ACCELERATEUR DE PRISE LIQUIDE POUR COMPOSITION COMPRENANT DU CIMENT PORTLAND.

L’invention concerne un accélérateur de prise pour composition comprenant du ciment Portland, se présentant sous la forme d’une suspension aqueuse et comprenant :
- au moins un aluminat de calcium,
- de 0,5 à 4 %, de préférence de 0,6 à 2,3 %, en poids par rapport au poids total du ou des aluminates de calcium, d’un inhibiteur de prise des ciments alumineux,
- au moins un agent anti-sédimentation.
L'invention se rapporte à un accélérateur de prise liquide à base d'aluminates de calcium, pour accélérer la prise de compositions comprenant du ciment Portland.

Un tel accélérateur de prise doit présenter une durée de vie allant de plusieurs semaines à plusieurs mois. On entend par durée de vie de l'accélérateur de prise la durée pendant laquelle il reste à l'état de slurry (définie par la suspension aqueuse de produits solides) plus ou moins fluide, pouvant revenir à l'état de slurry par une simple agitation mécanique, sans faire prise. Lorsqu'il est mélangé à la composition comprenant du ciment Portland, il possède toujours ses propriétés accélératrices.

L'invention se rapporte encore à un procédé de fabrication d'un accélérateur de prise liquide pour composition comprenant du ciment Portland.

L'invention se rapporte enfin à un procédé d'accélération de prise d'une composition comprenant du ciment Portland.

Il existe de nombreuses situations où l'on désire accélérer la prise d'une composition comprenant du ciment Portland à un moment précis tout en disposant d'un accélérateur de prise prêt à l'emploi. On peut citer notamment la construction et la réfection d'ouvrages d'infrastructures, tels que les chaussées de rues ou de routes, les trottoirs. On peut encore citer la maintenance et la construction des réseaux de câbles électriques, de canalisations de gaz ou d'eau. Les travaux de réfection d'ouvrages nécessitent souvent le creusement de cavités, gênantes pour les usagers de ces ouvrages. Aussi, il est indispensable de combler rapidement ces cavités, de façon que lesdits ouvrages puissent être remis en service le plus rapidement possible après la fin des travaux.

La demande de brevet EP 0081385 divulgue un ciment alumineux dont la prise est inhibée par un inhibiteur de prise, par exemple l'acide borique. La prise du ciment alumineux est déclenchée par l'introduction dans le ciment alumineux d'un réactivateur, par exemple la chaux, présent à une teneur comprise entre 0,1 et 10 % en poids par rapport au poids de ciment alumineux.

La demande de brevet EP 0081385 ne vise donc pas à fournir un accélérateur de prise liquide à base d'aluminates de calcium pour accélérer la prise de la composition comprenant du ciment Portland.
La présente invention a donc pour but de fournir un tel accélérateur de prise liquide, qui présente en outre les propriétés suivantes :

- ne pas faire prise pendant une période de plusieurs semaines à plusieurs mois afin de se garantir contre les délais de stockage et de livraison sur chantier,
- conserver un caractère fluide et ne pas ségrégé, notamment lors du transport, afin de garantir sa mise en œuvre sur chantier, par soutirage gravitaire ou par pompage par exemple,
- conserver sa capacité accélératrice du ciment Portland dans des formulations, notamment des mortiers ou des bétons, en particulier livrés par camion toupie,
- apporter si nécessaire, une fonction complémentaire colorante déclinable en une large gamme de couleurs.

L'accélérateur de prise pour composition comprenant du ciment Portland selon l'invention se présente sous la forme d'une suspension aqueuse (couramment appelée "slurry") plus ou moins fluide et comprend :

- au moins un aluminates de calcium,
- de 0,5 à 4 %, de préférence de 0,6 à 2,3%, en poids par rapport au poids total du ou des aluminates de calcium, d'un inhibiteur de prise des ciments alumineux,
- au moins un agent anti-sédimentation.

L'accélérateur de prise pour composition comprenant du ciment Portland selon l'invention peut également comprendre un agent dispersant.

Généralement, l'extrait sec de la suspension aqueuse est aux alentours de 60%.

De préférence, l'inhibiteur de prise comprend l'acide borique et/ou au moins un sel de l'acide borique, et l'acide citrique et/ou au moins un sel de l'acide citrique, l'acide borique et/ou le ou les sels de l'acide borique représentant de préférence de 0,4 à 3%, mieux de 0,5 à 2%, en poids du poids total du ou des aluminates de calcium, et l'acide citrique et/ou le ou les sel de l'acide citrique représentant de préférence de 0,1 à 1 %, mieux de 0,1 à 0,5%, en poids du poids total du ou des aluminates de calcium.

