further problems with bending down, such as lower back issues, bad knees, or fatigue from playing golf. Accordingly, a more accessible golf strap may lead to a more enjoyable round of golf.

[0018] The strap assembly for a bag as described herein generally includes a strap defining a first end and a second end, both ends flexibly coupled to the bag, at least the first end including a reinforcement element. A support member is coupled to the reinforcement element. The support member is configured to raise the strap at an angle relative to the bag, and the angle is adjustable. The bag may be used, for example, for carrying sports equipment such as golf clubs, ski equipment, and hockey sticks.

[0019] Referring to FIG. 1, for example, a strap assembly 100 for a bag 102 is illustrated according to one embodiment. The bag 102 includes a base (not shown) and one or more walls 104 joined to the base. The walls 104 define a sealable housing to store elongate object(s) (not shown). In some embodiments, the bag 102 may be able to carry or transport weighted objects including, but not limited to, golf clubs including iron-type golf clubs, wood-type golf clubs, and putter-type golf clubs, ski equipment, hockey sticks, books, supplies, clothes, carpentry tools, architect tools, bowling ball, survey tools, computers and computer related accessories, papers, documents, art supplies, weapons, shoes, and food supplies. The bag 102 may be in any configuration or shape as long as the bag 102 is connected to the strap assembly 100. In some embodiments, the bag 102 may be

generally a golf bag, an elongated duffle bag, a backpack, a bowling bag, or a suitcase.

[0020] The walls **104** may be formed of a suitably flexible material such as fabric material (e.g., polyester, nylon, canvas, or denim), leather, synthetic rubber, neoprene, polyethylene, polyurethane, acrylonitrile butadiene styrene, plastic, or a combination thereof, or can be made in other manners from other materials. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. In some embodiments, at least one of the walls **104** includes a substantially waterproof surface. For example, at least a portion of the walls **104** may include fiberglass. In some embodiments, at least a portion of the walls **104** may be used to display an insignia (not shown) including, but not limited to, a name brand, a company logo, personalized artwork, a photograph, a team logo, or other verbal and pictorial content. The insignia may be embroidered or coupled to the walls **104** in other manners.

[0021] The strap assembly **100** includes a strap **106** defining a first end **108** and a second end **110**. Both ends **108** and **110** are flexibly coupled to the walls **104** of the bag **102**. In the illustrated embodiment, the first end **108** is sewn or stitched to the wall **104**, and the second end **110** is coupled to the wall **104** via a ring or other type of attachment. In other embodiments, however, the first and second ends **108, 110** may be flexibly coupled to the walls **104** via other suitable mechanisms. In the illustrated embodiment, the first end **108** includes a reinforcement element **112** (not shown in FIG. 1; see FIGS. 5 and 6). In other embodiments, however, one or both of the first and second ends **108, 110** may include a respective reinforcement element **112**. In some embodiments, the reinforcement element **112** may extend along substantially the entire length of the strap **106**. In the illustrated embodiment, the strap **106** includes a guide member **114** configured to adjust a length of the strap **106**. In some embodiments, the guide member **114** is a buckle to adjust the length of the strap **106** to suit the particular preferences of an individual, although other structures performing the same function as the buckle **114** disclosed herein can be used instead.

[0022] A support member **116** is coupled to the reinforcement element **112**. As explained below, the support member **116** is configured to raise the strap **106** at a strap angle θ relative to the bag **102** (e.g., as shown in FIGS. 7, 8, 9, and 10). In some embodiments, the support member **116** is coupled to the reinforcement

element 112 at no more than half way from the first end 108 to the second end 110. In further embodiments, the support member 116 is coupled to the reinforcement element 112 at no more than one third of the way from the first end 108 to the second end 110. In still further embodiments, the support member 116 is coupled to the reinforcement element 112 at a position suitable to raise the strap 104 at the strap angle θ relative to the bag 102.

[0023] Referring also to **FIG. 2**, the illustrated support member 116 includes a hook-and-loop or Velcro[®] fastener 118. The hook-and-loop fastener 118 is configured or arranged to detachably couple the support member 116 to the strap 106. As such, the hook-and-loop fastener 118 can be detached from the strap 106 so that the strap 106 can be folded downwardly for compact storage when not in use. As used herein, the terms "top," "bottom," "front," "rear," "side," "upwardly," "downwardly," and other directional terms are not intended to require any particular orientation, but are instead used for purposes of description only. The hook-and-loop fastener 118 can facilitate adjusting the strap angle θ of the strap 106 relative to the bag 102 as will be explained further below. Although **FIGS. 1** and **2** illustrate the support member 116 as including the hook-and-loop fastener 118, in other embodiments, one or both of the support member 116 and the strap 106 may include a respective hook-and-loop or Velcro[®] fastener 118. In still other embodiments, the support member 116 and the strap 106 may be detachably coupled together via a snap, a button, or other suitable fasteners.

[0024] Referring also to **FIGS. 3** and **4**, the illustrated bag 102 includes a spine 120 coupled to at least a portion of the walls 104. In the illustrated embodiment, the spine 120 extends in a longitudinal direction 122 from a top 124 of the bag 102 toward the base of the bag 102. In other embodiments, the spine 120 may extend along at least a portion of the walls 104, without necessarily extending in the longitudinal direction 122. In the illustrated embodiment, the first end 108 of the strap 106 is flexibly coupled, e.g., sewn or stitched, to the spine 118. In some embodiments, the spine 120 is associated with a first stiffness and the walls 104 are associated with a second stiffness, and the first stiffness is greater than the second stiffness. As such, the spine 120 can provide a requisite stiffness, structural rigidity, hardness, strength, impact strength, or a combination thereof.

[0025] In some embodiments, the spine 120 can taper in cross section along the longitudinal direction 122 of the bag 102. Other configurations are possible

depending on the usage requirements or preferences for the particular bag 102, including configurations where the spine 120 is substantially uniform in cross section along the longitudinal direction 122 of the bag 102. Although FIG. 3 illustrates the spine 120 as having a circular cross section, in other embodiments, the spine 120 may assume any geometric form in cross section, including, but not limited to, a semi-circular, a regular polyhedral, and an irregular polyhedral shape, derivatives thereof, and combinations thereof.

[0026] Referring also FIGS. 5 and 6, the illustrated strap 106 includes a pliable material 126 substantially surrounding the reinforcement element 112. As such, the reinforcement element 112 is not visible from the outside. The reinforcement element 112 can comprise at least one of synthetic resin, thermoplastic rubber, fiberglass, metal, or entrapped air bubbles. In some embodiments, the reinforcement element 112 can be made from other suitable materials that are flexible in the longitudinal direction 122 but rigid or inflexible in a direction substantially perpendicular to the longitudinal direction 122. In further embodiments, the reinforcement element 112 is substantially resilient so that it returns from a longitudinally flexed state to a linearly extending state for compact storage.

[0027] The illustrated pliable material 126, substantially surrounding the reinforcement element 112, can be formed of foam rubber or synthetic resin (e.g., polyethylene or polypropylene) and covered by a fabric 128. In some embodiments, the fabric 128 of the strap 106 includes a substantially waterproof surface. For example, at least a portion of the fabric 128 of the strap 106 may include fiberglass. Although FIGS. 5 and 6 illustrate the pliable material 126 as substantially surrounding the reinforcement element 112, in other embodiments, the pliable material 126 may partially surround the reinforcement element 112 so that the reinforcement element 112 is partially visible from the outside. In other embodiments, the strap 106 may not include the pliable material 126 depending on the usage requirements or preferences for the particular bag 102.

[0028] Referring also to FIG. 7, an enlarged side view of the strap assembly 100 illustrates the support member 116 configured or arranged to raise the strap 106 at the strap angle θ relative to the bag 102. In the illustrated embodiment, the strap 106 is attached at a first attachment 130 at or near the top 124 of the bag 102 and attached at a second attachment 132 to the strap 106. The resulting

configuration props the strap **106** upwardly and away from the bag **102** when the bag **102** is placed on the ground. In this regard, the support member **116** resembles a mast stay, e.g., cable, used on nautical vessels to support the weight of a mast in an upright position (i.e., keeping the mast perpendicular to the deck of the ship). On a nautical vessel, the mast stay may run from the top of the mast to the hull, roughly forming the hypotenuse of a right triangle, with the mast and a portion of the hull forming the other two sides of the triangle. Likewise, an intermediate portion of the illustrated strap **106** between the first and second ends **108, 110** can stand upwardly and away from the bag **102** when the bag **102** is placed on the ground due to the support member **114** functioning similar to a mast stay.

