
[72]	Inventor	Terumitu Dendo Tokyo, Japan	
[21]	Appl. No.	858,965	
[22]	Filed `	Sept. 18, 1969	
[45]	Patented	Aug. 3, 1971	
[73]	Assignee	Nissan Motor Company, Limited	
		Yokohama, Japan	
[32]	Priority	Sept. 21, 1968, Sept. 21, 1968	
[33]	· ·	Japan	
[31]		43/68383 and 43/82388	
[54]	WEFT YARN MEASURING AND DETAINING DEVICE FOR SHUTTLELESS LOOM 10 Claims, 5 Drawing Figs.		
[52]	U.S. Cl	139/122 R,	
		139/127 P	
[51]	Int. Cl	D03d 47/34	
[50]	Field of Sea	arch	
		139/122, 1, 127	

[56]		References Cited	
	UNIT	ED STATES PATENTS	
3,131,729	5/1964	Leysinger	139/122
	F	OREIGN PATENTS	
1,423,405	11/1965	France	66/132
Primary Ex Attorney—1	aminer—H McCarthy,	lenry S. Jaudon Depaoli & O'Brien	entropy of the second
	4.0		

ABSTRACT: A device for continuously measuring and detaining unit lengths of weft yarn in a shuttleless loom. The device has two conveying belts set at an angle formed by the belt surfaces facing each other and diverging from the common tangential contact line in the drive end where the unit lengths are continuously measured and then detained in the angular space formed between the belt surfaces facing each other.

2 Sheets-Sheet 1

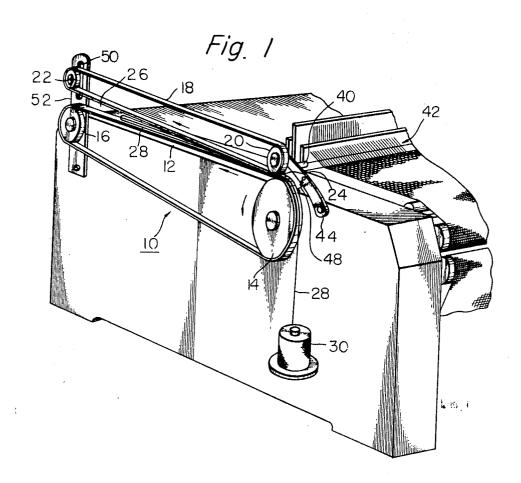
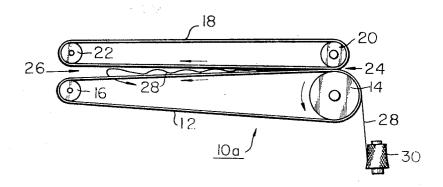
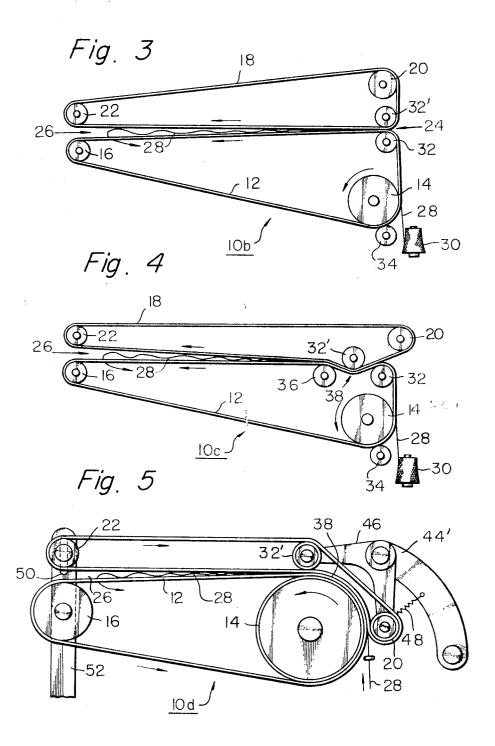




Fig. 2

INVENTOR
TERUMITU DENDO
BY
Mc Carly, liquid: 6 0 Bin
ATTORNEY

2 Sheets-Sheet 2

INVENTOR
TERUMITU DENDO
BY
Milathy, Deposit & O'Bris
ATTORNEY

WEFT YARN MEASURING AND DETAINING DEVICE FOR SHUTTLELESS LOOM

This invention relates to a fluid jet shuttleless loom and 5 more particularly to a device for continuously measuring unit lengths of west yarn and then detaining the unit lengths in the angular space formed by two conveying belt surfaces facing

In a conventional weft yarn measuring and detaining device 10 the weft yarn is fed and measured from the supply package onto a moving conveyor belt from between the belt and a grip securing weft feed roller. The linear velocity of the belt is adjusted to conform with the intermittent projections by the fluid jet so that one unit length of west yarn is measured and 15 fed onto the conveyor belt. The measured yarn lays on the belt unprotected and, since wide belts cannot be used for practical reasons, even slight air movements often cause the yarn to fall off the rather narrow commonly used belt or to become entangled, resulting in interruptions of operation. Moreover, when 20 the production rate is speeded up by increasing the number of measurements and projections per time unit, the presence of static electricity also increases with the higher yarn and weft feed roller speed. The static causes the weft yarn, especially fluffy spun yarn, to stick to the roller and wind around it resulting in irregular measurements of unit lengths.