Le ou les sels de l'acide borique peuvent être choisis parmi le borate de zinc, le borate de sodium et leurs mélanges.

Le sel de l'acide citrique peut être le citrate de sodium.
Selon un mode de réalisation préféré, l'inhibiteur de prise est constitué de l'acide borique et de l'acide citrique.

L'acide borique et l'acide citrique participent à l'inhibition de la prise de l'accélérateur de prise par deux mécanismes complémentaires.

L'acide borique permet, via la formation de borate de calcium, de limiter fortement la solubilisation du ou des aluminates de calcium dans l'eau.

L'acide citrique retarde la précipitation massive des hydrates correspondant à la prise. L'acide citrique a également comme effet secondaire un effet fluidifiant.

La combinaison de ces deux mécanismes permet d'obtenir des accélérateurs de prise liquides d'aluminates de calcium restant à l'état de slurry pendant plusieurs mois, tout en conservant leurs propriétés accélératrices.

Lorsque l'accélérateur de prise selon l'invention est mélangé à une composition comprenant du ciment Portland, le pH du milieu augmente, rendant inopérant l'inhibiteur de prise des ciments aluminieux. La réaction d'hydratation du ou des aluminates de calcium est ainsi débloquée, sans aucun ajout additionnel d'activateur, et l'accélérateur de prise selon l'invention peut alors entraîner la prise de la composition comprenant le ciment Portland.

Le ou les agents dispersants présents dans l'accélérateur de prise selon l'invention représentent en général de 0,3 à 1,7 %, de préférence 0,5 % à 0,9 % en poids du poids total du ou des aluminates de calcium.

Comme agent dispersant utilisable selon l'invention, on peut citer le Sokalan CP10, commercialisé par la société BASF.

Le ou les agents dispersants utilisables selon l'invention peuvent être choisis également parmi les superplastifiants.

Les superplastifiants sont des constituants classiques des bétons qui ont pour objet d'améliorer la rhéologie du béton. Parmi ces superplastifiants, on recommandera particulièrement les phosphonates polyoxyéthylénés POE, les polycarboxylates polyox PCP, et leurs mélanges. Ces superplastifiants sont des produits disponibles dans le commerce ; à titre d'exemple, on peut citer le produit PREMIA 150® commercialisé par la société CHRYSO.
Le ou les agents anti-sédimentation présents dans l'accélérateur de prise selon l'invention représentent en général de 0,2 à 0,9 % en poids du poids total du ou des aluminates de calcium.

De préférence, le ou les agents antisédimentation sont choisis parmi des produits organiques tels que la gomme Xanthane, la gomme Welan, ou des produits minéraux tels que les argiles (la Bentonite par exemple) et leurs mélanges.

L'accélérateur de prise selon l'invention peut également comprendre un agent anti-bactérien, représentant alors de préférence de 0,2 à 0,9 % en poids du poids total du ou des aluminates de calcium.

Comme agent anti-bactérien utilisable dans l'accélérateur de prise selon l'invention, on peut citer le produit ECOCIDE K35R, commercialisé par la société PROGIVEN.

L'accélérateur de prise selon l'invention peut encore comprendre au moins un colorant.

Le ou les colorants utilisables dans l'accélérateur de prise selon l'invention peuvent être tout type de colorant généralement utilisé dans les compositions cimentaires. On peut citer par exemple le Pigmosol bleu 6900, ou le Pigmosol rouge 3855, qui sont des colorants organiques commercialisés par la société BASF.

On peut également utiliser des colorants minéraux qui sont plus durables et plus efficaces en terme de coloration que les colorants organiques. Ainsi, certains oxydes minéraux sont de très bon colorants.

L'accélérateur de prise selon l'invention permet d'accélérer la prise de compositions comprenant du ciment Portland. Parmi ces compositions, on peut citer le ciment Portland lui-même, les ciments de laitiers, les ciments poussozolaniques et les chaux hydrauliques ainsi que les mortiers et bétons comprenant du ciment Portland, du ciment de laitier, du ciment poussozolanique ou de la chaux hydraulique.

L'invention concerne encore un procédé de fabrication d'un accélérateur de prise pour composition comprenant du ciment Portland tel que défini précédemment.