[0029] In the illustrated embodiment, the support member **116** is attached to the bag **102** at the first attachment **130**, and attached to the strap **106** at the second attachment **132**, while the strap **106** is attached to the bag **102** at a third attachment **134**. In some embodiments, the first and third attachments **130, 134** are positioned so that the length therebetween extends substantially parallel to the longitudinal direction **122** of the bag **102**. In other embodiments, however, the first and third attachments **130, 134** are positioned in other configurations or arrangements depending on the usage requirements or preferences for the particular bag **102**.

[0030] The first, second, and third attachments **130, 132, 134** roughly form a triangle **136** when viewed in a direction perpendicular to the longitudinal direction **122** of the bag **102**. The triangle **136** is associated with an interior angle α that is supplementary to the strap angle θ , i.e., the interior angle α and the strap angle θ add up to 180 degrees. In the illustrated embodiment, the length between the first and third attachments **130, 134** and the length between the second and third attachments **132, 134** are the legs of the interior angle α , with the third attachment **134** being the vertex of the interior angle α . In a triangle, the shortest side is opposite the smallest interior angle, and the longest side is opposite the largest interior angle. Thus, by varying the relative side lengths of the triangle **136** associated with the first, second, and third attachments **130, 132, 134**, the interior angle α can be varied, and as a result the strap angle θ can be varied. For example, a shorter length between the first and second attachments **130, 132** relative to the other two sides of the triangle **136** results in a smaller interior angle α , which in turn results in a larger strap angle θ . Thus, the shorter the length is between the first and second attachments

130, 132 relative to the other two sides of the triangle **136**, the greater the strap angle θ is, and vice versa.

[0031] Variation in the length between the first and second attachments **130, 132** relative to the other two sides of the triangle can be accomplished in various manners. For example, attaching the hook-and-loop fastener **118** at different locations on the strap **106** can vary the length between the first and second attachments **130, 132**. Also, a guide member (not shown) such as a D-ring or ladder lock can be attached at the position of the second attachment **132** to adjust a length of the support member **116**. The support member **116** may extend from the first attachment **130** to the second attachment **132** in a first run to prop up the strap **106**, then pass through the guide member, and return in a second run towards the first attachment **126** so as to create an overlapping portion between the first and second runs. In some embodiments, the overlapping portions of the support member **116** may be detachably coupled together via a hook-and-loop fastener, a snap, a button, or other suitable fasteners. By pulling the support member **116** tighter in the first run, the length between the first and second attachments **130, 132** will be decreased, which decreases the interior angle α , and thus increases the strap angle θ .

[0032] In some embodiments, the strap angle θ ranges between about 75 degrees and about 130 degrees. In some embodiments, the strap angle θ is at least 75 degrees, at least 80 degrees, at least 85 degrees, at least 90 degrees, at least 95 degrees, at least 100 degrees, at least 105 degrees, at least 110 degrees, at least 115 degrees, at least 120 degrees, or at least 125 degrees. In further embodiments, the strap angle θ is no more than 130 degrees, no more than 125 degrees, no more than 120 degrees, no more than 115 degrees, no more than 110 degrees, no more than 105 degrees, no more than 100 degrees, no more than 95 degrees, no more than 90 degrees, no more than 85 degrees, or no more than 80 degrees. As such, the strap angle θ can be 75 degrees to 120 degrees, 75 degrees to 110 degrees, 75 degrees to 100 degrees, or 75 degrees to 90 degrees.

[0033] Referring also to **FIGS. 8–10**, the enlarged side view and schematic diagrams illustrate that the support member **116** can raise the strap **106** at a strap angle θ' that is higher relative to the strap angle θ , by shortening the length between the first and second attachments **130, 132** relative to the length between the first and third attachments **130, 134** or the length between the second and third attachments **132, 134**. Particularly, when the strap **106** is raised to a position illustrated in

phantom lines in **FIG. 8** or the position illustrated in **FIG. 10**, the support member **116** extending from the first to second attachments **130, 132** roughly forms the hypotenuse of a right triangle, with the strap **106** extending from the third to second attachments **134, 132** and the bag **102** extending between the first and third attachments **130, 134** forming the other two sides of the triangle. It is to be appreciated that absent the reinforcement element **112** in the strap **106**, the second attachment **132** will define a portion of the strap **106** that will stand highest relative to the bag **102** when the bag **102** is placed on the ground. The strap **106** preferably includes the reinforcement element **112**, however, so that the highest point of the strap **106** when the bag **102** is placed on the ground will be suitably another intermediate portion between the first and second ends **108, 110**.

[0034] In some embodiments, the support member **116** includes a hinge joint (not shown). For example, a female member may be coupled at or near the top **124** of the bag **102**, and a male member may be coupled to the support member **116** and positioned proximate to the female member. A rod is insertable through the female and male members to couple the support member **116** and the bag **102** together. In further embodiments, the support member **116** may include one or more female members, one or more male members, or a combination thereof. Similarly, the bag **102** may also include one or more male members, one or more female members, or a combination thereof. The hinge joint can thus suitably include one or more female and male members. In some embodiments, the female and male members may be integrally formed with the support member **116** and bag **102**, respectively. In other embodiments, however, the female and male members may be separately formed and attached to a respective one of the support member **116** and bag **102** via glue or fasteners.

[0035] In some embodiments, the bag **102** may include a second strap (not shown). Similar to the first strap **106**, the second strap defines two respective ends, both respective ends flexibly coupled to the walls **104** of the bag **102**. At least one respective end of the second strap may include a second reinforcement element. The bag **102** may also comprise a second support member (not shown) coupled to the second reinforcement element and the bag **102**. Like the first support member **116**, the second support member may be configured to raise the second strap at a second angle relative to the bag, and the second angle may be adjustable. The first and second straps may be coupled to each other via a buckle or clip. In particular, a

carrying strap arrangement having a pair of carrying straps may be arranged such that the first carrying strap crosses over the second carrying strap along a buckle that engages both carrying straps in a crossing fashion. This crossing arrangement using the buckle allows each carrying strap to be engaged to a respective shoulder of the individual when carrying the golf bag.

[0036] In some embodiments, the bag 102 may include extendible support legs (not shown) which are pivotally connected to the walls 104 of the bag 102 and pivot outwardly as the base of the bag 102 is placed on the ground. The extended legs and the base of the bag 102 form a tripod such that the bag 102 is held in an upright position at an angle relative to the ground. When the bag 102 is lifted from the ground, or positioned vertical, the support legs are pivoted back towards the walls 104 of the bag 102.

[0037] According to one aspect, a method of manufacturing a golf bag 102 having the strap assembly 100 generally includes forming a bag body having a base and one or more walls 104 joined to the base, forming the strap 106 defining two ends 108, 110, flexibly coupling both ends 108, 110 to the walls 104, and coupling the support member 116 to the reinforcement element 112 and the bag 102. In the example of **FIG. 11**, a process 1100 may begin with forming the bag body having the base and one or more walls 104 joined to the base (block 1110). At block 1112, the strap 106 is formed defining the two ends 108, 110, at least one end including the reinforcement element 112. At block 1114, both ends 108, 110 are flexibly coupled to the walls 104. At block 1116, the support member 116 is coupled to the reinforcement element 112 and the bag 102. As described above, the support member 116 is configured to raise the strap 106 at the strap angle θ relative to the bag 102, and the strap angle θ is adjustable.

[0038] In some embodiments, the method further includes forming the second strap defining two respective ends, flexibly coupling both respective ends to the walls 104, and coupling the second support member to the second reinforcement element and the bag 102. In further embodiments, the method further includes coupling the spine 120 along at least a portion of the walls 104. The first end 108 can be flexibly coupled to the spine 120. In yet further embodiments, the support member 116 is coupled to the reinforcement element 112 at no more than half way from the first end 108 to the second end 110. In some embodiments, the strap 106 further includes the pliable material 126, and the pliable material 126 substantially

surrounds the reinforcement element 112. In other embodiments, the hook-and-loop fastener 118 is coupled to the support member 116. In still other embodiments, the hinge joint is coupled to the support member 116. In further embodiments, the guide member 114 is coupled to the strap 106. The guide member 114 is configured to adjust the length of the strap 106.

[0039] While a particular order of actions is illustrated in FIG. 11, these actions may be performed in other temporal sequences. For example, two or more actions depicted in FIG. 11 may be performed sequentially, concurrently, or simultaneously. Alternatively, two or more actions depicted may be performed in reversed order. Further, one or more actions depicted in FIG. 11 may not be performed at all.