The object of this invention is therefore to eliminate such drawbacks as dislocation and entanglement of weft yarn as fluid jet shuttleless loom, as has heretofore been experienced.

The aforesaid object is accomplished by a device which is so constructed as to measure, detain, protect and guide unit lengths of weft yarn ensuring accurate length measurements and uninterrupted operations.

become apparent from the following description taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a perspective view of a fluid jet shuttleless loom with an improvement according to the present invention incorporated; and

FIGS. 2 through 5 are schematic views of different modifications of the improvement of FIG. 1.

Reference is first made to FIG. 1 which shows in perspective one preferred embodiment of the present invention as applied 45 to a fluid jet shuttleless loom. The device indicated generally at 10 comprises a conveying detainer belt 12 driven by a drive roller 14. The angular velocity of the belt 12 is adjustable to conform with the intermittent projections required by the production rate. The belt 12 is kept in position by an idler 16. 50 roller. A protecting guide belt 18 is kept in such a position by a weft feed roller 20 and an idler 22 that a common tangential contact is established in the drive end for detainer belt to friction engage with the drive guide belt 18. The surfaces of the belts 12 and 18 facing each other diverge from the common tangen- 55 tial contact line 24, forming an angular space 26 in which a unit length of weft yarn 28 from supply package 30 is detained. Arrows (not identified by numerals) indicate the direction of movements of the drive wheel and the belts. The weft feed roller 20 may be, if preferred, mounted on a lever 44 60 urged by spring 48. The angular space 26 between the two belts is adjustable by changing the position of the idler 22 as illustrated in FIGS. 1 and 5 showing idler 22 as mounted in the slot 50 of a support 52. Indicated at 40 and 42 are a fluid jet nozzle and a shed of warp yarn array, respectively.

In FIG. 2 is shown the basic belt and roller arrangement 10a in accordance with the invention, the reference numerals being in correspondence with those in FIG. 1.

If preferred, additional rollers 32 and 32' may be provided downstream of the rollers 14 and 20, respectively, to assist in 70 holding the belts 12 and 18 in position, as illustrated in FIG. 3. This modified form of the device 10b may be further provided with a pressure roller 34 to avoid slippage between the belt 12

and drive roller 14. In addition to these additional rollers 32 and 32', there may be provided a further additional roller 36, as in the device 10c shown in FIG. 4. The additional rollers 32, 32' and 36 are mounted in a substantially triangular position in such a manner that the upper additional roller presses the belt 18 against the belt 12, establishing a common contact area 38. It will be appreciated that such arrangement of the rollers 32, 32' and 36 is advantageous not only to keep the belt 18 taut but to correctly guide the yarn with the increased contact area 38.

A further modified form of the device according to the invention as shown by 10d in FIG. 5 includes a lever 44' holding in position a bracket 46 onto which rollers 20 and 32' are mounted to press the protecting guide belt 18 against the conveying detainer belt 12 for more positive frictional effect in the common contact area 38 through the action of a spring 48.

From the foregoing it will be appreciated that, in contrast to prior art practice wherein weft yarn is measured and detained on an unprotected conveying belt subject to effects of even slight atmospheric environmental disturbances and jams caused by static the present invention provides a device for measuring continuously and detaining weft yarn under protection in the angular space formed by belts 12 and 18 thus substantially improving a fluid jet shuttleless loom.

I claim:

1. In a shuttleless loom of fluid jet type, a device for continuously measuring and detaining the west yarn to be intermittently projected into the shed of the warp yarn array comprising a conveying detainer belt driven at an adjustable speed well as fluffy yarn winding around the weft feed roller on a 30 and a protecting guide belt positioned in a face-to-face angular relationship with said detainer belt and having its drive end portion in tangential friction driving contact with said detainer belt for drawing and measuring a unit length of weft yarn per time unit from a yarn supply package, the facing surfaces of The features and advantages of the present invention will some appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send portion to form an appearance of the present invention will send the present invention will be appearance of the present invention will be appearance the weft yarn fed from between the two belts through said drive end portion is conveyed and detained on said detainer belt guided and protected by said protecting guide belt.

2. A device according to claim 1, wherein said conveying detainer belt is held in position by a drive roller and a weft feed roller and said protecting guide belt being held by a pair of spaced apart idlers in tangential friction driving contact with said conveying detainer belt in said drive end.

3. A device according to claim 2, wherein said conveying detainer belt is further held in position by at least one additional roller.

4. A device according to claim 2, wherein said protecting guide belt is further held in position by at least one additional

5. A device according to claim 2, wherein said conveying detainer belt is held in position at said drive end portion by two additional rollers for increasing said friction driving contact to cover a substantial area between said conveying detainer belt and said protecting guide belt.

6. A device according to claim 2, wherein said conveying detainer belt is held in position at said drive end portion by two additional rollers and said protecting guide belt is held in position by one additional roller pressing said protecting guide belt against said conveying detainer belt between said auxiliary idlers of said conveying detainer belt over a substantial

7. A device according to claim 2, wherein at least one pressure roller is provided to avoid slippage between said belts.

- 8. A device according to claim 2, wherein at least one additional roller is provided to maintain said protecting guide belt
- 9. A device according to claim 8, wherein said roller is mounted on a spring urged lever whereby pressure applied to said protecting guide belt is adjusted.
- 10. A device according to claim 1, wherein said angular space is adjustable.