Selon l'invention, ce procédé comprend les étapes suivantes :
- introduction de l'eau dans une cuve de mélange,
- mise sous agitation par turbine à une vitesse supérieure à 600 tours/min, de préférence de l'ordre de 800 tours/min,
- ajout de l'inhibiteur de prise des ciments alumineux,
- ajout du ou des agents dispersants,
- ajout progressif du ou des aluminates de calcium, l'agitation par turbine étant portée à une vitesse supérieure à 1 000 tours/min, de préférence de l'ordre de 1 400 tours/min,
- ajout du ou des agents anti-sédimentation,
- agitation par turbine pendant au moins 15 minutes, de préférence pendant 30 à 40 minutes.

L'agitation est de préférence réalisée par une turbine défloculeuse apte à provoquer un fort cisaillement. Une telle turbine permet d'assurer une bonne dispersion mécanique des particules de ciment. Ceci est nécessaire pour assurer d'une part leur bonne défloculation chimique par le dispersant, et d'autre part, leur bonne stabilisation par l'agent anti-sédimentation.

Lorsque l'accélérateur de prise selon l'invention contient un ou plusieurs colorants, le ou lesdits colorants sont introduits de préférence après l'agent anti-sédimentation.

L'invention concerne enfin un procédé d'accélération de prise d'une composition comprenant du ciment Portland, consistant à ajouter à ladite composition comprenant du ciment Portland un accélérateur de prise tel que défini précédemment, ledit accélérateur de prise représentant de 10 à 40% en poids d'aluminate de calcium par rapport au ciment Portland, ce qui représente une quantité de suspension aqueuse accélératrice de prise aux alentours de 17 à 67 % en poids par rapport au ciment Portland.

Comme précédemment, on entend par composition comprenant du ciment Portland, le ciment Portland lui-même, les ciments de laitier, les ciments pouzzolaniques et les chaux hydrauliques ainsi que les mortiers et bâtons comprenant du ciment Portland, du ciment de laitier, du ciment pouzzolanique ou de la chaux hydraulique.

Ainsi, la teneur de l'accélérateur de prise par rapport au ciment Portland peut varier afin d'obtenir la résistance mécanique souhaitée de la composition dans le délai souhaité. Cette teneur va dépendre de la nature du ciment Portland utilisé et de sa composition minéralogique, en particulier de sa teneur en C3A, où C représente, dans la notation cimentaire, l'oxyde de
calcium CaO et A représente, dans la notation cimentaire, l'oxyde
d'aluminium Al₂O₃.

Ce procédé d'accélération de prise est particulièrement avantageux
pour le comblement d'une cavité au moyen d'un mortier à base de ciment
Portland, ledit mortier étant disponible à l'orifice de décharge d'un véhicule
de transport l'amenant au voisinage de ladite cavité. Dans ce cas, on
procède de préférence de la façon suivante :

- on forme un premier flux, constitué dudit mortier et se déplaçant en
direction de la cavité,
- on forme un deuxième flux, constitué dudit accélérateur de prise et
se déplaçant en direction du premier flux,
- on fusionne en les mélangant lesdits premier et deuxième flux en
un troisième flux,
- on introduit ledit troisième flux par gravité dans ladite cavité.

Ainsi, l'addition et le mélange en continu de l'accélérateur de prise et
du mortier peuvent être réalisés à l'extérieur de la toupie du véhicule de
transport, après déchargement du mortier prêt à l'emploi et juste avant que le
mortier à prise accéléré soit mis en place dans la cavité.

On élimine ainsi le risque de durcissement du mortier à l'intérieur de la
toupie, qui survient lorsque le mortier n'est pas immédiatement utilisé. On
évite également l'encrassement de la toupie due à la couche de mortier qui
adhère aux pales intérieures de la toupie et qui durcit avant que le camion-
toupie ne retourne à la centrale et ne soit nettoyé.

L'invention est illustrée par les exemples suivants, qui se réfèrent aux
figures 1 à 6.

La figure 1 représente la résistance à la pénétration en fonction du
temps, de différents mortiers dont la prise est accélérée par des
accélérateurs de prise selon l'invention.

La figure 2 représente la résistance à la pénétration en fonction du
temps, de différents mortiers dont la prise est accélérée par un accélérateur
de prise selon l'invention, pour différentes teneurs en accélérateur de prise.

La figure 3 représente la résistance à la pénétration en fonction du
temps, de différents mortiers dont la prise est accélérée par un accélérateur
de prise selon l'invention, pour différentes teneurs en accélérateur de prise.

La figure 4 représente la résistance en compression à 1 jour, 7 jours et
28 jours, d’un mortier dont la prise est accélérée par un accélérateur de prise selon l’invention, en fonction de la teneur en accélérateur de prise.