[0040] It should be understood from the foregoing that, while particular embodiments have been illustrated and described, various modifications can be made without departing from the spirit and scope of the disclosure as will be apparent to those skilled in the art. Such changes and modifications are within the scope and teachings of this disclosure as defined in the claims appended hereto.

CLAIMS

What is claimed is:

1. A strap assembly for a bag, the strap assembly comprising:
 - a strap defining a first end and a second end, both ends flexibly coupled to the bag, at least the first end including a reinforcement element; and
 - a support member coupled to the reinforcement element and the bag, wherein the support member is configured to raise the strap at an angle relative to the bag, and wherein the angle is adjustable.
- 10 2. The strap assembly of claim 1, wherein the reinforcement element comprises at least one of synthetic resin, thermoplastic rubber, fiberglass, metal, or entrapped air bubbles.
- 15 3. The strap assembly of claim 1, wherein the support member is coupled to the reinforcement element at no more than half way from the first end to the second end.
4. The strap assembly of claim 1, wherein the strap further includes a pliable material, and wherein the pliable material substantially surrounds the reinforcement element.
- 20 5. The strap assembly of claim 1, wherein the strap includes a substantially waterproof surface.
- 25 6. The strap assembly of claim 1, wherein the support member includes a hook-and-loop fastener.
7. The strap assembly of claim 1, wherein the support member includes a hinge joint.
- 30 8. The strap assembly of claim 1, wherein the strap includes a guide member configured to adjust a length of the strap.

9. The strap assembly of claim 1, wherein the angle ranges between about 75 degrees and about 130 degrees.
10. A bag comprising:
 - 5 a base;
 - one or more walls joined to the base, the walls defining a sealable housing to store an elongate object;
 - a strap defining a first end and a second end, both ends flexibly coupled to the walls, at least the first end including a reinforcement element; and
 - 10 a support member coupled to the reinforcement element and the bag, wherein the support member is configured to raise the strap at an angle relative to the bag, and wherein the angle is adjustable.
- 15 11. The bag of claim 10 further comprising a second strap defining two respective ends, both respective ends flexibly coupled to the walls, at least one respective end including a second reinforcement element, and the bag also comprising a second support member coupled to the second reinforcement element and the bag, wherein the second support member is configured to raise the second strap at a second angle relative to the bag, and wherein the second angle is adjustable.
- 20 12. The bag of claim 10, wherein at least one of the walls includes a substantially waterproof surface.
- 25 13. The bag of claim 10 further comprising a spine extending along and coupled to at least a portion of the walls, wherein the spine is associated with a first stiffness and the walls are associated with a second stiffness, wherein the first stiffness is greater than the second stiffness, and wherein the first end of the strap is flexibly coupled to the spine.
- 30 14. The bag of claim 10, wherein the reinforcement element comprises at least one of synthetic resin, thermoplastic rubber, fiberglass, metal, or entrapped air bubbles.

15. The bag of claim 10, wherein the support member is coupled to the reinforcement element at no more than half way from the first end to the second end.
- 5 16. The bag of claim 10, wherein the strap further includes a pliable material, and wherein the pliable material substantially surrounds the reinforcement element.
17. The bag of claim 10, wherein the strap includes a substantially waterproof surface.
- 10 18. The bag of claim 10, wherein the support member includes a hook-and-loop fastener.
19. The bag of claim 10, wherein the support member includes a hinge joint.
- 15 20. The bag of claim 10, wherein the strap includes a guide member configured to adjust a length of the strap.
21. The bag of claim 10, wherein the angle ranges between about 75 degrees and about 130 degrees.
- 20 22. A method of manufacturing a golf bag having a strap assembly comprising:
forming a bag body having a base and one or more walls joined to the base;
25 forming a strap defining two ends, at least one end including a reinforcement element;
flexibly coupling both ends to the walls; and
coupling a support member to the reinforcement element and the bag,
wherein the support member is configured to raise the strap at
30 an angle relative to the bag, and wherein the angle is adjustable.

23. The method of claim 22 further comprising forming a second strap defining two respective ends, at least one respective end including a second reinforcement element, flexibly coupling both respective ends to the walls, and coupling the second support member to the second reinforcement element and the bag, wherein the second support member is configured to raise the second strap at a second angle relative to the bag, and wherein the second angle is adjustable.

5

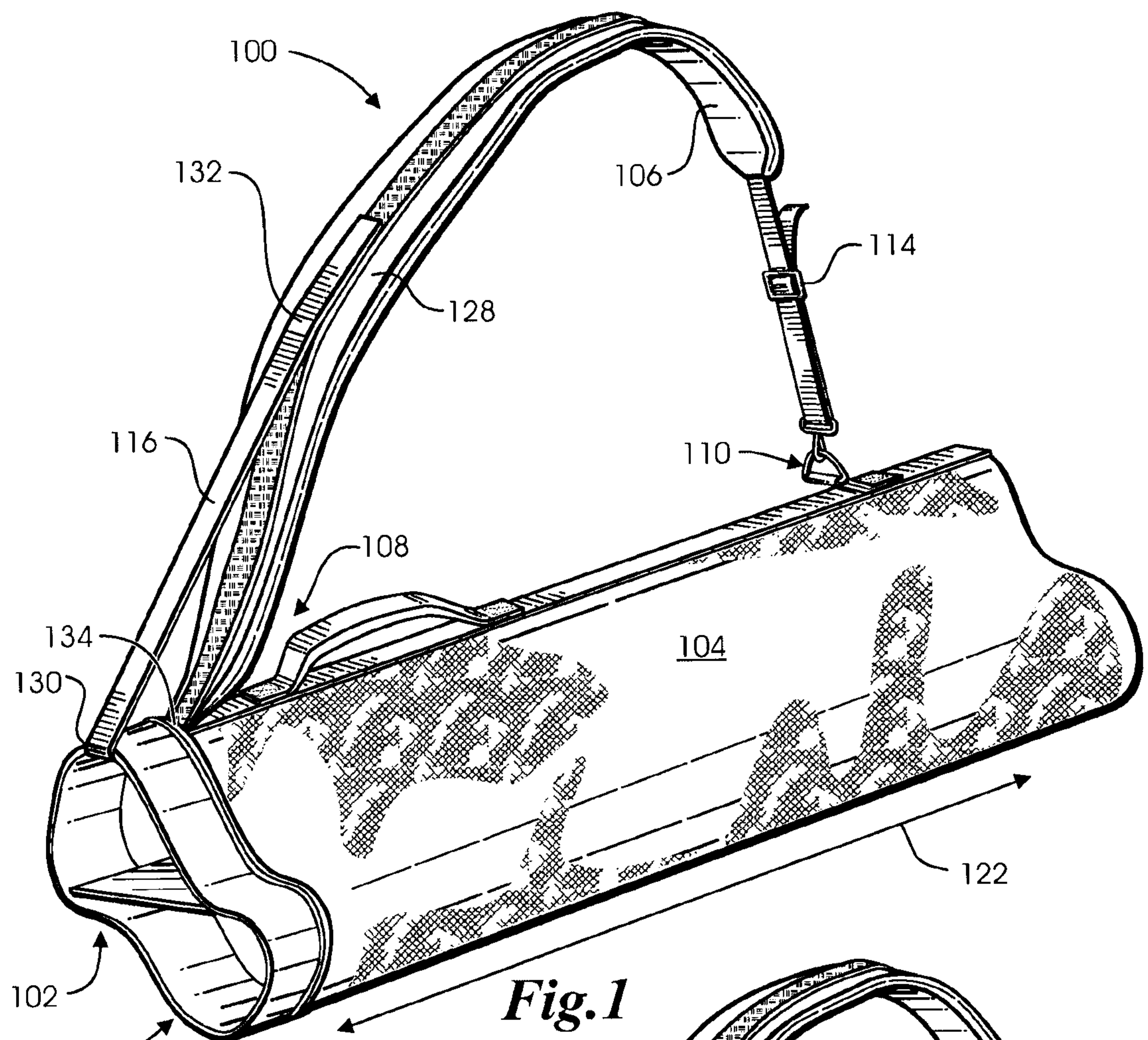
24. The method of claim 22 further comprising coupling a spine along at least a portion of the walls, wherein the first end is flexibly coupled to the spine.