La figure 5 représente l’effet de l’acide borique sur l’hydratation des aluminates de calcium.

La figure 6 représente l’effet de l’acide borique et de l’acide citrique sur l’hydratation des aluminates de calcium.

Exemple 1

On prépare des accélérateurs de prise selon l’invention, et l’on observe l’évolution de leur fluidité.

Chaque accélérateur de prise est préparé selon le procédé suivant.

L’eau est introduite dans la cuve de mélange et la turbine défloculeuse est mise en route à une vitesse de 800 tr/min.

L’acide borique est alors introduit dans la cuve. La mise en solution des ions borates et la fixation du pH de la solution avant l’introduction des aluminates de calcium garantit le blocage de l’hydratation de ceux-ci.

La solution est agitée pendant 5 minutes, afin d’assurer la complète dissolution de l’acide borique.

L’acide citrique est alors introduit.

De nouveau la solution est agitée pendant 5 minutes.

On ajoute alors le Sokalan CP10 (dispersant), qui permet la défloculation du milieu.

La solution est agitée pendant 5 minutes.

On ajoute progressivement les aluminates de calcium, tout en accroissant la vitesse de malaxage de la turbine jusqu’à atteindre 1400 tr/min. On réalise ainsi, via la haute vitesse de rotation et la turbine défloculeuse, une bonne dispersion mécanique des aluminates de calcium.

On agite pendant 5 minutes.

On ajoute alors la gomme Xanthane (agent anti-sédimentation).

Puis la solution est malaxée pendant 30 à 40 minutes, pour assurer la bonne dispersion des aluminates de calcium dans le milieu et permettre à la gomme Xanthane de développer son effet anti-sédimentaire.

Enfin, le cas échéant, on ajoute le colorant.
Le tableau 1 présente les compositions des accélérateurs de prise, ainsi que l'évolution de leur fluidité.

Les teneurs de chaque constituant sont données en % en poids par rapport au poids total du (ou des) aluminate(s) de calcium.

Les mesures de fluidité sont réalisées à 3 températures différentes : 5°C, 20°C et 40°C.
Tableau 1

<table>
<thead>
<tr>
<th>N°</th>
<th>Composition</th>
<th>%</th>
<th>%</th>
<th>Evolutions du coulis :</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,74</td>
<td>5°C 20°C 40°C</td>
<td>7 semaines 2 semaines 5 jours</td>
</tr>
<tr>
<td>2</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,73</td>
<td>5°C 20°C 40°C</td>
<td>9 semaines 5 semaines 2 semaines</td>
</tr>
<tr>
<td>3</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,89</td>
<td>5°C 20°C 40°C</td>
<td>10 semaines 14 semaines 6,5 semaines</td>
</tr>
<tr>
<td>4</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,74</td>
<td>5°C 20°C 40°C</td>
<td>9 semaines 5 semaines 1,5 semaines</td>
</tr>
<tr>
<td>5</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,74</td>
<td>5°C 20°C 40°C</td>
<td>6 semaines 5 semaines 1,5 semaines</td>
</tr>
<tr>
<td>6</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,35</td>
<td>5°C 20°C 40°C</td>
<td>8 semaines 3 semaines 3 semaines</td>
</tr>
<tr>
<td>7</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>58,8</td>
<td>5°C 20°C 40°C</td>
<td>19 semaines 15 semaines 6 semaines</td>
</tr>
<tr>
<td>8</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,54</td>
<td>5°C 20°C 40°C</td>
<td>1,5 semaines 1,5 semaines 1 semaine</td>
</tr>
<tr>
<td>9</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,54</td>
<td>5°C 20°C 40°C</td>
<td>2 semaines 6 semaines 2 semaines</td>
</tr>
<tr>
<td>10</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,35</td>
<td>5°C 20°C 40°C</td>
<td>4 semaines 5 semaines 1 semaine</td>
</tr>
<tr>
<td>11</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,35</td>
<td>5°C 20°C 40°C</td>
<td>> 2,5 semaines > 2,5 semaines > 2 semaines</td>
</tr>
<tr>
<td>12</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,35</td>
<td>5°C 20°C 40°C</td>
<td>> 6 semaines > 14 semaines > 6 semaines</td>
</tr>
<tr>
<td>13</td>
<td>AB-AC/CP10/XG-K35R</td>
<td>61,35</td>
<td>5°C 20°C 40°C</td>
<td>> 6 semaines > 14 semaines > 6 semaines</td>
</tr>
</tbody>
</table>

*** : Le coulis se gélifie ou sédimente sans faire prise, il peut retrouver son aspect de fabrication après agitation plus ou moins importante.

E.S : Extrait sec du coulis ; il est ici de 62%

Produits utilisés :

AB : acide borique

AC : acide citrique
XG : KELZAN XG : gomme Xanthane commercialisée par la société KELCO
Bent-G : argile bentonique
CP10 : SOKALAN CP 10 : dispersant commercialisé par la société BASF
K35R : Ecocide K35R

5 Eth : Ethanol 95%

Les accélérates de prise 1 à 7 sont réalisés sans colorant.
Les accélérates de prise 8 à 13 sont réalisés avec colorant : les accélérates de prise 8 à 11 contiennent 12% de pigment en poids par rapport à l'aluminate de calcium, et les accélérates de prise 12 et 13 contiennent 1,5% en poids de pigment par rapport à l'aluminate de calcium.
- N°8 : colorant de la société Chryso, de nom commercial "vert Irlande" et de nature chimique : oxyde de Chrome
- N°9 : colorant de la société Chryso, de nom commercial "slurry vert Irlande" et de nature chimique : oxyde de Chrome
- N°10 : colorant de la société Chryso, de nom commercial "rouge Pompei" et de nature chimique : oxyde de Fer
- N°11 : colorant de la société Chryso, de nom commercial "slurry rouge Pompei" et de nature chimique : oxyde de Fer
- N°12 : Phthalocyanine de Cuivre
- N°13 : Naphtol AS.

Exemple 2

On réalise des tests de résistance à la pénétration de 3 mortiers de remblai à base de ciment Portland, accélérés à l'aide des accélérates de prise n°3, 11 et 12 de l'exemple 1 et âgés de 63 jours.

Les mortiers testés sont des mortiers ré-excavables du type de ceux utilisés pour le comblement de petites tranchées.

Ces mortiers présentent un rapport Eau/ciment d'environ 2, et une teneur en air d'environ 15%.

La composition des mortiers est donnée dans le tableau 2.
Tableau 2

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sable 1-4 mm</td>
<td>990 kg/m³</td>
</tr>
<tr>
<td>Sable 0,315-1 mm</td>
<td>380 kg/m³</td>
</tr>
<tr>
<td>Sable 0-0,315 mm</td>
<td>170 kg/m³</td>
</tr>
<tr>
<td>Ciment Portland (Le Havre CEMI 52,5 CP2)</td>
<td>100 kg/m³</td>
</tr>
<tr>
<td>Aluminates de calcium</td>
<td>25 kg/m³</td>
</tr>
<tr>
<td>Eau</td>
<td>200 kg/m³</td>
</tr>
<tr>
<td>Agent entraîneur d’air</td>
<td>1 kg/m³</td>
</tr>
</tbody>
</table>

Dans tous les exemples, les sables utilisés sont des sables siliceux de type "Palvadeau"

Les mesures de résistance à la pénétration sont réalisées avec des éprouvettes de taille 7 x 23,5 x 17 cm (utilisées pour le "test au pied", qui consiste à marcher sur le mortier pour déterminer le temps approximatif au bout duquel on peut marcher sans laisser d'empreinte supérieure à 2mm) et 13 x 34 x 14 (utilisées pour les mesures d’enfoncement au pénétromètre selon la norme ASTM C403)

Le pénétromètre permet de mesurer la résistance à la pénétration d'un mobile circulaire sous une charge contrôlée. Le suivi du niveau de charge à appliquer pour enfonce le mobile à une profondeur donnée permet de suivre ainsi la structuration du matériau.

Dans le cadre du creusement de petites tranchées au moyen de machines d’excavation en continu, telles que celles commercialisées en France par la société MARAIS et décrites dans le brevet FR 2 751 676, les essais sur chantier ont montré que la portance du matériau mis en place dans la tranchée était atteinte lorsque la résistance à la pénétration mesurée à l'aide du pénétromètre atteint 170 KPa.

La Figure 1 montre l’évolution de la résistance à la pénétration des 3 mortiers préparés au cours du temps. L’axe des abscisses 1 représente le temps en minutes. L’axe des ordonnées 2 représente la résistance à la pénétration (en kPa).
La courbe 3 représente la résistance du mortier accéléré par l'accélérateur de prise n°11.
La courbe 4 représente la résistance du mortier accéléré par l'accélérateur de prise n°3.
La courbe 5 représente la résistance du mortier accéléré par l'accélérateur de prise N°12.
Le point 6 sur la figure 1 représente le mortier sans accélérateur de prise.
On a également tracé sur la Figure 1 la limite de 170 kPa à atteindre pour obtenir une portance de 65 kg (courbe 7).