10

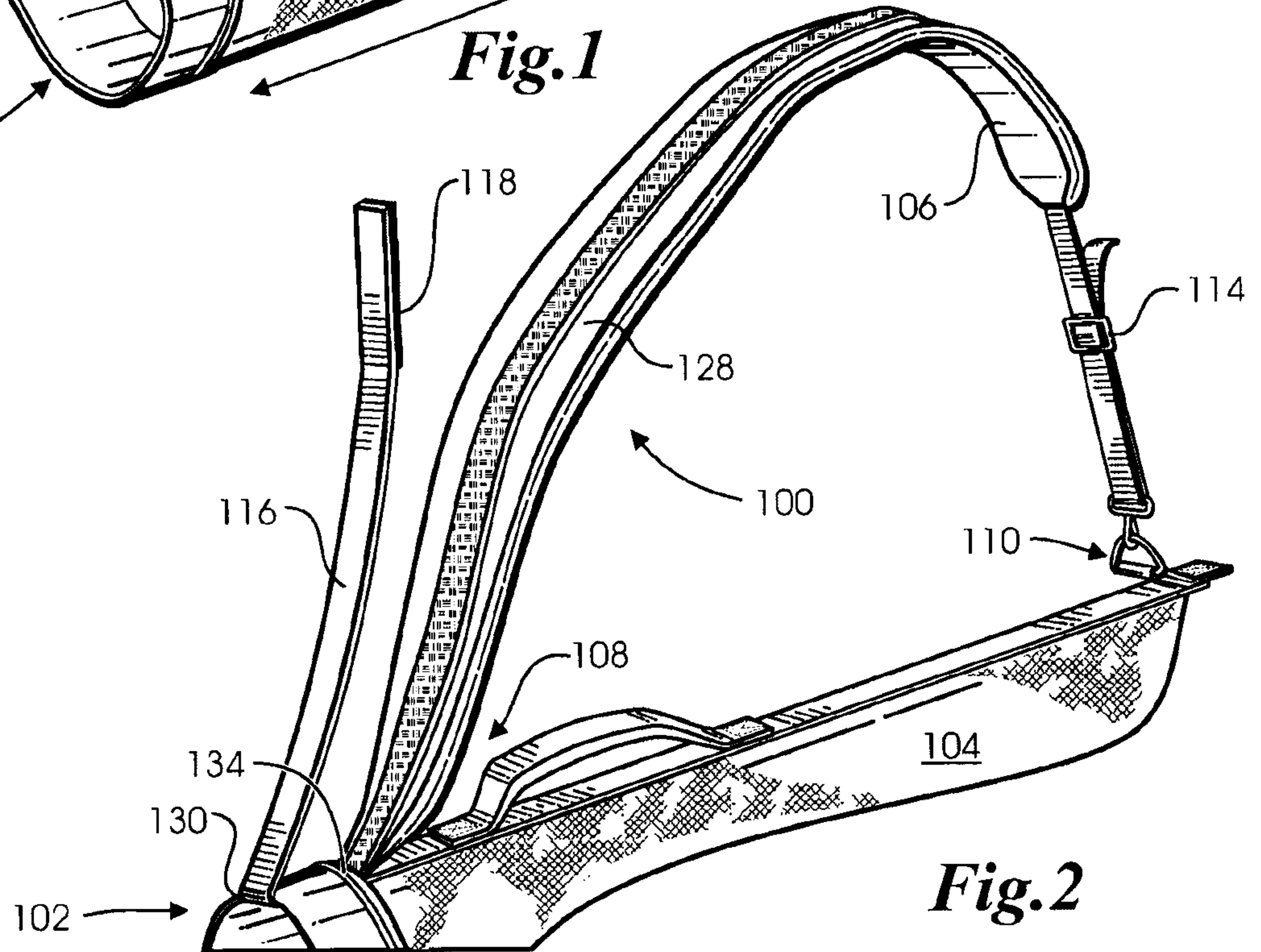
25. The method of claim 22, wherein coupling the support member comprises coupling a support member to the reinforcement element at no more than half way from the first end to the second end.

15

26. The method of claim 22, wherein forming the strap comprises forming a strap having a pliable material substantially surrounding the reinforcement element.


20

27. The method of claim 22 further comprising coupling a hook-and-loop fastener to the support member.


28. The method of claim 22 further comprising coupling a hinge joint to the support member.

25 29. The method of claim 22 further comprising coupling a guide member to the strap, wherein the guide member is configured to adjust a length of the strap.

1/7

Fig. 1

2/7

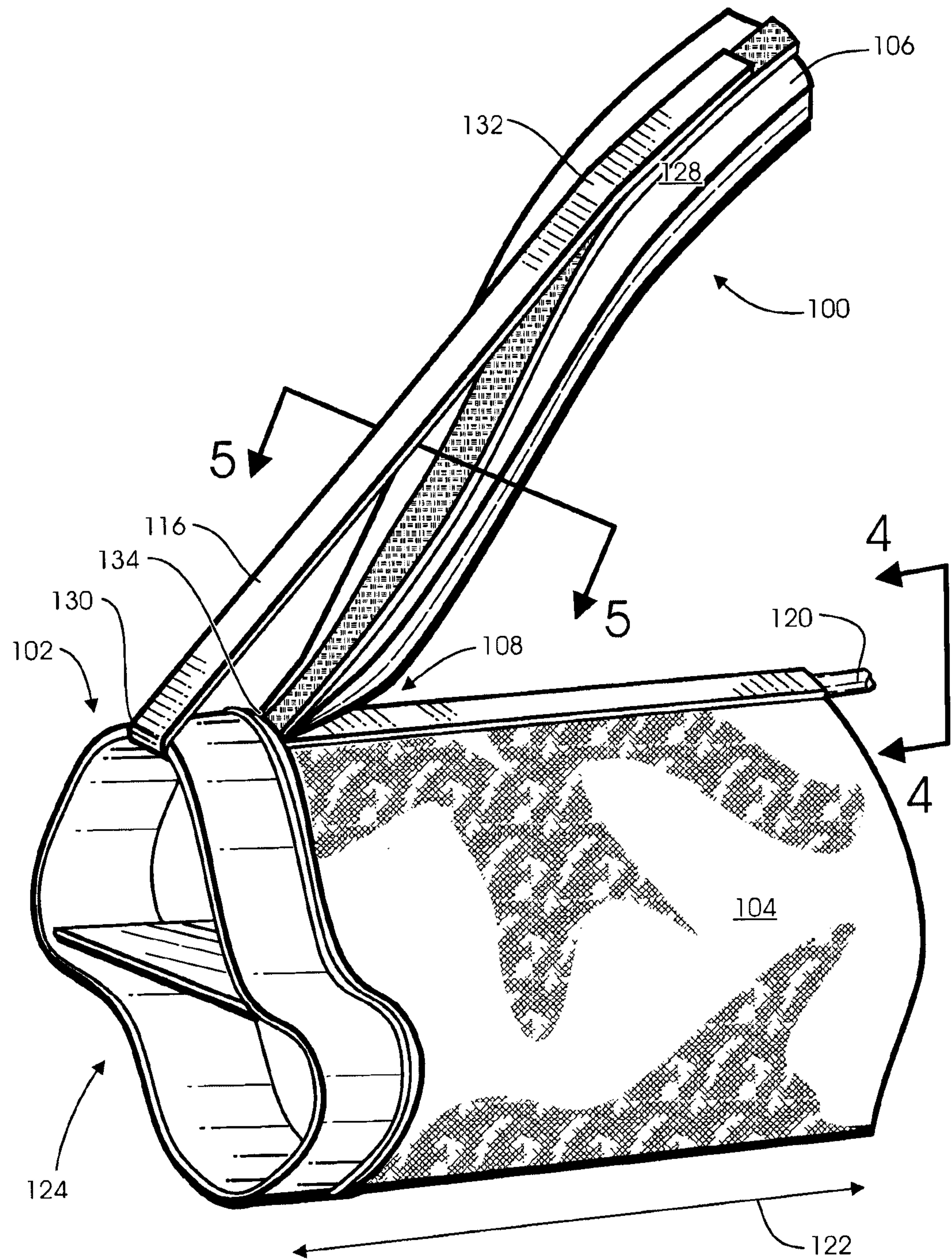
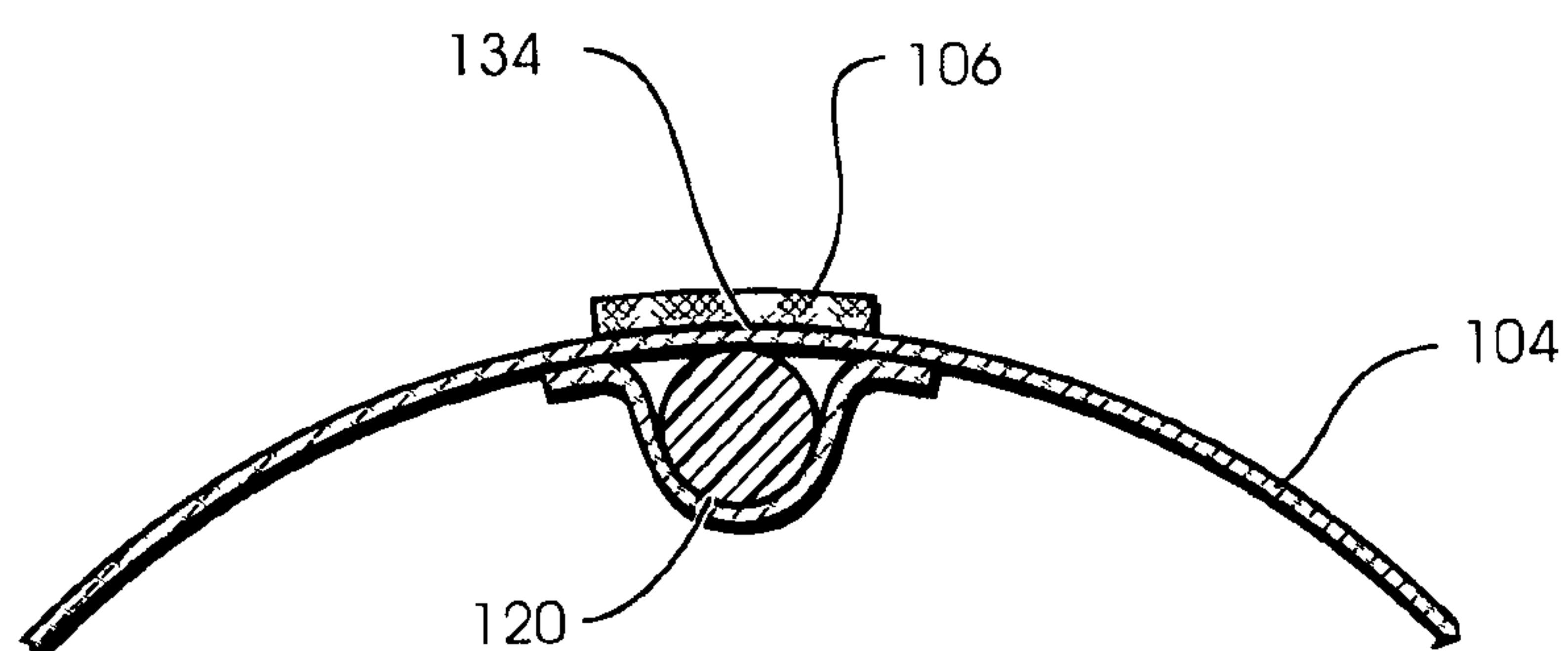