Exemple 3

Des mesures de résistance à la pénétration sont réalisées sur différents mortiers de remblai, afin d'étudier l'influence de la teneur en accélérateur de prise, ainsi que l'influence de la teneur en phase C3A dans le ciment Portland.
La composition des mortiers testés est présentée dans le tableau 3.

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sable 1-4 mm</td>
<td>990 kg/m³</td>
</tr>
<tr>
<td>Sable 0,315-1 mm</td>
<td>380 kg/m³</td>
</tr>
<tr>
<td>Sable 0-0,315 mm</td>
<td>170 kg/m³</td>
</tr>
<tr>
<td>Ciment Portland</td>
<td>100 kg/m³</td>
</tr>
<tr>
<td>Eau</td>
<td>200 kg/m³</td>
</tr>
<tr>
<td>Agent entraîneur d'air</td>
<td>1 kg/m³</td>
</tr>
</tbody>
</table>

Deux ciments Portland sont utilisés :
- le CPA CEMI 52.5 CP2 de l'usine de Frangey (12% de C3A)
- le CPA CEMI 52.5 CP2 de l'usine de Le Teil (4% de C3A)
Les mortiers sont accélérés par l'accélérateur de prise n°9 de l'Exemple 1.
La Figure 2 représente la résistance à la pénétration en fonction du temps de 4 mortiers contenant du ciment Portland de l'usine de Frangey.
L'axe des abscisses 9 représente le temps en minutes. L'axe des ordonnées 10 représente la résistance à la pénétration (en kPa). Chaque mortier a été accéléré avec une teneur différente d'aluminate de calcium: 10%, 20%, 30%, 40%, en poids par rapport au poids total de ciment Portland :

- courbe 11 : 10% d'aluminate de calcium ; teneur en air dans le mortier : 15,2% ;
- courbe 12 : 20% d'aluminate de calcium ; teneur en air dans le mortier : 17,3% ;
- courbe 13 : 40% d'aluminate de calcium ; teneur en air dans le mortier : 14,9% ;
- courbe 14 : 30% d'aluminate de calcium ; teneur en air dans le mortier : 16% ;
- point 15 : ciment Portland seul, teneur en air : 15,4%.

La Figure 3 représente la résistance à la pénétration en fonction du temps de 4 mortiers contenant du ciment Portland de l'usine de Le Teil. L'axe des abscisses 16 représente le temps en minutes. L'axe des ordonnées 17 représente la résistance à la pénétration (en kPa). Chaque mortier a été accéléré avec une teneur différente d'aluminate de calcium: 10%, 20%, 30%, 40%, en poids par rapport au poids total de ciment Portland :

- courbe 18 : 10% d'aluminate de calcium ; teneur en air dans le mortier : 16% ;
- courbe 19 : 20% d'aluminate de calcium ; teneur en air dans le mortier : 16,7% ;
- courbe 20 : 30% d'aluminate de calcium ; teneur en air dans le mortier : 14% ;
- courbe 21 : 40% d'aluminate de calcium ; teneur en air dans le mortier : 14% ;
- courbe 22 : ciment Portland seul, teneur en air : 14,8%.
Les Figures 2 et 3 montrent qu'il est possible de recommander une teneur en accélérateur de prise en fonction, d'une part du ciment Portland utilisé, d'autre part du délai recherché d'un point de vue portance du matériau.

Exemple 4

Des mesures de résistance en compression d'un mortier de remblai sont réalisées, en fonction de la teneur en accélérateur de prise.

La composition du mortier testé est celle donnée dans le tableau 3 de l'exemple 3 avec le CPA CEMI 52.5 CP2 de l'usine du Havre (8% de C3A).

La prise du mortier est accélérée par l'accélérateur de prise n° 2 de l'exemple 1.

Les résistances en compression sont mesurées sur des éprouvettes 4 x 4 x 16 cm.

Sur la Figure 4, l'axe des abscisses 23 représente la teneur en aluminate de calcium dans le mortier, en % en poids par rapport au poids de ciment Portland. L'axe des ordonnées 24 représente la résistance en compression du mortier (en MPa).

La Figure 4 montre la résistance mécanique en compression à 1 jour (courbe 25), 7 jours (courbe 26) et 28 jours (courbe 27), du mortier en fonction de la teneur en aluminate de calcium par rapport au poids de ciment Portland.

L'axe 28 représente le pourcentage d'air entraîné.

La figure 4 montre que les résistances mécaniques en compression à 28 jours sont faibles, ce qui permet de garantir la ré-excavabilité du matériau à plus long terme.

Exemple 5

Le présent exemple vise à mettre en évidence l'importance des retardateurs acide borique et acide citrique.

On mesure la conductivité électrique de différents ciments d'aluminates, en présence d'acide borique à différents dosages (Figure 5) ou
d'acide borique et d'acide citrique à différents dosages (Figure 6). Les ciments alumineux présentent un rapport Eau/Ciment égal à 5. Les mesures de conductivité électrique sont faites à 40°C.

Sur la Figure 5, l'axe des abscisses 29 représente le temps en minutes. L'axe des ordonnées 30 représente la conductivité électrique (en mS).

La courbe 31 représente la conductivité du ciment alumineux seul.

La courbe 32 représente la conductivité du ciment alumineux en présence de 0,6% en poids d'acide borique.

La courbe 33 représente la conductivité du ciment alumineux en présence de 1,8% en poids d'acide borique.

Sur la Figure 6, l'axe des abscisses 34 représente le temps en minutes. L'axe des ordonnées 35 représente la conductivité électrique (en mS).

La courbe 36 représente la conductivité du ciment alumineux seul.

La courbe 37 représente la conductivité du ciment alumineux en présence de 0,6% en poids d'acide borique et 0,1% en poids d'acide citrique.

La courbe 38 représente la conductivité du ciment alumineux en présence de 1,2% en poids d'acide borique et 0,2% en poids d'acide citrique.

La courbe 39 représente la conductivité du ciment alumineux en présence de 1,8% en poids d'acide borique et 0,3% en poids d'acide citrique.

Les résultats montrent que :
- la présence d'acide borique dans le milieu limite de plus en plus fortement la dissolution du ciment lorsque la concentration augmente : le niveau de conductivité atteint est de plus en faible en valeur (Figure 5) ;
- l'ajout d'acide citrique retarde la précipitation massive des hydrates correspondant à la prise : la chute de conductivité est repoussée à des échéances plus lointaines lors de l'ajout de ce constituant, puis lorsque sa teneur augmente.
REVENDICATIONS

1. Accélérateur de prise pour composition comprenant du ciment Portland, caractérisé en ce qu’il est sous la forme d’une suspension aqueuse et en ce qu’il comprend :
 - au moins un aluminate de calcium,
 - de 0,5 à 4%, de préférence de 0,6 à 2,3%, en poids par rapport au poids total du ou des aluminates de calcium, d’un inhibiteur de prise des ciments alumineux,
 - au moins un agent anti-sédimentation.

2. Accélérateur de prise selon la revendication 1 caractérisé en ce qu’il comprend au moins un agent dispersant.

3. Accélérateur de prise selon la revendication 1 caractérisé en ce que l’inhibiteur de prise comprend l’acide borique et/ou au moins un sel de l’acide borique, et l’acide citrique et/ou au moins un sel de l’acide citrique, l’acide borique et/ou le ou les sels de l’acide borique représentant de préférence de 0,4 à 3%, mieux de 0,5 à 2%, en poids du poids total du ou des aluminates de calcium, et l’acide citrique et/ou le ou les sels de l’acide citrique représentant de préférence de 0,1 à 1%, mieux de 0,1 à 0,5%, en poids du poids total du ou des aluminates de calcium.

4. Accélérateur de prise selon la revendication précédente caractérisé en ce que le ou les sels de l’acide borique sont choisis parmi le borate de zinc, le borate de sodium et leurs mélanges.

5. Accélérateur de prise selon la revendication 3 caractérisé en ce que l’inhibiteur de prise est constitué de l’acide borique et de l’acide citrique.

6. Accélérateur de prise selon la revendication 2 caractérisé en ce que le ou les agents dispersants représentent de 0,3 à 1,7%, de préférence 0,5% à 0,9%, en poids du poids total du ou des aluminates de calcium.

7. Accélérateur de prise selon l’une quelconque des revendications précédentes caractérisé en ce que le ou les agents anti-sédimentation représentent de 0,2 à 0,9%, en poids du poids total du ou des aluminates de calcium.

8. Accélérateur de prise selon l’une quelconque des revendications précédentes caractérisé en ce que le ou les agents anti-sédimentation sont
choisis parmi la gomme Xanthane, la gomme Welan, la Bentonite et leurs mélanges.

9. Accélérateur de prise selon l’une quelconque des revendications précédentes caractérisé en ce qu’il comprend un agent antibactérien, représentant de préférence de 0,2 à 0,9% en poids du poids total du ou des aluminates de calcium.