Fig.3

3/7

Fig.4

4/7

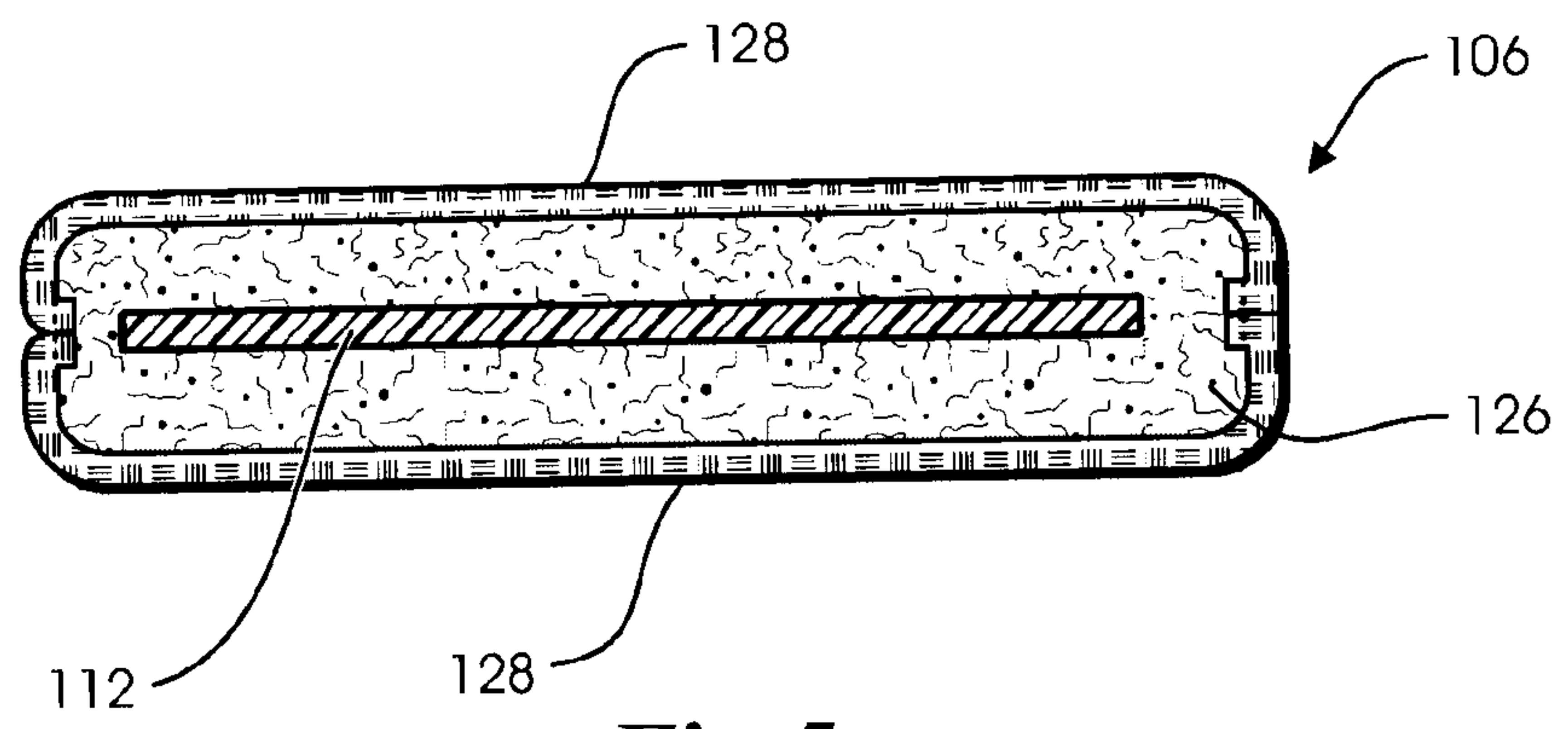


Fig.5

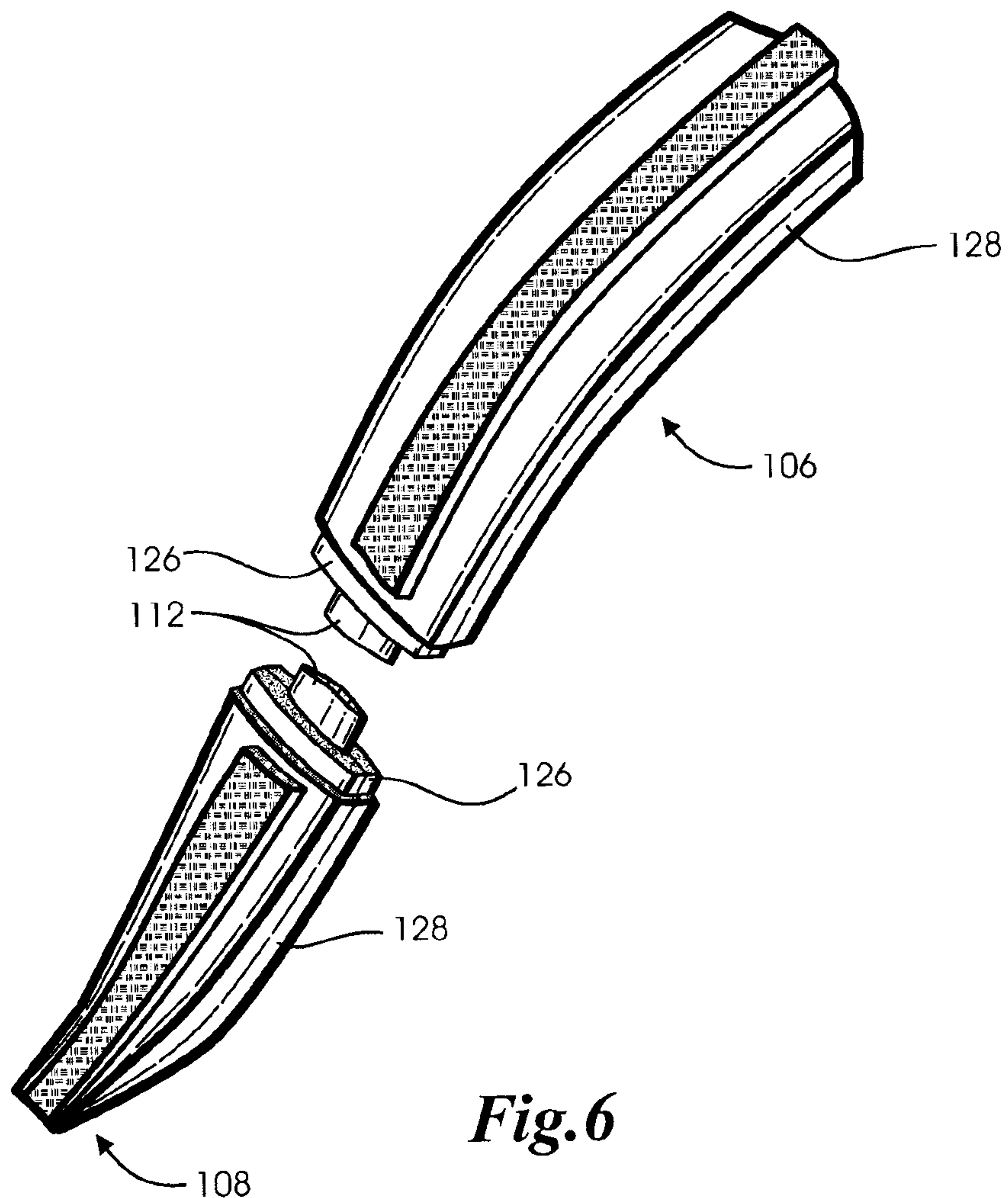


Fig.6

5/7

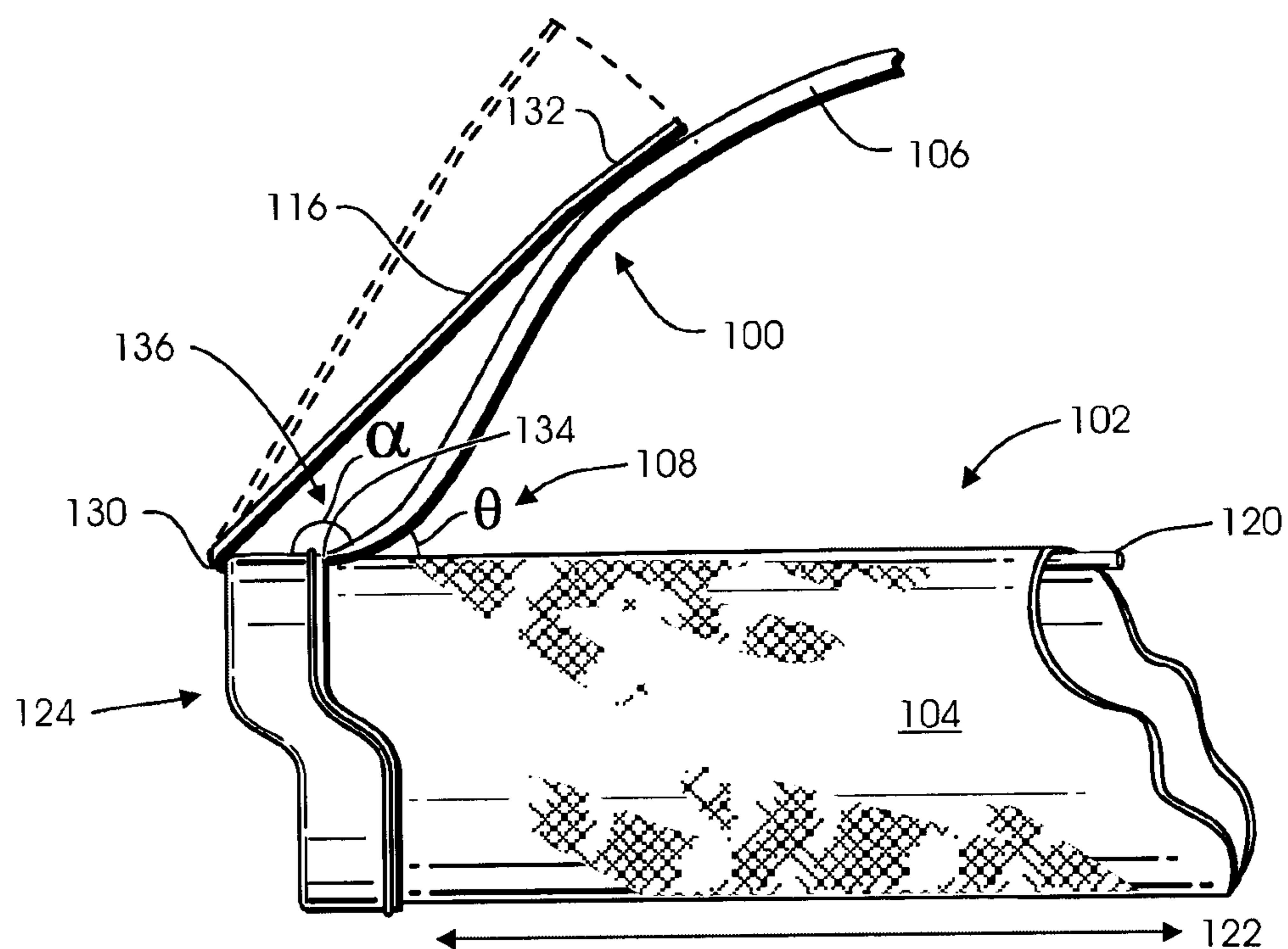


Fig. 7

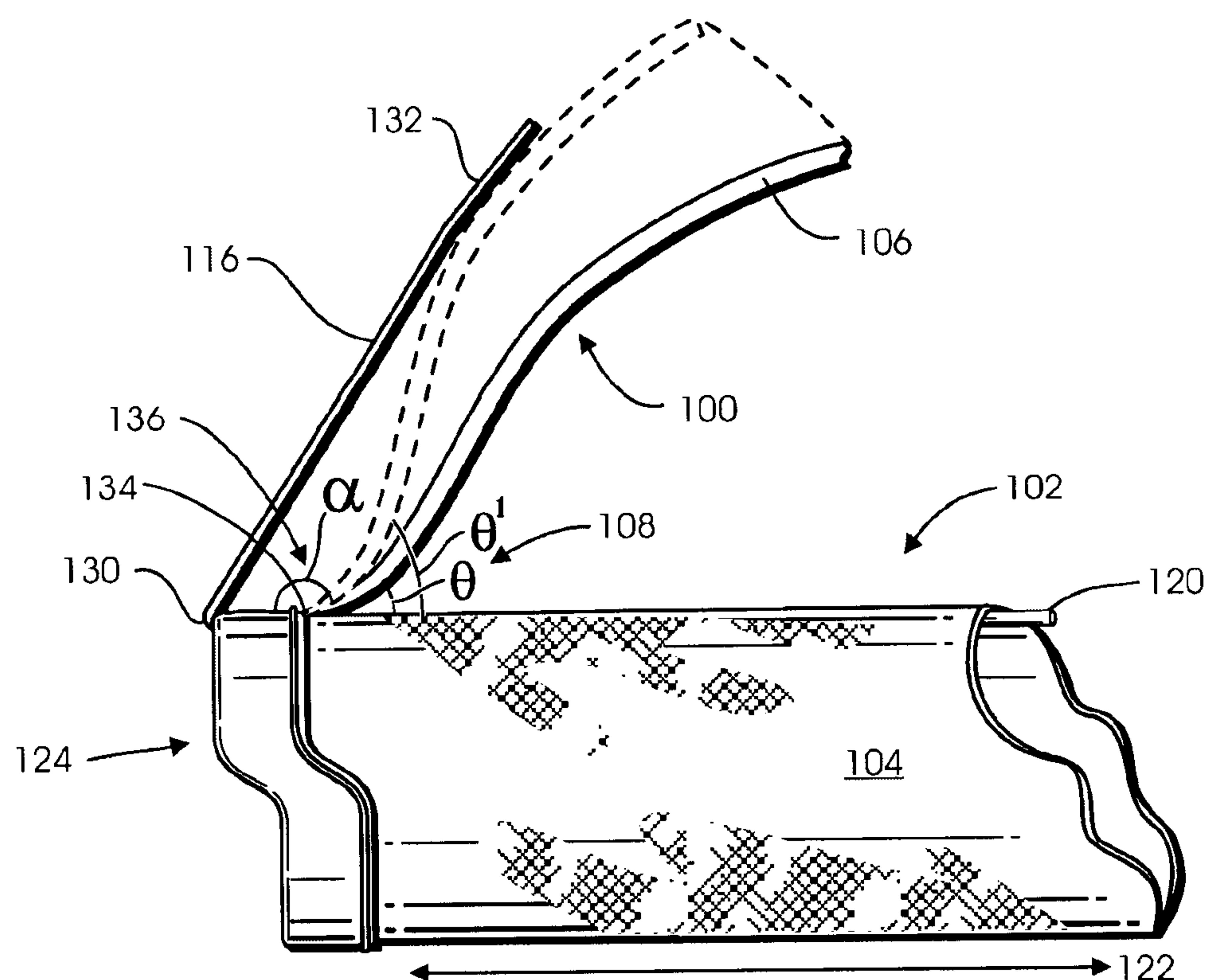