10. Accélérateur de prise selon l’une quelconque des revendications précédentes caractérisé en ce qu’il comprend au moins un colorant.

11. Accélérateur de prise selon l’une quelconque des revendications précédentes caractérisé en ce que la composition comprenant du ciment Portland est choisie parmi le ciment Portland, les ciments de laitiers, les ciments pouzzolaniques et les chaux hydrauliques, ainsi que parmi les mortiers et bétons comprenant du ciment Portland, du ciment de laitier, du ciment pouzzolanique ou de la chaux hydraulique.

12. Procédé de fabrication d’un accélérateur de prise pour composition comprenant du ciment Portland tel que défini dans l’une quelconque des revendications 2 à 11, caractérisé en ce qu’il comprend les étapes suivantes :
 - introduction de l’eau dans une cuve de mélange,
 - mise sous agitation par turbine à une vitesse supérieure à 600 tr/min, de préférence de l’ordre de 800 tr/min,
 - ajout de l’inhibiteur de prise des ciments alumineux,
 - ajout du ou des agents dispersants,
 - ajout progressif du ou des aluminates de calcium, l’agitation par turbine étant portée à une vitesse supérieure à 1000 tr/min, de préférence de l’ordre de 1400 tr/min,
 - ajout du ou des agents anti-sédimentation,
 - agitation par turbine pendant au moins 15 minutes, de préférence pendant 30 à 40 minutes.

13. Procédé selon la revendication précédente caractérisé en ce que l’agitation est réalisée par une turbine déficuleuse apte à provoquer un fort cisaillement.

14. Procédé selon l’une quelconque des revendications 12 et 13 caractérisé en ce que, lorsque l’accélérateur de prise contient un ou
plusieurs colorants, le ou lesdits colorant sont introduits après l'agent anti-
sédimentation.

15. Procédé d'accélération de prise d'une composition comprenant du
ciment Portland, caractérisé en ce qu'il consiste à ajouter à ladite
composition comprenant du ciment Portland, un accélérateur de prise tel que
défini par l'une quelconque des revendications 1 à 11, ledit accélérateur de
prise représentant de 10 à 40% en poids d'aluminate de calcium par rapport
au ciment Portland.

16. Procédé d'accélération de prise selon la revendication 15
caractérisé en ce que la composition comprenant du ciment Portland est
choisie parmi le ciment Portland, les ciments de laitiers, les ciments
pouzzolaniques et les chaux hydrauliques, ainsi que parmi les mortiers et
bétons comprenant du ciment Portland, du ciment de laitier, du ciment
pouzzolanique ou de la chaux hydraulique.
DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>FR 2 833 627 A (S O T O ; LAFARGE ALUMINATES (FR)) 20 juin 2003 (2003-06-20) * page 4, ligne 9 - page 6, ligne 9 *</td>
<td>1-11</td>
<td>C04B22/06, C04B7/42</td>
</tr>
<tr>
<td>X</td>
<td>US 6 244 343 B1 (BROTHERS LANCE E ET AL) 12 juin 2001 (2001-06-12)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>* colonne 3, ligne 20 - colonne 4, ligne 52 *</td>
<td>2-11</td>
<td></td>
</tr>
</tbody>
</table>

Domaines techniques recherchés (Int.Cl.):
- CO4B

Date d'achèvement de la recherche: 8 septembre 2003
Examinateur: Zimpfer, E
ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE
RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0216779 FA 629385

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 08-09-2003.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 03054304 A1</td>
<td></td>
</tr>
<tr>
<td>US 4012264 A</td>
<td>15-03-1977</td>
<td>GB 1387075 A</td>
<td>12-03-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5921273 A</td>
<td>20-02-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 993460 A1</td>
<td>20-07-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2341493 A1</td>
<td>28-02-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2196975 A1</td>
<td>22-03-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 49085128 A</td>
<td>15-08-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 409027 B</td>
<td>23-07-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 7305473 A</td>
<td>26-03-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 552355 B2</td>
<td>29-05-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 9102682 A</td>
<td>16-06-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 8207127 A</td>
<td>11-10-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1200566 A1</td>
<td>11-02-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3264795 D1</td>
<td>22-08-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8503318 A1</td>
<td>01-06-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2111041 A ,B</td>
<td>29-06-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1635930 C</td>
<td>31-01-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2058225 B</td>
<td>07-12-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 58115052 A</td>
<td>08-07-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 8208859 A</td>
<td>28-09-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 61556 T</td>
<td>15-03-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3678126 D1</td>
<td>18-04-1991</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82