Fig. 8

6/7

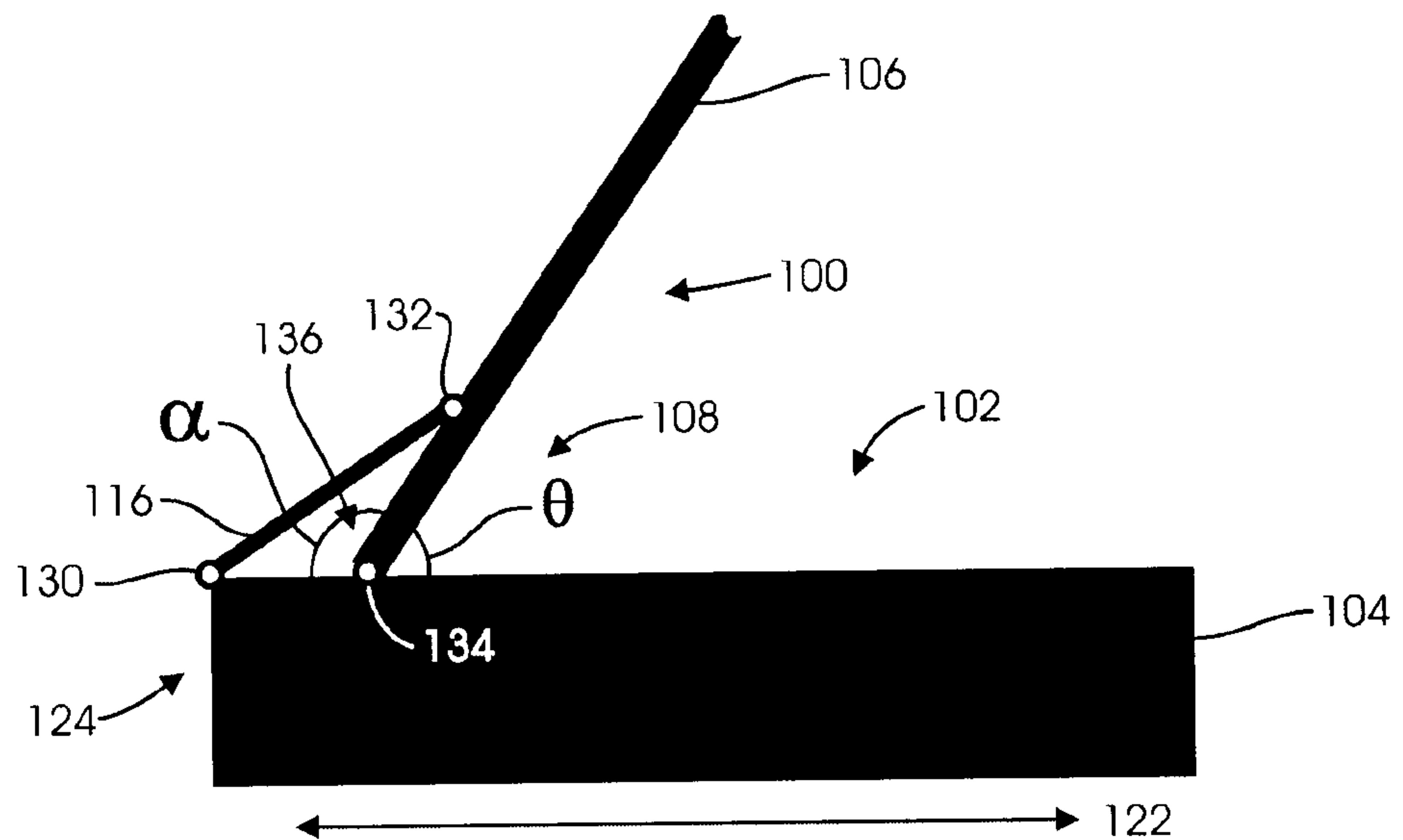


Fig. 9

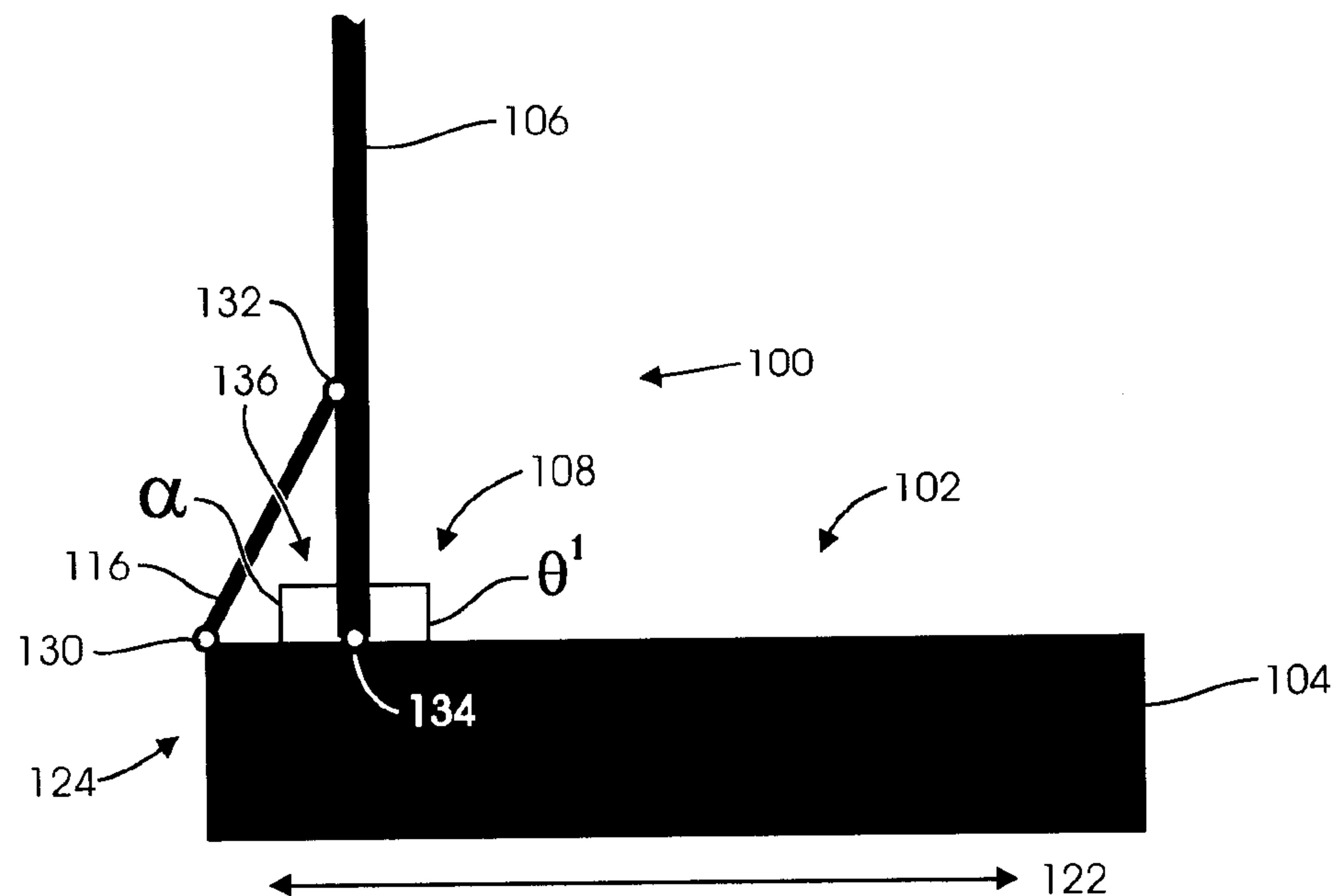
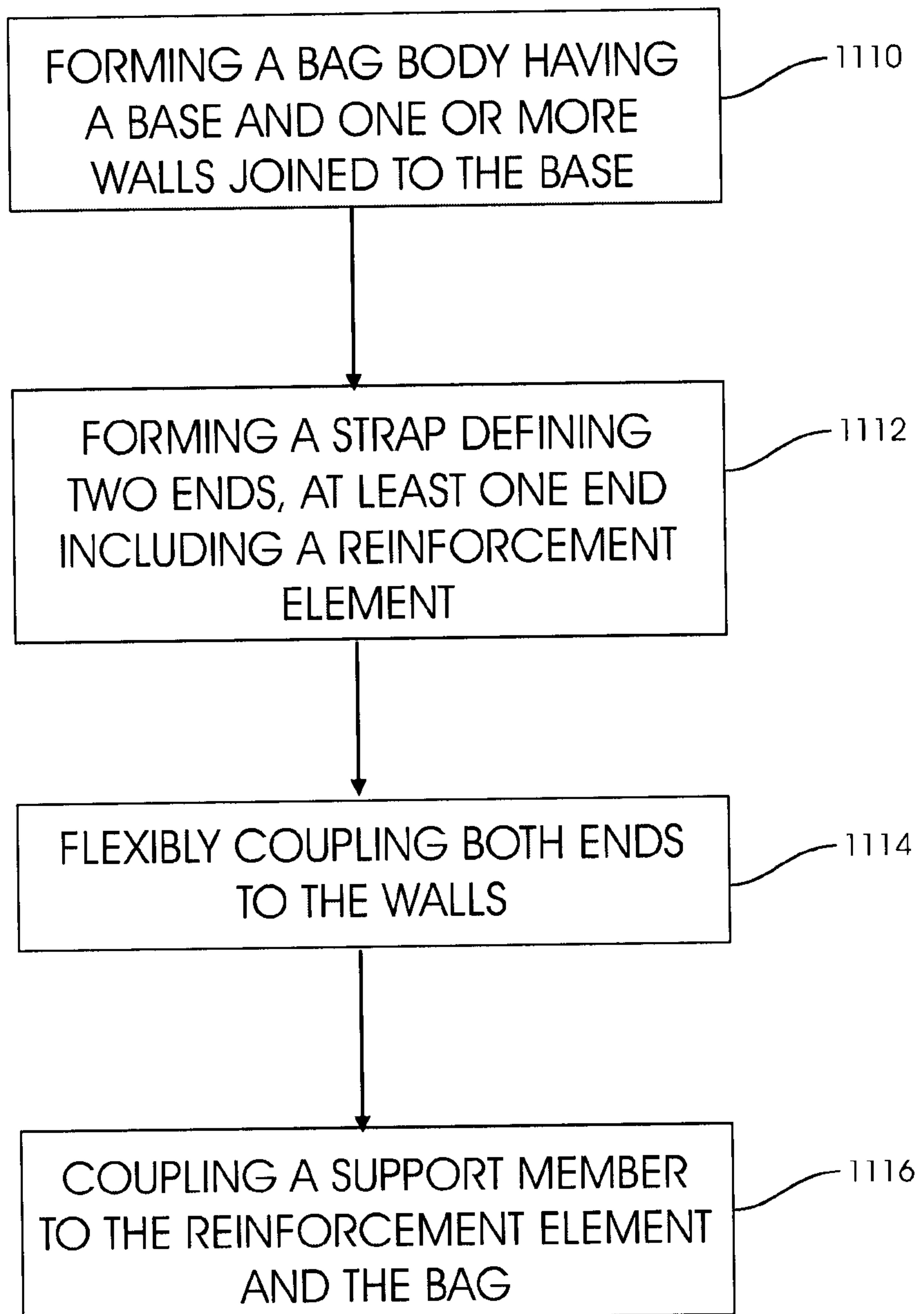
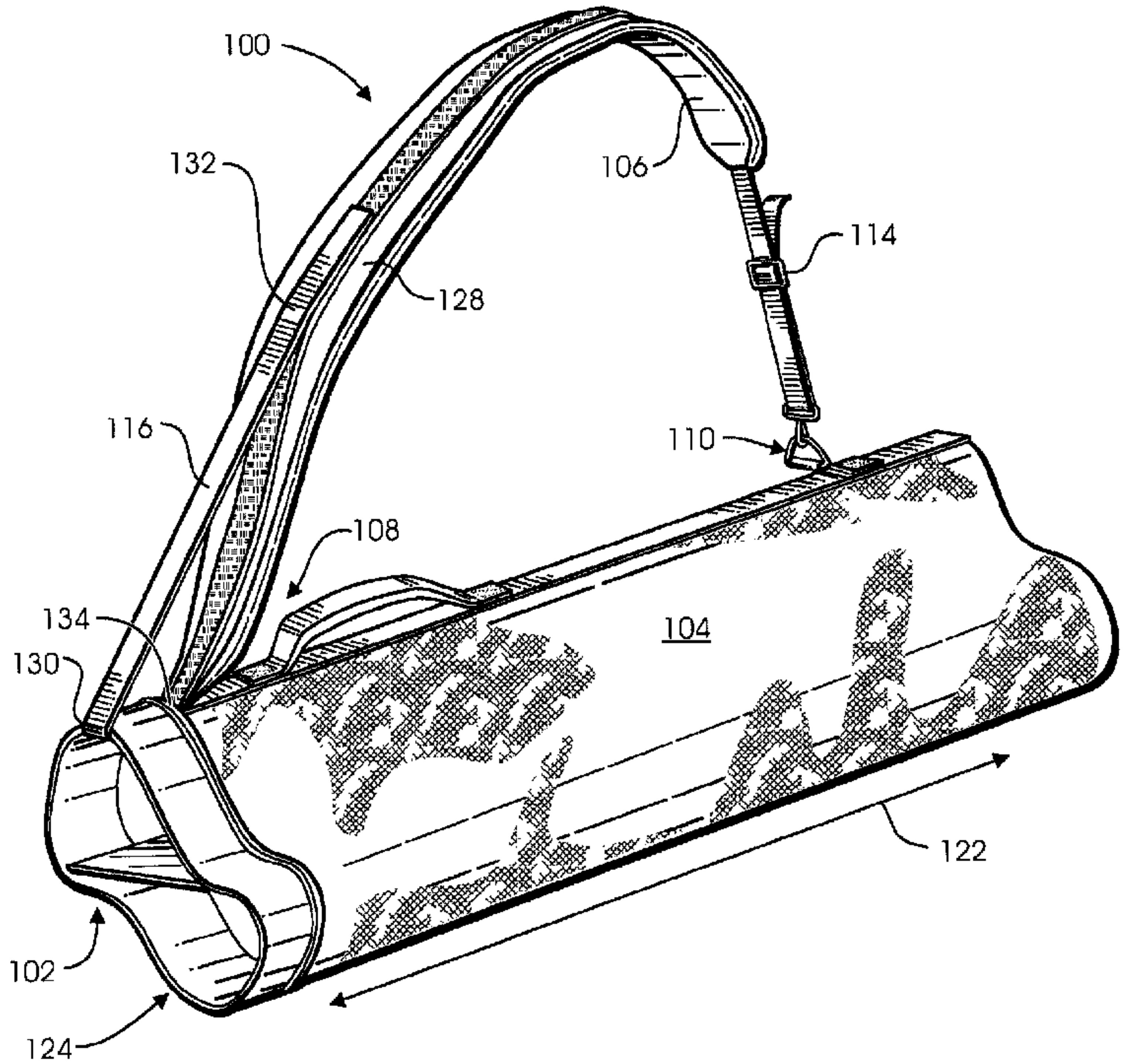




Fig. 10

7/7

Fig.11

